1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/cardTableRS.hpp"
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/gcHeapSummary.hpp"
  30 #include "gc/shared/gcLocker.inline.hpp"
  31 #include "gc/shared/gcPolicyCounters.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/genCollectedHeap.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/generationSpec.hpp"
  38 #include "gc/shared/referencePolicy.hpp"
  39 #include "gc/shared/space.inline.hpp"
  40 #include "gc/shared/spaceDecorator.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/iterator.hpp"
  44 #include "oops/instanceRefKlass.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/prefetch.inline.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "utilities/copy.hpp"
  51 #include "utilities/globalDefinitions.hpp"
  52 #include "utilities/stack.inline.hpp"
  53 #if INCLUDE_ALL_GCS
  54 #include "gc/cms/parOopClosures.hpp"
  55 #endif
  56 
  57 //
  58 // DefNewGeneration functions.
  59 
  60 // Methods of protected closure types.
  61 
  62 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  63   assert(_young_gen->kind() == Generation::ParNew ||
  64          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  65 }
  66 
  67 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  68   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  69 }
  70 
  71 DefNewGeneration::KeepAliveClosure::
  72 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  73   _rs = GenCollectedHeap::heap()->rem_set();
  74 }
  75 
  76 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  77 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  78 
  79 
  80 DefNewGeneration::FastKeepAliveClosure::
  81 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  82   DefNewGeneration::KeepAliveClosure(cl) {
  83   _boundary = g->reserved().end();
  84 }
  85 
  86 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  87 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  88 
  89 DefNewGeneration::EvacuateFollowersClosure::
  90 EvacuateFollowersClosure(GenCollectedHeap* gch,
  91                          ScanClosure* cur,
  92                          ScanClosure* older) :
  93   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  94 {}
  95 
  96 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  97   do {
  98     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
  99   } while (!_gch->no_allocs_since_save_marks());
 100 }
 101 
 102 DefNewGeneration::FastEvacuateFollowersClosure::
 103 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 104                              FastScanClosure* cur,
 105                              FastScanClosure* older) :
 106   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 107 {
 108   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 109   _young_gen = (DefNewGeneration*)_gch->young_gen();
 110 }
 111 
 112 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 113   do {
 114     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 115   } while (!_gch->no_allocs_since_save_marks());
 116   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 117 }
 118 
 119 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 120     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 121 {
 122   _boundary = _g->reserved().end();
 123 }
 124 
 125 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 126 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 127 
 128 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 129     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 130 {
 131   _boundary = _g->reserved().end();
 132 }
 133 
 134 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 135 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 136 
 137 void KlassScanClosure::do_klass(Klass* klass) {
 138   NOT_PRODUCT(ResourceMark rm);
 139   log_develop_trace(gc, scavenge)("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 140                                   p2i(klass),
 141                                   klass->external_name(),
 142                                   klass->has_modified_oops() ? "true" : "false");
 143 
 144   // If the klass has not been dirtied we know that there's
 145   // no references into  the young gen and we can skip it.
 146   if (klass->has_modified_oops()) {
 147     if (_accumulate_modified_oops) {
 148       klass->accumulate_modified_oops();
 149     }
 150 
 151     // Clear this state since we're going to scavenge all the metadata.
 152     klass->clear_modified_oops();
 153 
 154     // Tell the closure which Klass is being scanned so that it can be dirtied
 155     // if oops are left pointing into the young gen.
 156     _scavenge_closure->set_scanned_klass(klass);
 157 
 158     klass->oops_do(_scavenge_closure);
 159 
 160     _scavenge_closure->set_scanned_klass(NULL);
 161   }
 162 }
 163 
 164 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 165   _g(g)
 166 {
 167   _boundary = _g->reserved().end();
 168 }
 169 
 170 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 171 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 172 
 173 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 174 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 175 
 176 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 177                                    KlassRemSet* klass_rem_set)
 178     : _scavenge_closure(scavenge_closure),
 179       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 180 
 181 
 182 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 183                                    size_t initial_size,
 184                                    const char* policy)
 185   : Generation(rs, initial_size),
 186     _promo_failure_drain_in_progress(false),
 187     _should_allocate_from_space(false)
 188 {
 189   MemRegion cmr((HeapWord*)_virtual_space.low(),
 190                 (HeapWord*)_virtual_space.high());
 191   GenCollectedHeap* gch = GenCollectedHeap::heap();
 192 
 193   gch->barrier_set()->resize_covered_region(cmr);
 194 
 195   _eden_space = new ContiguousSpace();
 196   _from_space = new ContiguousSpace();
 197   _to_space   = new ContiguousSpace();
 198 
 199   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 200     vm_exit_during_initialization("Could not allocate a new gen space");
 201   }
 202 
 203   // Compute the maximum eden and survivor space sizes. These sizes
 204   // are computed assuming the entire reserved space is committed.
 205   // These values are exported as performance counters.
 206   uintx alignment = gch->collector_policy()->space_alignment();
 207   uintx size = _virtual_space.reserved_size();
 208   _max_survivor_size = compute_survivor_size(size, alignment);
 209   _max_eden_size = size - (2*_max_survivor_size);
 210 
 211   // allocate the performance counters
 212   GenCollectorPolicy* gcp = gch->gen_policy();
 213 
 214   // Generation counters -- generation 0, 3 subspaces
 215   _gen_counters = new GenerationCounters("new", 0, 3,
 216       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 217   _gc_counters = new CollectorCounters(policy, 0);
 218 
 219   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 220                                       _gen_counters);
 221   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 222                                       _gen_counters);
 223   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 224                                     _gen_counters);
 225 
 226   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 227   update_counters();
 228   _old_gen = NULL;
 229   _tenuring_threshold = MaxTenuringThreshold;
 230   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 231 
 232   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 233 }
 234 
 235 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 236                                                 bool clear_space,
 237                                                 bool mangle_space) {
 238   uintx alignment =
 239     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 240 
 241   // If the spaces are being cleared (only done at heap initialization
 242   // currently), the survivor spaces need not be empty.
 243   // Otherwise, no care is taken for used areas in the survivor spaces
 244   // so check.
 245   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 246     "Initialization of the survivor spaces assumes these are empty");
 247 
 248   // Compute sizes
 249   uintx size = _virtual_space.committed_size();
 250   uintx survivor_size = compute_survivor_size(size, alignment);
 251   uintx eden_size = size - (2*survivor_size);
 252   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 253 
 254   if (eden_size < minimum_eden_size) {
 255     // May happen due to 64Kb rounding, if so adjust eden size back up
 256     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 257     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 258     uintx unaligned_survivor_size =
 259       align_size_down(maximum_survivor_size, alignment);
 260     survivor_size = MAX2(unaligned_survivor_size, alignment);
 261     eden_size = size - (2*survivor_size);
 262     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 263     assert(eden_size >= minimum_eden_size, "just checking");
 264   }
 265 
 266   char *eden_start = _virtual_space.low();
 267   char *from_start = eden_start + eden_size;
 268   char *to_start   = from_start + survivor_size;
 269   char *to_end     = to_start   + survivor_size;
 270 
 271   assert(to_end == _virtual_space.high(), "just checking");
 272   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 273   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 274   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 275 
 276   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 277   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 278   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 279 
 280   // A minimum eden size implies that there is a part of eden that
 281   // is being used and that affects the initialization of any
 282   // newly formed eden.
 283   bool live_in_eden = minimum_eden_size > 0;
 284 
 285   // If not clearing the spaces, do some checking to verify that
 286   // the space are already mangled.
 287   if (!clear_space) {
 288     // Must check mangling before the spaces are reshaped.  Otherwise,
 289     // the bottom or end of one space may have moved into another
 290     // a failure of the check may not correctly indicate which space
 291     // is not properly mangled.
 292     if (ZapUnusedHeapArea) {
 293       HeapWord* limit = (HeapWord*) _virtual_space.high();
 294       eden()->check_mangled_unused_area(limit);
 295       from()->check_mangled_unused_area(limit);
 296         to()->check_mangled_unused_area(limit);
 297     }
 298   }
 299 
 300   // Reset the spaces for their new regions.
 301   eden()->initialize(edenMR,
 302                      clear_space && !live_in_eden,
 303                      SpaceDecorator::Mangle);
 304   // If clear_space and live_in_eden, we will not have cleared any
 305   // portion of eden above its top. This can cause newly
 306   // expanded space not to be mangled if using ZapUnusedHeapArea.
 307   // We explicitly do such mangling here.
 308   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 309     eden()->mangle_unused_area();
 310   }
 311   from()->initialize(fromMR, clear_space, mangle_space);
 312   to()->initialize(toMR, clear_space, mangle_space);
 313 
 314   // Set next compaction spaces.
 315   eden()->set_next_compaction_space(from());
 316   // The to-space is normally empty before a compaction so need
 317   // not be considered.  The exception is during promotion
 318   // failure handling when to-space can contain live objects.
 319   from()->set_next_compaction_space(NULL);
 320 }
 321 
 322 void DefNewGeneration::swap_spaces() {
 323   ContiguousSpace* s = from();
 324   _from_space        = to();
 325   _to_space          = s;
 326   eden()->set_next_compaction_space(from());
 327   // The to-space is normally empty before a compaction so need
 328   // not be considered.  The exception is during promotion
 329   // failure handling when to-space can contain live objects.
 330   from()->set_next_compaction_space(NULL);
 331 
 332   if (UsePerfData) {
 333     CSpaceCounters* c = _from_counters;
 334     _from_counters = _to_counters;
 335     _to_counters = c;
 336   }
 337 }
 338 
 339 bool DefNewGeneration::expand(size_t bytes) {
 340   MutexLocker x(ExpandHeap_lock);
 341   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 342   bool success = _virtual_space.expand_by(bytes);
 343   if (success && ZapUnusedHeapArea) {
 344     // Mangle newly committed space immediately because it
 345     // can be done here more simply that after the new
 346     // spaces have been computed.
 347     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 348     MemRegion mangle_region(prev_high, new_high);
 349     SpaceMangler::mangle_region(mangle_region);
 350   }
 351 
 352   // Do not attempt an expand-to-the reserve size.  The
 353   // request should properly observe the maximum size of
 354   // the generation so an expand-to-reserve should be
 355   // unnecessary.  Also a second call to expand-to-reserve
 356   // value potentially can cause an undue expansion.
 357   // For example if the first expand fail for unknown reasons,
 358   // but the second succeeds and expands the heap to its maximum
 359   // value.
 360   if (GC_locker::is_active()) {
 361     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 362   }
 363 
 364   return success;
 365 }
 366 
 367 void DefNewGeneration::compute_new_size() {
 368   // This is called after a GC that includes the old generation, so from-space
 369   // will normally be empty.
 370   // Note that we check both spaces, since if scavenge failed they revert roles.
 371   // If not we bail out (otherwise we would have to relocate the objects).
 372   if (!from()->is_empty() || !to()->is_empty()) {
 373     return;
 374   }
 375 
 376   GenCollectedHeap* gch = GenCollectedHeap::heap();
 377 
 378   size_t old_size = gch->old_gen()->capacity();
 379   size_t new_size_before = _virtual_space.committed_size();
 380   size_t min_new_size = initial_size();
 381   size_t max_new_size = reserved().byte_size();
 382   assert(min_new_size <= new_size_before &&
 383          new_size_before <= max_new_size,
 384          "just checking");
 385   // All space sizes must be multiples of Generation::GenGrain.
 386   size_t alignment = Generation::GenGrain;
 387 
 388   // To revert previous value when an overflow happens.
 389   size_t desired_new_size = new_size_before;
 390 
 391   int threads_count = 0;
 392   size_t thread_increase_size = 0;
 393 
 394   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 395   if (NewSizeThreadIncrease > 0) {
 396     size_t new_size_candidate = old_size / NewRatio;
 397 
 398     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 399     threads_count = Threads::number_of_non_daemon_threads();
 400     if (NewSizeThreadIncrease <= max_uintx / threads_count) {
 401       thread_increase_size = threads_count * NewSizeThreadIncrease;
 402 
 403       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 404       if (new_size_candidate <= max_uintx - thread_increase_size) {
 405         new_size_candidate += thread_increase_size;
 406 
 407         // 3. Check an overflow at 'align_size_up'.
 408         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 409         if (new_size_candidate <= aligned_max) {
 410           desired_new_size = align_size_up(new_size_candidate, alignment);
 411         }
 412       }
 413     }
 414   }
 415 
 416   // Adjust new generation size
 417   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 418   assert(desired_new_size <= max_new_size, "just checking");
 419 
 420   bool changed = false;
 421   if (desired_new_size > new_size_before) {
 422     size_t change = desired_new_size - new_size_before;
 423     assert(change % alignment == 0, "just checking");
 424     if (expand(change)) {
 425        changed = true;
 426     }
 427     // If the heap failed to expand to the desired size,
 428     // "changed" will be false.  If the expansion failed
 429     // (and at this point it was expected to succeed),
 430     // ignore the failure (leaving "changed" as false).
 431   }
 432   if (desired_new_size < new_size_before && eden()->is_empty()) {
 433     // bail out of shrinking if objects in eden
 434     size_t change = new_size_before - desired_new_size;
 435     assert(change % alignment == 0, "just checking");
 436     _virtual_space.shrink_by(change);
 437     changed = true;
 438   }
 439   if (changed) {
 440     // The spaces have already been mangled at this point but
 441     // may not have been cleared (set top = bottom) and should be.
 442     // Mangling was done when the heap was being expanded.
 443     compute_space_boundaries(eden()->used(),
 444                              SpaceDecorator::Clear,
 445                              SpaceDecorator::DontMangle);
 446     MemRegion cmr((HeapWord*)_virtual_space.low(),
 447                   (HeapWord*)_virtual_space.high());
 448     gch->barrier_set()->resize_covered_region(cmr);
 449 
 450     log_debug(gc, heap, ergo)(
 451         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 452         new_size_before/K, _virtual_space.committed_size()/K,
 453         eden()->capacity()/K, from()->capacity()/K);
 454     log_trace(gc, heap, ergo)(
 455         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 456           thread_increase_size/K, threads_count);
 457       }
 458 }
 459 
 460 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 461   assert(false, "NYI -- are you sure you want to call this?");
 462 }
 463 
 464 
 465 size_t DefNewGeneration::capacity() const {
 466   return eden()->capacity()
 467        + from()->capacity();  // to() is only used during scavenge
 468 }
 469 
 470 
 471 size_t DefNewGeneration::used() const {
 472   return eden()->used()
 473        + from()->used();      // to() is only used during scavenge
 474 }
 475 
 476 
 477 size_t DefNewGeneration::free() const {
 478   return eden()->free()
 479        + from()->free();      // to() is only used during scavenge
 480 }
 481 
 482 size_t DefNewGeneration::max_capacity() const {
 483   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 484   const size_t reserved_bytes = reserved().byte_size();
 485   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 486 }
 487 
 488 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 489   return eden()->free();
 490 }
 491 
 492 size_t DefNewGeneration::capacity_before_gc() const {
 493   return eden()->capacity();
 494 }
 495 
 496 size_t DefNewGeneration::contiguous_available() const {
 497   return eden()->free();
 498 }
 499 
 500 
 501 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 502 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 503 
 504 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 505   eden()->object_iterate(blk);
 506   from()->object_iterate(blk);
 507 }
 508 
 509 
 510 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 511                                      bool usedOnly) {
 512   blk->do_space(eden());
 513   blk->do_space(from());
 514   blk->do_space(to());
 515 }
 516 
 517 // The last collection bailed out, we are running out of heap space,
 518 // so we try to allocate the from-space, too.
 519 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 520   bool should_try_alloc = should_allocate_from_space() || GC_locker::is_active_and_needs_gc();
 521 
 522   // If the Heap_lock is not locked by this thread, this will be called
 523   // again later with the Heap_lock held.
 524   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 525 
 526   HeapWord* result = NULL;
 527   if (do_alloc) {
 528     result = from()->allocate(size);
 529   }
 530 
 531   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 532                         size,
 533                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 534                           "true" : "false",
 535                         Heap_lock->is_locked() ? "locked" : "unlocked",
 536                         from()->free(),
 537                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 538                         do_alloc ? "  Heap_lock is not owned by self" : "",
 539                         result == NULL ? "NULL" : "object");
 540 
 541   return result;
 542 }
 543 
 544 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 545                                                 bool   is_tlab,
 546                                                 bool   parallel) {
 547   // We don't attempt to expand the young generation (but perhaps we should.)
 548   return allocate(size, is_tlab);
 549 }
 550 
 551 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 552   // Set the desired survivor size to half the real survivor space
 553   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 554   _tenuring_threshold =
 555     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 556 }
 557 
 558 void DefNewGeneration::collect(bool   full,
 559                                bool   clear_all_soft_refs,
 560                                size_t size,
 561                                bool   is_tlab) {
 562   assert(full || size > 0, "otherwise we don't want to collect");
 563 
 564   GenCollectedHeap* gch = GenCollectedHeap::heap();
 565 
 566   _gc_timer->register_gc_start();
 567   DefNewTracer gc_tracer;
 568   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 569 
 570   _old_gen = gch->old_gen();
 571 
 572   // If the next generation is too full to accommodate promotion
 573   // from this generation, pass on collection; let the next generation
 574   // do it.
 575   if (!collection_attempt_is_safe()) {
 576     log_trace(gc)(":: Collection attempt not safe ::");
 577     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 578     return;
 579   }
 580   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 581 
 582   init_assuming_no_promotion_failure();
 583 
 584   GCTraceTime(Trace, gc) tm("DefNew", NULL, gch->gc_cause());
 585 
 586   gch->trace_heap_before_gc(&gc_tracer);
 587 
 588   // These can be shared for all code paths
 589   IsAliveClosure is_alive(this);
 590   ScanWeakRefClosure scan_weak_ref(this);
 591 
 592   age_table()->clear();
 593   to()->clear(SpaceDecorator::Mangle);
 594 
 595   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 596 
 597   assert(gch->no_allocs_since_save_marks(),
 598          "save marks have not been newly set.");
 599 
 600   // Not very pretty.
 601   CollectorPolicy* cp = gch->collector_policy();
 602 
 603   FastScanClosure fsc_with_no_gc_barrier(this, false);
 604   FastScanClosure fsc_with_gc_barrier(this, true);
 605 
 606   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 607                                       gch->rem_set()->klass_rem_set());
 608   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 609                                            &fsc_with_no_gc_barrier,
 610                                            false);
 611 
 612   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 613   FastEvacuateFollowersClosure evacuate_followers(gch,
 614                                                   &fsc_with_no_gc_barrier,
 615                                                   &fsc_with_gc_barrier);
 616 
 617   assert(gch->no_allocs_since_save_marks(),
 618          "save marks have not been newly set.");
 619 
 620   {
 621     // DefNew needs to run with n_threads == 0, to make sure the serial
 622     // version of the card table scanning code is used.
 623     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 624     StrongRootsScope srs(0);
 625 
 626     gch->gen_process_roots(&srs,
 627                            GenCollectedHeap::YoungGen,
 628                            true,  // Process younger gens, if any,
 629                                   // as strong roots.
 630                            GenCollectedHeap::SO_ScavengeCodeCache,
 631                            GenCollectedHeap::StrongAndWeakRoots,
 632                            &fsc_with_no_gc_barrier,
 633                            &fsc_with_gc_barrier,
 634                            &cld_scan_closure);
 635   }
 636 
 637   // "evacuate followers".
 638   evacuate_followers.do_void();
 639 
 640   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 641   ReferenceProcessor* rp = ref_processor();
 642   rp->setup_policy(clear_all_soft_refs);
 643   const ReferenceProcessorStats& stats =
 644   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 645                                     NULL, _gc_timer);
 646   gc_tracer.report_gc_reference_stats(stats);
 647   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 648 
 649   if (!_promotion_failed) {
 650     // Swap the survivor spaces.
 651     eden()->clear(SpaceDecorator::Mangle);
 652     from()->clear(SpaceDecorator::Mangle);
 653     if (ZapUnusedHeapArea) {
 654       // This is now done here because of the piece-meal mangling which
 655       // can check for valid mangling at intermediate points in the
 656       // collection(s).  When a young collection fails to collect
 657       // sufficient space resizing of the young generation can occur
 658       // an redistribute the spaces in the young generation.  Mangle
 659       // here so that unzapped regions don't get distributed to
 660       // other spaces.
 661       to()->mangle_unused_area();
 662     }
 663     swap_spaces();
 664 
 665     assert(to()->is_empty(), "to space should be empty now");
 666 
 667     adjust_desired_tenuring_threshold();
 668 
 669     // A successful scavenge should restart the GC time limit count which is
 670     // for full GC's.
 671     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 672     size_policy->reset_gc_overhead_limit_count();
 673     assert(!gch->incremental_collection_failed(), "Should be clear");
 674   } else {
 675     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 676     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 677 
 678     remove_forwarding_pointers();
 679     log_debug(gc)("Promotion failed");
 680     // Add to-space to the list of space to compact
 681     // when a promotion failure has occurred.  In that
 682     // case there can be live objects in to-space
 683     // as a result of a partial evacuation of eden
 684     // and from-space.
 685     swap_spaces();   // For uniformity wrt ParNewGeneration.
 686     from()->set_next_compaction_space(to());
 687     gch->set_incremental_collection_failed();
 688 
 689     // Inform the next generation that a promotion failure occurred.
 690     _old_gen->promotion_failure_occurred();
 691     gc_tracer.report_promotion_failed(_promotion_failed_info);
 692 
 693     // Reset the PromotionFailureALot counters.
 694     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 695   }
 696   // set new iteration safe limit for the survivor spaces
 697   from()->set_concurrent_iteration_safe_limit(from()->top());
 698   to()->set_concurrent_iteration_safe_limit(to()->top());
 699 
 700   // We need to use a monotonically non-decreasing time in ms
 701   // or we will see time-warp warnings and os::javaTimeMillis()
 702   // does not guarantee monotonicity.
 703   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 704   update_time_of_last_gc(now);
 705 
 706   gch->trace_heap_after_gc(&gc_tracer);
 707 
 708   _gc_timer->register_gc_end();
 709 
 710   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 711 }
 712 
 713 class RemoveForwardPointerClosure: public ObjectClosure {
 714 public:
 715   void do_object(oop obj) {
 716     obj->init_mark();
 717   }
 718 };
 719 
 720 void DefNewGeneration::init_assuming_no_promotion_failure() {
 721   _promotion_failed = false;
 722   _promotion_failed_info.reset();
 723   from()->set_next_compaction_space(NULL);
 724 }
 725 
 726 void DefNewGeneration::remove_forwarding_pointers() {
 727   RemoveForwardPointerClosure rspc;
 728   eden()->object_iterate(&rspc);
 729   from()->object_iterate(&rspc);
 730 
 731   // Now restore saved marks, if any.
 732   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 733          "should be the same");
 734   while (!_objs_with_preserved_marks.is_empty()) {
 735     oop obj   = _objs_with_preserved_marks.pop();
 736     markOop m = _preserved_marks_of_objs.pop();
 737     obj->set_mark(m);
 738   }
 739   _objs_with_preserved_marks.clear(true);
 740   _preserved_marks_of_objs.clear(true);
 741 }
 742 
 743 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 744   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 745          "Oversaving!");
 746   _objs_with_preserved_marks.push(obj);
 747   _preserved_marks_of_objs.push(m);
 748 }
 749 
 750 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 751   if (m->must_be_preserved_for_promotion_failure(obj)) {
 752     preserve_mark(obj, m);
 753   }
 754 }
 755 
 756 void DefNewGeneration::handle_promotion_failure(oop old) {
 757   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 758 
 759   _promotion_failed = true;
 760   _promotion_failed_info.register_copy_failure(old->size());
 761   preserve_mark_if_necessary(old, old->mark());
 762   // forward to self
 763   old->forward_to(old);
 764 
 765   _promo_failure_scan_stack.push(old);
 766 
 767   if (!_promo_failure_drain_in_progress) {
 768     // prevent recursion in copy_to_survivor_space()
 769     _promo_failure_drain_in_progress = true;
 770     drain_promo_failure_scan_stack();
 771     _promo_failure_drain_in_progress = false;
 772   }
 773 }
 774 
 775 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 776   assert(is_in_reserved(old) && !old->is_forwarded(),
 777          "shouldn't be scavenging this oop");
 778   size_t s = old->size();
 779   oop obj = NULL;
 780 
 781   // Try allocating obj in to-space (unless too old)
 782   if (old->age() < tenuring_threshold()) {
 783     obj = (oop) to()->allocate_aligned(s);
 784   }
 785 
 786   // Otherwise try allocating obj tenured
 787   if (obj == NULL) {
 788     obj = _old_gen->promote(old, s);
 789     if (obj == NULL) {
 790       handle_promotion_failure(old);
 791       return old;
 792     }
 793   } else {
 794     // Prefetch beyond obj
 795     const intx interval = PrefetchCopyIntervalInBytes;
 796     Prefetch::write(obj, interval);
 797 
 798     // Copy obj
 799     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 800 
 801     // Increment age if obj still in new generation
 802     obj->incr_age();
 803     age_table()->add(obj, s);
 804   }
 805 
 806   // Done, insert forward pointer to obj in this header
 807   old->forward_to(obj);
 808 
 809   return obj;
 810 }
 811 
 812 void DefNewGeneration::drain_promo_failure_scan_stack() {
 813   while (!_promo_failure_scan_stack.is_empty()) {
 814      oop obj = _promo_failure_scan_stack.pop();
 815      obj->oop_iterate(_promo_failure_scan_stack_closure);
 816   }
 817 }
 818 
 819 void DefNewGeneration::save_marks() {
 820   eden()->set_saved_mark();
 821   to()->set_saved_mark();
 822   from()->set_saved_mark();
 823 }
 824 
 825 
 826 void DefNewGeneration::reset_saved_marks() {
 827   eden()->reset_saved_mark();
 828   to()->reset_saved_mark();
 829   from()->reset_saved_mark();
 830 }
 831 
 832 
 833 bool DefNewGeneration::no_allocs_since_save_marks() {
 834   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 835   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 836   return to()->saved_mark_at_top();
 837 }
 838 
 839 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 840                                                                 \
 841 void DefNewGeneration::                                         \
 842 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 843   cl->set_generation(this);                                     \
 844   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 845   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 846   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 847   cl->reset_generation();                                       \
 848   save_marks();                                                 \
 849 }
 850 
 851 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 852 
 853 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 854 
 855 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 856                                          size_t max_alloc_words) {
 857   if (requestor == this || _promotion_failed) {
 858     return;
 859   }
 860   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 861 
 862   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 863   if (to_space->top() > to_space->bottom()) {
 864     trace("to_space not empty when contribute_scratch called");
 865   }
 866   */
 867 
 868   ContiguousSpace* to_space = to();
 869   assert(to_space->end() >= to_space->top(), "pointers out of order");
 870   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 871   if (free_words >= MinFreeScratchWords) {
 872     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 873     sb->num_words = free_words;
 874     sb->next = list;
 875     list = sb;
 876   }
 877 }
 878 
 879 void DefNewGeneration::reset_scratch() {
 880   // If contributing scratch in to_space, mangle all of
 881   // to_space if ZapUnusedHeapArea.  This is needed because
 882   // top is not maintained while using to-space as scratch.
 883   if (ZapUnusedHeapArea) {
 884     to()->mangle_unused_area_complete();
 885   }
 886 }
 887 
 888 bool DefNewGeneration::collection_attempt_is_safe() {
 889   if (!to()->is_empty()) {
 890     log_trace(gc)(":: to is not empty ::");
 891     return false;
 892   }
 893   if (_old_gen == NULL) {
 894     GenCollectedHeap* gch = GenCollectedHeap::heap();
 895     _old_gen = gch->old_gen();
 896   }
 897   return _old_gen->promotion_attempt_is_safe(used());
 898 }
 899 
 900 void DefNewGeneration::gc_epilogue(bool full) {
 901   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 902 
 903   assert(!GC_locker::is_active(), "We should not be executing here");
 904   // Check if the heap is approaching full after a collection has
 905   // been done.  Generally the young generation is empty at
 906   // a minimum at the end of a collection.  If it is not, then
 907   // the heap is approaching full.
 908   GenCollectedHeap* gch = GenCollectedHeap::heap();
 909   if (full) {
 910     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 911     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 912       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 913                             GCCause::to_string(gch->gc_cause()));
 914       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 915       set_should_allocate_from_space(); // we seem to be running out of space
 916     } else {
 917       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 918                             GCCause::to_string(gch->gc_cause()));
 919       gch->clear_incremental_collection_failed(); // We just did a full collection
 920       clear_should_allocate_from_space(); // if set
 921     }
 922   } else {
 923 #ifdef ASSERT
 924     // It is possible that incremental_collection_failed() == true
 925     // here, because an attempted scavenge did not succeed. The policy
 926     // is normally expected to cause a full collection which should
 927     // clear that condition, so we should not be here twice in a row
 928     // with incremental_collection_failed() == true without having done
 929     // a full collection in between.
 930     if (!seen_incremental_collection_failed &&
 931         gch->incremental_collection_failed()) {
 932       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 933                             GCCause::to_string(gch->gc_cause()));
 934       seen_incremental_collection_failed = true;
 935     } else if (seen_incremental_collection_failed) {
 936       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 937                             GCCause::to_string(gch->gc_cause()));
 938       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 939              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 940              !gch->incremental_collection_failed(),
 941              "Twice in a row");
 942       seen_incremental_collection_failed = false;
 943     }
 944 #endif // ASSERT
 945   }
 946 
 947   if (ZapUnusedHeapArea) {
 948     eden()->check_mangled_unused_area_complete();
 949     from()->check_mangled_unused_area_complete();
 950     to()->check_mangled_unused_area_complete();
 951   }
 952 
 953   if (!CleanChunkPoolAsync) {
 954     Chunk::clean_chunk_pool();
 955   }
 956 
 957   // update the generation and space performance counters
 958   update_counters();
 959   gch->collector_policy()->counters()->update_counters();
 960 }
 961 
 962 void DefNewGeneration::record_spaces_top() {
 963   assert(ZapUnusedHeapArea, "Not mangling unused space");
 964   eden()->set_top_for_allocations();
 965   to()->set_top_for_allocations();
 966   from()->set_top_for_allocations();
 967 }
 968 
 969 void DefNewGeneration::ref_processor_init() {
 970   Generation::ref_processor_init();
 971 }
 972 
 973 
 974 void DefNewGeneration::update_counters() {
 975   if (UsePerfData) {
 976     _eden_counters->update_all();
 977     _from_counters->update_all();
 978     _to_counters->update_all();
 979     _gen_counters->update_all();
 980   }
 981 }
 982 
 983 void DefNewGeneration::verify() {
 984   eden()->verify();
 985   from()->verify();
 986     to()->verify();
 987 }
 988 
 989 void DefNewGeneration::print_on(outputStream* st) const {
 990   Generation::print_on(st);
 991   st->print("  eden");
 992   eden()->print_on(st);
 993   st->print("  from");
 994   from()->print_on(st);
 995   st->print("  to  ");
 996   to()->print_on(st);
 997 }
 998 
 999 
1000 const char* DefNewGeneration::name() const {
1001   return "def new generation";
1002 }
1003 
1004 // Moved from inline file as they are not called inline
1005 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1006   return eden();
1007 }
1008 
1009 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1010   // This is the slow-path allocation for the DefNewGeneration.
1011   // Most allocations are fast-path in compiled code.
1012   // We try to allocate from the eden.  If that works, we are happy.
1013   // Note that since DefNewGeneration supports lock-free allocation, we
1014   // have to use it here, as well.
1015   HeapWord* result = eden()->par_allocate(word_size);
1016   if (result != NULL) {
1017     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1018       _old_gen->sample_eden_chunk();
1019     }
1020   } else {
1021     // If the eden is full and the last collection bailed out, we are running
1022     // out of heap space, and we try to allocate the from-space, too.
1023     // allocate_from_space can't be inlined because that would introduce a
1024     // circular dependency at compile time.
1025     result = allocate_from_space(word_size);
1026   }
1027   return result;
1028 }
1029 
1030 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1031                                          bool is_tlab) {
1032   HeapWord* res = eden()->par_allocate(word_size);
1033   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1034     _old_gen->sample_eden_chunk();
1035   }
1036   return res;
1037 }
1038 
1039 size_t DefNewGeneration::tlab_capacity() const {
1040   return eden()->capacity();
1041 }
1042 
1043 size_t DefNewGeneration::tlab_used() const {
1044   return eden()->used();
1045 }
1046 
1047 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1048   return unsafe_max_alloc_nogc();
1049 }