1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorPolicy.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1CardLiveData.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 
  61 // Concurrent marking bit map wrapper
  62 
  63 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  64   _bm(),
  65   _shifter(shifter) {
  66   _bmStartWord = 0;
  67   _bmWordSize = 0;
  68 }
  69 
  70 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  71                                                  const HeapWord* limit) const {
  72   // First we must round addr *up* to a possible object boundary.
  73   addr = (HeapWord*)align_size_up((intptr_t)addr,
  74                                   HeapWordSize << _shifter);
  75   size_t addrOffset = heapWordToOffset(addr);
  76   assert(limit != NULL, "limit must not be NULL");
  77   size_t limitOffset = heapWordToOffset(limit);
  78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  80   assert(nextAddr >= addr, "get_next_one postcondition");
  81   assert(nextAddr == limit || isMarked(nextAddr),
  82          "get_next_one postcondition");
  83   return nextAddr;
  84 }
  85 
  86 #ifndef PRODUCT
  87 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  88   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  89   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  90          "size inconsistency");
  91   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  92          _bmWordSize  == heap_rs.word_size();
  93 }
  94 #endif
  95 
  96 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  97   _bm.print_on_error(st, prefix);
  98 }
  99 
 100 size_t G1CMBitMap::compute_size(size_t heap_size) {
 101   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 102 }
 103 
 104 size_t G1CMBitMap::mark_distance() {
 105   return MinObjAlignmentInBytes * BitsPerByte;
 106 }
 107 
 108 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 109   _bmStartWord = heap.start();
 110   _bmWordSize = heap.word_size();
 111 
 112   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 113   _bm.set_size(_bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clear_range(mr);
 125 }
 126 
 127 void G1CMBitMap::clear_range(MemRegion mr) {
 128   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 129   assert(!mr.is_empty(), "unexpected empty region");
 130   // convert address range into offset range
 131   _bm.at_put_range(heapWordToOffset(mr.start()),
 132                    heapWordToOffset(mr.end()), false);
 133 }
 134 
 135 G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
 136   _base(NULL), _cm(cm)
 137 {}
 138 
 139 bool G1CMMarkStack::allocate(size_t capacity) {
 140   // allocate a stack of the requisite depth
 141   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 142   if (!rs.is_reserved()) {
 143     log_warning(gc)("ConcurrentMark MarkStack allocation failure");
 144     return false;
 145   }
 146   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 147   if (!_virtual_space.initialize(rs, rs.size())) {
 148     log_warning(gc)("ConcurrentMark MarkStack backing store failure");
 149     // Release the virtual memory reserved for the marking stack
 150     rs.release();
 151     return false;
 152   }
 153   assert(_virtual_space.committed_size() == rs.size(),
 154          "Didn't reserve backing store for all of G1ConcurrentMark stack?");
 155   _base = (oop*) _virtual_space.low();
 156   setEmpty();
 157   _capacity = (jint) capacity;
 158   _saved_index = -1;
 159   _should_expand = false;
 160   return true;
 161 }
 162 
 163 void G1CMMarkStack::expand() {
 164   // Called, during remark, if we've overflown the marking stack during marking.
 165   assert(isEmpty(), "stack should been emptied while handling overflow");
 166   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 167   // Clear expansion flag
 168   _should_expand = false;
 169   if (_capacity == (jint) MarkStackSizeMax) {
 170     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 171     return;
 172   }
 173   // Double capacity if possible
 174   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 175   // Do not give up existing stack until we have managed to
 176   // get the double capacity that we desired.
 177   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 178                                                            sizeof(oop)));
 179   if (rs.is_reserved()) {
 180     // Release the backing store associated with old stack
 181     _virtual_space.release();
 182     // Reinitialize virtual space for new stack
 183     if (!_virtual_space.initialize(rs, rs.size())) {
 184       fatal("Not enough swap for expanded marking stack capacity");
 185     }
 186     _base = (oop*)(_virtual_space.low());
 187     _index = 0;
 188     _capacity = new_capacity;
 189   } else {
 190     // Failed to double capacity, continue;
 191     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 192                   _capacity / K, new_capacity / K);
 193   }
 194 }
 195 
 196 void G1CMMarkStack::set_should_expand() {
 197   // If we're resetting the marking state because of an
 198   // marking stack overflow, record that we should, if
 199   // possible, expand the stack.
 200   _should_expand = _cm->has_overflown();
 201 }
 202 
 203 G1CMMarkStack::~G1CMMarkStack() {
 204   if (_base != NULL) {
 205     _base = NULL;
 206     _virtual_space.release();
 207   }
 208 }
 209 
 210 void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 211   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 212   jint start = _index;
 213   jint next_index = start + n;
 214   if (next_index > _capacity) {
 215     _overflow = true;
 216     return;
 217   }
 218   // Otherwise.
 219   _index = next_index;
 220   for (int i = 0; i < n; i++) {
 221     int ind = start + i;
 222     assert(ind < _capacity, "By overflow test above.");
 223     _base[ind] = ptr_arr[i];
 224   }
 225 }
 226 
 227 bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 228   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 229   jint index = _index;
 230   if (index == 0) {
 231     *n = 0;
 232     return false;
 233   } else {
 234     int k = MIN2(max, index);
 235     jint  new_ind = index - k;
 236     for (int j = 0; j < k; j++) {
 237       ptr_arr[j] = _base[new_ind + j];
 238     }
 239     _index = new_ind;
 240     *n = k;
 241     return true;
 242   }
 243 }
 244 
 245 void G1CMMarkStack::note_start_of_gc() {
 246   assert(_saved_index == -1,
 247          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 248   _saved_index = _index;
 249 }
 250 
 251 void G1CMMarkStack::note_end_of_gc() {
 252   // This is intentionally a guarantee, instead of an assert. If we
 253   // accidentally add something to the mark stack during GC, it
 254   // will be a correctness issue so it's better if we crash. we'll
 255   // only check this once per GC anyway, so it won't be a performance
 256   // issue in any way.
 257   guarantee(_saved_index == _index,
 258             "saved index: %d index: %d", _saved_index, _index);
 259   _saved_index = -1;
 260 }
 261 
 262 G1CMRootRegions::G1CMRootRegions() :
 263   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 264   _should_abort(false),  _next_survivor(NULL) { }
 265 
 266 void G1CMRootRegions::init(G1CollectedHeap* g1h, G1ConcurrentMark* cm) {
 267   _young_list = g1h->young_list();
 268   _cm = cm;
 269 }
 270 
 271 void G1CMRootRegions::prepare_for_scan() {
 272   assert(!scan_in_progress(), "pre-condition");
 273 
 274   // Currently, only survivors can be root regions.
 275   assert(_next_survivor == NULL, "pre-condition");
 276   _next_survivor = _young_list->first_survivor_region();
 277   _scan_in_progress = (_next_survivor != NULL);
 278   _should_abort = false;
 279 }
 280 
 281 HeapRegion* G1CMRootRegions::claim_next() {
 282   if (_should_abort) {
 283     // If someone has set the should_abort flag, we return NULL to
 284     // force the caller to bail out of their loop.
 285     return NULL;
 286   }
 287 
 288   // Currently, only survivors can be root regions.
 289   HeapRegion* res = _next_survivor;
 290   if (res != NULL) {
 291     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 292     // Read it again in case it changed while we were waiting for the lock.
 293     res = _next_survivor;
 294     if (res != NULL) {
 295       if (res == _young_list->last_survivor_region()) {
 296         // We just claimed the last survivor so store NULL to indicate
 297         // that we're done.
 298         _next_survivor = NULL;
 299       } else {
 300         _next_survivor = res->get_next_young_region();
 301       }
 302     } else {
 303       // Someone else claimed the last survivor while we were trying
 304       // to take the lock so nothing else to do.
 305     }
 306   }
 307   assert(res == NULL || res->is_survivor(), "post-condition");
 308 
 309   return res;
 310 }
 311 
 312 void G1CMRootRegions::notify_scan_done() {
 313   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 314   _scan_in_progress = false;
 315   RootRegionScan_lock->notify_all();
 316 }
 317 
 318 void G1CMRootRegions::cancel_scan() {
 319   notify_scan_done();
 320 }
 321 
 322 void G1CMRootRegions::scan_finished() {
 323   assert(scan_in_progress(), "pre-condition");
 324 
 325   // Currently, only survivors can be root regions.
 326   if (!_should_abort) {
 327     assert(_next_survivor == NULL, "we should have claimed all survivors");
 328   }
 329   _next_survivor = NULL;
 330 
 331   notify_scan_done();
 332 }
 333 
 334 bool G1CMRootRegions::wait_until_scan_finished() {
 335   if (!scan_in_progress()) return false;
 336 
 337   {
 338     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 339     while (scan_in_progress()) {
 340       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 341     }
 342   }
 343   return true;
 344 }
 345 
 346 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 347   return MAX2((n_par_threads + 2) / 4, 1U);
 348 }
 349 
 350 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 351   _g1h(g1h),
 352   _markBitMap1(),
 353   _markBitMap2(),
 354   _parallel_marking_threads(0),
 355   _max_parallel_marking_threads(0),
 356   _sleep_factor(0.0),
 357   _marking_task_overhead(1.0),
 358   _cleanup_list("Cleanup List"),
 359 
 360   _prevMarkBitMap(&_markBitMap1),
 361   _nextMarkBitMap(&_markBitMap2),
 362 
 363   _markStack(this),
 364   // _finger set in set_non_marking_state
 365 
 366   _max_worker_id(ParallelGCThreads),
 367   // _active_tasks set in set_non_marking_state
 368   // _tasks set inside the constructor
 369   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 370   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 371 
 372   _has_overflown(false),
 373   _concurrent(false),
 374   _has_aborted(false),
 375   _restart_for_overflow(false),
 376   _concurrent_marking_in_progress(false),
 377   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 378   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 379 
 380   // _verbose_level set below
 381 
 382   _init_times(),
 383   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 384   _cleanup_times(),
 385   _total_counting_time(0.0),
 386   _total_rs_scrub_time(0.0),
 387 
 388   _parallel_workers(NULL),
 389 
 390   _completed_initialization(false) {
 391 
 392   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 393   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 394 
 395   // Create & start a ConcurrentMark thread.
 396   _cmThread = new ConcurrentMarkThread(this);
 397   assert(cmThread() != NULL, "CM Thread should have been created");
 398   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 399   if (_cmThread->osthread() == NULL) {
 400       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 401   }
 402 
 403   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 404   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 405   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 406 
 407   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 408   satb_qs.set_buffer_size(G1SATBBufferSize);
 409 
 410   _root_regions.init(_g1h, this);
 411 
 412   if (ConcGCThreads > ParallelGCThreads) {
 413     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 414                     ConcGCThreads, ParallelGCThreads);
 415     return;
 416   }
 417   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 418     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 419     // if both are set
 420     _sleep_factor             = 0.0;
 421     _marking_task_overhead    = 1.0;
 422   } else if (G1MarkingOverheadPercent > 0) {
 423     // We will calculate the number of parallel marking threads based
 424     // on a target overhead with respect to the soft real-time goal
 425     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 426     double overall_cm_overhead =
 427       (double) MaxGCPauseMillis * marking_overhead /
 428       (double) GCPauseIntervalMillis;
 429     double cpu_ratio = 1.0 / (double) os::processor_count();
 430     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 431     double marking_task_overhead =
 432       overall_cm_overhead / marking_thread_num *
 433                                               (double) os::processor_count();
 434     double sleep_factor =
 435                        (1.0 - marking_task_overhead) / marking_task_overhead;
 436 
 437     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 438     _sleep_factor             = sleep_factor;
 439     _marking_task_overhead    = marking_task_overhead;
 440   } else {
 441     // Calculate the number of parallel marking threads by scaling
 442     // the number of parallel GC threads.
 443     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 444     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 445     _sleep_factor             = 0.0;
 446     _marking_task_overhead    = 1.0;
 447   }
 448 
 449   assert(ConcGCThreads > 0, "Should have been set");
 450   _parallel_marking_threads = ConcGCThreads;
 451   _max_parallel_marking_threads = _parallel_marking_threads;
 452 
 453   _parallel_workers = new WorkGang("G1 Marker",
 454        _max_parallel_marking_threads, false, true);
 455   if (_parallel_workers == NULL) {
 456     vm_exit_during_initialization("Failed necessary allocation.");
 457   } else {
 458     _parallel_workers->initialize_workers();
 459   }
 460 
 461   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 462     size_t mark_stack_size =
 463       MIN2(MarkStackSizeMax,
 464           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 465     // Verify that the calculated value for MarkStackSize is in range.
 466     // It would be nice to use the private utility routine from Arguments.
 467     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 468       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 469                       "must be between 1 and " SIZE_FORMAT,
 470                       mark_stack_size, MarkStackSizeMax);
 471       return;
 472     }
 473     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 474   } else {
 475     // Verify MarkStackSize is in range.
 476     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 477       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 478         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 479           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 480                           "must be between 1 and " SIZE_FORMAT,
 481                           MarkStackSize, MarkStackSizeMax);
 482           return;
 483         }
 484       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 485         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 486           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 487                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 488                           MarkStackSize, MarkStackSizeMax);
 489           return;
 490         }
 491       }
 492     }
 493   }
 494 
 495   if (!_markStack.allocate(MarkStackSize)) {
 496     log_warning(gc)("Failed to allocate CM marking stack");
 497     return;
 498   }
 499 
 500   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 501   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 502 
 503   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 504   _active_tasks = _max_worker_id;
 505 
 506   for (uint i = 0; i < _max_worker_id; ++i) {
 507     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 508     task_queue->initialize();
 509     _task_queues->register_queue(i, task_queue);
 510 
 511     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 512 
 513     _accum_task_vtime[i] = 0.0;
 514   }
 515 
 516   // so that the call below can read a sensible value
 517   _heap_start = g1h->reserved_region().start();
 518   set_non_marking_state();
 519   _completed_initialization = true;
 520 }
 521 
 522 void G1ConcurrentMark::reset() {
 523   // Starting values for these two. This should be called in a STW
 524   // phase.
 525   MemRegion reserved = _g1h->g1_reserved();
 526   _heap_start = reserved.start();
 527   _heap_end   = reserved.end();
 528 
 529   // Separated the asserts so that we know which one fires.
 530   assert(_heap_start != NULL, "heap bounds should look ok");
 531   assert(_heap_end != NULL, "heap bounds should look ok");
 532   assert(_heap_start < _heap_end, "heap bounds should look ok");
 533 
 534   // Reset all the marking data structures and any necessary flags
 535   reset_marking_state();
 536 
 537   // We do reset all of them, since different phases will use
 538   // different number of active threads. So, it's easiest to have all
 539   // of them ready.
 540   for (uint i = 0; i < _max_worker_id; ++i) {
 541     _tasks[i]->reset(_nextMarkBitMap);
 542   }
 543 
 544   // we need this to make sure that the flag is on during the evac
 545   // pause with initial mark piggy-backed
 546   set_concurrent_marking_in_progress();
 547 }
 548 
 549 
 550 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 551   _markStack.set_should_expand();
 552   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 553   if (clear_overflow) {
 554     clear_has_overflown();
 555   } else {
 556     assert(has_overflown(), "pre-condition");
 557   }
 558   _finger = _heap_start;
 559 
 560   for (uint i = 0; i < _max_worker_id; ++i) {
 561     G1CMTaskQueue* queue = _task_queues->queue(i);
 562     queue->set_empty();
 563   }
 564 }
 565 
 566 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 567   assert(active_tasks <= _max_worker_id, "we should not have more");
 568 
 569   _active_tasks = active_tasks;
 570   // Need to update the three data structures below according to the
 571   // number of active threads for this phase.
 572   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 573   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 574   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 575 }
 576 
 577 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 578   set_concurrency(active_tasks);
 579 
 580   _concurrent = concurrent;
 581   // We propagate this to all tasks, not just the active ones.
 582   for (uint i = 0; i < _max_worker_id; ++i)
 583     _tasks[i]->set_concurrent(concurrent);
 584 
 585   if (concurrent) {
 586     set_concurrent_marking_in_progress();
 587   } else {
 588     // We currently assume that the concurrent flag has been set to
 589     // false before we start remark. At this point we should also be
 590     // in a STW phase.
 591     assert(!concurrent_marking_in_progress(), "invariant");
 592     assert(out_of_regions(),
 593            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 594            p2i(_finger), p2i(_heap_end));
 595   }
 596 }
 597 
 598 void G1ConcurrentMark::set_non_marking_state() {
 599   // We set the global marking state to some default values when we're
 600   // not doing marking.
 601   reset_marking_state();
 602   _active_tasks = 0;
 603   clear_concurrent_marking_in_progress();
 604 }
 605 
 606 G1ConcurrentMark::~G1ConcurrentMark() {
 607   // The G1ConcurrentMark instance is never freed.
 608   ShouldNotReachHere();
 609 }
 610 
 611 class G1ClearBitMapTask : public AbstractGangTask {
 612   // Heap region closure used for clearing the given mark bitmap.
 613   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 614   private:
 615     G1CMBitMap* _bitmap;
 616     G1ConcurrentMark* _cm;
 617   public:
 618     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 619     }
 620 
 621     virtual bool doHeapRegion(HeapRegion* r) {
 622       size_t const chunk_size_in_words = M / HeapWordSize;
 623 
 624       HeapWord* cur = r->bottom();
 625       HeapWord* const end = r->end();
 626 
 627       while (cur < end) {
 628         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 629         _bitmap->clear_range(mr);
 630 
 631         cur += chunk_size_in_words;
 632 
 633         // Abort iteration if after yielding the marking has been aborted.
 634         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 635           return true;
 636         }
 637         // Repeat the asserts from before the start of the closure. We will do them
 638         // as asserts here to minimize their overhead on the product. However, we
 639         // will have them as guarantees at the beginning / end of the bitmap
 640         // clearing to get some checking in the product.
 641         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 642         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 643       }
 644       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 645 
 646       return false;
 647     }
 648   };
 649 
 650   G1ClearBitmapHRClosure _cl;
 651   HeapRegionClaimer _hr_claimer;
 652   bool _suspendible; // If the task is suspendible, workers must join the STS.
 653 
 654 public:
 655   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 656     AbstractGangTask("Parallel Clear Bitmap Task"),
 657     _cl(bitmap, suspendible ? cm : NULL),
 658     _hr_claimer(n_workers),
 659     _suspendible(suspendible)
 660   { }
 661 
 662   void work(uint worker_id) {
 663     SuspendibleThreadSetJoiner sts_join(_suspendible);
 664     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 665   }
 666 
 667   bool is_complete() {
 668     return _cl.complete();
 669   }
 670 };
 671 
 672 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 673   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 674 
 675   G1ClearBitMapTask task(bitmap, this, workers->active_workers(), may_yield);
 676   workers->run_task(&task);
 677   guarantee(!may_yield || task.is_complete(), "Must have completed iteration when not yielding.");
 678 }
 679 
 680 void G1ConcurrentMark::cleanup_for_next_mark() {
 681   // Make sure that the concurrent mark thread looks to still be in
 682   // the current cycle.
 683   guarantee(cmThread()->during_cycle(), "invariant");
 684 
 685   // We are finishing up the current cycle by clearing the next
 686   // marking bitmap and getting it ready for the next cycle. During
 687   // this time no other cycle can start. So, let's make sure that this
 688   // is the case.
 689   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 690 
 691   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 692 
 693   // Clear the live count data. If the marking has been aborted, the abort()
 694   // call already did that.
 695   if (!has_aborted()) {
 696     clear_live_data(_parallel_workers);
 697     DEBUG_ONLY(verify_live_data_clear());
 698   }
 699 
 700   // Repeat the asserts from above.
 701   guarantee(cmThread()->during_cycle(), "invariant");
 702   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 703 }
 704 
 705 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 706   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 707   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 708 }
 709 
 710 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 711   G1CMBitMap* _bitmap;
 712   bool _error;
 713  public:
 714   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 715   }
 716 
 717   virtual bool doHeapRegion(HeapRegion* r) {
 718     // This closure can be called concurrently to the mutator, so we must make sure
 719     // that the result of the getNextMarkedWordAddress() call is compared to the
 720     // value passed to it as limit to detect any found bits.
 721     // end never changes in G1.
 722     HeapWord* end = r->end();
 723     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 724   }
 725 };
 726 
 727 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 728   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 729   _g1h->heap_region_iterate(&cl);
 730   return cl.complete();
 731 }
 732 
 733 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 734 public:
 735   bool doHeapRegion(HeapRegion* r) {
 736     r->note_start_of_marking();
 737     return false;
 738   }
 739 };
 740 
 741 void G1ConcurrentMark::checkpointRootsInitialPre() {
 742   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 743   G1CollectorPolicy* g1p = g1h->g1_policy();
 744 
 745   _has_aborted = false;
 746 
 747   // Initialize marking structures. This has to be done in a STW phase.
 748   reset();
 749 
 750   // For each region note start of marking.
 751   NoteStartOfMarkHRClosure startcl;
 752   g1h->heap_region_iterate(&startcl);
 753 }
 754 
 755 
 756 void G1ConcurrentMark::checkpointRootsInitialPost() {
 757   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 758 
 759   // Start Concurrent Marking weak-reference discovery.
 760   ReferenceProcessor* rp = g1h->ref_processor_cm();
 761   // enable ("weak") refs discovery
 762   rp->enable_discovery();
 763   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 764 
 765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 766   // This is the start of  the marking cycle, we're expected all
 767   // threads to have SATB queues with active set to false.
 768   satb_mq_set.set_active_all_threads(true, /* new active value */
 769                                      false /* expected_active */);
 770 
 771   _root_regions.prepare_for_scan();
 772 
 773   // update_g1_committed() will be called at the end of an evac pause
 774   // when marking is on. So, it's also called at the end of the
 775   // initial-mark pause to update the heap end, if the heap expands
 776   // during it. No need to call it here.
 777 }
 778 
 779 /*
 780  * Notice that in the next two methods, we actually leave the STS
 781  * during the barrier sync and join it immediately afterwards. If we
 782  * do not do this, the following deadlock can occur: one thread could
 783  * be in the barrier sync code, waiting for the other thread to also
 784  * sync up, whereas another one could be trying to yield, while also
 785  * waiting for the other threads to sync up too.
 786  *
 787  * Note, however, that this code is also used during remark and in
 788  * this case we should not attempt to leave / enter the STS, otherwise
 789  * we'll either hit an assert (debug / fastdebug) or deadlock
 790  * (product). So we should only leave / enter the STS if we are
 791  * operating concurrently.
 792  *
 793  * Because the thread that does the sync barrier has left the STS, it
 794  * is possible to be suspended for a Full GC or an evacuation pause
 795  * could occur. This is actually safe, since the entering the sync
 796  * barrier is one of the last things do_marking_step() does, and it
 797  * doesn't manipulate any data structures afterwards.
 798  */
 799 
 800 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 801   bool barrier_aborted;
 802   {
 803     SuspendibleThreadSetLeaver sts_leave(concurrent());
 804     barrier_aborted = !_first_overflow_barrier_sync.enter();
 805   }
 806 
 807   // at this point everyone should have synced up and not be doing any
 808   // more work
 809 
 810   if (barrier_aborted) {
 811     // If the barrier aborted we ignore the overflow condition and
 812     // just abort the whole marking phase as quickly as possible.
 813     return;
 814   }
 815 
 816   // If we're executing the concurrent phase of marking, reset the marking
 817   // state; otherwise the marking state is reset after reference processing,
 818   // during the remark pause.
 819   // If we reset here as a result of an overflow during the remark we will
 820   // see assertion failures from any subsequent set_concurrency_and_phase()
 821   // calls.
 822   if (concurrent()) {
 823     // let the task associated with with worker 0 do this
 824     if (worker_id == 0) {
 825       // task 0 is responsible for clearing the global data structures
 826       // We should be here because of an overflow. During STW we should
 827       // not clear the overflow flag since we rely on it being true when
 828       // we exit this method to abort the pause and restart concurrent
 829       // marking.
 830       reset_marking_state(true /* clear_overflow */);
 831 
 832       log_info(gc, marking)("Concurrent Mark reset for overflow");
 833     }
 834   }
 835 
 836   // after this, each task should reset its own data structures then
 837   // then go into the second barrier
 838 }
 839 
 840 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 841   SuspendibleThreadSetLeaver sts_leave(concurrent());
 842   _second_overflow_barrier_sync.enter();
 843 
 844   // at this point everything should be re-initialized and ready to go
 845 }
 846 
 847 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 848 private:
 849   G1ConcurrentMark*     _cm;
 850   ConcurrentMarkThread* _cmt;
 851 
 852 public:
 853   void work(uint worker_id) {
 854     assert(Thread::current()->is_ConcurrentGC_thread(),
 855            "this should only be done by a conc GC thread");
 856     ResourceMark rm;
 857 
 858     double start_vtime = os::elapsedVTime();
 859 
 860     {
 861       SuspendibleThreadSetJoiner sts_join;
 862 
 863       assert(worker_id < _cm->active_tasks(), "invariant");
 864       G1CMTask* the_task = _cm->task(worker_id);
 865       the_task->record_start_time();
 866       if (!_cm->has_aborted()) {
 867         do {
 868           double start_vtime_sec = os::elapsedVTime();
 869           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 870 
 871           the_task->do_marking_step(mark_step_duration_ms,
 872                                     true  /* do_termination */,
 873                                     false /* is_serial*/);
 874 
 875           double end_vtime_sec = os::elapsedVTime();
 876           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 877           _cm->clear_has_overflown();
 878 
 879           _cm->do_yield_check();
 880 
 881           jlong sleep_time_ms;
 882           if (!_cm->has_aborted() && the_task->has_aborted()) {
 883             sleep_time_ms =
 884               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 885             {
 886               SuspendibleThreadSetLeaver sts_leave;
 887               os::sleep(Thread::current(), sleep_time_ms, false);
 888             }
 889           }
 890         } while (!_cm->has_aborted() && the_task->has_aborted());
 891       }
 892       the_task->record_end_time();
 893       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 894     }
 895 
 896     double end_vtime = os::elapsedVTime();
 897     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 898   }
 899 
 900   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 901                             ConcurrentMarkThread* cmt) :
 902       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 903 
 904   ~G1CMConcurrentMarkingTask() { }
 905 };
 906 
 907 // Calculates the number of active workers for a concurrent
 908 // phase.
 909 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 910   uint n_conc_workers = 0;
 911   if (!UseDynamicNumberOfGCThreads ||
 912       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 913        !ForceDynamicNumberOfGCThreads)) {
 914     n_conc_workers = max_parallel_marking_threads();
 915   } else {
 916     n_conc_workers =
 917       AdaptiveSizePolicy::calc_default_active_workers(
 918                                    max_parallel_marking_threads(),
 919                                    1, /* Minimum workers */
 920                                    parallel_marking_threads(),
 921                                    Threads::number_of_non_daemon_threads());
 922     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 923     // that scaling has already gone into "_max_parallel_marking_threads".
 924   }
 925   assert(n_conc_workers > 0, "Always need at least 1");
 926   return n_conc_workers;
 927 }
 928 
 929 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 930   // Currently, only survivors can be root regions.
 931   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 932   G1RootRegionScanClosure cl(_g1h, this);
 933 
 934   const uintx interval = PrefetchScanIntervalInBytes;
 935   HeapWord* curr = hr->bottom();
 936   const HeapWord* end = hr->top();
 937   while (curr < end) {
 938     Prefetch::read(curr, interval);
 939     oop obj = oop(curr);
 940     int size = obj->oop_iterate_size(&cl);
 941     assert(size == obj->size(), "sanity");
 942     curr += size;
 943   }
 944 }
 945 
 946 class G1CMRootRegionScanTask : public AbstractGangTask {
 947 private:
 948   G1ConcurrentMark* _cm;
 949 
 950 public:
 951   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 952     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 953 
 954   void work(uint worker_id) {
 955     assert(Thread::current()->is_ConcurrentGC_thread(),
 956            "this should only be done by a conc GC thread");
 957 
 958     G1CMRootRegions* root_regions = _cm->root_regions();
 959     HeapRegion* hr = root_regions->claim_next();
 960     while (hr != NULL) {
 961       _cm->scanRootRegion(hr);
 962       hr = root_regions->claim_next();
 963     }
 964   }
 965 };
 966 
 967 void G1ConcurrentMark::scan_root_regions() {
 968   // scan_in_progress() will have been set to true only if there was
 969   // at least one root region to scan. So, if it's false, we
 970   // should not attempt to do any further work.
 971   if (root_regions()->scan_in_progress()) {
 972     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 973 
 974     _parallel_marking_threads = calc_parallel_marking_threads();
 975     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 976            "Maximum number of marking threads exceeded");
 977     uint active_workers = MAX2(1U, parallel_marking_threads());
 978 
 979     G1CMRootRegionScanTask task(this);
 980     _parallel_workers->set_active_workers(active_workers);
 981     _parallel_workers->run_task(&task);
 982 
 983     // It's possible that has_aborted() is true here without actually
 984     // aborting the survivor scan earlier. This is OK as it's
 985     // mainly used for sanity checking.
 986     root_regions()->scan_finished();
 987   }
 988 }
 989 
 990 void G1ConcurrentMark::concurrent_cycle_start() {
 991   _gc_timer_cm->register_gc_start();
 992 
 993   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 994 
 995   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 996 }
 997 
 998 void G1ConcurrentMark::concurrent_cycle_end() {
 999   _g1h->trace_heap_after_gc(_gc_tracer_cm);
1000 
1001   if (has_aborted()) {
1002     _gc_tracer_cm->report_concurrent_mode_failure();
1003   }
1004 
1005   _gc_timer_cm->register_gc_end();
1006 
1007   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1008 }
1009 
1010 void G1ConcurrentMark::mark_from_roots() {
1011   // we might be tempted to assert that:
1012   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1013   //        "inconsistent argument?");
1014   // However that wouldn't be right, because it's possible that
1015   // a safepoint is indeed in progress as a younger generation
1016   // stop-the-world GC happens even as we mark in this generation.
1017 
1018   _restart_for_overflow = false;
1019 
1020   // _g1h has _n_par_threads
1021   _parallel_marking_threads = calc_parallel_marking_threads();
1022   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1023     "Maximum number of marking threads exceeded");
1024 
1025   uint active_workers = MAX2(1U, parallel_marking_threads());
1026   assert(active_workers > 0, "Should have been set");
1027 
1028   // Parallel task terminator is set in "set_concurrency_and_phase()"
1029   set_concurrency_and_phase(active_workers, true /* concurrent */);
1030 
1031   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1032   _parallel_workers->set_active_workers(active_workers);
1033   _parallel_workers->run_task(&markingTask);
1034   print_stats();
1035 }
1036 
1037 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1038   // world is stopped at this checkpoint
1039   assert(SafepointSynchronize::is_at_safepoint(),
1040          "world should be stopped");
1041 
1042   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1043 
1044   // If a full collection has happened, we shouldn't do this.
1045   if (has_aborted()) {
1046     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1047     return;
1048   }
1049 
1050   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1051 
1052   if (VerifyDuringGC) {
1053     HandleMark hm;  // handle scope
1054     g1h->prepare_for_verify();
1055     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1056   }
1057   g1h->verifier()->check_bitmaps("Remark Start");
1058 
1059   G1CollectorPolicy* g1p = g1h->g1_policy();
1060   g1p->record_concurrent_mark_remark_start();
1061 
1062   double start = os::elapsedTime();
1063 
1064   checkpointRootsFinalWork();
1065 
1066   double mark_work_end = os::elapsedTime();
1067 
1068   weakRefsWork(clear_all_soft_refs);
1069 
1070   if (has_overflown()) {
1071     // Oops.  We overflowed.  Restart concurrent marking.
1072     _restart_for_overflow = true;
1073 
1074     // Verify the heap w.r.t. the previous marking bitmap.
1075     if (VerifyDuringGC) {
1076       HandleMark hm;  // handle scope
1077       g1h->prepare_for_verify();
1078       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1079     }
1080 
1081     // Clear the marking state because we will be restarting
1082     // marking due to overflowing the global mark stack.
1083     reset_marking_state();
1084   } else {
1085     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1086     // We're done with marking.
1087     // This is the end of  the marking cycle, we're expected all
1088     // threads to have SATB queues with active set to true.
1089     satb_mq_set.set_active_all_threads(false, /* new active value */
1090                                        true /* expected_active */);
1091 
1092     if (VerifyDuringGC) {
1093       HandleMark hm;  // handle scope
1094       g1h->prepare_for_verify();
1095       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1096     }
1097     g1h->verifier()->check_bitmaps("Remark End");
1098     assert(!restart_for_overflow(), "sanity");
1099     // Completely reset the marking state since marking completed
1100     set_non_marking_state();
1101   }
1102 
1103   // Expand the marking stack, if we have to and if we can.
1104   if (_markStack.should_expand()) {
1105     _markStack.expand();
1106   }
1107 
1108   // Statistics
1109   double now = os::elapsedTime();
1110   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1111   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1112   _remark_times.add((now - start) * 1000.0);
1113 
1114   g1p->record_concurrent_mark_remark_end();
1115 
1116   G1CMIsAliveClosure is_alive(g1h);
1117   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1118 }
1119 
1120 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1121   G1CollectedHeap* _g1;
1122   size_t _freed_bytes;
1123   FreeRegionList* _local_cleanup_list;
1124   uint _old_regions_removed;
1125   uint _humongous_regions_removed;
1126   HRRSCleanupTask* _hrrs_cleanup_task;
1127 
1128 public:
1129   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1130                              FreeRegionList* local_cleanup_list,
1131                              HRRSCleanupTask* hrrs_cleanup_task) :
1132     _g1(g1),
1133     _freed_bytes(0),
1134     _local_cleanup_list(local_cleanup_list),
1135     _old_regions_removed(0),
1136     _humongous_regions_removed(0),
1137     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1138 
1139   size_t freed_bytes() { return _freed_bytes; }
1140   const uint old_regions_removed() { return _old_regions_removed; }
1141   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1142 
1143   bool doHeapRegion(HeapRegion *hr) {
1144     if (hr->is_archive()) {
1145       return false;
1146     }
1147     // We use a claim value of zero here because all regions
1148     // were claimed with value 1 in the FinalCount task.
1149     _g1->reset_gc_time_stamps(hr);
1150     hr->note_end_of_marking();
1151 
1152     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1153       _freed_bytes += hr->used();
1154       hr->set_containing_set(NULL);
1155       if (hr->is_humongous()) {
1156         _humongous_regions_removed++;
1157         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1158       } else {
1159         _old_regions_removed++;
1160         _g1->free_region(hr, _local_cleanup_list, true);
1161       }
1162     } else {
1163       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1164     }
1165 
1166     return false;
1167   }
1168 };
1169 
1170 class G1ParNoteEndTask: public AbstractGangTask {
1171   friend class G1NoteEndOfConcMarkClosure;
1172 
1173 protected:
1174   G1CollectedHeap* _g1h;
1175   FreeRegionList* _cleanup_list;
1176   HeapRegionClaimer _hrclaimer;
1177 
1178 public:
1179   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1180       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1181   }
1182 
1183   void work(uint worker_id) {
1184     FreeRegionList local_cleanup_list("Local Cleanup List");
1185     HRRSCleanupTask hrrs_cleanup_task;
1186     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1187                                            &hrrs_cleanup_task);
1188     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1189     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1190 
1191     // Now update the lists
1192     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1193     {
1194       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1195       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1196 
1197       // If we iterate over the global cleanup list at the end of
1198       // cleanup to do this printing we will not guarantee to only
1199       // generate output for the newly-reclaimed regions (the list
1200       // might not be empty at the beginning of cleanup; we might
1201       // still be working on its previous contents). So we do the
1202       // printing here, before we append the new regions to the global
1203       // cleanup list.
1204 
1205       G1HRPrinter* hr_printer = _g1h->hr_printer();
1206       if (hr_printer->is_active()) {
1207         FreeRegionListIterator iter(&local_cleanup_list);
1208         while (iter.more_available()) {
1209           HeapRegion* hr = iter.get_next();
1210           hr_printer->cleanup(hr);
1211         }
1212       }
1213 
1214       _cleanup_list->add_ordered(&local_cleanup_list);
1215       assert(local_cleanup_list.is_empty(), "post-condition");
1216 
1217       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1218     }
1219   }
1220 };
1221 
1222 void G1ConcurrentMark::cleanup() {
1223   // world is stopped at this checkpoint
1224   assert(SafepointSynchronize::is_at_safepoint(),
1225          "world should be stopped");
1226   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1227 
1228   // If a full collection has happened, we shouldn't do this.
1229   if (has_aborted()) {
1230     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1231     return;
1232   }
1233 
1234   g1h->verifier()->verify_region_sets_optional();
1235 
1236   if (VerifyDuringGC) {
1237     HandleMark hm;  // handle scope
1238     g1h->prepare_for_verify();
1239     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1240   }
1241   g1h->verifier()->check_bitmaps("Cleanup Start");
1242 
1243   G1CollectorPolicy* g1p = g1h->g1_policy();
1244   g1p->record_concurrent_mark_cleanup_start();
1245 
1246   double start = os::elapsedTime();
1247 
1248   HeapRegionRemSet::reset_for_cleanup_tasks();
1249 
1250   {
1251     GCTraceTime(Debug, gc)("Finalize Live Data");
1252     finalize_live_data();
1253   }
1254 
1255   if (VerifyDuringGC) {
1256     GCTraceTime(Debug, gc)("Verify Live Data");
1257     verify_live_data();
1258   }
1259 
1260   g1h->collector_state()->set_mark_in_progress(false);
1261 
1262   double count_end = os::elapsedTime();
1263   double this_final_counting_time = (count_end - start);
1264   _total_counting_time += this_final_counting_time;
1265 
1266   if (log_is_enabled(Trace, gc, liveness)) {
1267     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1268     _g1h->heap_region_iterate(&cl);
1269   }
1270 
1271   // Install newly created mark bitMap as "prev".
1272   swapMarkBitMaps();
1273 
1274   g1h->reset_gc_time_stamp();
1275 
1276   uint n_workers = _g1h->workers()->active_workers();
1277 
1278   // Note end of marking in all heap regions.
1279   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1280   g1h->workers()->run_task(&g1_par_note_end_task);
1281   g1h->check_gc_time_stamps();
1282 
1283   if (!cleanup_list_is_empty()) {
1284     // The cleanup list is not empty, so we'll have to process it
1285     // concurrently. Notify anyone else that might be wanting free
1286     // regions that there will be more free regions coming soon.
1287     g1h->set_free_regions_coming();
1288   }
1289 
1290   // call below, since it affects the metric by which we sort the heap
1291   // regions.
1292   if (G1ScrubRemSets) {
1293     double rs_scrub_start = os::elapsedTime();
1294     g1h->scrub_rem_set();
1295     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1296   }
1297 
1298   // this will also free any regions totally full of garbage objects,
1299   // and sort the regions.
1300   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1301 
1302   // Statistics.
1303   double end = os::elapsedTime();
1304   _cleanup_times.add((end - start) * 1000.0);
1305 
1306   // Clean up will have freed any regions completely full of garbage.
1307   // Update the soft reference policy with the new heap occupancy.
1308   Universe::update_heap_info_at_gc();
1309 
1310   if (VerifyDuringGC) {
1311     HandleMark hm;  // handle scope
1312     g1h->prepare_for_verify();
1313     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1314   }
1315 
1316   g1h->verifier()->check_bitmaps("Cleanup End");
1317 
1318   g1h->verifier()->verify_region_sets_optional();
1319 
1320   // We need to make this be a "collection" so any collection pause that
1321   // races with it goes around and waits for completeCleanup to finish.
1322   g1h->increment_total_collections();
1323 
1324   // Clean out dead classes and update Metaspace sizes.
1325   if (ClassUnloadingWithConcurrentMark) {
1326     ClassLoaderDataGraph::purge();
1327   }
1328   MetaspaceGC::compute_new_size();
1329 
1330   // We reclaimed old regions so we should calculate the sizes to make
1331   // sure we update the old gen/space data.
1332   g1h->g1mm()->update_sizes();
1333   g1h->allocation_context_stats().update_after_mark();
1334 }
1335 
1336 void G1ConcurrentMark::complete_cleanup() {
1337   if (has_aborted()) return;
1338 
1339   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1340 
1341   _cleanup_list.verify_optional();
1342   FreeRegionList tmp_free_list("Tmp Free List");
1343 
1344   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1345                                   "cleanup list has %u entries",
1346                                   _cleanup_list.length());
1347 
1348   // No one else should be accessing the _cleanup_list at this point,
1349   // so it is not necessary to take any locks
1350   while (!_cleanup_list.is_empty()) {
1351     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1352     assert(hr != NULL, "Got NULL from a non-empty list");
1353     hr->par_clear();
1354     tmp_free_list.add_ordered(hr);
1355 
1356     // Instead of adding one region at a time to the secondary_free_list,
1357     // we accumulate them in the local list and move them a few at a
1358     // time. This also cuts down on the number of notify_all() calls
1359     // we do during this process. We'll also append the local list when
1360     // _cleanup_list is empty (which means we just removed the last
1361     // region from the _cleanup_list).
1362     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1363         _cleanup_list.is_empty()) {
1364       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1365                                       "appending %u entries to the secondary_free_list, "
1366                                       "cleanup list still has %u entries",
1367                                       tmp_free_list.length(),
1368                                       _cleanup_list.length());
1369 
1370       {
1371         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1372         g1h->secondary_free_list_add(&tmp_free_list);
1373         SecondaryFreeList_lock->notify_all();
1374       }
1375 #ifndef PRODUCT
1376       if (G1StressConcRegionFreeing) {
1377         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1378           os::sleep(Thread::current(), (jlong) 1, false);
1379         }
1380       }
1381 #endif
1382     }
1383   }
1384   assert(tmp_free_list.is_empty(), "post-condition");
1385 }
1386 
1387 // Supporting Object and Oop closures for reference discovery
1388 // and processing in during marking
1389 
1390 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1391   HeapWord* addr = (HeapWord*)obj;
1392   return addr != NULL &&
1393          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1394 }
1395 
1396 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1397 // Uses the G1CMTask associated with a worker thread (for serial reference
1398 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1399 // trace referent objects.
1400 //
1401 // Using the G1CMTask and embedded local queues avoids having the worker
1402 // threads operating on the global mark stack. This reduces the risk
1403 // of overflowing the stack - which we would rather avoid at this late
1404 // state. Also using the tasks' local queues removes the potential
1405 // of the workers interfering with each other that could occur if
1406 // operating on the global stack.
1407 
1408 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1409   G1ConcurrentMark* _cm;
1410   G1CMTask*         _task;
1411   int               _ref_counter_limit;
1412   int               _ref_counter;
1413   bool              _is_serial;
1414  public:
1415   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1416     _cm(cm), _task(task), _is_serial(is_serial),
1417     _ref_counter_limit(G1RefProcDrainInterval) {
1418     assert(_ref_counter_limit > 0, "sanity");
1419     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1420     _ref_counter = _ref_counter_limit;
1421   }
1422 
1423   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1424   virtual void do_oop(      oop* p) { do_oop_work(p); }
1425 
1426   template <class T> void do_oop_work(T* p) {
1427     if (!_cm->has_overflown()) {
1428       oop obj = oopDesc::load_decode_heap_oop(p);
1429       _task->deal_with_reference(obj);
1430       _ref_counter--;
1431 
1432       if (_ref_counter == 0) {
1433         // We have dealt with _ref_counter_limit references, pushing them
1434         // and objects reachable from them on to the local stack (and
1435         // possibly the global stack). Call G1CMTask::do_marking_step() to
1436         // process these entries.
1437         //
1438         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1439         // there's nothing more to do (i.e. we're done with the entries that
1440         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1441         // above) or we overflow.
1442         //
1443         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1444         // flag while there may still be some work to do. (See the comment at
1445         // the beginning of G1CMTask::do_marking_step() for those conditions -
1446         // one of which is reaching the specified time target.) It is only
1447         // when G1CMTask::do_marking_step() returns without setting the
1448         // has_aborted() flag that the marking step has completed.
1449         do {
1450           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1451           _task->do_marking_step(mark_step_duration_ms,
1452                                  false      /* do_termination */,
1453                                  _is_serial);
1454         } while (_task->has_aborted() && !_cm->has_overflown());
1455         _ref_counter = _ref_counter_limit;
1456       }
1457     }
1458   }
1459 };
1460 
1461 // 'Drain' oop closure used by both serial and parallel reference processing.
1462 // Uses the G1CMTask associated with a given worker thread (for serial
1463 // reference processing the G1CMtask for worker 0 is used). Calls the
1464 // do_marking_step routine, with an unbelievably large timeout value,
1465 // to drain the marking data structures of the remaining entries
1466 // added by the 'keep alive' oop closure above.
1467 
1468 class G1CMDrainMarkingStackClosure: public VoidClosure {
1469   G1ConcurrentMark* _cm;
1470   G1CMTask*         _task;
1471   bool              _is_serial;
1472  public:
1473   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1474     _cm(cm), _task(task), _is_serial(is_serial) {
1475     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1476   }
1477 
1478   void do_void() {
1479     do {
1480       // We call G1CMTask::do_marking_step() to completely drain the local
1481       // and global marking stacks of entries pushed by the 'keep alive'
1482       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1483       //
1484       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1485       // if there's nothing more to do (i.e. we've completely drained the
1486       // entries that were pushed as a a result of applying the 'keep alive'
1487       // closure to the entries on the discovered ref lists) or we overflow
1488       // the global marking stack.
1489       //
1490       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1491       // flag while there may still be some work to do. (See the comment at
1492       // the beginning of G1CMTask::do_marking_step() for those conditions -
1493       // one of which is reaching the specified time target.) It is only
1494       // when G1CMTask::do_marking_step() returns without setting the
1495       // has_aborted() flag that the marking step has completed.
1496 
1497       _task->do_marking_step(1000000000.0 /* something very large */,
1498                              true         /* do_termination */,
1499                              _is_serial);
1500     } while (_task->has_aborted() && !_cm->has_overflown());
1501   }
1502 };
1503 
1504 // Implementation of AbstractRefProcTaskExecutor for parallel
1505 // reference processing at the end of G1 concurrent marking
1506 
1507 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1508 private:
1509   G1CollectedHeap*  _g1h;
1510   G1ConcurrentMark* _cm;
1511   WorkGang*         _workers;
1512   uint              _active_workers;
1513 
1514 public:
1515   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1516                           G1ConcurrentMark* cm,
1517                           WorkGang* workers,
1518                           uint n_workers) :
1519     _g1h(g1h), _cm(cm),
1520     _workers(workers), _active_workers(n_workers) { }
1521 
1522   // Executes the given task using concurrent marking worker threads.
1523   virtual void execute(ProcessTask& task);
1524   virtual void execute(EnqueueTask& task);
1525 };
1526 
1527 class G1CMRefProcTaskProxy: public AbstractGangTask {
1528   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1529   ProcessTask&      _proc_task;
1530   G1CollectedHeap*  _g1h;
1531   G1ConcurrentMark* _cm;
1532 
1533 public:
1534   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1535                        G1CollectedHeap* g1h,
1536                        G1ConcurrentMark* cm) :
1537     AbstractGangTask("Process reference objects in parallel"),
1538     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1539     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1540     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1541   }
1542 
1543   virtual void work(uint worker_id) {
1544     ResourceMark rm;
1545     HandleMark hm;
1546     G1CMTask* task = _cm->task(worker_id);
1547     G1CMIsAliveClosure g1_is_alive(_g1h);
1548     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1549     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1550 
1551     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1552   }
1553 };
1554 
1555 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1556   assert(_workers != NULL, "Need parallel worker threads.");
1557   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1558 
1559   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1560 
1561   // We need to reset the concurrency level before each
1562   // proxy task execution, so that the termination protocol
1563   // and overflow handling in G1CMTask::do_marking_step() knows
1564   // how many workers to wait for.
1565   _cm->set_concurrency(_active_workers);
1566   _workers->run_task(&proc_task_proxy);
1567 }
1568 
1569 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1570   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1571   EnqueueTask& _enq_task;
1572 
1573 public:
1574   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1575     AbstractGangTask("Enqueue reference objects in parallel"),
1576     _enq_task(enq_task) { }
1577 
1578   virtual void work(uint worker_id) {
1579     _enq_task.work(worker_id);
1580   }
1581 };
1582 
1583 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1584   assert(_workers != NULL, "Need parallel worker threads.");
1585   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1586 
1587   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1588 
1589   // Not strictly necessary but...
1590   //
1591   // We need to reset the concurrency level before each
1592   // proxy task execution, so that the termination protocol
1593   // and overflow handling in G1CMTask::do_marking_step() knows
1594   // how many workers to wait for.
1595   _cm->set_concurrency(_active_workers);
1596   _workers->run_task(&enq_task_proxy);
1597 }
1598 
1599 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1600   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1601 }
1602 
1603 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1604   if (has_overflown()) {
1605     // Skip processing the discovered references if we have
1606     // overflown the global marking stack. Reference objects
1607     // only get discovered once so it is OK to not
1608     // de-populate the discovered reference lists. We could have,
1609     // but the only benefit would be that, when marking restarts,
1610     // less reference objects are discovered.
1611     return;
1612   }
1613 
1614   ResourceMark rm;
1615   HandleMark   hm;
1616 
1617   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1618 
1619   // Is alive closure.
1620   G1CMIsAliveClosure g1_is_alive(g1h);
1621 
1622   // Inner scope to exclude the cleaning of the string and symbol
1623   // tables from the displayed time.
1624   {
1625     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1626 
1627     ReferenceProcessor* rp = g1h->ref_processor_cm();
1628 
1629     // See the comment in G1CollectedHeap::ref_processing_init()
1630     // about how reference processing currently works in G1.
1631 
1632     // Set the soft reference policy
1633     rp->setup_policy(clear_all_soft_refs);
1634     assert(_markStack.isEmpty(), "mark stack should be empty");
1635 
1636     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1637     // in serial reference processing. Note these closures are also
1638     // used for serially processing (by the the current thread) the
1639     // JNI references during parallel reference processing.
1640     //
1641     // These closures do not need to synchronize with the worker
1642     // threads involved in parallel reference processing as these
1643     // instances are executed serially by the current thread (e.g.
1644     // reference processing is not multi-threaded and is thus
1645     // performed by the current thread instead of a gang worker).
1646     //
1647     // The gang tasks involved in parallel reference processing create
1648     // their own instances of these closures, which do their own
1649     // synchronization among themselves.
1650     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1651     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1652 
1653     // We need at least one active thread. If reference processing
1654     // is not multi-threaded we use the current (VMThread) thread,
1655     // otherwise we use the work gang from the G1CollectedHeap and
1656     // we utilize all the worker threads we can.
1657     bool processing_is_mt = rp->processing_is_mt();
1658     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1659     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1660 
1661     // Parallel processing task executor.
1662     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1663                                               g1h->workers(), active_workers);
1664     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1665 
1666     // Set the concurrency level. The phase was already set prior to
1667     // executing the remark task.
1668     set_concurrency(active_workers);
1669 
1670     // Set the degree of MT processing here.  If the discovery was done MT,
1671     // the number of threads involved during discovery could differ from
1672     // the number of active workers.  This is OK as long as the discovered
1673     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1674     rp->set_active_mt_degree(active_workers);
1675 
1676     // Process the weak references.
1677     const ReferenceProcessorStats& stats =
1678         rp->process_discovered_references(&g1_is_alive,
1679                                           &g1_keep_alive,
1680                                           &g1_drain_mark_stack,
1681                                           executor,
1682                                           _gc_timer_cm);
1683     _gc_tracer_cm->report_gc_reference_stats(stats);
1684 
1685     // The do_oop work routines of the keep_alive and drain_marking_stack
1686     // oop closures will set the has_overflown flag if we overflow the
1687     // global marking stack.
1688 
1689     assert(_markStack.overflow() || _markStack.isEmpty(),
1690             "mark stack should be empty (unless it overflowed)");
1691 
1692     if (_markStack.overflow()) {
1693       // This should have been done already when we tried to push an
1694       // entry on to the global mark stack. But let's do it again.
1695       set_has_overflown();
1696     }
1697 
1698     assert(rp->num_q() == active_workers, "why not");
1699 
1700     rp->enqueue_discovered_references(executor);
1701 
1702     rp->verify_no_references_recorded();
1703     assert(!rp->discovery_enabled(), "Post condition");
1704   }
1705 
1706   if (has_overflown()) {
1707     // We can not trust g1_is_alive if the marking stack overflowed
1708     return;
1709   }
1710 
1711   assert(_markStack.isEmpty(), "Marking should have completed");
1712 
1713   // Unload Klasses, String, Symbols, Code Cache, etc.
1714   if (ClassUnloadingWithConcurrentMark) {
1715     bool purged_classes;
1716 
1717     {
1718       GCTraceTime(Debug, gc, phases) trace("System Dictionary Unloading", _gc_timer_cm);
1719       purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
1720     }
1721 
1722     {
1723       GCTraceTime(Debug, gc, phases) trace("Parallel Unloading", _gc_timer_cm);
1724       weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
1725     }
1726   }
1727 
1728   if (G1StringDedup::is_enabled()) {
1729     GCTraceTime(Debug, gc, phases) trace("String Deduplication Unlink", _gc_timer_cm);
1730     G1StringDedup::unlink(&g1_is_alive);
1731   }
1732 }
1733 
1734 void G1ConcurrentMark::swapMarkBitMaps() {
1735   G1CMBitMapRO* temp = _prevMarkBitMap;
1736   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
1737   _nextMarkBitMap    = (G1CMBitMap*)  temp;
1738 }
1739 
1740 // Closure for marking entries in SATB buffers.
1741 class G1CMSATBBufferClosure : public SATBBufferClosure {
1742 private:
1743   G1CMTask* _task;
1744   G1CollectedHeap* _g1h;
1745 
1746   // This is very similar to G1CMTask::deal_with_reference, but with
1747   // more relaxed requirements for the argument, so this must be more
1748   // circumspect about treating the argument as an object.
1749   void do_entry(void* entry) const {
1750     _task->increment_refs_reached();
1751     HeapRegion* hr = _g1h->heap_region_containing(entry);
1752     if (entry < hr->next_top_at_mark_start()) {
1753       // Until we get here, we don't know whether entry refers to a valid
1754       // object; it could instead have been a stale reference.
1755       oop obj = static_cast<oop>(entry);
1756       assert(obj->is_oop(true /* ignore mark word */),
1757              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
1758       _task->make_reference_grey(obj);
1759     }
1760   }
1761 
1762 public:
1763   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1764     : _task(task), _g1h(g1h) { }
1765 
1766   virtual void do_buffer(void** buffer, size_t size) {
1767     for (size_t i = 0; i < size; ++i) {
1768       do_entry(buffer[i]);
1769     }
1770   }
1771 };
1772 
1773 class G1RemarkThreadsClosure : public ThreadClosure {
1774   G1CMSATBBufferClosure _cm_satb_cl;
1775   G1CMOopClosure _cm_cl;
1776   MarkingCodeBlobClosure _code_cl;
1777   int _thread_parity;
1778 
1779  public:
1780   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1781     _cm_satb_cl(task, g1h),
1782     _cm_cl(g1h, g1h->concurrent_mark(), task),
1783     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1784     _thread_parity(Threads::thread_claim_parity()) {}
1785 
1786   void do_thread(Thread* thread) {
1787     if (thread->is_Java_thread()) {
1788       if (thread->claim_oops_do(true, _thread_parity)) {
1789         JavaThread* jt = (JavaThread*)thread;
1790 
1791         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1792         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1793         // * Alive if on the stack of an executing method
1794         // * Weakly reachable otherwise
1795         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1796         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1797         jt->nmethods_do(&_code_cl);
1798 
1799         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1800       }
1801     } else if (thread->is_VM_thread()) {
1802       if (thread->claim_oops_do(true, _thread_parity)) {
1803         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1804       }
1805     }
1806   }
1807 };
1808 
1809 class G1CMRemarkTask: public AbstractGangTask {
1810 private:
1811   G1ConcurrentMark* _cm;
1812 public:
1813   void work(uint worker_id) {
1814     // Since all available tasks are actually started, we should
1815     // only proceed if we're supposed to be active.
1816     if (worker_id < _cm->active_tasks()) {
1817       G1CMTask* task = _cm->task(worker_id);
1818       task->record_start_time();
1819       {
1820         ResourceMark rm;
1821         HandleMark hm;
1822 
1823         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1824         Threads::threads_do(&threads_f);
1825       }
1826 
1827       do {
1828         task->do_marking_step(1000000000.0 /* something very large */,
1829                               true         /* do_termination       */,
1830                               false        /* is_serial            */);
1831       } while (task->has_aborted() && !_cm->has_overflown());
1832       // If we overflow, then we do not want to restart. We instead
1833       // want to abort remark and do concurrent marking again.
1834       task->record_end_time();
1835     }
1836   }
1837 
1838   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1839     AbstractGangTask("Par Remark"), _cm(cm) {
1840     _cm->terminator()->reset_for_reuse(active_workers);
1841   }
1842 };
1843 
1844 void G1ConcurrentMark::checkpointRootsFinalWork() {
1845   ResourceMark rm;
1846   HandleMark   hm;
1847   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1848 
1849   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1850 
1851   g1h->ensure_parsability(false);
1852 
1853   // this is remark, so we'll use up all active threads
1854   uint active_workers = g1h->workers()->active_workers();
1855   set_concurrency_and_phase(active_workers, false /* concurrent */);
1856   // Leave _parallel_marking_threads at it's
1857   // value originally calculated in the G1ConcurrentMark
1858   // constructor and pass values of the active workers
1859   // through the gang in the task.
1860 
1861   {
1862     StrongRootsScope srs(active_workers);
1863 
1864     G1CMRemarkTask remarkTask(this, active_workers);
1865     // We will start all available threads, even if we decide that the
1866     // active_workers will be fewer. The extra ones will just bail out
1867     // immediately.
1868     g1h->workers()->run_task(&remarkTask);
1869   }
1870 
1871   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1872   guarantee(has_overflown() ||
1873             satb_mq_set.completed_buffers_num() == 0,
1874             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1875             BOOL_TO_STR(has_overflown()),
1876             satb_mq_set.completed_buffers_num());
1877 
1878   print_stats();
1879 }
1880 
1881 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1882   // Note we are overriding the read-only view of the prev map here, via
1883   // the cast.
1884   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
1885 }
1886 
1887 HeapRegion*
1888 G1ConcurrentMark::claim_region(uint worker_id) {
1889   // "checkpoint" the finger
1890   HeapWord* finger = _finger;
1891 
1892   // _heap_end will not change underneath our feet; it only changes at
1893   // yield points.
1894   while (finger < _heap_end) {
1895     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1896 
1897     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1898 
1899     // Above heap_region_containing may return NULL as we always scan claim
1900     // until the end of the heap. In this case, just jump to the next region.
1901     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1902 
1903     // Is the gap between reading the finger and doing the CAS too long?
1904     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1905     if (res == finger && curr_region != NULL) {
1906       // we succeeded
1907       HeapWord*   bottom        = curr_region->bottom();
1908       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1909 
1910       // notice that _finger == end cannot be guaranteed here since,
1911       // someone else might have moved the finger even further
1912       assert(_finger >= end, "the finger should have moved forward");
1913 
1914       if (limit > bottom) {
1915         return curr_region;
1916       } else {
1917         assert(limit == bottom,
1918                "the region limit should be at bottom");
1919         // we return NULL and the caller should try calling
1920         // claim_region() again.
1921         return NULL;
1922       }
1923     } else {
1924       assert(_finger > finger, "the finger should have moved forward");
1925       // read it again
1926       finger = _finger;
1927     }
1928   }
1929 
1930   return NULL;
1931 }
1932 
1933 #ifndef PRODUCT
1934 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1935 private:
1936   G1CollectedHeap* _g1h;
1937   const char* _phase;
1938   int _info;
1939 
1940 public:
1941   VerifyNoCSetOops(const char* phase, int info = -1) :
1942     _g1h(G1CollectedHeap::heap()),
1943     _phase(phase),
1944     _info(info)
1945   { }
1946 
1947   void operator()(oop obj) const {
1948     guarantee(obj->is_oop(),
1949               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1950               p2i(obj), _phase, _info);
1951     guarantee(!_g1h->obj_in_cs(obj),
1952               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1953               p2i(obj), _phase, _info);
1954   }
1955 };
1956 
1957 void G1ConcurrentMark::verify_no_cset_oops() {
1958   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1959   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1960     return;
1961   }
1962 
1963   // Verify entries on the global mark stack
1964   _markStack.iterate(VerifyNoCSetOops("Stack"));
1965 
1966   // Verify entries on the task queues
1967   for (uint i = 0; i < _max_worker_id; ++i) {
1968     G1CMTaskQueue* queue = _task_queues->queue(i);
1969     queue->iterate(VerifyNoCSetOops("Queue", i));
1970   }
1971 
1972   // Verify the global finger
1973   HeapWord* global_finger = finger();
1974   if (global_finger != NULL && global_finger < _heap_end) {
1975     // Since we always iterate over all regions, we might get a NULL HeapRegion
1976     // here.
1977     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1978     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1979               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1980               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1981   }
1982 
1983   // Verify the task fingers
1984   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
1985   for (uint i = 0; i < parallel_marking_threads(); ++i) {
1986     G1CMTask* task = _tasks[i];
1987     HeapWord* task_finger = task->finger();
1988     if (task_finger != NULL && task_finger < _heap_end) {
1989       // See above note on the global finger verification.
1990       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1991       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1992                 !task_hr->in_collection_set(),
1993                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1994                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1995     }
1996   }
1997 }
1998 #endif // PRODUCT
1999 void G1ConcurrentMark::create_live_data() {
2000   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
2001 }
2002 
2003 void G1ConcurrentMark::finalize_live_data() {
2004   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
2005 }
2006 
2007 void G1ConcurrentMark::verify_live_data() {
2008   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
2009 }
2010 
2011 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
2012   _g1h->g1_rem_set()->clear_card_live_data(workers);
2013 }
2014 
2015 #ifdef ASSERT
2016 void G1ConcurrentMark::verify_live_data_clear() {
2017   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
2018 }
2019 #endif
2020 
2021 void G1ConcurrentMark::print_stats() {
2022   if (!log_is_enabled(Debug, gc, stats)) {
2023     return;
2024   }
2025   log_debug(gc, stats)("---------------------------------------------------------------------");
2026   for (size_t i = 0; i < _active_tasks; ++i) {
2027     _tasks[i]->print_stats();
2028     log_debug(gc, stats)("---------------------------------------------------------------------");
2029   }
2030 }
2031 
2032 void G1ConcurrentMark::abort() {
2033   if (!cmThread()->during_cycle() || _has_aborted) {
2034     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2035     return;
2036   }
2037 
2038   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2039   // concurrent bitmap clearing.
2040   {
2041     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2042     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2043   }
2044   // Note we cannot clear the previous marking bitmap here
2045   // since VerifyDuringGC verifies the objects marked during
2046   // a full GC against the previous bitmap.
2047 
2048   {
2049     GCTraceTime(Debug, gc)("Clear Live Data");
2050     clear_live_data(_g1h->workers());
2051   }
2052   DEBUG_ONLY({
2053     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2054     verify_live_data_clear();
2055   })
2056   // Empty mark stack
2057   reset_marking_state();
2058   for (uint i = 0; i < _max_worker_id; ++i) {
2059     _tasks[i]->clear_region_fields();
2060   }
2061   _first_overflow_barrier_sync.abort();
2062   _second_overflow_barrier_sync.abort();
2063   _has_aborted = true;
2064 
2065   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2066   satb_mq_set.abandon_partial_marking();
2067   // This can be called either during or outside marking, we'll read
2068   // the expected_active value from the SATB queue set.
2069   satb_mq_set.set_active_all_threads(
2070                                  false, /* new active value */
2071                                  satb_mq_set.is_active() /* expected_active */);
2072 }
2073 
2074 static void print_ms_time_info(const char* prefix, const char* name,
2075                                NumberSeq& ns) {
2076   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2077                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2078   if (ns.num() > 0) {
2079     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2080                            prefix, ns.sd(), ns.maximum());
2081   }
2082 }
2083 
2084 void G1ConcurrentMark::print_summary_info() {
2085   Log(gc, marking) log;
2086   if (!log.is_trace()) {
2087     return;
2088   }
2089 
2090   log.trace(" Concurrent marking:");
2091   print_ms_time_info("  ", "init marks", _init_times);
2092   print_ms_time_info("  ", "remarks", _remark_times);
2093   {
2094     print_ms_time_info("     ", "final marks", _remark_mark_times);
2095     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2096 
2097   }
2098   print_ms_time_info("  ", "cleanups", _cleanup_times);
2099   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2100             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2101   if (G1ScrubRemSets) {
2102     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2103               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2104   }
2105   log.trace("  Total stop_world time = %8.2f s.",
2106             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2107   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2108             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2109 }
2110 
2111 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2112   _parallel_workers->print_worker_threads_on(st);
2113 }
2114 
2115 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2116   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2117       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2118   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2119   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2120 }
2121 
2122 // Closure for iteration over bitmaps
2123 class G1CMBitMapClosure : public BitMapClosure {
2124 private:
2125   // the bitmap that is being iterated over
2126   G1CMBitMap*                 _nextMarkBitMap;
2127   G1ConcurrentMark*           _cm;
2128   G1CMTask*                   _task;
2129 
2130 public:
2131   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2132     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2133 
2134   bool do_bit(size_t offset) {
2135     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2136     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2137     assert( addr < _cm->finger(), "invariant");
2138     assert(addr >= _task->finger(), "invariant");
2139 
2140     // We move that task's local finger along.
2141     _task->move_finger_to(addr);
2142 
2143     _task->scan_object(oop(addr));
2144     // we only partially drain the local queue and global stack
2145     _task->drain_local_queue(true);
2146     _task->drain_global_stack(true);
2147 
2148     // if the has_aborted flag has been raised, we need to bail out of
2149     // the iteration
2150     return !_task->has_aborted();
2151   }
2152 };
2153 
2154 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2155   ReferenceProcessor* result = g1h->ref_processor_cm();
2156   assert(result != NULL, "CM reference processor should not be NULL");
2157   return result;
2158 }
2159 
2160 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2161                                G1ConcurrentMark* cm,
2162                                G1CMTask* task)
2163   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2164     _g1h(g1h), _cm(cm), _task(task)
2165 { }
2166 
2167 void G1CMTask::setup_for_region(HeapRegion* hr) {
2168   assert(hr != NULL,
2169         "claim_region() should have filtered out NULL regions");
2170   _curr_region  = hr;
2171   _finger       = hr->bottom();
2172   update_region_limit();
2173 }
2174 
2175 void G1CMTask::update_region_limit() {
2176   HeapRegion* hr            = _curr_region;
2177   HeapWord* bottom          = hr->bottom();
2178   HeapWord* limit           = hr->next_top_at_mark_start();
2179 
2180   if (limit == bottom) {
2181     // The region was collected underneath our feet.
2182     // We set the finger to bottom to ensure that the bitmap
2183     // iteration that will follow this will not do anything.
2184     // (this is not a condition that holds when we set the region up,
2185     // as the region is not supposed to be empty in the first place)
2186     _finger = bottom;
2187   } else if (limit >= _region_limit) {
2188     assert(limit >= _finger, "peace of mind");
2189   } else {
2190     assert(limit < _region_limit, "only way to get here");
2191     // This can happen under some pretty unusual circumstances.  An
2192     // evacuation pause empties the region underneath our feet (NTAMS
2193     // at bottom). We then do some allocation in the region (NTAMS
2194     // stays at bottom), followed by the region being used as a GC
2195     // alloc region (NTAMS will move to top() and the objects
2196     // originally below it will be grayed). All objects now marked in
2197     // the region are explicitly grayed, if below the global finger,
2198     // and we do not need in fact to scan anything else. So, we simply
2199     // set _finger to be limit to ensure that the bitmap iteration
2200     // doesn't do anything.
2201     _finger = limit;
2202   }
2203 
2204   _region_limit = limit;
2205 }
2206 
2207 void G1CMTask::giveup_current_region() {
2208   assert(_curr_region != NULL, "invariant");
2209   clear_region_fields();
2210 }
2211 
2212 void G1CMTask::clear_region_fields() {
2213   // Values for these three fields that indicate that we're not
2214   // holding on to a region.
2215   _curr_region   = NULL;
2216   _finger        = NULL;
2217   _region_limit  = NULL;
2218 }
2219 
2220 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2221   if (cm_oop_closure == NULL) {
2222     assert(_cm_oop_closure != NULL, "invariant");
2223   } else {
2224     assert(_cm_oop_closure == NULL, "invariant");
2225   }
2226   _cm_oop_closure = cm_oop_closure;
2227 }
2228 
2229 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2230   guarantee(nextMarkBitMap != NULL, "invariant");
2231   _nextMarkBitMap                = nextMarkBitMap;
2232   clear_region_fields();
2233 
2234   _calls                         = 0;
2235   _elapsed_time_ms               = 0.0;
2236   _termination_time_ms           = 0.0;
2237   _termination_start_time_ms     = 0.0;
2238 }
2239 
2240 bool G1CMTask::should_exit_termination() {
2241   regular_clock_call();
2242   // This is called when we are in the termination protocol. We should
2243   // quit if, for some reason, this task wants to abort or the global
2244   // stack is not empty (this means that we can get work from it).
2245   return !_cm->mark_stack_empty() || has_aborted();
2246 }
2247 
2248 void G1CMTask::reached_limit() {
2249   assert(_words_scanned >= _words_scanned_limit ||
2250          _refs_reached >= _refs_reached_limit ,
2251          "shouldn't have been called otherwise");
2252   regular_clock_call();
2253 }
2254 
2255 void G1CMTask::regular_clock_call() {
2256   if (has_aborted()) return;
2257 
2258   // First, we need to recalculate the words scanned and refs reached
2259   // limits for the next clock call.
2260   recalculate_limits();
2261 
2262   // During the regular clock call we do the following
2263 
2264   // (1) If an overflow has been flagged, then we abort.
2265   if (_cm->has_overflown()) {
2266     set_has_aborted();
2267     return;
2268   }
2269 
2270   // If we are not concurrent (i.e. we're doing remark) we don't need
2271   // to check anything else. The other steps are only needed during
2272   // the concurrent marking phase.
2273   if (!concurrent()) return;
2274 
2275   // (2) If marking has been aborted for Full GC, then we also abort.
2276   if (_cm->has_aborted()) {
2277     set_has_aborted();
2278     return;
2279   }
2280 
2281   double curr_time_ms = os::elapsedVTime() * 1000.0;
2282 
2283   // (4) We check whether we should yield. If we have to, then we abort.
2284   if (SuspendibleThreadSet::should_yield()) {
2285     // We should yield. To do this we abort the task. The caller is
2286     // responsible for yielding.
2287     set_has_aborted();
2288     return;
2289   }
2290 
2291   // (5) We check whether we've reached our time quota. If we have,
2292   // then we abort.
2293   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2294   if (elapsed_time_ms > _time_target_ms) {
2295     set_has_aborted();
2296     _has_timed_out = true;
2297     return;
2298   }
2299 
2300   // (6) Finally, we check whether there are enough completed STAB
2301   // buffers available for processing. If there are, we abort.
2302   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2303   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2304     // we do need to process SATB buffers, we'll abort and restart
2305     // the marking task to do so
2306     set_has_aborted();
2307     return;
2308   }
2309 }
2310 
2311 void G1CMTask::recalculate_limits() {
2312   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2313   _words_scanned_limit      = _real_words_scanned_limit;
2314 
2315   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2316   _refs_reached_limit       = _real_refs_reached_limit;
2317 }
2318 
2319 void G1CMTask::decrease_limits() {
2320   // This is called when we believe that we're going to do an infrequent
2321   // operation which will increase the per byte scanned cost (i.e. move
2322   // entries to/from the global stack). It basically tries to decrease the
2323   // scanning limit so that the clock is called earlier.
2324 
2325   _words_scanned_limit = _real_words_scanned_limit -
2326     3 * words_scanned_period / 4;
2327   _refs_reached_limit  = _real_refs_reached_limit -
2328     3 * refs_reached_period / 4;
2329 }
2330 
2331 void G1CMTask::move_entries_to_global_stack() {
2332   // local array where we'll store the entries that will be popped
2333   // from the local queue
2334   oop buffer[global_stack_transfer_size];
2335 
2336   int n = 0;
2337   oop obj;
2338   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2339     buffer[n] = obj;
2340     ++n;
2341   }
2342 
2343   if (n > 0) {
2344     // we popped at least one entry from the local queue
2345 
2346     if (!_cm->mark_stack_push(buffer, n)) {
2347       set_has_aborted();
2348     }
2349   }
2350 
2351   // this operation was quite expensive, so decrease the limits
2352   decrease_limits();
2353 }
2354 
2355 void G1CMTask::get_entries_from_global_stack() {
2356   // local array where we'll store the entries that will be popped
2357   // from the global stack.
2358   oop buffer[global_stack_transfer_size];
2359   int n;
2360   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2361   assert(n <= global_stack_transfer_size,
2362          "we should not pop more than the given limit");
2363   if (n > 0) {
2364     // yes, we did actually pop at least one entry
2365     for (int i = 0; i < n; ++i) {
2366       bool success = _task_queue->push(buffer[i]);
2367       // We only call this when the local queue is empty or under a
2368       // given target limit. So, we do not expect this push to fail.
2369       assert(success, "invariant");
2370     }
2371   }
2372 
2373   // this operation was quite expensive, so decrease the limits
2374   decrease_limits();
2375 }
2376 
2377 void G1CMTask::drain_local_queue(bool partially) {
2378   if (has_aborted()) return;
2379 
2380   // Decide what the target size is, depending whether we're going to
2381   // drain it partially (so that other tasks can steal if they run out
2382   // of things to do) or totally (at the very end).
2383   size_t target_size;
2384   if (partially) {
2385     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2386   } else {
2387     target_size = 0;
2388   }
2389 
2390   if (_task_queue->size() > target_size) {
2391     oop obj;
2392     bool ret = _task_queue->pop_local(obj);
2393     while (ret) {
2394       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2395       assert(!_g1h->is_on_master_free_list(
2396                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2397 
2398       scan_object(obj);
2399 
2400       if (_task_queue->size() <= target_size || has_aborted()) {
2401         ret = false;
2402       } else {
2403         ret = _task_queue->pop_local(obj);
2404       }
2405     }
2406   }
2407 }
2408 
2409 void G1CMTask::drain_global_stack(bool partially) {
2410   if (has_aborted()) return;
2411 
2412   // We have a policy to drain the local queue before we attempt to
2413   // drain the global stack.
2414   assert(partially || _task_queue->size() == 0, "invariant");
2415 
2416   // Decide what the target size is, depending whether we're going to
2417   // drain it partially (so that other tasks can steal if they run out
2418   // of things to do) or totally (at the very end).  Notice that,
2419   // because we move entries from the global stack in chunks or
2420   // because another task might be doing the same, we might in fact
2421   // drop below the target. But, this is not a problem.
2422   size_t target_size;
2423   if (partially) {
2424     target_size = _cm->partial_mark_stack_size_target();
2425   } else {
2426     target_size = 0;
2427   }
2428 
2429   if (_cm->mark_stack_size() > target_size) {
2430     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2431       get_entries_from_global_stack();
2432       drain_local_queue(partially);
2433     }
2434   }
2435 }
2436 
2437 // SATB Queue has several assumptions on whether to call the par or
2438 // non-par versions of the methods. this is why some of the code is
2439 // replicated. We should really get rid of the single-threaded version
2440 // of the code to simplify things.
2441 void G1CMTask::drain_satb_buffers() {
2442   if (has_aborted()) return;
2443 
2444   // We set this so that the regular clock knows that we're in the
2445   // middle of draining buffers and doesn't set the abort flag when it
2446   // notices that SATB buffers are available for draining. It'd be
2447   // very counter productive if it did that. :-)
2448   _draining_satb_buffers = true;
2449 
2450   G1CMSATBBufferClosure satb_cl(this, _g1h);
2451   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2452 
2453   // This keeps claiming and applying the closure to completed buffers
2454   // until we run out of buffers or we need to abort.
2455   while (!has_aborted() &&
2456          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2457     regular_clock_call();
2458   }
2459 
2460   _draining_satb_buffers = false;
2461 
2462   assert(has_aborted() ||
2463          concurrent() ||
2464          satb_mq_set.completed_buffers_num() == 0, "invariant");
2465 
2466   // again, this was a potentially expensive operation, decrease the
2467   // limits to get the regular clock call early
2468   decrease_limits();
2469 }
2470 
2471 void G1CMTask::print_stats() {
2472   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2473                        _worker_id, _calls);
2474   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2475                        _elapsed_time_ms, _termination_time_ms);
2476   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2477                        _step_times_ms.num(), _step_times_ms.avg(),
2478                        _step_times_ms.sd());
2479   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2480                        _step_times_ms.maximum(), _step_times_ms.sum());
2481 }
2482 
2483 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
2484   return _task_queues->steal(worker_id, hash_seed, obj);
2485 }
2486 
2487 /*****************************************************************************
2488 
2489     The do_marking_step(time_target_ms, ...) method is the building
2490     block of the parallel marking framework. It can be called in parallel
2491     with other invocations of do_marking_step() on different tasks
2492     (but only one per task, obviously) and concurrently with the
2493     mutator threads, or during remark, hence it eliminates the need
2494     for two versions of the code. When called during remark, it will
2495     pick up from where the task left off during the concurrent marking
2496     phase. Interestingly, tasks are also claimable during evacuation
2497     pauses too, since do_marking_step() ensures that it aborts before
2498     it needs to yield.
2499 
2500     The data structures that it uses to do marking work are the
2501     following:
2502 
2503       (1) Marking Bitmap. If there are gray objects that appear only
2504       on the bitmap (this happens either when dealing with an overflow
2505       or when the initial marking phase has simply marked the roots
2506       and didn't push them on the stack), then tasks claim heap
2507       regions whose bitmap they then scan to find gray objects. A
2508       global finger indicates where the end of the last claimed region
2509       is. A local finger indicates how far into the region a task has
2510       scanned. The two fingers are used to determine how to gray an
2511       object (i.e. whether simply marking it is OK, as it will be
2512       visited by a task in the future, or whether it needs to be also
2513       pushed on a stack).
2514 
2515       (2) Local Queue. The local queue of the task which is accessed
2516       reasonably efficiently by the task. Other tasks can steal from
2517       it when they run out of work. Throughout the marking phase, a
2518       task attempts to keep its local queue short but not totally
2519       empty, so that entries are available for stealing by other
2520       tasks. Only when there is no more work, a task will totally
2521       drain its local queue.
2522 
2523       (3) Global Mark Stack. This handles local queue overflow. During
2524       marking only sets of entries are moved between it and the local
2525       queues, as access to it requires a mutex and more fine-grain
2526       interaction with it which might cause contention. If it
2527       overflows, then the marking phase should restart and iterate
2528       over the bitmap to identify gray objects. Throughout the marking
2529       phase, tasks attempt to keep the global mark stack at a small
2530       length but not totally empty, so that entries are available for
2531       popping by other tasks. Only when there is no more work, tasks
2532       will totally drain the global mark stack.
2533 
2534       (4) SATB Buffer Queue. This is where completed SATB buffers are
2535       made available. Buffers are regularly removed from this queue
2536       and scanned for roots, so that the queue doesn't get too
2537       long. During remark, all completed buffers are processed, as
2538       well as the filled in parts of any uncompleted buffers.
2539 
2540     The do_marking_step() method tries to abort when the time target
2541     has been reached. There are a few other cases when the
2542     do_marking_step() method also aborts:
2543 
2544       (1) When the marking phase has been aborted (after a Full GC).
2545 
2546       (2) When a global overflow (on the global stack) has been
2547       triggered. Before the task aborts, it will actually sync up with
2548       the other tasks to ensure that all the marking data structures
2549       (local queues, stacks, fingers etc.)  are re-initialized so that
2550       when do_marking_step() completes, the marking phase can
2551       immediately restart.
2552 
2553       (3) When enough completed SATB buffers are available. The
2554       do_marking_step() method only tries to drain SATB buffers right
2555       at the beginning. So, if enough buffers are available, the
2556       marking step aborts and the SATB buffers are processed at
2557       the beginning of the next invocation.
2558 
2559       (4) To yield. when we have to yield then we abort and yield
2560       right at the end of do_marking_step(). This saves us from a lot
2561       of hassle as, by yielding we might allow a Full GC. If this
2562       happens then objects will be compacted underneath our feet, the
2563       heap might shrink, etc. We save checking for this by just
2564       aborting and doing the yield right at the end.
2565 
2566     From the above it follows that the do_marking_step() method should
2567     be called in a loop (or, otherwise, regularly) until it completes.
2568 
2569     If a marking step completes without its has_aborted() flag being
2570     true, it means it has completed the current marking phase (and
2571     also all other marking tasks have done so and have all synced up).
2572 
2573     A method called regular_clock_call() is invoked "regularly" (in
2574     sub ms intervals) throughout marking. It is this clock method that
2575     checks all the abort conditions which were mentioned above and
2576     decides when the task should abort. A work-based scheme is used to
2577     trigger this clock method: when the number of object words the
2578     marking phase has scanned or the number of references the marking
2579     phase has visited reach a given limit. Additional invocations to
2580     the method clock have been planted in a few other strategic places
2581     too. The initial reason for the clock method was to avoid calling
2582     vtime too regularly, as it is quite expensive. So, once it was in
2583     place, it was natural to piggy-back all the other conditions on it
2584     too and not constantly check them throughout the code.
2585 
2586     If do_termination is true then do_marking_step will enter its
2587     termination protocol.
2588 
2589     The value of is_serial must be true when do_marking_step is being
2590     called serially (i.e. by the VMThread) and do_marking_step should
2591     skip any synchronization in the termination and overflow code.
2592     Examples include the serial remark code and the serial reference
2593     processing closures.
2594 
2595     The value of is_serial must be false when do_marking_step is
2596     being called by any of the worker threads in a work gang.
2597     Examples include the concurrent marking code (CMMarkingTask),
2598     the MT remark code, and the MT reference processing closures.
2599 
2600  *****************************************************************************/
2601 
2602 void G1CMTask::do_marking_step(double time_target_ms,
2603                                bool do_termination,
2604                                bool is_serial) {
2605   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2606   assert(concurrent() == _cm->concurrent(), "they should be the same");
2607 
2608   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
2609   assert(_task_queues != NULL, "invariant");
2610   assert(_task_queue != NULL, "invariant");
2611   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2612 
2613   assert(!_claimed,
2614          "only one thread should claim this task at any one time");
2615 
2616   // OK, this doesn't safeguard again all possible scenarios, as it is
2617   // possible for two threads to set the _claimed flag at the same
2618   // time. But it is only for debugging purposes anyway and it will
2619   // catch most problems.
2620   _claimed = true;
2621 
2622   _start_time_ms = os::elapsedVTime() * 1000.0;
2623 
2624   // If do_stealing is true then do_marking_step will attempt to
2625   // steal work from the other G1CMTasks. It only makes sense to
2626   // enable stealing when the termination protocol is enabled
2627   // and do_marking_step() is not being called serially.
2628   bool do_stealing = do_termination && !is_serial;
2629 
2630   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2631   _time_target_ms = time_target_ms - diff_prediction_ms;
2632 
2633   // set up the variables that are used in the work-based scheme to
2634   // call the regular clock method
2635   _words_scanned = 0;
2636   _refs_reached  = 0;
2637   recalculate_limits();
2638 
2639   // clear all flags
2640   clear_has_aborted();
2641   _has_timed_out = false;
2642   _draining_satb_buffers = false;
2643 
2644   ++_calls;
2645 
2646   // Set up the bitmap and oop closures. Anything that uses them is
2647   // eventually called from this method, so it is OK to allocate these
2648   // statically.
2649   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
2650   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2651   set_cm_oop_closure(&cm_oop_closure);
2652 
2653   if (_cm->has_overflown()) {
2654     // This can happen if the mark stack overflows during a GC pause
2655     // and this task, after a yield point, restarts. We have to abort
2656     // as we need to get into the overflow protocol which happens
2657     // right at the end of this task.
2658     set_has_aborted();
2659   }
2660 
2661   // First drain any available SATB buffers. After this, we will not
2662   // look at SATB buffers before the next invocation of this method.
2663   // If enough completed SATB buffers are queued up, the regular clock
2664   // will abort this task so that it restarts.
2665   drain_satb_buffers();
2666   // ...then partially drain the local queue and the global stack
2667   drain_local_queue(true);
2668   drain_global_stack(true);
2669 
2670   do {
2671     if (!has_aborted() && _curr_region != NULL) {
2672       // This means that we're already holding on to a region.
2673       assert(_finger != NULL, "if region is not NULL, then the finger "
2674              "should not be NULL either");
2675 
2676       // We might have restarted this task after an evacuation pause
2677       // which might have evacuated the region we're holding on to
2678       // underneath our feet. Let's read its limit again to make sure
2679       // that we do not iterate over a region of the heap that
2680       // contains garbage (update_region_limit() will also move
2681       // _finger to the start of the region if it is found empty).
2682       update_region_limit();
2683       // We will start from _finger not from the start of the region,
2684       // as we might be restarting this task after aborting half-way
2685       // through scanning this region. In this case, _finger points to
2686       // the address where we last found a marked object. If this is a
2687       // fresh region, _finger points to start().
2688       MemRegion mr = MemRegion(_finger, _region_limit);
2689 
2690       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2691              "humongous regions should go around loop once only");
2692 
2693       // Some special cases:
2694       // If the memory region is empty, we can just give up the region.
2695       // If the current region is humongous then we only need to check
2696       // the bitmap for the bit associated with the start of the object,
2697       // scan the object if it's live, and give up the region.
2698       // Otherwise, let's iterate over the bitmap of the part of the region
2699       // that is left.
2700       // If the iteration is successful, give up the region.
2701       if (mr.is_empty()) {
2702         giveup_current_region();
2703         regular_clock_call();
2704       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2705         if (_nextMarkBitMap->isMarked(mr.start())) {
2706           // The object is marked - apply the closure
2707           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
2708           bitmap_closure.do_bit(offset);
2709         }
2710         // Even if this task aborted while scanning the humongous object
2711         // we can (and should) give up the current region.
2712         giveup_current_region();
2713         regular_clock_call();
2714       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2715         giveup_current_region();
2716         regular_clock_call();
2717       } else {
2718         assert(has_aborted(), "currently the only way to do so");
2719         // The only way to abort the bitmap iteration is to return
2720         // false from the do_bit() method. However, inside the
2721         // do_bit() method we move the _finger to point to the
2722         // object currently being looked at. So, if we bail out, we
2723         // have definitely set _finger to something non-null.
2724         assert(_finger != NULL, "invariant");
2725 
2726         // Region iteration was actually aborted. So now _finger
2727         // points to the address of the object we last scanned. If we
2728         // leave it there, when we restart this task, we will rescan
2729         // the object. It is easy to avoid this. We move the finger by
2730         // enough to point to the next possible object header (the
2731         // bitmap knows by how much we need to move it as it knows its
2732         // granularity).
2733         assert(_finger < _region_limit, "invariant");
2734         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
2735         // Check if bitmap iteration was aborted while scanning the last object
2736         if (new_finger >= _region_limit) {
2737           giveup_current_region();
2738         } else {
2739           move_finger_to(new_finger);
2740         }
2741       }
2742     }
2743     // At this point we have either completed iterating over the
2744     // region we were holding on to, or we have aborted.
2745 
2746     // We then partially drain the local queue and the global stack.
2747     // (Do we really need this?)
2748     drain_local_queue(true);
2749     drain_global_stack(true);
2750 
2751     // Read the note on the claim_region() method on why it might
2752     // return NULL with potentially more regions available for
2753     // claiming and why we have to check out_of_regions() to determine
2754     // whether we're done or not.
2755     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2756       // We are going to try to claim a new region. We should have
2757       // given up on the previous one.
2758       // Separated the asserts so that we know which one fires.
2759       assert(_curr_region  == NULL, "invariant");
2760       assert(_finger       == NULL, "invariant");
2761       assert(_region_limit == NULL, "invariant");
2762       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2763       if (claimed_region != NULL) {
2764         // Yes, we managed to claim one
2765         setup_for_region(claimed_region);
2766         assert(_curr_region == claimed_region, "invariant");
2767       }
2768       // It is important to call the regular clock here. It might take
2769       // a while to claim a region if, for example, we hit a large
2770       // block of empty regions. So we need to call the regular clock
2771       // method once round the loop to make sure it's called
2772       // frequently enough.
2773       regular_clock_call();
2774     }
2775 
2776     if (!has_aborted() && _curr_region == NULL) {
2777       assert(_cm->out_of_regions(),
2778              "at this point we should be out of regions");
2779     }
2780   } while ( _curr_region != NULL && !has_aborted());
2781 
2782   if (!has_aborted()) {
2783     // We cannot check whether the global stack is empty, since other
2784     // tasks might be pushing objects to it concurrently.
2785     assert(_cm->out_of_regions(),
2786            "at this point we should be out of regions");
2787     // Try to reduce the number of available SATB buffers so that
2788     // remark has less work to do.
2789     drain_satb_buffers();
2790   }
2791 
2792   // Since we've done everything else, we can now totally drain the
2793   // local queue and global stack.
2794   drain_local_queue(false);
2795   drain_global_stack(false);
2796 
2797   // Attempt at work stealing from other task's queues.
2798   if (do_stealing && !has_aborted()) {
2799     // We have not aborted. This means that we have finished all that
2800     // we could. Let's try to do some stealing...
2801 
2802     // We cannot check whether the global stack is empty, since other
2803     // tasks might be pushing objects to it concurrently.
2804     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2805            "only way to reach here");
2806     while (!has_aborted()) {
2807       oop obj;
2808       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
2809         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
2810                "any stolen object should be marked");
2811         scan_object(obj);
2812 
2813         // And since we're towards the end, let's totally drain the
2814         // local queue and global stack.
2815         drain_local_queue(false);
2816         drain_global_stack(false);
2817       } else {
2818         break;
2819       }
2820     }
2821   }
2822 
2823   // We still haven't aborted. Now, let's try to get into the
2824   // termination protocol.
2825   if (do_termination && !has_aborted()) {
2826     // We cannot check whether the global stack is empty, since other
2827     // tasks might be concurrently pushing objects on it.
2828     // Separated the asserts so that we know which one fires.
2829     assert(_cm->out_of_regions(), "only way to reach here");
2830     assert(_task_queue->size() == 0, "only way to reach here");
2831     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2832 
2833     // The G1CMTask class also extends the TerminatorTerminator class,
2834     // hence its should_exit_termination() method will also decide
2835     // whether to exit the termination protocol or not.
2836     bool finished = (is_serial ||
2837                      _cm->terminator()->offer_termination(this));
2838     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2839     _termination_time_ms +=
2840       termination_end_time_ms - _termination_start_time_ms;
2841 
2842     if (finished) {
2843       // We're all done.
2844 
2845       if (_worker_id == 0) {
2846         // let's allow task 0 to do this
2847         if (concurrent()) {
2848           assert(_cm->concurrent_marking_in_progress(), "invariant");
2849           // we need to set this to false before the next
2850           // safepoint. This way we ensure that the marking phase
2851           // doesn't observe any more heap expansions.
2852           _cm->clear_concurrent_marking_in_progress();
2853         }
2854       }
2855 
2856       // We can now guarantee that the global stack is empty, since
2857       // all other tasks have finished. We separated the guarantees so
2858       // that, if a condition is false, we can immediately find out
2859       // which one.
2860       guarantee(_cm->out_of_regions(), "only way to reach here");
2861       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2862       guarantee(_task_queue->size() == 0, "only way to reach here");
2863       guarantee(!_cm->has_overflown(), "only way to reach here");
2864       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
2865     } else {
2866       // Apparently there's more work to do. Let's abort this task. It
2867       // will restart it and we can hopefully find more things to do.
2868       set_has_aborted();
2869     }
2870   }
2871 
2872   // Mainly for debugging purposes to make sure that a pointer to the
2873   // closure which was statically allocated in this frame doesn't
2874   // escape it by accident.
2875   set_cm_oop_closure(NULL);
2876   double end_time_ms = os::elapsedVTime() * 1000.0;
2877   double elapsed_time_ms = end_time_ms - _start_time_ms;
2878   // Update the step history.
2879   _step_times_ms.add(elapsed_time_ms);
2880 
2881   if (has_aborted()) {
2882     // The task was aborted for some reason.
2883     if (_has_timed_out) {
2884       double diff_ms = elapsed_time_ms - _time_target_ms;
2885       // Keep statistics of how well we did with respect to hitting
2886       // our target only if we actually timed out (if we aborted for
2887       // other reasons, then the results might get skewed).
2888       _marking_step_diffs_ms.add(diff_ms);
2889     }
2890 
2891     if (_cm->has_overflown()) {
2892       // This is the interesting one. We aborted because a global
2893       // overflow was raised. This means we have to restart the
2894       // marking phase and start iterating over regions. However, in
2895       // order to do this we have to make sure that all tasks stop
2896       // what they are doing and re-initialize in a safe manner. We
2897       // will achieve this with the use of two barrier sync points.
2898 
2899       if (!is_serial) {
2900         // We only need to enter the sync barrier if being called
2901         // from a parallel context
2902         _cm->enter_first_sync_barrier(_worker_id);
2903 
2904         // When we exit this sync barrier we know that all tasks have
2905         // stopped doing marking work. So, it's now safe to
2906         // re-initialize our data structures. At the end of this method,
2907         // task 0 will clear the global data structures.
2908       }
2909 
2910       // We clear the local state of this task...
2911       clear_region_fields();
2912 
2913       if (!is_serial) {
2914         // ...and enter the second barrier.
2915         _cm->enter_second_sync_barrier(_worker_id);
2916       }
2917       // At this point, if we're during the concurrent phase of
2918       // marking, everything has been re-initialized and we're
2919       // ready to restart.
2920     }
2921   }
2922 
2923   _claimed = false;
2924 }
2925 
2926 G1CMTask::G1CMTask(uint worker_id,
2927                    G1ConcurrentMark* cm,
2928                    G1CMTaskQueue* task_queue,
2929                    G1CMTaskQueueSet* task_queues)
2930   : _g1h(G1CollectedHeap::heap()),
2931     _worker_id(worker_id), _cm(cm),
2932     _claimed(false),
2933     _nextMarkBitMap(NULL), _hash_seed(17),
2934     _task_queue(task_queue),
2935     _task_queues(task_queues),
2936     _cm_oop_closure(NULL) {
2937   guarantee(task_queue != NULL, "invariant");
2938   guarantee(task_queues != NULL, "invariant");
2939 
2940   _marking_step_diffs_ms.add(0.5);
2941 }
2942 
2943 // These are formatting macros that are used below to ensure
2944 // consistent formatting. The *_H_* versions are used to format the
2945 // header for a particular value and they should be kept consistent
2946 // with the corresponding macro. Also note that most of the macros add
2947 // the necessary white space (as a prefix) which makes them a bit
2948 // easier to compose.
2949 
2950 // All the output lines are prefixed with this string to be able to
2951 // identify them easily in a large log file.
2952 #define G1PPRL_LINE_PREFIX            "###"
2953 
2954 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2955 #ifdef _LP64
2956 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2957 #else // _LP64
2958 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2959 #endif // _LP64
2960 
2961 // For per-region info
2962 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2963 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2964 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2965 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2966 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2967 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2968 
2969 // For summary info
2970 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2971 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2972 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2973 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2974 
2975 G1PrintRegionLivenessInfoClosure::
2976 G1PrintRegionLivenessInfoClosure(const char* phase_name)
2977   : _total_used_bytes(0), _total_capacity_bytes(0),
2978     _total_prev_live_bytes(0), _total_next_live_bytes(0),
2979     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
2980   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2981   MemRegion g1_reserved = g1h->g1_reserved();
2982   double now = os::elapsedTime();
2983 
2984   // Print the header of the output.
2985   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2986   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2987                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2988                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2989                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2990                           HeapRegion::GrainBytes);
2991   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2992   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2993                           G1PPRL_TYPE_H_FORMAT
2994                           G1PPRL_ADDR_BASE_H_FORMAT
2995                           G1PPRL_BYTE_H_FORMAT
2996                           G1PPRL_BYTE_H_FORMAT
2997                           G1PPRL_BYTE_H_FORMAT
2998                           G1PPRL_DOUBLE_H_FORMAT
2999                           G1PPRL_BYTE_H_FORMAT
3000                           G1PPRL_BYTE_H_FORMAT,
3001                           "type", "address-range",
3002                           "used", "prev-live", "next-live", "gc-eff",
3003                           "remset", "code-roots");
3004   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3005                           G1PPRL_TYPE_H_FORMAT
3006                           G1PPRL_ADDR_BASE_H_FORMAT
3007                           G1PPRL_BYTE_H_FORMAT
3008                           G1PPRL_BYTE_H_FORMAT
3009                           G1PPRL_BYTE_H_FORMAT
3010                           G1PPRL_DOUBLE_H_FORMAT
3011                           G1PPRL_BYTE_H_FORMAT
3012                           G1PPRL_BYTE_H_FORMAT,
3013                           "", "",
3014                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3015                           "(bytes)", "(bytes)");
3016 }
3017 
3018 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3019   const char* type       = r->get_type_str();
3020   HeapWord* bottom       = r->bottom();
3021   HeapWord* end          = r->end();
3022   size_t capacity_bytes  = r->capacity();
3023   size_t used_bytes      = r->used();
3024   size_t prev_live_bytes = r->live_bytes();
3025   size_t next_live_bytes = r->next_live_bytes();
3026   double gc_eff          = r->gc_efficiency();
3027   size_t remset_bytes    = r->rem_set()->mem_size();
3028   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3029 
3030   _total_used_bytes      += used_bytes;
3031   _total_capacity_bytes  += capacity_bytes;
3032   _total_prev_live_bytes += prev_live_bytes;
3033   _total_next_live_bytes += next_live_bytes;
3034   _total_remset_bytes    += remset_bytes;
3035   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3036 
3037   // Print a line for this particular region.
3038   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3039                           G1PPRL_TYPE_FORMAT
3040                           G1PPRL_ADDR_BASE_FORMAT
3041                           G1PPRL_BYTE_FORMAT
3042                           G1PPRL_BYTE_FORMAT
3043                           G1PPRL_BYTE_FORMAT
3044                           G1PPRL_DOUBLE_FORMAT
3045                           G1PPRL_BYTE_FORMAT
3046                           G1PPRL_BYTE_FORMAT,
3047                           type, p2i(bottom), p2i(end),
3048                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3049                           remset_bytes, strong_code_roots_bytes);
3050 
3051   return false;
3052 }
3053 
3054 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3055   // add static memory usages to remembered set sizes
3056   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3057   // Print the footer of the output.
3058   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3059   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3060                          " SUMMARY"
3061                          G1PPRL_SUM_MB_FORMAT("capacity")
3062                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3063                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3064                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3065                          G1PPRL_SUM_MB_FORMAT("remset")
3066                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3067                          bytes_to_mb(_total_capacity_bytes),
3068                          bytes_to_mb(_total_used_bytes),
3069                          perc(_total_used_bytes, _total_capacity_bytes),
3070                          bytes_to_mb(_total_prev_live_bytes),
3071                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3072                          bytes_to_mb(_total_next_live_bytes),
3073                          perc(_total_next_live_bytes, _total_capacity_bytes),
3074                          bytes_to_mb(_total_remset_bytes),
3075                          bytes_to_mb(_total_strong_code_roots_bytes));
3076 }