1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   thread->initialize_thread_current();
 423 
 424   OSThread* osthr = thread->osthread();
 425   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 426 
 427   if (UseNUMA) {
 428     int lgrp_id = os::numa_get_group_id();
 429     if (lgrp_id != -1) {
 430       thread->set_lgrp_id(lgrp_id);
 431     }
 432   }
 433 
 434   // Diagnostic code to investigate JDK-6573254
 435   int res = 30115;  // non-java thread
 436   if (thread->is_Java_thread()) {
 437     res = 20115;    // java thread
 438   }
 439 
 440   // Install a win32 structured exception handler around every thread created
 441   // by VM, so VM can generate error dump when an exception occurred in non-
 442   // Java thread (e.g. VM thread).
 443   __try {
 444     thread->run();
 445   } __except(topLevelExceptionFilter(
 446                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 447     // Nothing to do.
 448   }
 449 
 450   // One less thread is executing
 451   // When the VMThread gets here, the main thread may have already exited
 452   // which frees the CodeHeap containing the Atomic::add code
 453   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 454     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 455   }
 456 
 457   // Thread must not return from exit_process_or_thread(), but if it does,
 458   // let it proceed to exit normally
 459   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 460 }
 461 
 462 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 463                                   int thread_id) {
 464   // Allocate the OSThread object
 465   OSThread* osthread = new OSThread(NULL, NULL);
 466   if (osthread == NULL) return NULL;
 467 
 468   // Initialize support for Java interrupts
 469   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 470   if (interrupt_event == NULL) {
 471     delete osthread;
 472     return NULL;
 473   }
 474   osthread->set_interrupt_event(interrupt_event);
 475 
 476   // Store info on the Win32 thread into the OSThread
 477   osthread->set_thread_handle(thread_handle);
 478   osthread->set_thread_id(thread_id);
 479 
 480   if (UseNUMA) {
 481     int lgrp_id = os::numa_get_group_id();
 482     if (lgrp_id != -1) {
 483       thread->set_lgrp_id(lgrp_id);
 484     }
 485   }
 486 
 487   // Initial thread state is INITIALIZED, not SUSPENDED
 488   osthread->set_state(INITIALIZED);
 489 
 490   return osthread;
 491 }
 492 
 493 
 494 bool os::create_attached_thread(JavaThread* thread) {
 495 #ifdef ASSERT
 496   thread->verify_not_published();
 497 #endif
 498   HANDLE thread_h;
 499   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 500                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 501     fatal("DuplicateHandle failed\n");
 502   }
 503   OSThread* osthread = create_os_thread(thread, thread_h,
 504                                         (int)current_thread_id());
 505   if (osthread == NULL) {
 506     return false;
 507   }
 508 
 509   // Initial thread state is RUNNABLE
 510   osthread->set_state(RUNNABLE);
 511 
 512   thread->set_osthread(osthread);
 513   return true;
 514 }
 515 
 516 bool os::create_main_thread(JavaThread* thread) {
 517 #ifdef ASSERT
 518   thread->verify_not_published();
 519 #endif
 520   if (_starting_thread == NULL) {
 521     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 522     if (_starting_thread == NULL) {
 523       return false;
 524     }
 525   }
 526 
 527   // The primordial thread is runnable from the start)
 528   _starting_thread->set_state(RUNNABLE);
 529 
 530   thread->set_osthread(_starting_thread);
 531   return true;
 532 }
 533 
 534 // Allocate and initialize a new OSThread
 535 bool os::create_thread(Thread* thread, ThreadType thr_type,
 536                        size_t stack_size) {
 537   unsigned thread_id;
 538 
 539   // Allocate the OSThread object
 540   OSThread* osthread = new OSThread(NULL, NULL);
 541   if (osthread == NULL) {
 542     return false;
 543   }
 544 
 545   // Initialize support for Java interrupts
 546   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 547   if (interrupt_event == NULL) {
 548     delete osthread;
 549     return NULL;
 550   }
 551   osthread->set_interrupt_event(interrupt_event);
 552   osthread->set_interrupted(false);
 553 
 554   thread->set_osthread(osthread);
 555 
 556   if (stack_size == 0) {
 557     switch (thr_type) {
 558     case os::java_thread:
 559       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 560       if (JavaThread::stack_size_at_create() > 0) {
 561         stack_size = JavaThread::stack_size_at_create();
 562       }
 563       break;
 564     case os::compiler_thread:
 565       if (CompilerThreadStackSize > 0) {
 566         stack_size = (size_t)(CompilerThreadStackSize * K);
 567         break;
 568       } // else fall through:
 569         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 570     case os::vm_thread:
 571     case os::pgc_thread:
 572     case os::cgc_thread:
 573     case os::watcher_thread:
 574       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 575       break;
 576     }
 577   }
 578 
 579   // Create the Win32 thread
 580   //
 581   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 582   // does not specify stack size. Instead, it specifies the size of
 583   // initially committed space. The stack size is determined by
 584   // PE header in the executable. If the committed "stack_size" is larger
 585   // than default value in the PE header, the stack is rounded up to the
 586   // nearest multiple of 1MB. For example if the launcher has default
 587   // stack size of 320k, specifying any size less than 320k does not
 588   // affect the actual stack size at all, it only affects the initial
 589   // commitment. On the other hand, specifying 'stack_size' larger than
 590   // default value may cause significant increase in memory usage, because
 591   // not only the stack space will be rounded up to MB, but also the
 592   // entire space is committed upfront.
 593   //
 594   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 595   // for CreateThread() that can treat 'stack_size' as stack size. However we
 596   // are not supposed to call CreateThread() directly according to MSDN
 597   // document because JVM uses C runtime library. The good news is that the
 598   // flag appears to work with _beginthredex() as well.
 599 
 600 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 601   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 602 #endif
 603 
 604   HANDLE thread_handle =
 605     (HANDLE)_beginthreadex(NULL,
 606                            (unsigned)stack_size,
 607                            (unsigned (__stdcall *)(void*)) java_start,
 608                            thread,
 609                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 610                            &thread_id);
 611   if (thread_handle == NULL) {
 612     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 613     // without the flag.
 614     thread_handle =
 615       (HANDLE)_beginthreadex(NULL,
 616                              (unsigned)stack_size,
 617                              (unsigned (__stdcall *)(void*)) java_start,
 618                              thread,
 619                              CREATE_SUSPENDED,
 620                              &thread_id);
 621   }
 622   if (thread_handle == NULL) {
 623     // Need to clean up stuff we've allocated so far
 624     CloseHandle(osthread->interrupt_event());
 625     thread->set_osthread(NULL);
 626     delete osthread;
 627     return NULL;
 628   }
 629 
 630   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 631 
 632   // Store info on the Win32 thread into the OSThread
 633   osthread->set_thread_handle(thread_handle);
 634   osthread->set_thread_id(thread_id);
 635 
 636   // Initial thread state is INITIALIZED, not SUSPENDED
 637   osthread->set_state(INITIALIZED);
 638 
 639   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 640   return true;
 641 }
 642 
 643 
 644 // Free Win32 resources related to the OSThread
 645 void os::free_thread(OSThread* osthread) {
 646   assert(osthread != NULL, "osthread not set");
 647   CloseHandle(osthread->thread_handle());
 648   CloseHandle(osthread->interrupt_event());
 649   delete osthread;
 650 }
 651 
 652 static jlong first_filetime;
 653 static jlong initial_performance_count;
 654 static jlong performance_frequency;
 655 
 656 
 657 jlong as_long(LARGE_INTEGER x) {
 658   jlong result = 0; // initialization to avoid warning
 659   set_high(&result, x.HighPart);
 660   set_low(&result, x.LowPart);
 661   return result;
 662 }
 663 
 664 
 665 jlong os::elapsed_counter() {
 666   LARGE_INTEGER count;
 667   if (win32::_has_performance_count) {
 668     QueryPerformanceCounter(&count);
 669     return as_long(count) - initial_performance_count;
 670   } else {
 671     FILETIME wt;
 672     GetSystemTimeAsFileTime(&wt);
 673     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 674   }
 675 }
 676 
 677 
 678 jlong os::elapsed_frequency() {
 679   if (win32::_has_performance_count) {
 680     return performance_frequency;
 681   } else {
 682     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 683     return 10000000;
 684   }
 685 }
 686 
 687 
 688 julong os::available_memory() {
 689   return win32::available_memory();
 690 }
 691 
 692 julong os::win32::available_memory() {
 693   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 694   // value if total memory is larger than 4GB
 695   MEMORYSTATUSEX ms;
 696   ms.dwLength = sizeof(ms);
 697   GlobalMemoryStatusEx(&ms);
 698 
 699   return (julong)ms.ullAvailPhys;
 700 }
 701 
 702 julong os::physical_memory() {
 703   return win32::physical_memory();
 704 }
 705 
 706 bool os::has_allocatable_memory_limit(julong* limit) {
 707   MEMORYSTATUSEX ms;
 708   ms.dwLength = sizeof(ms);
 709   GlobalMemoryStatusEx(&ms);
 710 #ifdef _LP64
 711   *limit = (julong)ms.ullAvailVirtual;
 712   return true;
 713 #else
 714   // Limit to 1400m because of the 2gb address space wall
 715   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 716   return true;
 717 #endif
 718 }
 719 
 720 // VC6 lacks DWORD_PTR
 721 #if _MSC_VER < 1300
 722 typedef UINT_PTR DWORD_PTR;
 723 #endif
 724 
 725 int os::active_processor_count() {
 726   DWORD_PTR lpProcessAffinityMask = 0;
 727   DWORD_PTR lpSystemAffinityMask = 0;
 728   int proc_count = processor_count();
 729   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 730       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 731     // Nof active processors is number of bits in process affinity mask
 732     int bitcount = 0;
 733     while (lpProcessAffinityMask != 0) {
 734       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 735       bitcount++;
 736     }
 737     return bitcount;
 738   } else {
 739     return proc_count;
 740   }
 741 }
 742 
 743 void os::set_native_thread_name(const char *name) {
 744 
 745   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 746   //
 747   // Note that unfortunately this only works if the process
 748   // is already attached to a debugger; debugger must observe
 749   // the exception below to show the correct name.
 750 
 751   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 752   struct {
 753     DWORD dwType;     // must be 0x1000
 754     LPCSTR szName;    // pointer to name (in user addr space)
 755     DWORD dwThreadID; // thread ID (-1=caller thread)
 756     DWORD dwFlags;    // reserved for future use, must be zero
 757   } info;
 758 
 759   info.dwType = 0x1000;
 760   info.szName = name;
 761   info.dwThreadID = -1;
 762   info.dwFlags = 0;
 763 
 764   __try {
 765     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 766   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 767 }
 768 
 769 bool os::distribute_processes(uint length, uint* distribution) {
 770   // Not yet implemented.
 771   return false;
 772 }
 773 
 774 bool os::bind_to_processor(uint processor_id) {
 775   // Not yet implemented.
 776   return false;
 777 }
 778 
 779 void os::win32::initialize_performance_counter() {
 780   LARGE_INTEGER count;
 781   if (QueryPerformanceFrequency(&count)) {
 782     win32::_has_performance_count = 1;
 783     performance_frequency = as_long(count);
 784     QueryPerformanceCounter(&count);
 785     initial_performance_count = as_long(count);
 786   } else {
 787     win32::_has_performance_count = 0;
 788     FILETIME wt;
 789     GetSystemTimeAsFileTime(&wt);
 790     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 791   }
 792 }
 793 
 794 
 795 double os::elapsedTime() {
 796   return (double) elapsed_counter() / (double) elapsed_frequency();
 797 }
 798 
 799 
 800 // Windows format:
 801 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 802 // Java format:
 803 //   Java standards require the number of milliseconds since 1/1/1970
 804 
 805 // Constant offset - calculated using offset()
 806 static jlong  _offset   = 116444736000000000;
 807 // Fake time counter for reproducible results when debugging
 808 static jlong  fake_time = 0;
 809 
 810 #ifdef ASSERT
 811 // Just to be safe, recalculate the offset in debug mode
 812 static jlong _calculated_offset = 0;
 813 static int   _has_calculated_offset = 0;
 814 
 815 jlong offset() {
 816   if (_has_calculated_offset) return _calculated_offset;
 817   SYSTEMTIME java_origin;
 818   java_origin.wYear          = 1970;
 819   java_origin.wMonth         = 1;
 820   java_origin.wDayOfWeek     = 0; // ignored
 821   java_origin.wDay           = 1;
 822   java_origin.wHour          = 0;
 823   java_origin.wMinute        = 0;
 824   java_origin.wSecond        = 0;
 825   java_origin.wMilliseconds  = 0;
 826   FILETIME jot;
 827   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 828     fatal("Error = %d\nWindows error", GetLastError());
 829   }
 830   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 831   _has_calculated_offset = 1;
 832   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 833   return _calculated_offset;
 834 }
 835 #else
 836 jlong offset() {
 837   return _offset;
 838 }
 839 #endif
 840 
 841 jlong windows_to_java_time(FILETIME wt) {
 842   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 843   return (a - offset()) / 10000;
 844 }
 845 
 846 // Returns time ticks in (10th of micro seconds)
 847 jlong windows_to_time_ticks(FILETIME wt) {
 848   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 849   return (a - offset());
 850 }
 851 
 852 FILETIME java_to_windows_time(jlong l) {
 853   jlong a = (l * 10000) + offset();
 854   FILETIME result;
 855   result.dwHighDateTime = high(a);
 856   result.dwLowDateTime  = low(a);
 857   return result;
 858 }
 859 
 860 bool os::supports_vtime() { return true; }
 861 bool os::enable_vtime() { return false; }
 862 bool os::vtime_enabled() { return false; }
 863 
 864 double os::elapsedVTime() {
 865   FILETIME created;
 866   FILETIME exited;
 867   FILETIME kernel;
 868   FILETIME user;
 869   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 870     // the resolution of windows_to_java_time() should be sufficient (ms)
 871     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 872   } else {
 873     return elapsedTime();
 874   }
 875 }
 876 
 877 jlong os::javaTimeMillis() {
 878   if (UseFakeTimers) {
 879     return fake_time++;
 880   } else {
 881     FILETIME wt;
 882     GetSystemTimeAsFileTime(&wt);
 883     return windows_to_java_time(wt);
 884   }
 885 }
 886 
 887 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 888   FILETIME wt;
 889   GetSystemTimeAsFileTime(&wt);
 890   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 891   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 892   seconds = secs;
 893   nanos = jlong(ticks - (secs*10000000)) * 100;
 894 }
 895 
 896 jlong os::javaTimeNanos() {
 897   if (!win32::_has_performance_count) {
 898     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 899   } else {
 900     LARGE_INTEGER current_count;
 901     QueryPerformanceCounter(&current_count);
 902     double current = as_long(current_count);
 903     double freq = performance_frequency;
 904     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 905     return time;
 906   }
 907 }
 908 
 909 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 910   if (!win32::_has_performance_count) {
 911     // javaTimeMillis() doesn't have much percision,
 912     // but it is not going to wrap -- so all 64 bits
 913     info_ptr->max_value = ALL_64_BITS;
 914 
 915     // this is a wall clock timer, so may skip
 916     info_ptr->may_skip_backward = true;
 917     info_ptr->may_skip_forward = true;
 918   } else {
 919     jlong freq = performance_frequency;
 920     if (freq < NANOSECS_PER_SEC) {
 921       // the performance counter is 64 bits and we will
 922       // be multiplying it -- so no wrap in 64 bits
 923       info_ptr->max_value = ALL_64_BITS;
 924     } else if (freq > NANOSECS_PER_SEC) {
 925       // use the max value the counter can reach to
 926       // determine the max value which could be returned
 927       julong max_counter = (julong)ALL_64_BITS;
 928       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 929     } else {
 930       // the performance counter is 64 bits and we will
 931       // be using it directly -- so no wrap in 64 bits
 932       info_ptr->max_value = ALL_64_BITS;
 933     }
 934 
 935     // using a counter, so no skipping
 936     info_ptr->may_skip_backward = false;
 937     info_ptr->may_skip_forward = false;
 938   }
 939   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 940 }
 941 
 942 char* os::local_time_string(char *buf, size_t buflen) {
 943   SYSTEMTIME st;
 944   GetLocalTime(&st);
 945   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 946                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 947   return buf;
 948 }
 949 
 950 bool os::getTimesSecs(double* process_real_time,
 951                       double* process_user_time,
 952                       double* process_system_time) {
 953   HANDLE h_process = GetCurrentProcess();
 954   FILETIME create_time, exit_time, kernel_time, user_time;
 955   BOOL result = GetProcessTimes(h_process,
 956                                 &create_time,
 957                                 &exit_time,
 958                                 &kernel_time,
 959                                 &user_time);
 960   if (result != 0) {
 961     FILETIME wt;
 962     GetSystemTimeAsFileTime(&wt);
 963     jlong rtc_millis = windows_to_java_time(wt);
 964     jlong user_millis = windows_to_java_time(user_time);
 965     jlong system_millis = windows_to_java_time(kernel_time);
 966     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 967     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 968     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 969     return true;
 970   } else {
 971     return false;
 972   }
 973 }
 974 
 975 void os::shutdown() {
 976   // allow PerfMemory to attempt cleanup of any persistent resources
 977   perfMemory_exit();
 978 
 979   // flush buffered output, finish log files
 980   ostream_abort();
 981 
 982   // Check for abort hook
 983   abort_hook_t abort_hook = Arguments::abort_hook();
 984   if (abort_hook != NULL) {
 985     abort_hook();
 986   }
 987 }
 988 
 989 
 990 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 991                                          PMINIDUMP_EXCEPTION_INFORMATION,
 992                                          PMINIDUMP_USER_STREAM_INFORMATION,
 993                                          PMINIDUMP_CALLBACK_INFORMATION);
 994 
 995 static HANDLE dumpFile = NULL;
 996 
 997 // Check if dump file can be created.
 998 void os::check_dump_limit(char* buffer, size_t buffsz) {
 999   bool status = true;
1000   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1001     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1002     status = false;
1003   }
1004 
1005 #ifndef ASSERT
1006   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1007     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1008     status = false;
1009   }
1010 #endif
1011 
1012   if (status) {
1013     const char* cwd = get_current_directory(NULL, 0);
1014     int pid = current_process_id();
1015     if (cwd != NULL) {
1016       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1017     } else {
1018       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1019     }
1020 
1021     if (dumpFile == NULL &&
1022        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1023                  == INVALID_HANDLE_VALUE) {
1024       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1025       status = false;
1026     }
1027   }
1028   VMError::record_coredump_status(buffer, status);
1029 }
1030 
1031 void os::abort(bool dump_core, void* siginfo, const void* context) {
1032   HINSTANCE dbghelp;
1033   EXCEPTION_POINTERS ep;
1034   MINIDUMP_EXCEPTION_INFORMATION mei;
1035   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1036 
1037   HANDLE hProcess = GetCurrentProcess();
1038   DWORD processId = GetCurrentProcessId();
1039   MINIDUMP_TYPE dumpType;
1040 
1041   shutdown();
1042   if (!dump_core || dumpFile == NULL) {
1043     if (dumpFile != NULL) {
1044       CloseHandle(dumpFile);
1045     }
1046     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1047   }
1048 
1049   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1050 
1051   if (dbghelp == NULL) {
1052     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1053     CloseHandle(dumpFile);
1054     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1055   }
1056 
1057   _MiniDumpWriteDump =
1058       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1059                                     PMINIDUMP_EXCEPTION_INFORMATION,
1060                                     PMINIDUMP_USER_STREAM_INFORMATION,
1061                                     PMINIDUMP_CALLBACK_INFORMATION),
1062                                     GetProcAddress(dbghelp,
1063                                     "MiniDumpWriteDump"));
1064 
1065   if (_MiniDumpWriteDump == NULL) {
1066     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1067     CloseHandle(dumpFile);
1068     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1069   }
1070 
1071   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1072 
1073   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1074   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1075 #if API_VERSION_NUMBER >= 11
1076   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1077                              MiniDumpWithUnloadedModules);
1078 #endif
1079 
1080   if (siginfo != NULL && context != NULL) {
1081     ep.ContextRecord = (PCONTEXT) context;
1082     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1083 
1084     mei.ThreadId = GetCurrentThreadId();
1085     mei.ExceptionPointers = &ep;
1086     pmei = &mei;
1087   } else {
1088     pmei = NULL;
1089   }
1090 
1091   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1092   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1093   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1094       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1095     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1096   }
1097   CloseHandle(dumpFile);
1098   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1099 }
1100 
1101 // Die immediately, no exit hook, no abort hook, no cleanup.
1102 void os::die() {
1103   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1104 }
1105 
1106 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1107 //  * dirent_md.c       1.15 00/02/02
1108 //
1109 // The declarations for DIR and struct dirent are in jvm_win32.h.
1110 
1111 // Caller must have already run dirname through JVM_NativePath, which removes
1112 // duplicate slashes and converts all instances of '/' into '\\'.
1113 
1114 DIR * os::opendir(const char *dirname) {
1115   assert(dirname != NULL, "just checking");   // hotspot change
1116   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1117   DWORD fattr;                                // hotspot change
1118   char alt_dirname[4] = { 0, 0, 0, 0 };
1119 
1120   if (dirp == 0) {
1121     errno = ENOMEM;
1122     return 0;
1123   }
1124 
1125   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1126   // as a directory in FindFirstFile().  We detect this case here and
1127   // prepend the current drive name.
1128   //
1129   if (dirname[1] == '\0' && dirname[0] == '\\') {
1130     alt_dirname[0] = _getdrive() + 'A' - 1;
1131     alt_dirname[1] = ':';
1132     alt_dirname[2] = '\\';
1133     alt_dirname[3] = '\0';
1134     dirname = alt_dirname;
1135   }
1136 
1137   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1138   if (dirp->path == 0) {
1139     free(dirp);
1140     errno = ENOMEM;
1141     return 0;
1142   }
1143   strcpy(dirp->path, dirname);
1144 
1145   fattr = GetFileAttributes(dirp->path);
1146   if (fattr == 0xffffffff) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOENT;
1150     return 0;
1151   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1152     free(dirp->path);
1153     free(dirp);
1154     errno = ENOTDIR;
1155     return 0;
1156   }
1157 
1158   // Append "*.*", or possibly "\\*.*", to path
1159   if (dirp->path[1] == ':' &&
1160       (dirp->path[2] == '\0' ||
1161       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1162     // No '\\' needed for cases like "Z:" or "Z:\"
1163     strcat(dirp->path, "*.*");
1164   } else {
1165     strcat(dirp->path, "\\*.*");
1166   }
1167 
1168   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1169   if (dirp->handle == INVALID_HANDLE_VALUE) {
1170     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1171       free(dirp->path);
1172       free(dirp);
1173       errno = EACCES;
1174       return 0;
1175     }
1176   }
1177   return dirp;
1178 }
1179 
1180 // parameter dbuf unused on Windows
1181 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1182   assert(dirp != NULL, "just checking");      // hotspot change
1183   if (dirp->handle == INVALID_HANDLE_VALUE) {
1184     return 0;
1185   }
1186 
1187   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1188 
1189   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1190     if (GetLastError() == ERROR_INVALID_HANDLE) {
1191       errno = EBADF;
1192       return 0;
1193     }
1194     FindClose(dirp->handle);
1195     dirp->handle = INVALID_HANDLE_VALUE;
1196   }
1197 
1198   return &dirp->dirent;
1199 }
1200 
1201 int os::closedir(DIR *dirp) {
1202   assert(dirp != NULL, "just checking");      // hotspot change
1203   if (dirp->handle != INVALID_HANDLE_VALUE) {
1204     if (!FindClose(dirp->handle)) {
1205       errno = EBADF;
1206       return -1;
1207     }
1208     dirp->handle = INVALID_HANDLE_VALUE;
1209   }
1210   free(dirp->path);
1211   free(dirp);
1212   return 0;
1213 }
1214 
1215 // This must be hard coded because it's the system's temporary
1216 // directory not the java application's temp directory, ala java.io.tmpdir.
1217 const char* os::get_temp_directory() {
1218   static char path_buf[MAX_PATH];
1219   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1220     return path_buf;
1221   } else {
1222     path_buf[0] = '\0';
1223     return path_buf;
1224   }
1225 }
1226 
1227 static bool file_exists(const char* filename) {
1228   if (filename == NULL || strlen(filename) == 0) {
1229     return false;
1230   }
1231   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1232 }
1233 
1234 bool os::dll_build_name(char *buffer, size_t buflen,
1235                         const char* pname, const char* fname) {
1236   bool retval = false;
1237   const size_t pnamelen = pname ? strlen(pname) : 0;
1238   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1239 
1240   // Return error on buffer overflow.
1241   if (pnamelen + strlen(fname) + 10 > buflen) {
1242     return retval;
1243   }
1244 
1245   if (pnamelen == 0) {
1246     jio_snprintf(buffer, buflen, "%s.dll", fname);
1247     retval = true;
1248   } else if (c == ':' || c == '\\') {
1249     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1250     retval = true;
1251   } else if (strchr(pname, *os::path_separator()) != NULL) {
1252     int n;
1253     char** pelements = split_path(pname, &n);
1254     if (pelements == NULL) {
1255       return false;
1256     }
1257     for (int i = 0; i < n; i++) {
1258       char* path = pelements[i];
1259       // Really shouldn't be NULL, but check can't hurt
1260       size_t plen = (path == NULL) ? 0 : strlen(path);
1261       if (plen == 0) {
1262         continue; // skip the empty path values
1263       }
1264       const char lastchar = path[plen - 1];
1265       if (lastchar == ':' || lastchar == '\\') {
1266         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1267       } else {
1268         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1269       }
1270       if (file_exists(buffer)) {
1271         retval = true;
1272         break;
1273       }
1274     }
1275     // release the storage
1276     for (int i = 0; i < n; i++) {
1277       if (pelements[i] != NULL) {
1278         FREE_C_HEAP_ARRAY(char, pelements[i]);
1279       }
1280     }
1281     if (pelements != NULL) {
1282       FREE_C_HEAP_ARRAY(char*, pelements);
1283     }
1284   } else {
1285     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1286     retval = true;
1287   }
1288   return retval;
1289 }
1290 
1291 // Needs to be in os specific directory because windows requires another
1292 // header file <direct.h>
1293 const char* os::get_current_directory(char *buf, size_t buflen) {
1294   int n = static_cast<int>(buflen);
1295   if (buflen > INT_MAX)  n = INT_MAX;
1296   return _getcwd(buf, n);
1297 }
1298 
1299 //-----------------------------------------------------------
1300 // Helper functions for fatal error handler
1301 #ifdef _WIN64
1302 // Helper routine which returns true if address in
1303 // within the NTDLL address space.
1304 //
1305 static bool _addr_in_ntdll(address addr) {
1306   HMODULE hmod;
1307   MODULEINFO minfo;
1308 
1309   hmod = GetModuleHandle("NTDLL.DLL");
1310   if (hmod == NULL) return false;
1311   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1312                                           &minfo, sizeof(MODULEINFO))) {
1313     return false;
1314   }
1315 
1316   if ((addr >= minfo.lpBaseOfDll) &&
1317       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1318     return true;
1319   } else {
1320     return false;
1321   }
1322 }
1323 #endif
1324 
1325 struct _modinfo {
1326   address addr;
1327   char*   full_path;   // point to a char buffer
1328   int     buflen;      // size of the buffer
1329   address base_addr;
1330 };
1331 
1332 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1333                                   address top_address, void * param) {
1334   struct _modinfo *pmod = (struct _modinfo *)param;
1335   if (!pmod) return -1;
1336 
1337   if (base_addr   <= pmod->addr &&
1338       top_address > pmod->addr) {
1339     // if a buffer is provided, copy path name to the buffer
1340     if (pmod->full_path) {
1341       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1342     }
1343     pmod->base_addr = base_addr;
1344     return 1;
1345   }
1346   return 0;
1347 }
1348 
1349 bool os::dll_address_to_library_name(address addr, char* buf,
1350                                      int buflen, int* offset) {
1351   // buf is not optional, but offset is optional
1352   assert(buf != NULL, "sanity check");
1353 
1354 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1355 //       return the full path to the DLL file, sometimes it returns path
1356 //       to the corresponding PDB file (debug info); sometimes it only
1357 //       returns partial path, which makes life painful.
1358 
1359   struct _modinfo mi;
1360   mi.addr      = addr;
1361   mi.full_path = buf;
1362   mi.buflen    = buflen;
1363   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1364     // buf already contains path name
1365     if (offset) *offset = addr - mi.base_addr;
1366     return true;
1367   }
1368 
1369   buf[0] = '\0';
1370   if (offset) *offset = -1;
1371   return false;
1372 }
1373 
1374 bool os::dll_address_to_function_name(address addr, char *buf,
1375                                       int buflen, int *offset,
1376                                       bool demangle) {
1377   // buf is not optional, but offset is optional
1378   assert(buf != NULL, "sanity check");
1379 
1380   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1381     return true;
1382   }
1383   if (offset != NULL)  *offset  = -1;
1384   buf[0] = '\0';
1385   return false;
1386 }
1387 
1388 // save the start and end address of jvm.dll into param[0] and param[1]
1389 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1390                            address top_address, void * param) {
1391   if (!param) return -1;
1392 
1393   if (base_addr   <= (address)_locate_jvm_dll &&
1394       top_address > (address)_locate_jvm_dll) {
1395     ((address*)param)[0] = base_addr;
1396     ((address*)param)[1] = top_address;
1397     return 1;
1398   }
1399   return 0;
1400 }
1401 
1402 address vm_lib_location[2];    // start and end address of jvm.dll
1403 
1404 // check if addr is inside jvm.dll
1405 bool os::address_is_in_vm(address addr) {
1406   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1408       assert(false, "Can't find jvm module.");
1409       return false;
1410     }
1411   }
1412 
1413   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1414 }
1415 
1416 // print module info; param is outputStream*
1417 static int _print_module(const char* fname, address base_address,
1418                          address top_address, void* param) {
1419   if (!param) return -1;
1420 
1421   outputStream* st = (outputStream*)param;
1422 
1423   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1424   return 0;
1425 }
1426 
1427 // Loads .dll/.so and
1428 // in case of error it checks if .dll/.so was built for the
1429 // same architecture as Hotspot is running on
1430 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1431   void * result = LoadLibrary(name);
1432   if (result != NULL) {
1433     return result;
1434   }
1435 
1436   DWORD errcode = GetLastError();
1437   if (errcode == ERROR_MOD_NOT_FOUND) {
1438     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1439     ebuf[ebuflen - 1] = '\0';
1440     return NULL;
1441   }
1442 
1443   // Parsing dll below
1444   // If we can read dll-info and find that dll was built
1445   // for an architecture other than Hotspot is running in
1446   // - then print to buffer "DLL was built for a different architecture"
1447   // else call os::lasterror to obtain system error message
1448 
1449   // Read system error message into ebuf
1450   // It may or may not be overwritten below (in the for loop and just above)
1451   lasterror(ebuf, (size_t) ebuflen);
1452   ebuf[ebuflen - 1] = '\0';
1453   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1454   if (fd < 0) {
1455     return NULL;
1456   }
1457 
1458   uint32_t signature_offset;
1459   uint16_t lib_arch = 0;
1460   bool failed_to_get_lib_arch =
1461     ( // Go to position 3c in the dll
1462      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1463      ||
1464      // Read location of signature
1465      (sizeof(signature_offset) !=
1466      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1467      ||
1468      // Go to COFF File Header in dll
1469      // that is located after "signature" (4 bytes long)
1470      (os::seek_to_file_offset(fd,
1471      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1472      ||
1473      // Read field that contains code of architecture
1474      // that dll was built for
1475      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1476     );
1477 
1478   ::close(fd);
1479   if (failed_to_get_lib_arch) {
1480     // file i/o error - report os::lasterror(...) msg
1481     return NULL;
1482   }
1483 
1484   typedef struct {
1485     uint16_t arch_code;
1486     char* arch_name;
1487   } arch_t;
1488 
1489   static const arch_t arch_array[] = {
1490     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1491     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1492     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1493   };
1494 #if   (defined _M_IA64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1496 #elif (defined _M_AMD64)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1498 #elif (defined _M_IX86)
1499   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1500 #else
1501   #error Method os::dll_load requires that one of following \
1502          is defined :_M_IA64,_M_AMD64 or _M_IX86
1503 #endif
1504 
1505 
1506   // Obtain a string for printf operation
1507   // lib_arch_str shall contain string what platform this .dll was built for
1508   // running_arch_str shall string contain what platform Hotspot was built for
1509   char *running_arch_str = NULL, *lib_arch_str = NULL;
1510   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1511     if (lib_arch == arch_array[i].arch_code) {
1512       lib_arch_str = arch_array[i].arch_name;
1513     }
1514     if (running_arch == arch_array[i].arch_code) {
1515       running_arch_str = arch_array[i].arch_name;
1516     }
1517   }
1518 
1519   assert(running_arch_str,
1520          "Didn't find running architecture code in arch_array");
1521 
1522   // If the architecture is right
1523   // but some other error took place - report os::lasterror(...) msg
1524   if (lib_arch == running_arch) {
1525     return NULL;
1526   }
1527 
1528   if (lib_arch_str != NULL) {
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load %s-bit .dll on a %s-bit platform",
1531                 lib_arch_str, running_arch_str);
1532   } else {
1533     // don't know what architecture this dll was build for
1534     ::_snprintf(ebuf, ebuflen - 1,
1535                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1536                 lib_arch, running_arch_str);
1537   }
1538 
1539   return NULL;
1540 }
1541 
1542 void os::print_dll_info(outputStream *st) {
1543   st->print_cr("Dynamic libraries:");
1544   get_loaded_modules_info(_print_module, (void *)st);
1545 }
1546 
1547 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1548   HANDLE   hProcess;
1549 
1550 # define MAX_NUM_MODULES 128
1551   HMODULE     modules[MAX_NUM_MODULES];
1552   static char filename[MAX_PATH];
1553   int         result = 0;
1554 
1555   if (!os::PSApiDll::PSApiAvailable()) {
1556     return 0;
1557   }
1558 
1559   int pid = os::current_process_id();
1560   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1561                          FALSE, pid);
1562   if (hProcess == NULL) return 0;
1563 
1564   DWORD size_needed;
1565   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1566                                         sizeof(modules), &size_needed)) {
1567     CloseHandle(hProcess);
1568     return 0;
1569   }
1570 
1571   // number of modules that are currently loaded
1572   int num_modules = size_needed / sizeof(HMODULE);
1573 
1574   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1575     // Get Full pathname:
1576     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1577                                            filename, sizeof(filename))) {
1578       filename[0] = '\0';
1579     }
1580 
1581     MODULEINFO modinfo;
1582     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1583                                             &modinfo, sizeof(modinfo))) {
1584       modinfo.lpBaseOfDll = NULL;
1585       modinfo.SizeOfImage = 0;
1586     }
1587 
1588     // Invoke callback function
1589     result = callback(filename, (address)modinfo.lpBaseOfDll,
1590                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1591     if (result) break;
1592   }
1593 
1594   CloseHandle(hProcess);
1595   return result;
1596 }
1597 
1598 #ifndef PRODUCT
1599 bool os::get_host_name(char* buf, size_t buflen) {
1600   DWORD size = (DWORD)buflen;
1601   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1602 }
1603 #endif // PRODUCT
1604 
1605 void os::get_summary_os_info(char* buf, size_t buflen) {
1606   stringStream sst(buf, buflen);
1607   os::win32::print_windows_version(&sst);
1608   // chop off newline character
1609   char* nl = strchr(buf, '\n');
1610   if (nl != NULL) *nl = '\0';
1611 }
1612 
1613 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1614   int ret = vsnprintf(buf, len, fmt, args);
1615   // Get the correct buffer size if buf is too small
1616   if (ret < 0) {
1617     return _vscprintf(fmt, args);
1618   }
1619   return ret;
1620 }
1621 
1622 void os::print_os_info_brief(outputStream* st) {
1623   os::print_os_info(st);
1624 }
1625 
1626 void os::print_os_info(outputStream* st) {
1627 #ifdef ASSERT
1628   char buffer[1024];
1629   st->print("HostName: ");
1630   if (get_host_name(buffer, sizeof(buffer))) {
1631     st->print("%s ", buffer);
1632   } else {
1633     st->print("N/A ");
1634   }
1635 #endif
1636   st->print("OS:");
1637   os::win32::print_windows_version(st);
1638 }
1639 
1640 void os::win32::print_windows_version(outputStream* st) {
1641   OSVERSIONINFOEX osvi;
1642   VS_FIXEDFILEINFO *file_info;
1643   TCHAR kernel32_path[MAX_PATH];
1644   UINT len, ret;
1645 
1646   // Use the GetVersionEx information to see if we're on a server or
1647   // workstation edition of Windows. Starting with Windows 8.1 we can't
1648   // trust the OS version information returned by this API.
1649   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1650   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1651   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1652     st->print_cr("Call to GetVersionEx failed");
1653     return;
1654   }
1655   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1656 
1657   // Get the full path to \Windows\System32\kernel32.dll and use that for
1658   // determining what version of Windows we're running on.
1659   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1660   ret = GetSystemDirectory(kernel32_path, len);
1661   if (ret == 0 || ret > len) {
1662     st->print_cr("Call to GetSystemDirectory failed");
1663     return;
1664   }
1665   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1666 
1667   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1668   if (version_size == 0) {
1669     st->print_cr("Call to GetFileVersionInfoSize failed");
1670     return;
1671   }
1672 
1673   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1674   if (version_info == NULL) {
1675     st->print_cr("Failed to allocate version_info");
1676     return;
1677   }
1678 
1679   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1680     os::free(version_info);
1681     st->print_cr("Call to GetFileVersionInfo failed");
1682     return;
1683   }
1684 
1685   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1686     os::free(version_info);
1687     st->print_cr("Call to VerQueryValue failed");
1688     return;
1689   }
1690 
1691   int major_version = HIWORD(file_info->dwProductVersionMS);
1692   int minor_version = LOWORD(file_info->dwProductVersionMS);
1693   int build_number = HIWORD(file_info->dwProductVersionLS);
1694   int build_minor = LOWORD(file_info->dwProductVersionLS);
1695   int os_vers = major_version * 1000 + minor_version;
1696   os::free(version_info);
1697 
1698   st->print(" Windows ");
1699   switch (os_vers) {
1700 
1701   case 6000:
1702     if (is_workstation) {
1703       st->print("Vista");
1704     } else {
1705       st->print("Server 2008");
1706     }
1707     break;
1708 
1709   case 6001:
1710     if (is_workstation) {
1711       st->print("7");
1712     } else {
1713       st->print("Server 2008 R2");
1714     }
1715     break;
1716 
1717   case 6002:
1718     if (is_workstation) {
1719       st->print("8");
1720     } else {
1721       st->print("Server 2012");
1722     }
1723     break;
1724 
1725   case 6003:
1726     if (is_workstation) {
1727       st->print("8.1");
1728     } else {
1729       st->print("Server 2012 R2");
1730     }
1731     break;
1732 
1733   case 10000:
1734     if (is_workstation) {
1735       st->print("10");
1736     } else {
1737       // The server version name of Windows 10 is not known at this time
1738       st->print("%d.%d", major_version, minor_version);
1739     }
1740     break;
1741 
1742   default:
1743     // Unrecognized windows, print out its major and minor versions
1744     st->print("%d.%d", major_version, minor_version);
1745     break;
1746   }
1747 
1748   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1749   // find out whether we are running on 64 bit processor or not
1750   SYSTEM_INFO si;
1751   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1752   os::Kernel32Dll::GetNativeSystemInfo(&si);
1753   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1754     st->print(" , 64 bit");
1755   }
1756 
1757   st->print(" Build %d", build_number);
1758   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1759   st->cr();
1760 }
1761 
1762 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1763   // Nothing to do for now.
1764 }
1765 
1766 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1767   HKEY key;
1768   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1769                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1770   if (status == ERROR_SUCCESS) {
1771     DWORD size = (DWORD)buflen;
1772     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1773     if (status != ERROR_SUCCESS) {
1774         strncpy(buf, "## __CPU__", buflen);
1775     }
1776     RegCloseKey(key);
1777   } else {
1778     // Put generic cpu info to return
1779     strncpy(buf, "## __CPU__", buflen);
1780   }
1781 }
1782 
1783 void os::print_memory_info(outputStream* st) {
1784   st->print("Memory:");
1785   st->print(" %dk page", os::vm_page_size()>>10);
1786 
1787   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1788   // value if total memory is larger than 4GB
1789   MEMORYSTATUSEX ms;
1790   ms.dwLength = sizeof(ms);
1791   GlobalMemoryStatusEx(&ms);
1792 
1793   st->print(", physical %uk", os::physical_memory() >> 10);
1794   st->print("(%uk free)", os::available_memory() >> 10);
1795 
1796   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1797   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1798   st->cr();
1799 }
1800 
1801 void os::print_siginfo(outputStream *st, const void* siginfo) {
1802   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1803   st->print("siginfo:");
1804 
1805   char tmp[64];
1806   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1807     strcpy(tmp, "EXCEPTION_??");
1808   }
1809   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1810 
1811   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1812        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1813        er->NumberParameters >= 2) {
1814     switch (er->ExceptionInformation[0]) {
1815     case 0: st->print(", reading address"); break;
1816     case 1: st->print(", writing address"); break;
1817     case 8: st->print(", data execution prevention violation at address"); break;
1818     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1819                        er->ExceptionInformation[0]);
1820     }
1821     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1822   } else {
1823     int num = er->NumberParameters;
1824     if (num > 0) {
1825       st->print(", ExceptionInformation=");
1826       for (int i = 0; i < num; i++) {
1827         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1828       }
1829     }
1830   }
1831   st->cr();
1832 }
1833 
1834 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1835   // do nothing
1836 }
1837 
1838 static char saved_jvm_path[MAX_PATH] = {0};
1839 
1840 // Find the full path to the current module, jvm.dll
1841 void os::jvm_path(char *buf, jint buflen) {
1842   // Error checking.
1843   if (buflen < MAX_PATH) {
1844     assert(false, "must use a large-enough buffer");
1845     buf[0] = '\0';
1846     return;
1847   }
1848   // Lazy resolve the path to current module.
1849   if (saved_jvm_path[0] != 0) {
1850     strcpy(buf, saved_jvm_path);
1851     return;
1852   }
1853 
1854   buf[0] = '\0';
1855   if (Arguments::sun_java_launcher_is_altjvm()) {
1856     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1857     // for a JAVA_HOME environment variable and fix up the path so it
1858     // looks like jvm.dll is installed there (append a fake suffix
1859     // hotspot/jvm.dll).
1860     char* java_home_var = ::getenv("JAVA_HOME");
1861     if (java_home_var != NULL && java_home_var[0] != 0 &&
1862         strlen(java_home_var) < (size_t)buflen) {
1863       strncpy(buf, java_home_var, buflen);
1864 
1865       // determine if this is a legacy image or modules image
1866       // modules image doesn't have "jre" subdirectory
1867       size_t len = strlen(buf);
1868       char* jrebin_p = buf + len;
1869       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1870       if (0 != _access(buf, 0)) {
1871         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1872       }
1873       len = strlen(buf);
1874       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1875     }
1876   }
1877 
1878   if (buf[0] == '\0') {
1879     GetModuleFileName(vm_lib_handle, buf, buflen);
1880   }
1881   strncpy(saved_jvm_path, buf, MAX_PATH);
1882   saved_jvm_path[MAX_PATH - 1] = '\0';
1883 }
1884 
1885 
1886 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1887 #ifndef _WIN64
1888   st->print("_");
1889 #endif
1890 }
1891 
1892 
1893 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1894 #ifndef _WIN64
1895   st->print("@%d", args_size  * sizeof(int));
1896 #endif
1897 }
1898 
1899 // This method is a copy of JDK's sysGetLastErrorString
1900 // from src/windows/hpi/src/system_md.c
1901 
1902 size_t os::lasterror(char* buf, size_t len) {
1903   DWORD errval;
1904 
1905   if ((errval = GetLastError()) != 0) {
1906     // DOS error
1907     size_t n = (size_t)FormatMessage(
1908                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1909                                      NULL,
1910                                      errval,
1911                                      0,
1912                                      buf,
1913                                      (DWORD)len,
1914                                      NULL);
1915     if (n > 3) {
1916       // Drop final '.', CR, LF
1917       if (buf[n - 1] == '\n') n--;
1918       if (buf[n - 1] == '\r') n--;
1919       if (buf[n - 1] == '.') n--;
1920       buf[n] = '\0';
1921     }
1922     return n;
1923   }
1924 
1925   if (errno != 0) {
1926     // C runtime error that has no corresponding DOS error code
1927     const char* s = strerror(errno);
1928     size_t n = strlen(s);
1929     if (n >= len) n = len - 1;
1930     strncpy(buf, s, n);
1931     buf[n] = '\0';
1932     return n;
1933   }
1934 
1935   return 0;
1936 }
1937 
1938 int os::get_last_error() {
1939   DWORD error = GetLastError();
1940   if (error == 0) {
1941     error = errno;
1942   }
1943   return (int)error;
1944 }
1945 
1946 WindowsSemaphore::WindowsSemaphore(uint value) {
1947   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1948 
1949   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1950 }
1951 
1952 WindowsSemaphore::~WindowsSemaphore() {
1953   ::CloseHandle(_semaphore);
1954 }
1955 
1956 void WindowsSemaphore::signal(uint count) {
1957   if (count > 0) {
1958     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1959 
1960     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1961   }
1962 }
1963 
1964 void WindowsSemaphore::wait() {
1965   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1966   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1967   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1968 }
1969 
1970 // sun.misc.Signal
1971 // NOTE that this is a workaround for an apparent kernel bug where if
1972 // a signal handler for SIGBREAK is installed then that signal handler
1973 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1974 // See bug 4416763.
1975 static void (*sigbreakHandler)(int) = NULL;
1976 
1977 static void UserHandler(int sig, void *siginfo, void *context) {
1978   os::signal_notify(sig);
1979   // We need to reinstate the signal handler each time...
1980   os::signal(sig, (void*)UserHandler);
1981 }
1982 
1983 void* os::user_handler() {
1984   return (void*) UserHandler;
1985 }
1986 
1987 void* os::signal(int signal_number, void* handler) {
1988   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1989     void (*oldHandler)(int) = sigbreakHandler;
1990     sigbreakHandler = (void (*)(int)) handler;
1991     return (void*) oldHandler;
1992   } else {
1993     return (void*)::signal(signal_number, (void (*)(int))handler);
1994   }
1995 }
1996 
1997 void os::signal_raise(int signal_number) {
1998   raise(signal_number);
1999 }
2000 
2001 // The Win32 C runtime library maps all console control events other than ^C
2002 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2003 // logoff, and shutdown events.  We therefore install our own console handler
2004 // that raises SIGTERM for the latter cases.
2005 //
2006 static BOOL WINAPI consoleHandler(DWORD event) {
2007   switch (event) {
2008   case CTRL_C_EVENT:
2009     if (is_error_reported()) {
2010       // Ctrl-C is pressed during error reporting, likely because the error
2011       // handler fails to abort. Let VM die immediately.
2012       os::die();
2013     }
2014 
2015     os::signal_raise(SIGINT);
2016     return TRUE;
2017     break;
2018   case CTRL_BREAK_EVENT:
2019     if (sigbreakHandler != NULL) {
2020       (*sigbreakHandler)(SIGBREAK);
2021     }
2022     return TRUE;
2023     break;
2024   case CTRL_LOGOFF_EVENT: {
2025     // Don't terminate JVM if it is running in a non-interactive session,
2026     // such as a service process.
2027     USEROBJECTFLAGS flags;
2028     HANDLE handle = GetProcessWindowStation();
2029     if (handle != NULL &&
2030         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2031         sizeof(USEROBJECTFLAGS), NULL)) {
2032       // If it is a non-interactive session, let next handler to deal
2033       // with it.
2034       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2035         return FALSE;
2036       }
2037     }
2038   }
2039   case CTRL_CLOSE_EVENT:
2040   case CTRL_SHUTDOWN_EVENT:
2041     os::signal_raise(SIGTERM);
2042     return TRUE;
2043     break;
2044   default:
2045     break;
2046   }
2047   return FALSE;
2048 }
2049 
2050 // The following code is moved from os.cpp for making this
2051 // code platform specific, which it is by its very nature.
2052 
2053 // Return maximum OS signal used + 1 for internal use only
2054 // Used as exit signal for signal_thread
2055 int os::sigexitnum_pd() {
2056   return NSIG;
2057 }
2058 
2059 // a counter for each possible signal value, including signal_thread exit signal
2060 static volatile jint pending_signals[NSIG+1] = { 0 };
2061 static HANDLE sig_sem = NULL;
2062 
2063 void os::signal_init_pd() {
2064   // Initialize signal structures
2065   memset((void*)pending_signals, 0, sizeof(pending_signals));
2066 
2067   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2068 
2069   // Programs embedding the VM do not want it to attempt to receive
2070   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2071   // shutdown hooks mechanism introduced in 1.3.  For example, when
2072   // the VM is run as part of a Windows NT service (i.e., a servlet
2073   // engine in a web server), the correct behavior is for any console
2074   // control handler to return FALSE, not TRUE, because the OS's
2075   // "final" handler for such events allows the process to continue if
2076   // it is a service (while terminating it if it is not a service).
2077   // To make this behavior uniform and the mechanism simpler, we
2078   // completely disable the VM's usage of these console events if -Xrs
2079   // (=ReduceSignalUsage) is specified.  This means, for example, that
2080   // the CTRL-BREAK thread dump mechanism is also disabled in this
2081   // case.  See bugs 4323062, 4345157, and related bugs.
2082 
2083   if (!ReduceSignalUsage) {
2084     // Add a CTRL-C handler
2085     SetConsoleCtrlHandler(consoleHandler, TRUE);
2086   }
2087 }
2088 
2089 void os::signal_notify(int signal_number) {
2090   BOOL ret;
2091   if (sig_sem != NULL) {
2092     Atomic::inc(&pending_signals[signal_number]);
2093     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2094     assert(ret != 0, "ReleaseSemaphore() failed");
2095   }
2096 }
2097 
2098 static int check_pending_signals(bool wait_for_signal) {
2099   DWORD ret;
2100   while (true) {
2101     for (int i = 0; i < NSIG + 1; i++) {
2102       jint n = pending_signals[i];
2103       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2104         return i;
2105       }
2106     }
2107     if (!wait_for_signal) {
2108       return -1;
2109     }
2110 
2111     JavaThread *thread = JavaThread::current();
2112 
2113     ThreadBlockInVM tbivm(thread);
2114 
2115     bool threadIsSuspended;
2116     do {
2117       thread->set_suspend_equivalent();
2118       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2119       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2120       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2121 
2122       // were we externally suspended while we were waiting?
2123       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2124       if (threadIsSuspended) {
2125         // The semaphore has been incremented, but while we were waiting
2126         // another thread suspended us. We don't want to continue running
2127         // while suspended because that would surprise the thread that
2128         // suspended us.
2129         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2130         assert(ret != 0, "ReleaseSemaphore() failed");
2131 
2132         thread->java_suspend_self();
2133       }
2134     } while (threadIsSuspended);
2135   }
2136 }
2137 
2138 int os::signal_lookup() {
2139   return check_pending_signals(false);
2140 }
2141 
2142 int os::signal_wait() {
2143   return check_pending_signals(true);
2144 }
2145 
2146 // Implicit OS exception handling
2147 
2148 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2149                       address handler) {
2150     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2151   // Save pc in thread
2152 #ifdef _M_IA64
2153   // Do not blow up if no thread info available.
2154   if (thread) {
2155     // Saving PRECISE pc (with slot information) in thread.
2156     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2157     // Convert precise PC into "Unix" format
2158     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2159     thread->set_saved_exception_pc((address)precise_pc);
2160   }
2161   // Set pc to handler
2162   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2163   // Clear out psr.ri (= Restart Instruction) in order to continue
2164   // at the beginning of the target bundle.
2165   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2166   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2167 #else
2168   #ifdef _M_AMD64
2169   // Do not blow up if no thread info available.
2170   if (thread) {
2171     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2172   }
2173   // Set pc to handler
2174   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2175   #else
2176   // Do not blow up if no thread info available.
2177   if (thread) {
2178     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2179   }
2180   // Set pc to handler
2181   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2182   #endif
2183 #endif
2184 
2185   // Continue the execution
2186   return EXCEPTION_CONTINUE_EXECUTION;
2187 }
2188 
2189 
2190 // Used for PostMortemDump
2191 extern "C" void safepoints();
2192 extern "C" void find(int x);
2193 extern "C" void events();
2194 
2195 // According to Windows API documentation, an illegal instruction sequence should generate
2196 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2197 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2198 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2199 
2200 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2201 
2202 // From "Execution Protection in the Windows Operating System" draft 0.35
2203 // Once a system header becomes available, the "real" define should be
2204 // included or copied here.
2205 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2206 
2207 // Handle NAT Bit consumption on IA64.
2208 #ifdef _M_IA64
2209   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2210 #endif
2211 
2212 // Windows Vista/2008 heap corruption check
2213 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2214 
2215 #define def_excpt(val) #val, val
2216 
2217 struct siglabel {
2218   char *name;
2219   int   number;
2220 };
2221 
2222 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2223 // C++ compiler contain this error code. Because this is a compiler-generated
2224 // error, the code is not listed in the Win32 API header files.
2225 // The code is actually a cryptic mnemonic device, with the initial "E"
2226 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2227 // ASCII values of "msc".
2228 
2229 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2230 
2231 
2232 struct siglabel exceptlabels[] = {
2233     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2234     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2235     def_excpt(EXCEPTION_BREAKPOINT),
2236     def_excpt(EXCEPTION_SINGLE_STEP),
2237     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2238     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2239     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2240     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2241     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2242     def_excpt(EXCEPTION_FLT_OVERFLOW),
2243     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2244     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2245     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2246     def_excpt(EXCEPTION_INT_OVERFLOW),
2247     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2248     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2249     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2250     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2251     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2252     def_excpt(EXCEPTION_STACK_OVERFLOW),
2253     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2254     def_excpt(EXCEPTION_GUARD_PAGE),
2255     def_excpt(EXCEPTION_INVALID_HANDLE),
2256     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2257     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2258 #ifdef _M_IA64
2259     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2260 #endif
2261     NULL, 0
2262 };
2263 
2264 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2265   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2266     if (exceptlabels[i].number == exception_code) {
2267       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2268       return buf;
2269     }
2270   }
2271 
2272   return NULL;
2273 }
2274 
2275 //-----------------------------------------------------------------------------
2276 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2277   // handle exception caused by idiv; should only happen for -MinInt/-1
2278   // (division by zero is handled explicitly)
2279 #ifdef _M_IA64
2280   assert(0, "Fix Handle_IDiv_Exception");
2281 #else
2282   #ifdef  _M_AMD64
2283   PCONTEXT ctx = exceptionInfo->ContextRecord;
2284   address pc = (address)ctx->Rip;
2285   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2286   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2287   if (pc[0] == 0xF7) {
2288     // set correct result values and continue after idiv instruction
2289     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2290   } else {
2291     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2292   }
2293   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2294   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2295   // idiv opcode (0xF7).
2296   ctx->Rdx = (DWORD)0;             // remainder
2297   // Continue the execution
2298   #else
2299   PCONTEXT ctx = exceptionInfo->ContextRecord;
2300   address pc = (address)ctx->Eip;
2301   assert(pc[0] == 0xF7, "not an idiv opcode");
2302   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2303   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2304   // set correct result values and continue after idiv instruction
2305   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2306   ctx->Eax = (DWORD)min_jint;      // result
2307   ctx->Edx = (DWORD)0;             // remainder
2308   // Continue the execution
2309   #endif
2310 #endif
2311   return EXCEPTION_CONTINUE_EXECUTION;
2312 }
2313 
2314 //-----------------------------------------------------------------------------
2315 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2316   PCONTEXT ctx = exceptionInfo->ContextRecord;
2317 #ifndef  _WIN64
2318   // handle exception caused by native method modifying control word
2319   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2320 
2321   switch (exception_code) {
2322   case EXCEPTION_FLT_DENORMAL_OPERAND:
2323   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2324   case EXCEPTION_FLT_INEXACT_RESULT:
2325   case EXCEPTION_FLT_INVALID_OPERATION:
2326   case EXCEPTION_FLT_OVERFLOW:
2327   case EXCEPTION_FLT_STACK_CHECK:
2328   case EXCEPTION_FLT_UNDERFLOW:
2329     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2330     if (fp_control_word != ctx->FloatSave.ControlWord) {
2331       // Restore FPCW and mask out FLT exceptions
2332       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2333       // Mask out pending FLT exceptions
2334       ctx->FloatSave.StatusWord &=  0xffffff00;
2335       return EXCEPTION_CONTINUE_EXECUTION;
2336     }
2337   }
2338 
2339   if (prev_uef_handler != NULL) {
2340     // We didn't handle this exception so pass it to the previous
2341     // UnhandledExceptionFilter.
2342     return (prev_uef_handler)(exceptionInfo);
2343   }
2344 #else // !_WIN64
2345   // On Windows, the mxcsr control bits are non-volatile across calls
2346   // See also CR 6192333
2347   //
2348   jint MxCsr = INITIAL_MXCSR;
2349   // we can't use StubRoutines::addr_mxcsr_std()
2350   // because in Win64 mxcsr is not saved there
2351   if (MxCsr != ctx->MxCsr) {
2352     ctx->MxCsr = MxCsr;
2353     return EXCEPTION_CONTINUE_EXECUTION;
2354   }
2355 #endif // !_WIN64
2356 
2357   return EXCEPTION_CONTINUE_SEARCH;
2358 }
2359 
2360 static inline void report_error(Thread* t, DWORD exception_code,
2361                                 address addr, void* siginfo, void* context) {
2362   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2363 
2364   // If UseOsErrorReporting, this will return here and save the error file
2365   // somewhere where we can find it in the minidump.
2366 }
2367 
2368 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2369         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2370   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2371   address addr = (address) exceptionRecord->ExceptionInformation[1];
2372   if (Interpreter::contains(pc)) {
2373     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2374     if (!fr->is_first_java_frame()) {
2375       assert(fr->safe_for_sender(thread), "Safety check");
2376       *fr = fr->java_sender();
2377     }
2378   } else {
2379     // more complex code with compiled code
2380     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2381     CodeBlob* cb = CodeCache::find_blob(pc);
2382     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2383       // Not sure where the pc points to, fallback to default
2384       // stack overflow handling
2385       return false;
2386     } else {
2387       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2388       // in compiled code, the stack banging is performed just after the return pc
2389       // has been pushed on the stack
2390       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2391       if (!fr->is_java_frame()) {
2392         assert(fr->safe_for_sender(thread), "Safety check");
2393         *fr = fr->java_sender();
2394       }
2395     }
2396   }
2397   assert(fr->is_java_frame(), "Safety check");
2398   return true;
2399 }
2400 
2401 //-----------------------------------------------------------------------------
2402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2403   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2404   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2405 #ifdef _M_IA64
2406   // On Itanium, we need the "precise pc", which has the slot number coded
2407   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2408   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2409   // Convert the pc to "Unix format", which has the slot number coded
2410   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2411   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2412   // information is saved in the Unix format.
2413   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2414 #else
2415   #ifdef _M_AMD64
2416   address pc = (address) exceptionInfo->ContextRecord->Rip;
2417   #else
2418   address pc = (address) exceptionInfo->ContextRecord->Eip;
2419   #endif
2420 #endif
2421   Thread* t = Thread::current_or_null_safe();
2422 
2423   // Handle SafeFetch32 and SafeFetchN exceptions.
2424   if (StubRoutines::is_safefetch_fault(pc)) {
2425     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2426   }
2427 
2428 #ifndef _WIN64
2429   // Execution protection violation - win32 running on AMD64 only
2430   // Handled first to avoid misdiagnosis as a "normal" access violation;
2431   // This is safe to do because we have a new/unique ExceptionInformation
2432   // code for this condition.
2433   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2434     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2435     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2436     address addr = (address) exceptionRecord->ExceptionInformation[1];
2437 
2438     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2439       int page_size = os::vm_page_size();
2440 
2441       // Make sure the pc and the faulting address are sane.
2442       //
2443       // If an instruction spans a page boundary, and the page containing
2444       // the beginning of the instruction is executable but the following
2445       // page is not, the pc and the faulting address might be slightly
2446       // different - we still want to unguard the 2nd page in this case.
2447       //
2448       // 15 bytes seems to be a (very) safe value for max instruction size.
2449       bool pc_is_near_addr =
2450         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2451       bool instr_spans_page_boundary =
2452         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2453                          (intptr_t) page_size) > 0);
2454 
2455       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2456         static volatile address last_addr =
2457           (address) os::non_memory_address_word();
2458 
2459         // In conservative mode, don't unguard unless the address is in the VM
2460         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2461             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2462 
2463           // Set memory to RWX and retry
2464           address page_start =
2465             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2466           bool res = os::protect_memory((char*) page_start, page_size,
2467                                         os::MEM_PROT_RWX);
2468 
2469           if (PrintMiscellaneous && Verbose) {
2470             char buf[256];
2471             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2472                          "at " INTPTR_FORMAT
2473                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2474                          page_start, (res ? "success" : strerror(errno)));
2475             tty->print_raw_cr(buf);
2476           }
2477 
2478           // Set last_addr so if we fault again at the same address, we don't
2479           // end up in an endless loop.
2480           //
2481           // There are two potential complications here.  Two threads trapping
2482           // at the same address at the same time could cause one of the
2483           // threads to think it already unguarded, and abort the VM.  Likely
2484           // very rare.
2485           //
2486           // The other race involves two threads alternately trapping at
2487           // different addresses and failing to unguard the page, resulting in
2488           // an endless loop.  This condition is probably even more unlikely
2489           // than the first.
2490           //
2491           // Although both cases could be avoided by using locks or thread
2492           // local last_addr, these solutions are unnecessary complication:
2493           // this handler is a best-effort safety net, not a complete solution.
2494           // It is disabled by default and should only be used as a workaround
2495           // in case we missed any no-execute-unsafe VM code.
2496 
2497           last_addr = addr;
2498 
2499           return EXCEPTION_CONTINUE_EXECUTION;
2500         }
2501       }
2502 
2503       // Last unguard failed or not unguarding
2504       tty->print_raw_cr("Execution protection violation");
2505       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2506                    exceptionInfo->ContextRecord);
2507       return EXCEPTION_CONTINUE_SEARCH;
2508     }
2509   }
2510 #endif // _WIN64
2511 
2512   // Check to see if we caught the safepoint code in the
2513   // process of write protecting the memory serialization page.
2514   // It write enables the page immediately after protecting it
2515   // so just return.
2516   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2517     JavaThread* thread = (JavaThread*) t;
2518     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2519     address addr = (address) exceptionRecord->ExceptionInformation[1];
2520     if (os::is_memory_serialize_page(thread, addr)) {
2521       // Block current thread until the memory serialize page permission restored.
2522       os::block_on_serialize_page_trap();
2523       return EXCEPTION_CONTINUE_EXECUTION;
2524     }
2525   }
2526 
2527   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2528       VM_Version::is_cpuinfo_segv_addr(pc)) {
2529     // Verify that OS save/restore AVX registers.
2530     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2531   }
2532 
2533   if (t != NULL && t->is_Java_thread()) {
2534     JavaThread* thread = (JavaThread*) t;
2535     bool in_java = thread->thread_state() == _thread_in_Java;
2536 
2537     // Handle potential stack overflows up front.
2538     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2539       if (os::uses_stack_guard_pages()) {
2540 #ifdef _M_IA64
2541         // Use guard page for register stack.
2542         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2543         address addr = (address) exceptionRecord->ExceptionInformation[1];
2544         // Check for a register stack overflow on Itanium
2545         if (thread->addr_inside_register_stack_red_zone(addr)) {
2546           // Fatal red zone violation happens if the Java program
2547           // catches a StackOverflow error and does so much processing
2548           // that it runs beyond the unprotected yellow guard zone. As
2549           // a result, we are out of here.
2550           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2551         } else if(thread->addr_inside_register_stack(addr)) {
2552           // Disable the yellow zone which sets the state that
2553           // we've got a stack overflow problem.
2554           if (thread->stack_yellow_zone_enabled()) {
2555             thread->disable_stack_yellow_zone();
2556           }
2557           // Give us some room to process the exception.
2558           thread->disable_register_stack_guard();
2559           // Tracing with +Verbose.
2560           if (Verbose) {
2561             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2562             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2563             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2564             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2565                           thread->register_stack_base(),
2566                           thread->register_stack_base() + thread->stack_size());
2567           }
2568 
2569           // Reguard the permanent register stack red zone just to be sure.
2570           // We saw Windows silently disabling this without telling us.
2571           thread->enable_register_stack_red_zone();
2572 
2573           return Handle_Exception(exceptionInfo,
2574                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2575         }
2576 #endif
2577         if (thread->stack_guards_enabled()) {
2578           if (_thread_in_Java) {
2579             frame fr;
2580             PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2581             address addr = (address) exceptionRecord->ExceptionInformation[1];
2582             if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2583               assert(fr.is_java_frame(), "Must be a Java frame");
2584               SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2585             }
2586           }
2587           // Yellow zone violation.  The o/s has unprotected the first yellow
2588           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2589           // update the enabled status, even if the zone contains only one page.
2590           thread->disable_stack_yellow_zone();
2591           // If not in java code, return and hope for the best.
2592           return in_java
2593               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2594               :  EXCEPTION_CONTINUE_EXECUTION;
2595         } else {
2596           // Fatal red zone violation.
2597           thread->disable_stack_red_zone();
2598           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2599           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2600                        exceptionInfo->ContextRecord);
2601           return EXCEPTION_CONTINUE_SEARCH;
2602         }
2603       } else if (in_java) {
2604         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2605         // a one-time-only guard page, which it has released to us.  The next
2606         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2607         return Handle_Exception(exceptionInfo,
2608                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2609       } else {
2610         // Can only return and hope for the best.  Further stack growth will
2611         // result in an ACCESS_VIOLATION.
2612         return EXCEPTION_CONTINUE_EXECUTION;
2613       }
2614     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2615       // Either stack overflow or null pointer exception.
2616       if (in_java) {
2617         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2618         address addr = (address) exceptionRecord->ExceptionInformation[1];
2619         address stack_end = thread->stack_base() - thread->stack_size();
2620         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2621           // Stack overflow.
2622           assert(!os::uses_stack_guard_pages(),
2623                  "should be caught by red zone code above.");
2624           return Handle_Exception(exceptionInfo,
2625                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2626         }
2627         // Check for safepoint polling and implicit null
2628         // We only expect null pointers in the stubs (vtable)
2629         // the rest are checked explicitly now.
2630         CodeBlob* cb = CodeCache::find_blob(pc);
2631         if (cb != NULL) {
2632           if (os::is_poll_address(addr)) {
2633             address stub = SharedRuntime::get_poll_stub(pc);
2634             return Handle_Exception(exceptionInfo, stub);
2635           }
2636         }
2637         {
2638 #ifdef _WIN64
2639           // If it's a legal stack address map the entire region in
2640           //
2641           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2642           address addr = (address) exceptionRecord->ExceptionInformation[1];
2643           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2644             addr = (address)((uintptr_t)addr &
2645                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2646             os::commit_memory((char *)addr, thread->stack_base() - addr,
2647                               !ExecMem);
2648             return EXCEPTION_CONTINUE_EXECUTION;
2649           } else
2650 #endif
2651           {
2652             // Null pointer exception.
2653 #ifdef _M_IA64
2654             // Process implicit null checks in compiled code. Note: Implicit null checks
2655             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2656             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2657               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2658               // Handle implicit null check in UEP method entry
2659               if (cb && (cb->is_frame_complete_at(pc) ||
2660                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2661                 if (Verbose) {
2662                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2663                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2664                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2665                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2666                                 *(bundle_start + 1), *bundle_start);
2667                 }
2668                 return Handle_Exception(exceptionInfo,
2669                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2670               }
2671             }
2672 
2673             // Implicit null checks were processed above.  Hence, we should not reach
2674             // here in the usual case => die!
2675             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2676             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2677                          exceptionInfo->ContextRecord);
2678             return EXCEPTION_CONTINUE_SEARCH;
2679 
2680 #else // !IA64
2681 
2682             // Windows 98 reports faulting addresses incorrectly
2683             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2684                 !os::win32::is_nt()) {
2685               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2686               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2687             }
2688             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2689                          exceptionInfo->ContextRecord);
2690             return EXCEPTION_CONTINUE_SEARCH;
2691 #endif
2692           }
2693         }
2694       }
2695 
2696 #ifdef _WIN64
2697       // Special care for fast JNI field accessors.
2698       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2699       // in and the heap gets shrunk before the field access.
2700       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2701         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2702         if (addr != (address)-1) {
2703           return Handle_Exception(exceptionInfo, addr);
2704         }
2705       }
2706 #endif
2707 
2708       // Stack overflow or null pointer exception in native code.
2709       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2710                    exceptionInfo->ContextRecord);
2711       return EXCEPTION_CONTINUE_SEARCH;
2712     } // /EXCEPTION_ACCESS_VIOLATION
2713     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2714 #if defined _M_IA64
2715     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2716               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2717       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2718 
2719       // Compiled method patched to be non entrant? Following conditions must apply:
2720       // 1. must be first instruction in bundle
2721       // 2. must be a break instruction with appropriate code
2722       if ((((uint64_t) pc & 0x0F) == 0) &&
2723           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2724         return Handle_Exception(exceptionInfo,
2725                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2726       }
2727     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2728 #endif
2729 
2730 
2731     if (in_java) {
2732       switch (exception_code) {
2733       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2734         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2735 
2736       case EXCEPTION_INT_OVERFLOW:
2737         return Handle_IDiv_Exception(exceptionInfo);
2738 
2739       } // switch
2740     }
2741     if (((thread->thread_state() == _thread_in_Java) ||
2742          (thread->thread_state() == _thread_in_native)) &&
2743          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2744       LONG result=Handle_FLT_Exception(exceptionInfo);
2745       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2746     }
2747   }
2748 
2749   if (exception_code != EXCEPTION_BREAKPOINT) {
2750     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2751                  exceptionInfo->ContextRecord);
2752   }
2753   return EXCEPTION_CONTINUE_SEARCH;
2754 }
2755 
2756 #ifndef _WIN64
2757 // Special care for fast JNI accessors.
2758 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2759 // the heap gets shrunk before the field access.
2760 // Need to install our own structured exception handler since native code may
2761 // install its own.
2762 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2763   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2764   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2765     address pc = (address) exceptionInfo->ContextRecord->Eip;
2766     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2767     if (addr != (address)-1) {
2768       return Handle_Exception(exceptionInfo, addr);
2769     }
2770   }
2771   return EXCEPTION_CONTINUE_SEARCH;
2772 }
2773 
2774 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2775   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2776                                                      jobject obj,           \
2777                                                      jfieldID fieldID) {    \
2778     __try {                                                                 \
2779       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2780                                                                  obj,       \
2781                                                                  fieldID);  \
2782     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2783                                               _exception_info())) {         \
2784     }                                                                       \
2785     return 0;                                                               \
2786   }
2787 
2788 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2789 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2790 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2791 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2792 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2793 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2794 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2795 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2796 
2797 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2798   switch (type) {
2799   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2800   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2801   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2802   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2803   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2804   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2805   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2806   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2807   default:        ShouldNotReachHere();
2808   }
2809   return (address)-1;
2810 }
2811 #endif
2812 
2813 // Virtual Memory
2814 
2815 int os::vm_page_size() { return os::win32::vm_page_size(); }
2816 int os::vm_allocation_granularity() {
2817   return os::win32::vm_allocation_granularity();
2818 }
2819 
2820 // Windows large page support is available on Windows 2003. In order to use
2821 // large page memory, the administrator must first assign additional privilege
2822 // to the user:
2823 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2824 //   + select Local Policies -> User Rights Assignment
2825 //   + double click "Lock pages in memory", add users and/or groups
2826 //   + reboot
2827 // Note the above steps are needed for administrator as well, as administrators
2828 // by default do not have the privilege to lock pages in memory.
2829 //
2830 // Note about Windows 2003: although the API supports committing large page
2831 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2832 // scenario, I found through experiment it only uses large page if the entire
2833 // memory region is reserved and committed in a single VirtualAlloc() call.
2834 // This makes Windows large page support more or less like Solaris ISM, in
2835 // that the entire heap must be committed upfront. This probably will change
2836 // in the future, if so the code below needs to be revisited.
2837 
2838 #ifndef MEM_LARGE_PAGES
2839   #define MEM_LARGE_PAGES 0x20000000
2840 #endif
2841 
2842 static HANDLE    _hProcess;
2843 static HANDLE    _hToken;
2844 
2845 // Container for NUMA node list info
2846 class NUMANodeListHolder {
2847  private:
2848   int *_numa_used_node_list;  // allocated below
2849   int _numa_used_node_count;
2850 
2851   void free_node_list() {
2852     if (_numa_used_node_list != NULL) {
2853       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2854     }
2855   }
2856 
2857  public:
2858   NUMANodeListHolder() {
2859     _numa_used_node_count = 0;
2860     _numa_used_node_list = NULL;
2861     // do rest of initialization in build routine (after function pointers are set up)
2862   }
2863 
2864   ~NUMANodeListHolder() {
2865     free_node_list();
2866   }
2867 
2868   bool build() {
2869     DWORD_PTR proc_aff_mask;
2870     DWORD_PTR sys_aff_mask;
2871     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2872     ULONG highest_node_number;
2873     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2874     free_node_list();
2875     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2876     for (unsigned int i = 0; i <= highest_node_number; i++) {
2877       ULONGLONG proc_mask_numa_node;
2878       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2879       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2880         _numa_used_node_list[_numa_used_node_count++] = i;
2881       }
2882     }
2883     return (_numa_used_node_count > 1);
2884   }
2885 
2886   int get_count() { return _numa_used_node_count; }
2887   int get_node_list_entry(int n) {
2888     // for indexes out of range, returns -1
2889     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2890   }
2891 
2892 } numa_node_list_holder;
2893 
2894 
2895 
2896 static size_t _large_page_size = 0;
2897 
2898 static bool resolve_functions_for_large_page_init() {
2899   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2900     os::Advapi32Dll::AdvapiAvailable();
2901 }
2902 
2903 static bool request_lock_memory_privilege() {
2904   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2905                           os::current_process_id());
2906 
2907   LUID luid;
2908   if (_hProcess != NULL &&
2909       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2910       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2911 
2912     TOKEN_PRIVILEGES tp;
2913     tp.PrivilegeCount = 1;
2914     tp.Privileges[0].Luid = luid;
2915     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2916 
2917     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2918     // privilege. Check GetLastError() too. See MSDN document.
2919     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2920         (GetLastError() == ERROR_SUCCESS)) {
2921       return true;
2922     }
2923   }
2924 
2925   return false;
2926 }
2927 
2928 static void cleanup_after_large_page_init() {
2929   if (_hProcess) CloseHandle(_hProcess);
2930   _hProcess = NULL;
2931   if (_hToken) CloseHandle(_hToken);
2932   _hToken = NULL;
2933 }
2934 
2935 static bool numa_interleaving_init() {
2936   bool success = false;
2937   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2938 
2939   // print a warning if UseNUMAInterleaving flag is specified on command line
2940   bool warn_on_failure = use_numa_interleaving_specified;
2941 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2942 
2943   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2944   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2945   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2946 
2947   if (os::Kernel32Dll::NumaCallsAvailable()) {
2948     if (numa_node_list_holder.build()) {
2949       if (PrintMiscellaneous && Verbose) {
2950         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2951         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2952           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2953         }
2954         tty->print("\n");
2955       }
2956       success = true;
2957     } else {
2958       WARN("Process does not cover multiple NUMA nodes.");
2959     }
2960   } else {
2961     WARN("NUMA Interleaving is not supported by the operating system.");
2962   }
2963   if (!success) {
2964     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2965   }
2966   return success;
2967 #undef WARN
2968 }
2969 
2970 // this routine is used whenever we need to reserve a contiguous VA range
2971 // but we need to make separate VirtualAlloc calls for each piece of the range
2972 // Reasons for doing this:
2973 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2974 //  * UseNUMAInterleaving requires a separate node for each piece
2975 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2976                                          DWORD prot,
2977                                          bool should_inject_error = false) {
2978   char * p_buf;
2979   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2980   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2981   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2982 
2983   // first reserve enough address space in advance since we want to be
2984   // able to break a single contiguous virtual address range into multiple
2985   // large page commits but WS2003 does not allow reserving large page space
2986   // so we just use 4K pages for reserve, this gives us a legal contiguous
2987   // address space. then we will deallocate that reservation, and re alloc
2988   // using large pages
2989   const size_t size_of_reserve = bytes + chunk_size;
2990   if (bytes > size_of_reserve) {
2991     // Overflowed.
2992     return NULL;
2993   }
2994   p_buf = (char *) VirtualAlloc(addr,
2995                                 size_of_reserve,  // size of Reserve
2996                                 MEM_RESERVE,
2997                                 PAGE_READWRITE);
2998   // If reservation failed, return NULL
2999   if (p_buf == NULL) return NULL;
3000   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
3001   os::release_memory(p_buf, bytes + chunk_size);
3002 
3003   // we still need to round up to a page boundary (in case we are using large pages)
3004   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
3005   // instead we handle this in the bytes_to_rq computation below
3006   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
3007 
3008   // now go through and allocate one chunk at a time until all bytes are
3009   // allocated
3010   size_t  bytes_remaining = bytes;
3011   // An overflow of align_size_up() would have been caught above
3012   // in the calculation of size_of_reserve.
3013   char * next_alloc_addr = p_buf;
3014   HANDLE hProc = GetCurrentProcess();
3015 
3016 #ifdef ASSERT
3017   // Variable for the failure injection
3018   long ran_num = os::random();
3019   size_t fail_after = ran_num % bytes;
3020 #endif
3021 
3022   int count=0;
3023   while (bytes_remaining) {
3024     // select bytes_to_rq to get to the next chunk_size boundary
3025 
3026     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
3027     // Note allocate and commit
3028     char * p_new;
3029 
3030 #ifdef ASSERT
3031     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3032 #else
3033     const bool inject_error_now = false;
3034 #endif
3035 
3036     if (inject_error_now) {
3037       p_new = NULL;
3038     } else {
3039       if (!UseNUMAInterleaving) {
3040         p_new = (char *) VirtualAlloc(next_alloc_addr,
3041                                       bytes_to_rq,
3042                                       flags,
3043                                       prot);
3044       } else {
3045         // get the next node to use from the used_node_list
3046         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3047         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3048         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
3049                                                             next_alloc_addr,
3050                                                             bytes_to_rq,
3051                                                             flags,
3052                                                             prot,
3053                                                             node);
3054       }
3055     }
3056 
3057     if (p_new == NULL) {
3058       // Free any allocated pages
3059       if (next_alloc_addr > p_buf) {
3060         // Some memory was committed so release it.
3061         size_t bytes_to_release = bytes - bytes_remaining;
3062         // NMT has yet to record any individual blocks, so it
3063         // need to create a dummy 'reserve' record to match
3064         // the release.
3065         MemTracker::record_virtual_memory_reserve((address)p_buf,
3066                                                   bytes_to_release, CALLER_PC);
3067         os::release_memory(p_buf, bytes_to_release);
3068       }
3069 #ifdef ASSERT
3070       if (should_inject_error) {
3071         if (TracePageSizes && Verbose) {
3072           tty->print_cr("Reserving pages individually failed.");
3073         }
3074       }
3075 #endif
3076       return NULL;
3077     }
3078 
3079     bytes_remaining -= bytes_to_rq;
3080     next_alloc_addr += bytes_to_rq;
3081     count++;
3082   }
3083   // Although the memory is allocated individually, it is returned as one.
3084   // NMT records it as one block.
3085   if ((flags & MEM_COMMIT) != 0) {
3086     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3087   } else {
3088     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3089   }
3090 
3091   // made it this far, success
3092   return p_buf;
3093 }
3094 
3095 
3096 
3097 void os::large_page_init() {
3098   if (!UseLargePages) return;
3099 
3100   // print a warning if any large page related flag is specified on command line
3101   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3102                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3103   bool success = false;
3104 
3105 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3106   if (resolve_functions_for_large_page_init()) {
3107     if (request_lock_memory_privilege()) {
3108       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3109       if (s) {
3110 #if defined(IA32) || defined(AMD64)
3111         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3112           WARN("JVM cannot use large pages bigger than 4mb.");
3113         } else {
3114 #endif
3115           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3116             _large_page_size = LargePageSizeInBytes;
3117           } else {
3118             _large_page_size = s;
3119           }
3120           success = true;
3121 #if defined(IA32) || defined(AMD64)
3122         }
3123 #endif
3124       } else {
3125         WARN("Large page is not supported by the processor.");
3126       }
3127     } else {
3128       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3129     }
3130   } else {
3131     WARN("Large page is not supported by the operating system.");
3132   }
3133 #undef WARN
3134 
3135   const size_t default_page_size = (size_t) vm_page_size();
3136   if (success && _large_page_size > default_page_size) {
3137     _page_sizes[0] = _large_page_size;
3138     _page_sizes[1] = default_page_size;
3139     _page_sizes[2] = 0;
3140   }
3141 
3142   cleanup_after_large_page_init();
3143   UseLargePages = success;
3144 }
3145 
3146 // On win32, one cannot release just a part of reserved memory, it's an
3147 // all or nothing deal.  When we split a reservation, we must break the
3148 // reservation into two reservations.
3149 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3150                                   bool realloc) {
3151   if (size > 0) {
3152     release_memory(base, size);
3153     if (realloc) {
3154       reserve_memory(split, base);
3155     }
3156     if (size != split) {
3157       reserve_memory(size - split, base + split);
3158     }
3159   }
3160 }
3161 
3162 // Multiple threads can race in this code but it's not possible to unmap small sections of
3163 // virtual space to get requested alignment, like posix-like os's.
3164 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3165 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3166   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3167          "Alignment must be a multiple of allocation granularity (page size)");
3168   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3169 
3170   size_t extra_size = size + alignment;
3171   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3172 
3173   char* aligned_base = NULL;
3174 
3175   do {
3176     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3177     if (extra_base == NULL) {
3178       return NULL;
3179     }
3180     // Do manual alignment
3181     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3182 
3183     os::release_memory(extra_base, extra_size);
3184 
3185     aligned_base = os::reserve_memory(size, aligned_base);
3186 
3187   } while (aligned_base == NULL);
3188 
3189   return aligned_base;
3190 }
3191 
3192 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3193   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3194          "reserve alignment");
3195   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3196   char* res;
3197   // note that if UseLargePages is on, all the areas that require interleaving
3198   // will go thru reserve_memory_special rather than thru here.
3199   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3200   if (!use_individual) {
3201     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3202   } else {
3203     elapsedTimer reserveTimer;
3204     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3205     // in numa interleaving, we have to allocate pages individually
3206     // (well really chunks of NUMAInterleaveGranularity size)
3207     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3208     if (res == NULL) {
3209       warning("NUMA page allocation failed");
3210     }
3211     if (Verbose && PrintMiscellaneous) {
3212       reserveTimer.stop();
3213       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3214                     reserveTimer.milliseconds(), reserveTimer.ticks());
3215     }
3216   }
3217   assert(res == NULL || addr == NULL || addr == res,
3218          "Unexpected address from reserve.");
3219 
3220   return res;
3221 }
3222 
3223 // Reserve memory at an arbitrary address, only if that area is
3224 // available (and not reserved for something else).
3225 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3226   // Windows os::reserve_memory() fails of the requested address range is
3227   // not avilable.
3228   return reserve_memory(bytes, requested_addr);
3229 }
3230 
3231 size_t os::large_page_size() {
3232   return _large_page_size;
3233 }
3234 
3235 bool os::can_commit_large_page_memory() {
3236   // Windows only uses large page memory when the entire region is reserved
3237   // and committed in a single VirtualAlloc() call. This may change in the
3238   // future, but with Windows 2003 it's not possible to commit on demand.
3239   return false;
3240 }
3241 
3242 bool os::can_execute_large_page_memory() {
3243   return true;
3244 }
3245 
3246 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3247                                  bool exec) {
3248   assert(UseLargePages, "only for large pages");
3249 
3250   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3251     return NULL; // Fallback to small pages.
3252   }
3253 
3254   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3255   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3256 
3257   // with large pages, there are two cases where we need to use Individual Allocation
3258   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3259   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3260   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3261     if (TracePageSizes && Verbose) {
3262       tty->print_cr("Reserving large pages individually.");
3263     }
3264     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3265     if (p_buf == NULL) {
3266       // give an appropriate warning message
3267       if (UseNUMAInterleaving) {
3268         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3269       }
3270       if (UseLargePagesIndividualAllocation) {
3271         warning("Individually allocated large pages failed, "
3272                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3273       }
3274       return NULL;
3275     }
3276 
3277     return p_buf;
3278 
3279   } else {
3280     if (TracePageSizes && Verbose) {
3281       tty->print_cr("Reserving large pages in a single large chunk.");
3282     }
3283     // normal policy just allocate it all at once
3284     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3285     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3286     if (res != NULL) {
3287       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3288     }
3289 
3290     return res;
3291   }
3292 }
3293 
3294 bool os::release_memory_special(char* base, size_t bytes) {
3295   assert(base != NULL, "Sanity check");
3296   return release_memory(base, bytes);
3297 }
3298 
3299 void os::print_statistics() {
3300 }
3301 
3302 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3303   int err = os::get_last_error();
3304   char buf[256];
3305   size_t buf_len = os::lasterror(buf, sizeof(buf));
3306   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3307           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3308           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3309 }
3310 
3311 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3312   if (bytes == 0) {
3313     // Don't bother the OS with noops.
3314     return true;
3315   }
3316   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3317   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3318   // Don't attempt to print anything if the OS call fails. We're
3319   // probably low on resources, so the print itself may cause crashes.
3320 
3321   // unless we have NUMAInterleaving enabled, the range of a commit
3322   // is always within a reserve covered by a single VirtualAlloc
3323   // in that case we can just do a single commit for the requested size
3324   if (!UseNUMAInterleaving) {
3325     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3326       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3327       return false;
3328     }
3329     if (exec) {
3330       DWORD oldprot;
3331       // Windows doc says to use VirtualProtect to get execute permissions
3332       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3333         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3334         return false;
3335       }
3336     }
3337     return true;
3338   } else {
3339 
3340     // when NUMAInterleaving is enabled, the commit might cover a range that
3341     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3342     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3343     // returns represents the number of bytes that can be committed in one step.
3344     size_t bytes_remaining = bytes;
3345     char * next_alloc_addr = addr;
3346     while (bytes_remaining > 0) {
3347       MEMORY_BASIC_INFORMATION alloc_info;
3348       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3349       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3350       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3351                        PAGE_READWRITE) == NULL) {
3352         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3353                                             exec);)
3354         return false;
3355       }
3356       if (exec) {
3357         DWORD oldprot;
3358         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3359                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3360           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3361                                               exec);)
3362           return false;
3363         }
3364       }
3365       bytes_remaining -= bytes_to_rq;
3366       next_alloc_addr += bytes_to_rq;
3367     }
3368   }
3369   // if we made it this far, return true
3370   return true;
3371 }
3372 
3373 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3374                           bool exec) {
3375   // alignment_hint is ignored on this OS
3376   return pd_commit_memory(addr, size, exec);
3377 }
3378 
3379 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3380                                   const char* mesg) {
3381   assert(mesg != NULL, "mesg must be specified");
3382   if (!pd_commit_memory(addr, size, exec)) {
3383     warn_fail_commit_memory(addr, size, exec);
3384     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3385   }
3386 }
3387 
3388 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3389                                   size_t alignment_hint, bool exec,
3390                                   const char* mesg) {
3391   // alignment_hint is ignored on this OS
3392   pd_commit_memory_or_exit(addr, size, exec, mesg);
3393 }
3394 
3395 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3396   if (bytes == 0) {
3397     // Don't bother the OS with noops.
3398     return true;
3399   }
3400   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3401   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3402   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3403 }
3404 
3405 bool os::pd_release_memory(char* addr, size_t bytes) {
3406   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3407 }
3408 
3409 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3410   return os::commit_memory(addr, size, !ExecMem);
3411 }
3412 
3413 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3414   return os::uncommit_memory(addr, size);
3415 }
3416 
3417 // Set protections specified
3418 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3419                         bool is_committed) {
3420   unsigned int p = 0;
3421   switch (prot) {
3422   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3423   case MEM_PROT_READ: p = PAGE_READONLY; break;
3424   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3425   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3426   default:
3427     ShouldNotReachHere();
3428   }
3429 
3430   DWORD old_status;
3431 
3432   // Strange enough, but on Win32 one can change protection only for committed
3433   // memory, not a big deal anyway, as bytes less or equal than 64K
3434   if (!is_committed) {
3435     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3436                           "cannot commit protection page");
3437   }
3438   // One cannot use os::guard_memory() here, as on Win32 guard page
3439   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3440   //
3441   // Pages in the region become guard pages. Any attempt to access a guard page
3442   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3443   // the guard page status. Guard pages thus act as a one-time access alarm.
3444   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3445 }
3446 
3447 bool os::guard_memory(char* addr, size_t bytes) {
3448   DWORD old_status;
3449   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3450 }
3451 
3452 bool os::unguard_memory(char* addr, size_t bytes) {
3453   DWORD old_status;
3454   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3455 }
3456 
3457 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3458 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3459 void os::numa_make_global(char *addr, size_t bytes)    { }
3460 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3461 bool os::numa_topology_changed()                       { return false; }
3462 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3463 int os::numa_get_group_id()                            { return 0; }
3464 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3465   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3466     // Provide an answer for UMA systems
3467     ids[0] = 0;
3468     return 1;
3469   } else {
3470     // check for size bigger than actual groups_num
3471     size = MIN2(size, numa_get_groups_num());
3472     for (int i = 0; i < (int)size; i++) {
3473       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3474     }
3475     return size;
3476   }
3477 }
3478 
3479 bool os::get_page_info(char *start, page_info* info) {
3480   return false;
3481 }
3482 
3483 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3484                      page_info* page_found) {
3485   return end;
3486 }
3487 
3488 char* os::non_memory_address_word() {
3489   // Must never look like an address returned by reserve_memory,
3490   // even in its subfields (as defined by the CPU immediate fields,
3491   // if the CPU splits constants across multiple instructions).
3492   return (char*)-1;
3493 }
3494 
3495 #define MAX_ERROR_COUNT 100
3496 #define SYS_THREAD_ERROR 0xffffffffUL
3497 
3498 void os::pd_start_thread(Thread* thread) {
3499   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3500   // Returns previous suspend state:
3501   // 0:  Thread was not suspended
3502   // 1:  Thread is running now
3503   // >1: Thread is still suspended.
3504   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3505 }
3506 
3507 class HighResolutionInterval : public CHeapObj<mtThread> {
3508   // The default timer resolution seems to be 10 milliseconds.
3509   // (Where is this written down?)
3510   // If someone wants to sleep for only a fraction of the default,
3511   // then we set the timer resolution down to 1 millisecond for
3512   // the duration of their interval.
3513   // We carefully set the resolution back, since otherwise we
3514   // seem to incur an overhead (3%?) that we don't need.
3515   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3516   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3517   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3518   // timeBeginPeriod() if the relative error exceeded some threshold.
3519   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3520   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3521   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3522   // resolution timers running.
3523  private:
3524   jlong resolution;
3525  public:
3526   HighResolutionInterval(jlong ms) {
3527     resolution = ms % 10L;
3528     if (resolution != 0) {
3529       MMRESULT result = timeBeginPeriod(1L);
3530     }
3531   }
3532   ~HighResolutionInterval() {
3533     if (resolution != 0) {
3534       MMRESULT result = timeEndPeriod(1L);
3535     }
3536     resolution = 0L;
3537   }
3538 };
3539 
3540 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3541   jlong limit = (jlong) MAXDWORD;
3542 
3543   while (ms > limit) {
3544     int res;
3545     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3546       return res;
3547     }
3548     ms -= limit;
3549   }
3550 
3551   assert(thread == Thread::current(), "thread consistency check");
3552   OSThread* osthread = thread->osthread();
3553   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3554   int result;
3555   if (interruptable) {
3556     assert(thread->is_Java_thread(), "must be java thread");
3557     JavaThread *jt = (JavaThread *) thread;
3558     ThreadBlockInVM tbivm(jt);
3559 
3560     jt->set_suspend_equivalent();
3561     // cleared by handle_special_suspend_equivalent_condition() or
3562     // java_suspend_self() via check_and_wait_while_suspended()
3563 
3564     HANDLE events[1];
3565     events[0] = osthread->interrupt_event();
3566     HighResolutionInterval *phri=NULL;
3567     if (!ForceTimeHighResolution) {
3568       phri = new HighResolutionInterval(ms);
3569     }
3570     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3571       result = OS_TIMEOUT;
3572     } else {
3573       ResetEvent(osthread->interrupt_event());
3574       osthread->set_interrupted(false);
3575       result = OS_INTRPT;
3576     }
3577     delete phri; //if it is NULL, harmless
3578 
3579     // were we externally suspended while we were waiting?
3580     jt->check_and_wait_while_suspended();
3581   } else {
3582     assert(!thread->is_Java_thread(), "must not be java thread");
3583     Sleep((long) ms);
3584     result = OS_TIMEOUT;
3585   }
3586   return result;
3587 }
3588 
3589 // Short sleep, direct OS call.
3590 //
3591 // ms = 0, means allow others (if any) to run.
3592 //
3593 void os::naked_short_sleep(jlong ms) {
3594   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3595   Sleep(ms);
3596 }
3597 
3598 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3599 void os::infinite_sleep() {
3600   while (true) {    // sleep forever ...
3601     Sleep(100000);  // ... 100 seconds at a time
3602   }
3603 }
3604 
3605 typedef BOOL (WINAPI * STTSignature)(void);
3606 
3607 void os::naked_yield() {
3608   // Use either SwitchToThread() or Sleep(0)
3609   // Consider passing back the return value from SwitchToThread().
3610   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3611     SwitchToThread();
3612   } else {
3613     Sleep(0);
3614   }
3615 }
3616 
3617 // Win32 only gives you access to seven real priorities at a time,
3618 // so we compress Java's ten down to seven.  It would be better
3619 // if we dynamically adjusted relative priorities.
3620 
3621 int os::java_to_os_priority[CriticalPriority + 1] = {
3622   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3623   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3624   THREAD_PRIORITY_LOWEST,                       // 2
3625   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3626   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3627   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3628   THREAD_PRIORITY_NORMAL,                       // 6
3629   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3630   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3631   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3632   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3633   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3634 };
3635 
3636 int prio_policy1[CriticalPriority + 1] = {
3637   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3638   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3639   THREAD_PRIORITY_LOWEST,                       // 2
3640   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3641   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3642   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3643   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3644   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3645   THREAD_PRIORITY_HIGHEST,                      // 8
3646   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3647   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3648   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3649 };
3650 
3651 static int prio_init() {
3652   // If ThreadPriorityPolicy is 1, switch tables
3653   if (ThreadPriorityPolicy == 1) {
3654     int i;
3655     for (i = 0; i < CriticalPriority + 1; i++) {
3656       os::java_to_os_priority[i] = prio_policy1[i];
3657     }
3658   }
3659   if (UseCriticalJavaThreadPriority) {
3660     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3661   }
3662   return 0;
3663 }
3664 
3665 OSReturn os::set_native_priority(Thread* thread, int priority) {
3666   if (!UseThreadPriorities) return OS_OK;
3667   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3668   return ret ? OS_OK : OS_ERR;
3669 }
3670 
3671 OSReturn os::get_native_priority(const Thread* const thread,
3672                                  int* priority_ptr) {
3673   if (!UseThreadPriorities) {
3674     *priority_ptr = java_to_os_priority[NormPriority];
3675     return OS_OK;
3676   }
3677   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3678   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3679     assert(false, "GetThreadPriority failed");
3680     return OS_ERR;
3681   }
3682   *priority_ptr = os_prio;
3683   return OS_OK;
3684 }
3685 
3686 
3687 // Hint to the underlying OS that a task switch would not be good.
3688 // Void return because it's a hint and can fail.
3689 void os::hint_no_preempt() {}
3690 
3691 void os::interrupt(Thread* thread) {
3692   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3693          Threads_lock->owned_by_self(),
3694          "possibility of dangling Thread pointer");
3695 
3696   OSThread* osthread = thread->osthread();
3697   osthread->set_interrupted(true);
3698   // More than one thread can get here with the same value of osthread,
3699   // resulting in multiple notifications.  We do, however, want the store
3700   // to interrupted() to be visible to other threads before we post
3701   // the interrupt event.
3702   OrderAccess::release();
3703   SetEvent(osthread->interrupt_event());
3704   // For JSR166:  unpark after setting status
3705   if (thread->is_Java_thread()) {
3706     ((JavaThread*)thread)->parker()->unpark();
3707   }
3708 
3709   ParkEvent * ev = thread->_ParkEvent;
3710   if (ev != NULL) ev->unpark();
3711 }
3712 
3713 
3714 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3715   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3716          "possibility of dangling Thread pointer");
3717 
3718   OSThread* osthread = thread->osthread();
3719   // There is no synchronization between the setting of the interrupt
3720   // and it being cleared here. It is critical - see 6535709 - that
3721   // we only clear the interrupt state, and reset the interrupt event,
3722   // if we are going to report that we were indeed interrupted - else
3723   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3724   // depending on the timing. By checking thread interrupt event to see
3725   // if the thread gets real interrupt thus prevent spurious wakeup.
3726   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3727   if (interrupted && clear_interrupted) {
3728     osthread->set_interrupted(false);
3729     ResetEvent(osthread->interrupt_event());
3730   } // Otherwise leave the interrupted state alone
3731 
3732   return interrupted;
3733 }
3734 
3735 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3736 ExtendedPC os::get_thread_pc(Thread* thread) {
3737   CONTEXT context;
3738   context.ContextFlags = CONTEXT_CONTROL;
3739   HANDLE handle = thread->osthread()->thread_handle();
3740 #ifdef _M_IA64
3741   assert(0, "Fix get_thread_pc");
3742   return ExtendedPC(NULL);
3743 #else
3744   if (GetThreadContext(handle, &context)) {
3745 #ifdef _M_AMD64
3746     return ExtendedPC((address) context.Rip);
3747 #else
3748     return ExtendedPC((address) context.Eip);
3749 #endif
3750   } else {
3751     return ExtendedPC(NULL);
3752   }
3753 #endif
3754 }
3755 
3756 // GetCurrentThreadId() returns DWORD
3757 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3758 
3759 static int _initial_pid = 0;
3760 
3761 int os::current_process_id() {
3762   return (_initial_pid ? _initial_pid : _getpid());
3763 }
3764 
3765 int    os::win32::_vm_page_size              = 0;
3766 int    os::win32::_vm_allocation_granularity = 0;
3767 int    os::win32::_processor_type            = 0;
3768 // Processor level is not available on non-NT systems, use vm_version instead
3769 int    os::win32::_processor_level           = 0;
3770 julong os::win32::_physical_memory           = 0;
3771 size_t os::win32::_default_stack_size        = 0;
3772 
3773 intx          os::win32::_os_thread_limit    = 0;
3774 volatile intx os::win32::_os_thread_count    = 0;
3775 
3776 bool   os::win32::_is_nt                     = false;
3777 bool   os::win32::_is_windows_2003           = false;
3778 bool   os::win32::_is_windows_server         = false;
3779 
3780 // 6573254
3781 // Currently, the bug is observed across all the supported Windows releases,
3782 // including the latest one (as of this writing - Windows Server 2012 R2)
3783 bool   os::win32::_has_exit_bug              = true;
3784 bool   os::win32::_has_performance_count     = 0;
3785 
3786 void os::win32::initialize_system_info() {
3787   SYSTEM_INFO si;
3788   GetSystemInfo(&si);
3789   _vm_page_size    = si.dwPageSize;
3790   _vm_allocation_granularity = si.dwAllocationGranularity;
3791   _processor_type  = si.dwProcessorType;
3792   _processor_level = si.wProcessorLevel;
3793   set_processor_count(si.dwNumberOfProcessors);
3794 
3795   MEMORYSTATUSEX ms;
3796   ms.dwLength = sizeof(ms);
3797 
3798   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3799   // dwMemoryLoad (% of memory in use)
3800   GlobalMemoryStatusEx(&ms);
3801   _physical_memory = ms.ullTotalPhys;
3802 
3803   OSVERSIONINFOEX oi;
3804   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3805   GetVersionEx((OSVERSIONINFO*)&oi);
3806   switch (oi.dwPlatformId) {
3807   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3808   case VER_PLATFORM_WIN32_NT:
3809     _is_nt = true;
3810     {
3811       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3812       if (os_vers == 5002) {
3813         _is_windows_2003 = true;
3814       }
3815       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3816           oi.wProductType == VER_NT_SERVER) {
3817         _is_windows_server = true;
3818       }
3819     }
3820     break;
3821   default: fatal("Unknown platform");
3822   }
3823 
3824   _default_stack_size = os::current_stack_size();
3825   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3826   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3827          "stack size not a multiple of page size");
3828 
3829   initialize_performance_counter();
3830 }
3831 
3832 
3833 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3834                                       int ebuflen) {
3835   char path[MAX_PATH];
3836   DWORD size;
3837   DWORD pathLen = (DWORD)sizeof(path);
3838   HINSTANCE result = NULL;
3839 
3840   // only allow library name without path component
3841   assert(strchr(name, '\\') == NULL, "path not allowed");
3842   assert(strchr(name, ':') == NULL, "path not allowed");
3843   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3844     jio_snprintf(ebuf, ebuflen,
3845                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3846     return NULL;
3847   }
3848 
3849   // search system directory
3850   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3851     if (size >= pathLen) {
3852       return NULL; // truncated
3853     }
3854     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3855       return NULL; // truncated
3856     }
3857     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3858       return result;
3859     }
3860   }
3861 
3862   // try Windows directory
3863   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3864     if (size >= pathLen) {
3865       return NULL; // truncated
3866     }
3867     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3868       return NULL; // truncated
3869     }
3870     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3871       return result;
3872     }
3873   }
3874 
3875   jio_snprintf(ebuf, ebuflen,
3876                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3877   return NULL;
3878 }
3879 
3880 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3881 
3882 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3883   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3884   return TRUE;
3885 }
3886 
3887 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3888   // Basic approach:
3889   //  - Each exiting thread registers its intent to exit and then does so.
3890   //  - A thread trying to terminate the process must wait for all
3891   //    threads currently exiting to complete their exit.
3892 
3893   if (os::win32::has_exit_bug()) {
3894     // The array holds handles of the threads that have started exiting by calling
3895     // _endthreadex().
3896     // Should be large enough to avoid blocking the exiting thread due to lack of
3897     // a free slot.
3898     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3899     static int handle_count = 0;
3900 
3901     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3902     static CRITICAL_SECTION crit_sect;
3903     static volatile jint process_exiting = 0;
3904     int i, j;
3905     DWORD res;
3906     HANDLE hproc, hthr;
3907 
3908     // The first thread that reached this point, initializes the critical section.
3909     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3910       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3911     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3912       EnterCriticalSection(&crit_sect);
3913 
3914       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3915         // Remove from the array those handles of the threads that have completed exiting.
3916         for (i = 0, j = 0; i < handle_count; ++i) {
3917           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3918           if (res == WAIT_TIMEOUT) {
3919             handles[j++] = handles[i];
3920           } else {
3921             if (res == WAIT_FAILED) {
3922               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3923                       GetLastError(), __FILE__, __LINE__);
3924             }
3925             // Don't keep the handle, if we failed waiting for it.
3926             CloseHandle(handles[i]);
3927           }
3928         }
3929 
3930         // If there's no free slot in the array of the kept handles, we'll have to
3931         // wait until at least one thread completes exiting.
3932         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3933           // Raise the priority of the oldest exiting thread to increase its chances
3934           // to complete sooner.
3935           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3936           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3937           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3938             i = (res - WAIT_OBJECT_0);
3939             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3940             for (; i < handle_count; ++i) {
3941               handles[i] = handles[i + 1];
3942             }
3943           } else {
3944             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3945                     (res == WAIT_FAILED ? "failed" : "timed out"),
3946                     GetLastError(), __FILE__, __LINE__);
3947             // Don't keep handles, if we failed waiting for them.
3948             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3949               CloseHandle(handles[i]);
3950             }
3951             handle_count = 0;
3952           }
3953         }
3954 
3955         // Store a duplicate of the current thread handle in the array of handles.
3956         hproc = GetCurrentProcess();
3957         hthr = GetCurrentThread();
3958         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3959                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3960           warning("DuplicateHandle failed (%u) in %s: %d\n",
3961                   GetLastError(), __FILE__, __LINE__);
3962         } else {
3963           ++handle_count;
3964         }
3965 
3966         // The current exiting thread has stored its handle in the array, and now
3967         // should leave the critical section before calling _endthreadex().
3968 
3969       } else if (what != EPT_THREAD) {
3970         if (handle_count > 0) {
3971           // Before ending the process, make sure all the threads that had called
3972           // _endthreadex() completed.
3973 
3974           // Set the priority level of the current thread to the same value as
3975           // the priority level of exiting threads.
3976           // This is to ensure it will be given a fair chance to execute if
3977           // the timeout expires.
3978           hthr = GetCurrentThread();
3979           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3980           for (i = 0; i < handle_count; ++i) {
3981             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3982           }
3983           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3984           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3985             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3986                     (res == WAIT_FAILED ? "failed" : "timed out"),
3987                     GetLastError(), __FILE__, __LINE__);
3988           }
3989           for (i = 0; i < handle_count; ++i) {
3990             CloseHandle(handles[i]);
3991           }
3992           handle_count = 0;
3993         }
3994 
3995         OrderAccess::release_store(&process_exiting, 1);
3996       }
3997 
3998       LeaveCriticalSection(&crit_sect);
3999     }
4000 
4001     if (what == EPT_THREAD) {
4002       while (OrderAccess::load_acquire(&process_exiting) != 0) {
4003         // Some other thread is about to call exit(), so we
4004         // don't let the current thread proceed to _endthreadex()
4005         SuspendThread(GetCurrentThread());
4006         // Avoid busy-wait loop, if SuspendThread() failed.
4007         Sleep(EXIT_TIMEOUT);
4008       }
4009     }
4010   }
4011 
4012   // We are here if either
4013   // - there's no 'race at exit' bug on this OS release;
4014   // - initialization of the critical section failed (unlikely);
4015   // - the current thread has stored its handle and left the critical section;
4016   // - the process-exiting thread has raised the flag and left the critical section.
4017   if (what == EPT_THREAD) {
4018     _endthreadex((unsigned)exit_code);
4019   } else if (what == EPT_PROCESS) {
4020     ::exit(exit_code);
4021   } else {
4022     _exit(exit_code);
4023   }
4024 
4025   // Should not reach here
4026   return exit_code;
4027 }
4028 
4029 #undef EXIT_TIMEOUT
4030 
4031 void os::win32::setmode_streams() {
4032   _setmode(_fileno(stdin), _O_BINARY);
4033   _setmode(_fileno(stdout), _O_BINARY);
4034   _setmode(_fileno(stderr), _O_BINARY);
4035 }
4036 
4037 
4038 bool os::is_debugger_attached() {
4039   return IsDebuggerPresent() ? true : false;
4040 }
4041 
4042 
4043 void os::wait_for_keypress_at_exit(void) {
4044   if (PauseAtExit) {
4045     fprintf(stderr, "Press any key to continue...\n");
4046     fgetc(stdin);
4047   }
4048 }
4049 
4050 
4051 bool os::message_box(const char* title, const char* message) {
4052   int result = MessageBox(NULL, message, title,
4053                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4054   return result == IDYES;
4055 }
4056 
4057 #ifndef PRODUCT
4058 #ifndef _WIN64
4059 // Helpers to check whether NX protection is enabled
4060 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4061   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4062       pex->ExceptionRecord->NumberParameters > 0 &&
4063       pex->ExceptionRecord->ExceptionInformation[0] ==
4064       EXCEPTION_INFO_EXEC_VIOLATION) {
4065     return EXCEPTION_EXECUTE_HANDLER;
4066   }
4067   return EXCEPTION_CONTINUE_SEARCH;
4068 }
4069 
4070 void nx_check_protection() {
4071   // If NX is enabled we'll get an exception calling into code on the stack
4072   char code[] = { (char)0xC3 }; // ret
4073   void *code_ptr = (void *)code;
4074   __try {
4075     __asm call code_ptr
4076   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4077     tty->print_raw_cr("NX protection detected.");
4078   }
4079 }
4080 #endif // _WIN64
4081 #endif // PRODUCT
4082 
4083 // this is called _before_ the global arguments have been parsed
4084 void os::init(void) {
4085   _initial_pid = _getpid();
4086 
4087   init_random(1234567);
4088 
4089   win32::initialize_system_info();
4090   win32::setmode_streams();
4091   init_page_sizes((size_t) win32::vm_page_size());
4092 
4093   // This may be overridden later when argument processing is done.
4094   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4095                 os::win32::is_windows_2003());
4096 
4097   // Initialize main_process and main_thread
4098   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4099   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4100                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4101     fatal("DuplicateHandle failed\n");
4102   }
4103   main_thread_id = (int) GetCurrentThreadId();
4104 
4105   // initialize fast thread access - only used for 32-bit
4106   win32::initialize_thread_ptr_offset();
4107 }
4108 
4109 // To install functions for atexit processing
4110 extern "C" {
4111   static void perfMemory_exit_helper() {
4112     perfMemory_exit();
4113   }
4114 }
4115 
4116 static jint initSock();
4117 
4118 // this is called _after_ the global arguments have been parsed
4119 jint os::init_2(void) {
4120   // Allocate a single page and mark it as readable for safepoint polling
4121   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4122   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4123 
4124   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4125   guarantee(return_page != NULL, "Commit Failed for polling page");
4126 
4127   os::set_polling_page(polling_page);
4128 
4129 #ifndef PRODUCT
4130   if (Verbose && PrintMiscellaneous) {
4131     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4132                (intptr_t)polling_page);
4133   }
4134 #endif
4135 
4136   if (!UseMembar) {
4137     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4138     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4139 
4140     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4141     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4142 
4143     os::set_memory_serialize_page(mem_serialize_page);
4144 
4145 #ifndef PRODUCT
4146     if (Verbose && PrintMiscellaneous) {
4147       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4148                  (intptr_t)mem_serialize_page);
4149     }
4150 #endif
4151   }
4152 
4153   // Setup Windows Exceptions
4154 
4155   // for debugging float code generation bugs
4156   if (ForceFloatExceptions) {
4157 #ifndef  _WIN64
4158     static long fp_control_word = 0;
4159     __asm { fstcw fp_control_word }
4160     // see Intel PPro Manual, Vol. 2, p 7-16
4161     const long precision = 0x20;
4162     const long underflow = 0x10;
4163     const long overflow  = 0x08;
4164     const long zero_div  = 0x04;
4165     const long denorm    = 0x02;
4166     const long invalid   = 0x01;
4167     fp_control_word |= invalid;
4168     __asm { fldcw fp_control_word }
4169 #endif
4170   }
4171 
4172   // If stack_commit_size is 0, windows will reserve the default size,
4173   // but only commit a small portion of it.
4174   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4175   size_t default_reserve_size = os::win32::default_stack_size();
4176   size_t actual_reserve_size = stack_commit_size;
4177   if (stack_commit_size < default_reserve_size) {
4178     // If stack_commit_size == 0, we want this too
4179     actual_reserve_size = default_reserve_size;
4180   }
4181 
4182   // Check minimum allowable stack size for thread creation and to initialize
4183   // the java system classes, including StackOverflowError - depends on page
4184   // size.  Add a page for compiler2 recursion in main thread.
4185   // Add in 2*BytesPerWord times page size to account for VM stack during
4186   // class initialization depending on 32 or 64 bit VM.
4187   size_t min_stack_allowed =
4188             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4189                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4190   if (actual_reserve_size < min_stack_allowed) {
4191     tty->print_cr("\nThe stack size specified is too small, "
4192                   "Specify at least %dk",
4193                   min_stack_allowed / K);
4194     return JNI_ERR;
4195   }
4196 
4197   JavaThread::set_stack_size_at_create(stack_commit_size);
4198 
4199   // Calculate theoretical max. size of Threads to guard gainst artifical
4200   // out-of-memory situations, where all available address-space has been
4201   // reserved by thread stacks.
4202   assert(actual_reserve_size != 0, "Must have a stack");
4203 
4204   // Calculate the thread limit when we should start doing Virtual Memory
4205   // banging. Currently when the threads will have used all but 200Mb of space.
4206   //
4207   // TODO: consider performing a similar calculation for commit size instead
4208   // as reserve size, since on a 64-bit platform we'll run into that more
4209   // often than running out of virtual memory space.  We can use the
4210   // lower value of the two calculations as the os_thread_limit.
4211   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4212   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4213 
4214   // at exit methods are called in the reverse order of their registration.
4215   // there is no limit to the number of functions registered. atexit does
4216   // not set errno.
4217 
4218   if (PerfAllowAtExitRegistration) {
4219     // only register atexit functions if PerfAllowAtExitRegistration is set.
4220     // atexit functions can be delayed until process exit time, which
4221     // can be problematic for embedded VM situations. Embedded VMs should
4222     // call DestroyJavaVM() to assure that VM resources are released.
4223 
4224     // note: perfMemory_exit_helper atexit function may be removed in
4225     // the future if the appropriate cleanup code can be added to the
4226     // VM_Exit VMOperation's doit method.
4227     if (atexit(perfMemory_exit_helper) != 0) {
4228       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4229     }
4230   }
4231 
4232 #ifndef _WIN64
4233   // Print something if NX is enabled (win32 on AMD64)
4234   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4235 #endif
4236 
4237   // initialize thread priority policy
4238   prio_init();
4239 
4240   if (UseNUMA && !ForceNUMA) {
4241     UseNUMA = false; // We don't fully support this yet
4242   }
4243 
4244   if (UseNUMAInterleaving) {
4245     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4246     bool success = numa_interleaving_init();
4247     if (!success) UseNUMAInterleaving = false;
4248   }
4249 
4250   if (initSock() != JNI_OK) {
4251     return JNI_ERR;
4252   }
4253 
4254   return JNI_OK;
4255 }
4256 
4257 // Mark the polling page as unreadable
4258 void os::make_polling_page_unreadable(void) {
4259   DWORD old_status;
4260   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4261                       PAGE_NOACCESS, &old_status)) {
4262     fatal("Could not disable polling page");
4263   }
4264 }
4265 
4266 // Mark the polling page as readable
4267 void os::make_polling_page_readable(void) {
4268   DWORD old_status;
4269   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4270                       PAGE_READONLY, &old_status)) {
4271     fatal("Could not enable polling page");
4272   }
4273 }
4274 
4275 
4276 int os::stat(const char *path, struct stat *sbuf) {
4277   char pathbuf[MAX_PATH];
4278   if (strlen(path) > MAX_PATH - 1) {
4279     errno = ENAMETOOLONG;
4280     return -1;
4281   }
4282   os::native_path(strcpy(pathbuf, path));
4283   int ret = ::stat(pathbuf, sbuf);
4284   if (sbuf != NULL && UseUTCFileTimestamp) {
4285     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4286     // the system timezone and so can return different values for the
4287     // same file if/when daylight savings time changes.  This adjustment
4288     // makes sure the same timestamp is returned regardless of the TZ.
4289     //
4290     // See:
4291     // http://msdn.microsoft.com/library/
4292     //   default.asp?url=/library/en-us/sysinfo/base/
4293     //   time_zone_information_str.asp
4294     // and
4295     // http://msdn.microsoft.com/library/default.asp?url=
4296     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4297     //
4298     // NOTE: there is a insidious bug here:  If the timezone is changed
4299     // after the call to stat() but before 'GetTimeZoneInformation()', then
4300     // the adjustment we do here will be wrong and we'll return the wrong
4301     // value (which will likely end up creating an invalid class data
4302     // archive).  Absent a better API for this, or some time zone locking
4303     // mechanism, we'll have to live with this risk.
4304     TIME_ZONE_INFORMATION tz;
4305     DWORD tzid = GetTimeZoneInformation(&tz);
4306     int daylightBias =
4307       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4308     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4309   }
4310   return ret;
4311 }
4312 
4313 
4314 #define FT2INT64(ft) \
4315   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4316 
4317 
4318 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4319 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4320 // of a thread.
4321 //
4322 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4323 // the fast estimate available on the platform.
4324 
4325 // current_thread_cpu_time() is not optimized for Windows yet
4326 jlong os::current_thread_cpu_time() {
4327   // return user + sys since the cost is the same
4328   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4329 }
4330 
4331 jlong os::thread_cpu_time(Thread* thread) {
4332   // consistent with what current_thread_cpu_time() returns.
4333   return os::thread_cpu_time(thread, true /* user+sys */);
4334 }
4335 
4336 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4337   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4338 }
4339 
4340 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4341   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4342   // If this function changes, os::is_thread_cpu_time_supported() should too
4343   if (os::win32::is_nt()) {
4344     FILETIME CreationTime;
4345     FILETIME ExitTime;
4346     FILETIME KernelTime;
4347     FILETIME UserTime;
4348 
4349     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4350                        &ExitTime, &KernelTime, &UserTime) == 0) {
4351       return -1;
4352     } else if (user_sys_cpu_time) {
4353       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4354     } else {
4355       return FT2INT64(UserTime) * 100;
4356     }
4357   } else {
4358     return (jlong) timeGetTime() * 1000000;
4359   }
4360 }
4361 
4362 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4363   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4364   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4365   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4366   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4367 }
4368 
4369 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4370   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4371   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4372   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4373   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4374 }
4375 
4376 bool os::is_thread_cpu_time_supported() {
4377   // see os::thread_cpu_time
4378   if (os::win32::is_nt()) {
4379     FILETIME CreationTime;
4380     FILETIME ExitTime;
4381     FILETIME KernelTime;
4382     FILETIME UserTime;
4383 
4384     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4385                        &KernelTime, &UserTime) == 0) {
4386       return false;
4387     } else {
4388       return true;
4389     }
4390   } else {
4391     return false;
4392   }
4393 }
4394 
4395 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4396 // It does have primitives (PDH API) to get CPU usage and run queue length.
4397 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4398 // If we wanted to implement loadavg on Windows, we have a few options:
4399 //
4400 // a) Query CPU usage and run queue length and "fake" an answer by
4401 //    returning the CPU usage if it's under 100%, and the run queue
4402 //    length otherwise.  It turns out that querying is pretty slow
4403 //    on Windows, on the order of 200 microseconds on a fast machine.
4404 //    Note that on the Windows the CPU usage value is the % usage
4405 //    since the last time the API was called (and the first call
4406 //    returns 100%), so we'd have to deal with that as well.
4407 //
4408 // b) Sample the "fake" answer using a sampling thread and store
4409 //    the answer in a global variable.  The call to loadavg would
4410 //    just return the value of the global, avoiding the slow query.
4411 //
4412 // c) Sample a better answer using exponential decay to smooth the
4413 //    value.  This is basically the algorithm used by UNIX kernels.
4414 //
4415 // Note that sampling thread starvation could affect both (b) and (c).
4416 int os::loadavg(double loadavg[], int nelem) {
4417   return -1;
4418 }
4419 
4420 
4421 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4422 bool os::dont_yield() {
4423   return DontYieldALot;
4424 }
4425 
4426 // This method is a slightly reworked copy of JDK's sysOpen
4427 // from src/windows/hpi/src/sys_api_md.c
4428 
4429 int os::open(const char *path, int oflag, int mode) {
4430   char pathbuf[MAX_PATH];
4431 
4432   if (strlen(path) > MAX_PATH - 1) {
4433     errno = ENAMETOOLONG;
4434     return -1;
4435   }
4436   os::native_path(strcpy(pathbuf, path));
4437   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4438 }
4439 
4440 FILE* os::open(int fd, const char* mode) {
4441   return ::_fdopen(fd, mode);
4442 }
4443 
4444 // Is a (classpath) directory empty?
4445 bool os::dir_is_empty(const char* path) {
4446   WIN32_FIND_DATA fd;
4447   HANDLE f = FindFirstFile(path, &fd);
4448   if (f == INVALID_HANDLE_VALUE) {
4449     return true;
4450   }
4451   FindClose(f);
4452   return false;
4453 }
4454 
4455 // create binary file, rewriting existing file if required
4456 int os::create_binary_file(const char* path, bool rewrite_existing) {
4457   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4458   if (!rewrite_existing) {
4459     oflags |= _O_EXCL;
4460   }
4461   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4462 }
4463 
4464 // return current position of file pointer
4465 jlong os::current_file_offset(int fd) {
4466   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4467 }
4468 
4469 // move file pointer to the specified offset
4470 jlong os::seek_to_file_offset(int fd, jlong offset) {
4471   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4472 }
4473 
4474 
4475 jlong os::lseek(int fd, jlong offset, int whence) {
4476   return (jlong) ::_lseeki64(fd, offset, whence);
4477 }
4478 
4479 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4480   OVERLAPPED ov;
4481   DWORD nread;
4482   BOOL result;
4483 
4484   ZeroMemory(&ov, sizeof(ov));
4485   ov.Offset = (DWORD)offset;
4486   ov.OffsetHigh = (DWORD)(offset >> 32);
4487 
4488   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4489 
4490   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4491 
4492   return result ? nread : 0;
4493 }
4494 
4495 
4496 // This method is a slightly reworked copy of JDK's sysNativePath
4497 // from src/windows/hpi/src/path_md.c
4498 
4499 // Convert a pathname to native format.  On win32, this involves forcing all
4500 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4501 // sometimes rejects '/') and removing redundant separators.  The input path is
4502 // assumed to have been converted into the character encoding used by the local
4503 // system.  Because this might be a double-byte encoding, care is taken to
4504 // treat double-byte lead characters correctly.
4505 //
4506 // This procedure modifies the given path in place, as the result is never
4507 // longer than the original.  There is no error return; this operation always
4508 // succeeds.
4509 char * os::native_path(char *path) {
4510   char *src = path, *dst = path, *end = path;
4511   char *colon = NULL;  // If a drive specifier is found, this will
4512                        // point to the colon following the drive letter
4513 
4514   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4515   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4516           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4517 
4518   // Check for leading separators
4519 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4520   while (isfilesep(*src)) {
4521     src++;
4522   }
4523 
4524   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4525     // Remove leading separators if followed by drive specifier.  This
4526     // hack is necessary to support file URLs containing drive
4527     // specifiers (e.g., "file://c:/path").  As a side effect,
4528     // "/c:/path" can be used as an alternative to "c:/path".
4529     *dst++ = *src++;
4530     colon = dst;
4531     *dst++ = ':';
4532     src++;
4533   } else {
4534     src = path;
4535     if (isfilesep(src[0]) && isfilesep(src[1])) {
4536       // UNC pathname: Retain first separator; leave src pointed at
4537       // second separator so that further separators will be collapsed
4538       // into the second separator.  The result will be a pathname
4539       // beginning with "\\\\" followed (most likely) by a host name.
4540       src = dst = path + 1;
4541       path[0] = '\\';     // Force first separator to '\\'
4542     }
4543   }
4544 
4545   end = dst;
4546 
4547   // Remove redundant separators from remainder of path, forcing all
4548   // separators to be '\\' rather than '/'. Also, single byte space
4549   // characters are removed from the end of the path because those
4550   // are not legal ending characters on this operating system.
4551   //
4552   while (*src != '\0') {
4553     if (isfilesep(*src)) {
4554       *dst++ = '\\'; src++;
4555       while (isfilesep(*src)) src++;
4556       if (*src == '\0') {
4557         // Check for trailing separator
4558         end = dst;
4559         if (colon == dst - 2) break;  // "z:\\"
4560         if (dst == path + 1) break;   // "\\"
4561         if (dst == path + 2 && isfilesep(path[0])) {
4562           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4563           // beginning of a UNC pathname.  Even though it is not, by
4564           // itself, a valid UNC pathname, we leave it as is in order
4565           // to be consistent with the path canonicalizer as well
4566           // as the win32 APIs, which treat this case as an invalid
4567           // UNC pathname rather than as an alias for the root
4568           // directory of the current drive.
4569           break;
4570         }
4571         end = --dst;  // Path does not denote a root directory, so
4572                       // remove trailing separator
4573         break;
4574       }
4575       end = dst;
4576     } else {
4577       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4578         *dst++ = *src++;
4579         if (*src) *dst++ = *src++;
4580         end = dst;
4581       } else {  // Copy a single-byte character
4582         char c = *src++;
4583         *dst++ = c;
4584         // Space is not a legal ending character
4585         if (c != ' ') end = dst;
4586       }
4587     }
4588   }
4589 
4590   *end = '\0';
4591 
4592   // For "z:", add "." to work around a bug in the C runtime library
4593   if (colon == dst - 1) {
4594     path[2] = '.';
4595     path[3] = '\0';
4596   }
4597 
4598   return path;
4599 }
4600 
4601 // This code is a copy of JDK's sysSetLength
4602 // from src/windows/hpi/src/sys_api_md.c
4603 
4604 int os::ftruncate(int fd, jlong length) {
4605   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4606   long high = (long)(length >> 32);
4607   DWORD ret;
4608 
4609   if (h == (HANDLE)(-1)) {
4610     return -1;
4611   }
4612 
4613   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4614   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4615     return -1;
4616   }
4617 
4618   if (::SetEndOfFile(h) == FALSE) {
4619     return -1;
4620   }
4621 
4622   return 0;
4623 }
4624 
4625 
4626 // This code is a copy of JDK's sysSync
4627 // from src/windows/hpi/src/sys_api_md.c
4628 // except for the legacy workaround for a bug in Win 98
4629 
4630 int os::fsync(int fd) {
4631   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4632 
4633   if ((!::FlushFileBuffers(handle)) &&
4634       (GetLastError() != ERROR_ACCESS_DENIED)) {
4635     // from winerror.h
4636     return -1;
4637   }
4638   return 0;
4639 }
4640 
4641 static int nonSeekAvailable(int, long *);
4642 static int stdinAvailable(int, long *);
4643 
4644 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4645 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4646 
4647 // This code is a copy of JDK's sysAvailable
4648 // from src/windows/hpi/src/sys_api_md.c
4649 
4650 int os::available(int fd, jlong *bytes) {
4651   jlong cur, end;
4652   struct _stati64 stbuf64;
4653 
4654   if (::_fstati64(fd, &stbuf64) >= 0) {
4655     int mode = stbuf64.st_mode;
4656     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4657       int ret;
4658       long lpbytes;
4659       if (fd == 0) {
4660         ret = stdinAvailable(fd, &lpbytes);
4661       } else {
4662         ret = nonSeekAvailable(fd, &lpbytes);
4663       }
4664       (*bytes) = (jlong)(lpbytes);
4665       return ret;
4666     }
4667     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4668       return FALSE;
4669     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4670       return FALSE;
4671     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4672       return FALSE;
4673     }
4674     *bytes = end - cur;
4675     return TRUE;
4676   } else {
4677     return FALSE;
4678   }
4679 }
4680 
4681 // This code is a copy of JDK's nonSeekAvailable
4682 // from src/windows/hpi/src/sys_api_md.c
4683 
4684 static int nonSeekAvailable(int fd, long *pbytes) {
4685   // This is used for available on non-seekable devices
4686   // (like both named and anonymous pipes, such as pipes
4687   //  connected to an exec'd process).
4688   // Standard Input is a special case.
4689   HANDLE han;
4690 
4691   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4692     return FALSE;
4693   }
4694 
4695   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4696     // PeekNamedPipe fails when at EOF.  In that case we
4697     // simply make *pbytes = 0 which is consistent with the
4698     // behavior we get on Solaris when an fd is at EOF.
4699     // The only alternative is to raise an Exception,
4700     // which isn't really warranted.
4701     //
4702     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4703       return FALSE;
4704     }
4705     *pbytes = 0;
4706   }
4707   return TRUE;
4708 }
4709 
4710 #define MAX_INPUT_EVENTS 2000
4711 
4712 // This code is a copy of JDK's stdinAvailable
4713 // from src/windows/hpi/src/sys_api_md.c
4714 
4715 static int stdinAvailable(int fd, long *pbytes) {
4716   HANDLE han;
4717   DWORD numEventsRead = 0;  // Number of events read from buffer
4718   DWORD numEvents = 0;      // Number of events in buffer
4719   DWORD i = 0;              // Loop index
4720   DWORD curLength = 0;      // Position marker
4721   DWORD actualLength = 0;   // Number of bytes readable
4722   BOOL error = FALSE;       // Error holder
4723   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4724 
4725   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4726     return FALSE;
4727   }
4728 
4729   // Construct an array of input records in the console buffer
4730   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4731   if (error == 0) {
4732     return nonSeekAvailable(fd, pbytes);
4733   }
4734 
4735   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4736   if (numEvents > MAX_INPUT_EVENTS) {
4737     numEvents = MAX_INPUT_EVENTS;
4738   }
4739 
4740   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4741   if (lpBuffer == NULL) {
4742     return FALSE;
4743   }
4744 
4745   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4746   if (error == 0) {
4747     os::free(lpBuffer);
4748     return FALSE;
4749   }
4750 
4751   // Examine input records for the number of bytes available
4752   for (i=0; i<numEvents; i++) {
4753     if (lpBuffer[i].EventType == KEY_EVENT) {
4754 
4755       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4756                                       &(lpBuffer[i].Event);
4757       if (keyRecord->bKeyDown == TRUE) {
4758         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4759         curLength++;
4760         if (*keyPressed == '\r') {
4761           actualLength = curLength;
4762         }
4763       }
4764     }
4765   }
4766 
4767   if (lpBuffer != NULL) {
4768     os::free(lpBuffer);
4769   }
4770 
4771   *pbytes = (long) actualLength;
4772   return TRUE;
4773 }
4774 
4775 // Map a block of memory.
4776 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4777                         char *addr, size_t bytes, bool read_only,
4778                         bool allow_exec) {
4779   HANDLE hFile;
4780   char* base;
4781 
4782   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4783                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4784   if (hFile == NULL) {
4785     if (PrintMiscellaneous && Verbose) {
4786       DWORD err = GetLastError();
4787       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4788     }
4789     return NULL;
4790   }
4791 
4792   if (allow_exec) {
4793     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4794     // unless it comes from a PE image (which the shared archive is not.)
4795     // Even VirtualProtect refuses to give execute access to mapped memory
4796     // that was not previously executable.
4797     //
4798     // Instead, stick the executable region in anonymous memory.  Yuck.
4799     // Penalty is that ~4 pages will not be shareable - in the future
4800     // we might consider DLLizing the shared archive with a proper PE
4801     // header so that mapping executable + sharing is possible.
4802 
4803     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4804                                 PAGE_READWRITE);
4805     if (base == NULL) {
4806       if (PrintMiscellaneous && Verbose) {
4807         DWORD err = GetLastError();
4808         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4809       }
4810       CloseHandle(hFile);
4811       return NULL;
4812     }
4813 
4814     DWORD bytes_read;
4815     OVERLAPPED overlapped;
4816     overlapped.Offset = (DWORD)file_offset;
4817     overlapped.OffsetHigh = 0;
4818     overlapped.hEvent = NULL;
4819     // ReadFile guarantees that if the return value is true, the requested
4820     // number of bytes were read before returning.
4821     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4822     if (!res) {
4823       if (PrintMiscellaneous && Verbose) {
4824         DWORD err = GetLastError();
4825         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4826       }
4827       release_memory(base, bytes);
4828       CloseHandle(hFile);
4829       return NULL;
4830     }
4831   } else {
4832     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4833                                     NULL /* file_name */);
4834     if (hMap == NULL) {
4835       if (PrintMiscellaneous && Verbose) {
4836         DWORD err = GetLastError();
4837         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4838       }
4839       CloseHandle(hFile);
4840       return NULL;
4841     }
4842 
4843     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4844     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4845                                   (DWORD)bytes, addr);
4846     if (base == NULL) {
4847       if (PrintMiscellaneous && Verbose) {
4848         DWORD err = GetLastError();
4849         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4850       }
4851       CloseHandle(hMap);
4852       CloseHandle(hFile);
4853       return NULL;
4854     }
4855 
4856     if (CloseHandle(hMap) == 0) {
4857       if (PrintMiscellaneous && Verbose) {
4858         DWORD err = GetLastError();
4859         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4860       }
4861       CloseHandle(hFile);
4862       return base;
4863     }
4864   }
4865 
4866   if (allow_exec) {
4867     DWORD old_protect;
4868     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4869     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4870 
4871     if (!res) {
4872       if (PrintMiscellaneous && Verbose) {
4873         DWORD err = GetLastError();
4874         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4875       }
4876       // Don't consider this a hard error, on IA32 even if the
4877       // VirtualProtect fails, we should still be able to execute
4878       CloseHandle(hFile);
4879       return base;
4880     }
4881   }
4882 
4883   if (CloseHandle(hFile) == 0) {
4884     if (PrintMiscellaneous && Verbose) {
4885       DWORD err = GetLastError();
4886       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4887     }
4888     return base;
4889   }
4890 
4891   return base;
4892 }
4893 
4894 
4895 // Remap a block of memory.
4896 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4897                           char *addr, size_t bytes, bool read_only,
4898                           bool allow_exec) {
4899   // This OS does not allow existing memory maps to be remapped so we
4900   // have to unmap the memory before we remap it.
4901   if (!os::unmap_memory(addr, bytes)) {
4902     return NULL;
4903   }
4904 
4905   // There is a very small theoretical window between the unmap_memory()
4906   // call above and the map_memory() call below where a thread in native
4907   // code may be able to access an address that is no longer mapped.
4908 
4909   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4910                         read_only, allow_exec);
4911 }
4912 
4913 
4914 // Unmap a block of memory.
4915 // Returns true=success, otherwise false.
4916 
4917 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4918   MEMORY_BASIC_INFORMATION mem_info;
4919   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4920     if (PrintMiscellaneous && Verbose) {
4921       DWORD err = GetLastError();
4922       tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4923     }
4924     return false;
4925   }
4926 
4927   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4928   // Instead, executable region was allocated using VirtualAlloc(). See
4929   // pd_map_memory() above.
4930   //
4931   // The following flags should match the 'exec_access' flages used for
4932   // VirtualProtect() in pd_map_memory().
4933   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4934       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4935     return pd_release_memory(addr, bytes);
4936   }
4937 
4938   BOOL result = UnmapViewOfFile(addr);
4939   if (result == 0) {
4940     if (PrintMiscellaneous && Verbose) {
4941       DWORD err = GetLastError();
4942       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4943     }
4944     return false;
4945   }
4946   return true;
4947 }
4948 
4949 void os::pause() {
4950   char filename[MAX_PATH];
4951   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4952     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4953   } else {
4954     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4955   }
4956 
4957   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4958   if (fd != -1) {
4959     struct stat buf;
4960     ::close(fd);
4961     while (::stat(filename, &buf) == 0) {
4962       Sleep(100);
4963     }
4964   } else {
4965     jio_fprintf(stderr,
4966                 "Could not open pause file '%s', continuing immediately.\n", filename);
4967   }
4968 }
4969 
4970 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4971   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4972 }
4973 
4974 // See the caveats for this class in os_windows.hpp
4975 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4976 // into this method and returns false. If no OS EXCEPTION was raised, returns
4977 // true.
4978 // The callback is supposed to provide the method that should be protected.
4979 //
4980 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4981   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4982   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4983          "crash_protection already set?");
4984 
4985   bool success = true;
4986   __try {
4987     WatcherThread::watcher_thread()->set_crash_protection(this);
4988     cb.call();
4989   } __except(EXCEPTION_EXECUTE_HANDLER) {
4990     // only for protection, nothing to do
4991     success = false;
4992   }
4993   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4994   return success;
4995 }
4996 
4997 // An Event wraps a win32 "CreateEvent" kernel handle.
4998 //
4999 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5000 //
5001 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5002 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5003 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5004 //     In addition, an unpark() operation might fetch the handle field, but the
5005 //     event could recycle between the fetch and the SetEvent() operation.
5006 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5007 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5008 //     on an stale but recycled handle would be harmless, but in practice this might
5009 //     confuse other non-Sun code, so it's not a viable approach.
5010 //
5011 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5012 //     with the Event.  The event handle is never closed.  This could be construed
5013 //     as handle leakage, but only up to the maximum # of threads that have been extant
5014 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5015 //     permit a process to have hundreds of thousands of open handles.
5016 //
5017 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5018 //     and release unused handles.
5019 //
5020 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5021 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5022 //
5023 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5024 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5025 //
5026 // We use (2).
5027 //
5028 // TODO-FIXME:
5029 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5030 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5031 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5032 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5033 //     into a single win32 CreateEvent() handle.
5034 //
5035 // Assumption:
5036 //    Only one parker can exist on an event, which is why we allocate
5037 //    them per-thread. Multiple unparkers can coexist.
5038 //
5039 // _Event transitions in park()
5040 //   -1 => -1 : illegal
5041 //    1 =>  0 : pass - return immediately
5042 //    0 => -1 : block; then set _Event to 0 before returning
5043 //
5044 // _Event transitions in unpark()
5045 //    0 => 1 : just return
5046 //    1 => 1 : just return
5047 //   -1 => either 0 or 1; must signal target thread
5048 //         That is, we can safely transition _Event from -1 to either
5049 //         0 or 1.
5050 //
5051 // _Event serves as a restricted-range semaphore.
5052 //   -1 : thread is blocked, i.e. there is a waiter
5053 //    0 : neutral: thread is running or ready,
5054 //        could have been signaled after a wait started
5055 //    1 : signaled - thread is running or ready
5056 //
5057 // Another possible encoding of _Event would be with
5058 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5059 //
5060 
5061 int os::PlatformEvent::park(jlong Millis) {
5062   // Transitions for _Event:
5063   //   -1 => -1 : illegal
5064   //    1 =>  0 : pass - return immediately
5065   //    0 => -1 : block; then set _Event to 0 before returning
5066 
5067   guarantee(_ParkHandle != NULL , "Invariant");
5068   guarantee(Millis > 0          , "Invariant");
5069 
5070   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5071   // the initial park() operation.
5072   // Consider: use atomic decrement instead of CAS-loop
5073 
5074   int v;
5075   for (;;) {
5076     v = _Event;
5077     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5078   }
5079   guarantee((v == 0) || (v == 1), "invariant");
5080   if (v != 0) return OS_OK;
5081 
5082   // Do this the hard way by blocking ...
5083   // TODO: consider a brief spin here, gated on the success of recent
5084   // spin attempts by this thread.
5085   //
5086   // We decompose long timeouts into series of shorter timed waits.
5087   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5088   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5089   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5090   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5091   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5092   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5093   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5094   // for the already waited time.  This policy does not admit any new outcomes.
5095   // In the future, however, we might want to track the accumulated wait time and
5096   // adjust Millis accordingly if we encounter a spurious wakeup.
5097 
5098   const int MAXTIMEOUT = 0x10000000;
5099   DWORD rv = WAIT_TIMEOUT;
5100   while (_Event < 0 && Millis > 0) {
5101     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5102     if (Millis > MAXTIMEOUT) {
5103       prd = MAXTIMEOUT;
5104     }
5105     rv = ::WaitForSingleObject(_ParkHandle, prd);
5106     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5107     if (rv == WAIT_TIMEOUT) {
5108       Millis -= prd;
5109     }
5110   }
5111   v = _Event;
5112   _Event = 0;
5113   // see comment at end of os::PlatformEvent::park() below:
5114   OrderAccess::fence();
5115   // If we encounter a nearly simultanous timeout expiry and unpark()
5116   // we return OS_OK indicating we awoke via unpark().
5117   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5118   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5119 }
5120 
5121 void os::PlatformEvent::park() {
5122   // Transitions for _Event:
5123   //   -1 => -1 : illegal
5124   //    1 =>  0 : pass - return immediately
5125   //    0 => -1 : block; then set _Event to 0 before returning
5126 
5127   guarantee(_ParkHandle != NULL, "Invariant");
5128   // Invariant: Only the thread associated with the Event/PlatformEvent
5129   // may call park().
5130   // Consider: use atomic decrement instead of CAS-loop
5131   int v;
5132   for (;;) {
5133     v = _Event;
5134     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5135   }
5136   guarantee((v == 0) || (v == 1), "invariant");
5137   if (v != 0) return;
5138 
5139   // Do this the hard way by blocking ...
5140   // TODO: consider a brief spin here, gated on the success of recent
5141   // spin attempts by this thread.
5142   while (_Event < 0) {
5143     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5144     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5145   }
5146 
5147   // Usually we'll find _Event == 0 at this point, but as
5148   // an optional optimization we clear it, just in case can
5149   // multiple unpark() operations drove _Event up to 1.
5150   _Event = 0;
5151   OrderAccess::fence();
5152   guarantee(_Event >= 0, "invariant");
5153 }
5154 
5155 void os::PlatformEvent::unpark() {
5156   guarantee(_ParkHandle != NULL, "Invariant");
5157 
5158   // Transitions for _Event:
5159   //    0 => 1 : just return
5160   //    1 => 1 : just return
5161   //   -1 => either 0 or 1; must signal target thread
5162   //         That is, we can safely transition _Event from -1 to either
5163   //         0 or 1.
5164   // See also: "Semaphores in Plan 9" by Mullender & Cox
5165   //
5166   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5167   // that it will take two back-to-back park() calls for the owning
5168   // thread to block. This has the benefit of forcing a spurious return
5169   // from the first park() call after an unpark() call which will help
5170   // shake out uses of park() and unpark() without condition variables.
5171 
5172   if (Atomic::xchg(1, &_Event) >= 0) return;
5173 
5174   ::SetEvent(_ParkHandle);
5175 }
5176 
5177 
5178 // JSR166
5179 // -------------------------------------------------------
5180 
5181 // The Windows implementation of Park is very straightforward: Basic
5182 // operations on Win32 Events turn out to have the right semantics to
5183 // use them directly. We opportunistically resuse the event inherited
5184 // from Monitor.
5185 
5186 void Parker::park(bool isAbsolute, jlong time) {
5187   guarantee(_ParkEvent != NULL, "invariant");
5188   // First, demultiplex/decode time arguments
5189   if (time < 0) { // don't wait
5190     return;
5191   } else if (time == 0 && !isAbsolute) {
5192     time = INFINITE;
5193   } else if (isAbsolute) {
5194     time -= os::javaTimeMillis(); // convert to relative time
5195     if (time <= 0) {  // already elapsed
5196       return;
5197     }
5198   } else { // relative
5199     time /= 1000000;  // Must coarsen from nanos to millis
5200     if (time == 0) {  // Wait for the minimal time unit if zero
5201       time = 1;
5202     }
5203   }
5204 
5205   JavaThread* thread = JavaThread::current();
5206 
5207   // Don't wait if interrupted or already triggered
5208   if (Thread::is_interrupted(thread, false) ||
5209       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5210     ResetEvent(_ParkEvent);
5211     return;
5212   } else {
5213     ThreadBlockInVM tbivm(thread);
5214     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5215     thread->set_suspend_equivalent();
5216 
5217     WaitForSingleObject(_ParkEvent, time);
5218     ResetEvent(_ParkEvent);
5219 
5220     // If externally suspended while waiting, re-suspend
5221     if (thread->handle_special_suspend_equivalent_condition()) {
5222       thread->java_suspend_self();
5223     }
5224   }
5225 }
5226 
5227 void Parker::unpark() {
5228   guarantee(_ParkEvent != NULL, "invariant");
5229   SetEvent(_ParkEvent);
5230 }
5231 
5232 // Run the specified command in a separate process. Return its exit value,
5233 // or -1 on failure (e.g. can't create a new process).
5234 int os::fork_and_exec(char* cmd) {
5235   STARTUPINFO si;
5236   PROCESS_INFORMATION pi;
5237 
5238   memset(&si, 0, sizeof(si));
5239   si.cb = sizeof(si);
5240   memset(&pi, 0, sizeof(pi));
5241   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5242                             cmd,    // command line
5243                             NULL,   // process security attribute
5244                             NULL,   // thread security attribute
5245                             TRUE,   // inherits system handles
5246                             0,      // no creation flags
5247                             NULL,   // use parent's environment block
5248                             NULL,   // use parent's starting directory
5249                             &si,    // (in) startup information
5250                             &pi);   // (out) process information
5251 
5252   if (rslt) {
5253     // Wait until child process exits.
5254     WaitForSingleObject(pi.hProcess, INFINITE);
5255 
5256     DWORD exit_code;
5257     GetExitCodeProcess(pi.hProcess, &exit_code);
5258 
5259     // Close process and thread handles.
5260     CloseHandle(pi.hProcess);
5261     CloseHandle(pi.hThread);
5262 
5263     return (int)exit_code;
5264   } else {
5265     return -1;
5266   }
5267 }
5268 
5269 //--------------------------------------------------------------------------------------------------
5270 // Non-product code
5271 
5272 static int mallocDebugIntervalCounter = 0;
5273 static int mallocDebugCounter = 0;
5274 bool os::check_heap(bool force) {
5275   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5276   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5277     // Note: HeapValidate executes two hardware breakpoints when it finds something
5278     // wrong; at these points, eax contains the address of the offending block (I think).
5279     // To get to the exlicit error message(s) below, just continue twice.
5280     //
5281     // Note:  we want to check the CRT heap, which is not necessarily located in the
5282     // process default heap.
5283     HANDLE heap = (HANDLE) _get_heap_handle();
5284     if (!heap) {
5285       return true;
5286     }
5287 
5288     // If we fail to lock the heap, then gflags.exe has been used
5289     // or some other special heap flag has been set that prevents
5290     // locking. We don't try to walk a heap we can't lock.
5291     if (HeapLock(heap) != 0) {
5292       PROCESS_HEAP_ENTRY phe;
5293       phe.lpData = NULL;
5294       while (HeapWalk(heap, &phe) != 0) {
5295         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5296             !HeapValidate(heap, 0, phe.lpData)) {
5297           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5298           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5299           HeapUnlock(heap);
5300           fatal("corrupted C heap");
5301         }
5302       }
5303       DWORD err = GetLastError();
5304       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5305         HeapUnlock(heap);
5306         fatal("heap walk aborted with error %d", err);
5307       }
5308       HeapUnlock(heap);
5309     }
5310     mallocDebugIntervalCounter = 0;
5311   }
5312   return true;
5313 }
5314 
5315 
5316 bool os::find(address addr, outputStream* st) {
5317   // Nothing yet
5318   return false;
5319 }
5320 
5321 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5322   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5323 
5324   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5325     JavaThread* thread = JavaThread::current();
5326     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5327     address addr = (address) exceptionRecord->ExceptionInformation[1];
5328 
5329     if (os::is_memory_serialize_page(thread, addr)) {
5330       return EXCEPTION_CONTINUE_EXECUTION;
5331     }
5332   }
5333 
5334   return EXCEPTION_CONTINUE_SEARCH;
5335 }
5336 
5337 // We don't build a headless jre for Windows
5338 bool os::is_headless_jre() { return false; }
5339 
5340 static jint initSock() {
5341   WSADATA wsadata;
5342 
5343   if (!os::WinSock2Dll::WinSock2Available()) {
5344     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5345                 ::GetLastError());
5346     return JNI_ERR;
5347   }
5348 
5349   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5350     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5351                 ::GetLastError());
5352     return JNI_ERR;
5353   }
5354   return JNI_OK;
5355 }
5356 
5357 struct hostent* os::get_host_by_name(char* name) {
5358   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5359 }
5360 
5361 int os::socket_close(int fd) {
5362   return ::closesocket(fd);
5363 }
5364 
5365 int os::socket(int domain, int type, int protocol) {
5366   return ::socket(domain, type, protocol);
5367 }
5368 
5369 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5370   return ::connect(fd, him, len);
5371 }
5372 
5373 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5374   return ::recv(fd, buf, (int)nBytes, flags);
5375 }
5376 
5377 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5378   return ::send(fd, buf, (int)nBytes, flags);
5379 }
5380 
5381 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5382   return ::send(fd, buf, (int)nBytes, flags);
5383 }
5384 
5385 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5386 #if defined(IA32)
5387   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5388 #elif defined (AMD64)
5389   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5390 #endif
5391 
5392 // returns true if thread could be suspended,
5393 // false otherwise
5394 static bool do_suspend(HANDLE* h) {
5395   if (h != NULL) {
5396     if (SuspendThread(*h) != ~0) {
5397       return true;
5398     }
5399   }
5400   return false;
5401 }
5402 
5403 // resume the thread
5404 // calling resume on an active thread is a no-op
5405 static void do_resume(HANDLE* h) {
5406   if (h != NULL) {
5407     ResumeThread(*h);
5408   }
5409 }
5410 
5411 // retrieve a suspend/resume context capable handle
5412 // from the tid. Caller validates handle return value.
5413 void get_thread_handle_for_extended_context(HANDLE* h,
5414                                             OSThread::thread_id_t tid) {
5415   if (h != NULL) {
5416     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5417   }
5418 }
5419 
5420 // Thread sampling implementation
5421 //
5422 void os::SuspendedThreadTask::internal_do_task() {
5423   CONTEXT    ctxt;
5424   HANDLE     h = NULL;
5425 
5426   // get context capable handle for thread
5427   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5428 
5429   // sanity
5430   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5431     return;
5432   }
5433 
5434   // suspend the thread
5435   if (do_suspend(&h)) {
5436     ctxt.ContextFlags = sampling_context_flags;
5437     // get thread context
5438     GetThreadContext(h, &ctxt);
5439     SuspendedThreadTaskContext context(_thread, &ctxt);
5440     // pass context to Thread Sampling impl
5441     do_task(context);
5442     // resume thread
5443     do_resume(&h);
5444   }
5445 
5446   // close handle
5447   CloseHandle(h);
5448 }
5449 
5450 
5451 // Kernel32 API
5452 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5453 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5454 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5455 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5456 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5457 
5458 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5459 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5460 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5461 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5462 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5463 
5464 
5465 BOOL                        os::Kernel32Dll::initialized = FALSE;
5466 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5467   assert(initialized && _GetLargePageMinimum != NULL,
5468          "GetLargePageMinimumAvailable() not yet called");
5469   return _GetLargePageMinimum();
5470 }
5471 
5472 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5473   if (!initialized) {
5474     initialize();
5475   }
5476   return _GetLargePageMinimum != NULL;
5477 }
5478 
5479 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5480   if (!initialized) {
5481     initialize();
5482   }
5483   return _VirtualAllocExNuma != NULL;
5484 }
5485 
5486 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5487                                            SIZE_T bytes, DWORD flags,
5488                                            DWORD prot, DWORD node) {
5489   assert(initialized && _VirtualAllocExNuma != NULL,
5490          "NUMACallsAvailable() not yet called");
5491 
5492   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5493 }
5494 
5495 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5496   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5497          "NUMACallsAvailable() not yet called");
5498 
5499   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5500 }
5501 
5502 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5503                                                PULONGLONG proc_mask) {
5504   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5505          "NUMACallsAvailable() not yet called");
5506 
5507   return _GetNumaNodeProcessorMask(node, proc_mask);
5508 }
5509 
5510 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5511                                                  ULONG FrameToCapture,
5512                                                  PVOID* BackTrace,
5513                                                  PULONG BackTraceHash) {
5514   if (!initialized) {
5515     initialize();
5516   }
5517 
5518   if (_RtlCaptureStackBackTrace != NULL) {
5519     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5520                                      BackTrace, BackTraceHash);
5521   } else {
5522     return 0;
5523   }
5524 }
5525 
5526 void os::Kernel32Dll::initializeCommon() {
5527   if (!initialized) {
5528     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5529     assert(handle != NULL, "Just check");
5530     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5531     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5532     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5533     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5534     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5535     initialized = TRUE;
5536   }
5537 }
5538 
5539 bool os::start_debugging(char *buf, int buflen) {
5540   int len = (int)strlen(buf);
5541   char *p = &buf[len];
5542 
5543   jio_snprintf(p, buflen-len,
5544              "\n\n"
5545              "Do you want to debug the problem?\n\n"
5546              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5547              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5548              "Otherwise, select 'No' to abort...",
5549              os::current_process_id(), os::current_thread_id());
5550 
5551   bool yes = os::message_box("Unexpected Error", buf);
5552 
5553   if (yes) {
5554     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5555     // exception. If VM is running inside a debugger, the debugger will
5556     // catch the exception. Otherwise, the breakpoint exception will reach
5557     // the default windows exception handler, which can spawn a debugger and
5558     // automatically attach to the dying VM.
5559     os::breakpoint();
5560     yes = false;
5561   }
5562   return yes;
5563 }
5564 
5565 void os::Kernel32Dll::initialize() {
5566   initializeCommon();
5567 }
5568 
5569 
5570 // Kernel32 API
5571 inline BOOL os::Kernel32Dll::SwitchToThread() {
5572   return ::SwitchToThread();
5573 }
5574 
5575 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5576   return true;
5577 }
5578 
5579 // Help tools
5580 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5581   return true;
5582 }
5583 
5584 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5585                                                         DWORD th32ProcessId) {
5586   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5587 }
5588 
5589 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5590                                            LPMODULEENTRY32 lpme) {
5591   return ::Module32First(hSnapshot, lpme);
5592 }
5593 
5594 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5595                                           LPMODULEENTRY32 lpme) {
5596   return ::Module32Next(hSnapshot, lpme);
5597 }
5598 
5599 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5600   ::GetNativeSystemInfo(lpSystemInfo);
5601 }
5602 
5603 // PSAPI API
5604 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5605                                              HMODULE *lpModule, DWORD cb,
5606                                              LPDWORD lpcbNeeded) {
5607   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5608 }
5609 
5610 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5611                                                HMODULE hModule,
5612                                                LPTSTR lpFilename,
5613                                                DWORD nSize) {
5614   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5615 }
5616 
5617 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5618                                                HMODULE hModule,
5619                                                LPMODULEINFO lpmodinfo,
5620                                                DWORD cb) {
5621   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5622 }
5623 
5624 inline BOOL os::PSApiDll::PSApiAvailable() {
5625   return true;
5626 }
5627 
5628 
5629 // WinSock2 API
5630 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5631                                         LPWSADATA lpWSAData) {
5632   return ::WSAStartup(wVersionRequested, lpWSAData);
5633 }
5634 
5635 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5636   return ::gethostbyname(name);
5637 }
5638 
5639 inline BOOL os::WinSock2Dll::WinSock2Available() {
5640   return true;
5641 }
5642 
5643 // Advapi API
5644 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5645                                                    BOOL DisableAllPrivileges,
5646                                                    PTOKEN_PRIVILEGES NewState,
5647                                                    DWORD BufferLength,
5648                                                    PTOKEN_PRIVILEGES PreviousState,
5649                                                    PDWORD ReturnLength) {
5650   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5651                                  BufferLength, PreviousState, ReturnLength);
5652 }
5653 
5654 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5655                                               DWORD DesiredAccess,
5656                                               PHANDLE TokenHandle) {
5657   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5658 }
5659 
5660 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5661                                                   LPCTSTR lpName,
5662                                                   PLUID lpLuid) {
5663   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5664 }
5665 
5666 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5667   return true;
5668 }
5669 
5670 void* os::get_default_process_handle() {
5671   return (void*)GetModuleHandle(NULL);
5672 }
5673 
5674 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5675 // which is used to find statically linked in agents.
5676 // Additionally for windows, takes into account __stdcall names.
5677 // Parameters:
5678 //            sym_name: Symbol in library we are looking for
5679 //            lib_name: Name of library to look in, NULL for shared libs.
5680 //            is_absolute_path == true if lib_name is absolute path to agent
5681 //                                     such as "C:/a/b/L.dll"
5682 //            == false if only the base name of the library is passed in
5683 //               such as "L"
5684 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5685                                     bool is_absolute_path) {
5686   char *agent_entry_name;
5687   size_t len;
5688   size_t name_len;
5689   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5690   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5691   const char *start;
5692 
5693   if (lib_name != NULL) {
5694     len = name_len = strlen(lib_name);
5695     if (is_absolute_path) {
5696       // Need to strip path, prefix and suffix
5697       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5698         lib_name = ++start;
5699       } else {
5700         // Need to check for drive prefix
5701         if ((start = strchr(lib_name, ':')) != NULL) {
5702           lib_name = ++start;
5703         }
5704       }
5705       if (len <= (prefix_len + suffix_len)) {
5706         return NULL;
5707       }
5708       lib_name += prefix_len;
5709       name_len = strlen(lib_name) - suffix_len;
5710     }
5711   }
5712   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5713   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5714   if (agent_entry_name == NULL) {
5715     return NULL;
5716   }
5717   if (lib_name != NULL) {
5718     const char *p = strrchr(sym_name, '@');
5719     if (p != NULL && p != sym_name) {
5720       // sym_name == _Agent_OnLoad@XX
5721       strncpy(agent_entry_name, sym_name, (p - sym_name));
5722       agent_entry_name[(p-sym_name)] = '\0';
5723       // agent_entry_name == _Agent_OnLoad
5724       strcat(agent_entry_name, "_");
5725       strncat(agent_entry_name, lib_name, name_len);
5726       strcat(agent_entry_name, p);
5727       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5728     } else {
5729       strcpy(agent_entry_name, sym_name);
5730       strcat(agent_entry_name, "_");
5731       strncat(agent_entry_name, lib_name, name_len);
5732     }
5733   } else {
5734     strcpy(agent_entry_name, sym_name);
5735   }
5736   return agent_entry_name;
5737 }
5738 
5739 #ifndef PRODUCT
5740 
5741 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5742 // contiguous memory block at a particular address.
5743 // The test first tries to find a good approximate address to allocate at by using the same
5744 // method to allocate some memory at any address. The test then tries to allocate memory in
5745 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5746 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5747 // the previously allocated memory is available for allocation. The only actual failure
5748 // that is reported is when the test tries to allocate at a particular location but gets a
5749 // different valid one. A NULL return value at this point is not considered an error but may
5750 // be legitimate.
5751 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5752 void TestReserveMemorySpecial_test() {
5753   if (!UseLargePages) {
5754     if (VerboseInternalVMTests) {
5755       tty->print("Skipping test because large pages are disabled");
5756     }
5757     return;
5758   }
5759   // save current value of globals
5760   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5761   bool old_use_numa_interleaving = UseNUMAInterleaving;
5762 
5763   // set globals to make sure we hit the correct code path
5764   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5765 
5766   // do an allocation at an address selected by the OS to get a good one.
5767   const size_t large_allocation_size = os::large_page_size() * 4;
5768   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5769   if (result == NULL) {
5770     if (VerboseInternalVMTests) {
5771       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5772                           large_allocation_size);
5773     }
5774   } else {
5775     os::release_memory_special(result, large_allocation_size);
5776 
5777     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5778     // we managed to get it once.
5779     const size_t expected_allocation_size = os::large_page_size();
5780     char* expected_location = result + os::large_page_size();
5781     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5782     if (actual_location == NULL) {
5783       if (VerboseInternalVMTests) {
5784         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5785                             expected_location, large_allocation_size);
5786       }
5787     } else {
5788       // release memory
5789       os::release_memory_special(actual_location, expected_allocation_size);
5790       // only now check, after releasing any memory to avoid any leaks.
5791       assert(actual_location == expected_location,
5792              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5793              expected_location, expected_allocation_size, actual_location);
5794     }
5795   }
5796 
5797   // restore globals
5798   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5799   UseNUMAInterleaving = old_use_numa_interleaving;
5800 }
5801 #endif // PRODUCT
5802 
5803 /*
5804   All the defined signal names for Windows.
5805 
5806   NOTE that not all of these names are accepted by FindSignal!
5807 
5808   For various reasons some of these may be rejected at runtime.
5809 
5810   Here are the names currently accepted by a user of sun.misc.Signal with
5811   1.4.1 (ignoring potential interaction with use of chaining, etc):
5812 
5813      (LIST TBD)
5814 
5815 */
5816 int os::get_signal_number(const char* name) {
5817   static const struct {
5818     char* name;
5819     int   number;
5820   } siglabels [] =
5821     // derived from version 6.0 VC98/include/signal.h
5822   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5823   "FPE",        SIGFPE,         // floating point exception
5824   "SEGV",       SIGSEGV,        // segment violation
5825   "INT",        SIGINT,         // interrupt
5826   "TERM",       SIGTERM,        // software term signal from kill
5827   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5828   "ILL",        SIGILL};        // illegal instruction
5829   for(int i=0;i<sizeof(siglabels)/sizeof(struct siglabel);i++)
5830     if(!strcmp(name, siglabels[i].name))
5831       return siglabels[i].number;
5832   return -1;
5833 }
5834 
5835 // Fast current thread access
5836 
5837 int os::win32::_thread_ptr_offset = 0;
5838 
5839 static void call_wrapper_dummy() {}
5840 
5841 // We need to call the os_exception_wrapper once so that it sets
5842 // up the offset from FS of the thread pointer.
5843 void os::win32::initialize_thread_ptr_offset() {
5844   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5845                            NULL, NULL, NULL, NULL);
5846 }