1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class G1CMBitMap;
  35 class G1CMTask;
  36 class G1ConcurrentMark;
  37 class ConcurrentGCTimer;
  38 class G1OldTracer;
  39 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  40 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  41 
  42 // Closure used by CM during concurrent reference discovery
  43 // and reference processing (during remarking) to determine
  44 // if a particular object is alive. It is primarily used
  45 // to determine if referents of discovered reference objects
  46 // are alive. An instance is also embedded into the
  47 // reference processor as the _is_alive_non_header field
  48 class G1CMIsAliveClosure: public BoolObjectClosure {
  49   G1CollectedHeap* _g1;
  50  public:
  51   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  52 
  53   bool do_object_b(oop obj);
  54 };
  55 
  56 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  57 // class, with one bit per (1<<_shifter) HeapWords.
  58 
  59 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  60  protected:
  61   HeapWord* _bmStartWord;      // base address of range covered by map
  62   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  63   const int _shifter;          // map to char or bit
  64   BitMap    _bm;               // the bit map itself
  65 
  66  public:
  67   // constructor
  68   G1CMBitMapRO(int shifter);
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   // the following is one past the last word in space
  73   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  74 
  75   // read marks
  76 
  77   bool isMarked(HeapWord* addr) const {
  78     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  79            "outside underlying space?");
  80     return _bm.at(heapWordToOffset(addr));
  81   }
  82 
  83   // iteration
  84   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  85 
  86   // Return the address corresponding to the next marked bit at or after
  87   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  88   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  89   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  90                                      const HeapWord* limit = NULL) const;
  91 
  92   // conversion utilities
  93   HeapWord* offsetToHeapWord(size_t offset) const {
  94     return _bmStartWord + (offset << _shifter);
  95   }
  96   size_t heapWordToOffset(const HeapWord* addr) const {
  97     return pointer_delta(addr, _bmStartWord) >> _shifter;
  98   }
  99 
 100   // The argument addr should be the start address of a valid object
 101   inline HeapWord* nextObject(HeapWord* addr);
 102 
 103   void print_on_error(outputStream* st, const char* prefix) const;
 104 
 105   // debugging
 106   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 107 };
 108 
 109 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 110  private:
 111   G1CMBitMap* _bm;
 112  public:
 113   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 114 
 115   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 116 
 117   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 118 };
 119 
 120 class G1CMBitMap : public G1CMBitMapRO {
 121  private:
 122   G1CMBitMapMappingChangedListener _listener;
 123 
 124  public:
 125   static size_t compute_size(size_t heap_size);
 126   // Returns the amount of bytes on the heap between two marks in the bitmap.
 127   static size_t mark_distance();
 128   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 129   // mark bitmap corresponds to. This is the same as the mark distance above.
 130   static size_t heap_map_factor() {
 131     return mark_distance();
 132   }
 133 
 134   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 135 
 136   // Initializes the underlying BitMap to cover the given area.
 137   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 138 
 139   // Write marks.
 140   inline void mark(HeapWord* addr);
 141   inline void clear(HeapWord* addr);
 142   inline bool parMark(HeapWord* addr);
 143 
 144   void clearRange(MemRegion mr);
 145 
 146   // Clear the whole mark bitmap.
 147   void clearAll();
 148 };
 149 
 150 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 151 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 152   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 153   G1ConcurrentMark* _cm;
 154   oop* _base;        // bottom of stack
 155   jint _index;       // one more than last occupied index
 156   jint _capacity;    // max #elements
 157   jint _saved_index; // value of _index saved at start of GC
 158 
 159   bool  _overflow;
 160   bool  _should_expand;
 161 
 162  public:
 163   G1CMMarkStack(G1ConcurrentMark* cm);
 164   ~G1CMMarkStack();
 165 
 166   bool allocate(size_t capacity);
 167 
 168   // Pushes the first "n" elements of "ptr_arr" on the stack.
 169   // Locking impl: concurrency is allowed only with
 170   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 171   // locking strategy.
 172   void par_push_arr(oop* ptr_arr, int n);
 173 
 174   // If returns false, the array was empty.  Otherwise, removes up to "max"
 175   // elements from the stack, and transfers them to "ptr_arr" in an
 176   // unspecified order.  The actual number transferred is given in "n" ("n
 177   // == 0" is deliberately redundant with the return value.)  Locking impl:
 178   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 179   // operations, which use the same locking strategy.
 180   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 181 
 182   bool isEmpty()    { return _index == 0; }
 183   int  maxElems()   { return _capacity; }
 184 
 185   bool overflow() { return _overflow; }
 186   void clear_overflow() { _overflow = false; }
 187 
 188   bool should_expand() const { return _should_expand; }
 189   void set_should_expand();
 190 
 191   // Expand the stack, typically in response to an overflow condition
 192   void expand();
 193 
 194   int  size() { return _index; }
 195 
 196   void setEmpty()   { _index = 0; clear_overflow(); }
 197 
 198   // Record the current index.
 199   void note_start_of_gc();
 200 
 201   // Make sure that we have not added any entries to the stack during GC.
 202   void note_end_of_gc();
 203 
 204   // Apply fn to each oop in the mark stack, up to the bound recorded
 205   // via one of the above "note" functions.  The mark stack must not
 206   // be modified while iterating.
 207   template<typename Fn> void iterate(Fn fn);
 208 };
 209 
 210 class YoungList;
 211 
 212 // Root Regions are regions that are not empty at the beginning of a
 213 // marking cycle and which we might collect during an evacuation pause
 214 // while the cycle is active. Given that, during evacuation pauses, we
 215 // do not copy objects that are explicitly marked, what we have to do
 216 // for the root regions is to scan them and mark all objects reachable
 217 // from them. According to the SATB assumptions, we only need to visit
 218 // each object once during marking. So, as long as we finish this scan
 219 // before the next evacuation pause, we can copy the objects from the
 220 // root regions without having to mark them or do anything else to them.
 221 //
 222 // Currently, we only support root region scanning once (at the start
 223 // of the marking cycle) and the root regions are all the survivor
 224 // regions populated during the initial-mark pause.
 225 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 226 private:
 227   YoungList*           _young_list;
 228   G1ConcurrentMark*    _cm;
 229 
 230   volatile bool        _scan_in_progress;
 231   volatile bool        _should_abort;
 232   HeapRegion* volatile _next_survivor;
 233 
 234   void notify_scan_done();
 235 
 236 public:
 237   G1CMRootRegions();
 238   // We actually do most of the initialization in this method.
 239   void init(G1CollectedHeap* g1h, G1ConcurrentMark* cm);
 240 
 241   // Reset the claiming / scanning of the root regions.
 242   void prepare_for_scan();
 243 
 244   // Forces get_next() to return NULL so that the iteration aborts early.
 245   void abort() { _should_abort = true; }
 246 
 247   // Return true if the CM thread are actively scanning root regions,
 248   // false otherwise.
 249   bool scan_in_progress() { return _scan_in_progress; }
 250 
 251   // Claim the next root region to scan atomically, or return NULL if
 252   // all have been claimed.
 253   HeapRegion* claim_next();
 254 
 255   void cancel_scan();
 256 
 257   // Flag that we're done with root region scanning and notify anyone
 258   // who's waiting on it. If aborted is false, assume that all regions
 259   // have been claimed.
 260   void scan_finished();
 261 
 262   // If CM threads are still scanning root regions, wait until they
 263   // are done. Return true if we had to wait, false otherwise.
 264   bool wait_until_scan_finished();
 265 };
 266 
 267 class ConcurrentMarkThread;
 268 
 269 class G1ConcurrentMark: public CHeapObj<mtGC> {
 270   friend class ConcurrentMarkThread;
 271   friend class G1ParNoteEndTask;
 272   friend class CalcLiveObjectsClosure;
 273   friend class G1CMRefProcTaskProxy;
 274   friend class G1CMRefProcTaskExecutor;
 275   friend class G1CMKeepAliveAndDrainClosure;
 276   friend class G1CMDrainMarkingStackClosure;
 277   friend class G1CMBitMapClosure;
 278   friend class G1CMConcurrentMarkingTask;
 279   friend class G1CMMarkStack;
 280   friend class G1CMRemarkTask;
 281   friend class G1CMTask;
 282 
 283 protected:
 284   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 285   G1CollectedHeap*      _g1h;        // The heap
 286   uint                  _parallel_marking_threads; // The number of marking
 287                                                    // threads we're using
 288   uint                  _max_parallel_marking_threads; // Max number of marking
 289                                                        // threads we'll ever use
 290   double                _sleep_factor; // How much we have to sleep, with
 291                                        // respect to the work we just did, to
 292                                        // meet the marking overhead goal
 293   double                _marking_task_overhead; // Marking target overhead for
 294                                                 // a single task
 295 
 296   FreeRegionList        _cleanup_list;
 297 
 298   // Concurrent marking support structures
 299   G1CMBitMap              _markBitMap1;
 300   G1CMBitMap              _markBitMap2;
 301   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 302   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 303 
 304   BitMap                  _region_bm;
 305   BitMap                  _card_bm;
 306 
 307   // Heap bounds
 308   HeapWord*               _heap_start;
 309   HeapWord*               _heap_end;
 310 
 311   // Root region tracking and claiming
 312   G1CMRootRegions         _root_regions;
 313 
 314   // For gray objects
 315   G1CMMarkStack           _markStack; // Grey objects behind global finger
 316   HeapWord* volatile      _finger;  // The global finger, region aligned,
 317                                     // always points to the end of the
 318                                     // last claimed region
 319 
 320   // Marking tasks
 321   uint                    _max_worker_id;// Maximum worker id
 322   uint                    _active_tasks; // Task num currently active
 323   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 324   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 325   ParallelTaskTerminator  _terminator;   // For termination
 326 
 327   // Two sync barriers that are used to synchronize tasks when an
 328   // overflow occurs. The algorithm is the following. All tasks enter
 329   // the first one to ensure that they have all stopped manipulating
 330   // the global data structures. After they exit it, they re-initialize
 331   // their data structures and task 0 re-initializes the global data
 332   // structures. Then, they enter the second sync barrier. This
 333   // ensure, that no task starts doing work before all data
 334   // structures (local and global) have been re-initialized. When they
 335   // exit it, they are free to start working again.
 336   WorkGangBarrierSync     _first_overflow_barrier_sync;
 337   WorkGangBarrierSync     _second_overflow_barrier_sync;
 338 
 339   // This is set by any task, when an overflow on the global data
 340   // structures is detected
 341   volatile bool           _has_overflown;
 342   // True: marking is concurrent, false: we're in remark
 343   volatile bool           _concurrent;
 344   // Set at the end of a Full GC so that marking aborts
 345   volatile bool           _has_aborted;
 346 
 347   // Used when remark aborts due to an overflow to indicate that
 348   // another concurrent marking phase should start
 349   volatile bool           _restart_for_overflow;
 350 
 351   // This is true from the very start of concurrent marking until the
 352   // point when all the tasks complete their work. It is really used
 353   // to determine the points between the end of concurrent marking and
 354   // time of remark.
 355   volatile bool           _concurrent_marking_in_progress;
 356 
 357   ConcurrentGCTimer*      _gc_timer_cm;
 358 
 359   G1OldTracer*            _gc_tracer_cm;
 360 
 361   // All of these times are in ms
 362   NumberSeq _init_times;
 363   NumberSeq _remark_times;
 364   NumberSeq _remark_mark_times;
 365   NumberSeq _remark_weak_ref_times;
 366   NumberSeq _cleanup_times;
 367   double    _total_counting_time;
 368   double    _total_rs_scrub_time;
 369 
 370   double*   _accum_task_vtime;   // Accumulated task vtime
 371 
 372   WorkGang* _parallel_workers;
 373 
 374   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 375   void weakRefsWork(bool clear_all_soft_refs);
 376 
 377   void swapMarkBitMaps();
 378 
 379   // It resets the global marking data structures, as well as the
 380   // task local ones; should be called during initial mark.
 381   void reset();
 382 
 383   // Resets all the marking data structures. Called when we have to restart
 384   // marking or when marking completes (via set_non_marking_state below).
 385   void reset_marking_state(bool clear_overflow = true);
 386 
 387   // We do this after we're done with marking so that the marking data
 388   // structures are initialized to a sensible and predictable state.
 389   void set_non_marking_state();
 390 
 391   // Called to indicate how many threads are currently active.
 392   void set_concurrency(uint active_tasks);
 393 
 394   // It should be called to indicate which phase we're in (concurrent
 395   // mark or remark) and how many threads are currently active.
 396   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 397 
 398   // Prints all gathered CM-related statistics
 399   void print_stats();
 400 
 401   bool cleanup_list_is_empty() {
 402     return _cleanup_list.is_empty();
 403   }
 404 
 405   // Accessor methods
 406   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 407   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 408   double sleep_factor()                     { return _sleep_factor; }
 409   double marking_task_overhead()            { return _marking_task_overhead;}
 410 
 411   HeapWord*               finger()          { return _finger;   }
 412   bool                    concurrent()      { return _concurrent; }
 413   uint                    active_tasks()    { return _active_tasks; }
 414   ParallelTaskTerminator* terminator()      { return &_terminator; }
 415 
 416   // It claims the next available region to be scanned by a marking
 417   // task/thread. It might return NULL if the next region is empty or
 418   // we have run out of regions. In the latter case, out_of_regions()
 419   // determines whether we've really run out of regions or the task
 420   // should call claim_region() again. This might seem a bit
 421   // awkward. Originally, the code was written so that claim_region()
 422   // either successfully returned with a non-empty region or there
 423   // were no more regions to be claimed. The problem with this was
 424   // that, in certain circumstances, it iterated over large chunks of
 425   // the heap finding only empty regions and, while it was working, it
 426   // was preventing the calling task to call its regular clock
 427   // method. So, this way, each task will spend very little time in
 428   // claim_region() and is allowed to call the regular clock method
 429   // frequently.
 430   HeapRegion* claim_region(uint worker_id);
 431 
 432   // It determines whether we've run out of regions to scan. Note that
 433   // the finger can point past the heap end in case the heap was expanded
 434   // to satisfy an allocation without doing a GC. This is fine, because all
 435   // objects in those regions will be considered live anyway because of
 436   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 437   bool        out_of_regions() { return _finger >= _heap_end; }
 438 
 439   // Returns the task with the given id
 440   G1CMTask* task(int id) {
 441     assert(0 <= id && id < (int) _active_tasks,
 442            "task id not within active bounds");
 443     return _tasks[id];
 444   }
 445 
 446   // Returns the task queue with the given id
 447   G1CMTaskQueue* task_queue(int id) {
 448     assert(0 <= id && id < (int) _active_tasks,
 449            "task queue id not within active bounds");
 450     return (G1CMTaskQueue*) _task_queues->queue(id);
 451   }
 452 
 453   // Returns the task queue set
 454   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 455 
 456   // Access / manipulation of the overflow flag which is set to
 457   // indicate that the global stack has overflown
 458   bool has_overflown()           { return _has_overflown; }
 459   void set_has_overflown()       { _has_overflown = true; }
 460   void clear_has_overflown()     { _has_overflown = false; }
 461   bool restart_for_overflow()    { return _restart_for_overflow; }
 462 
 463   // Methods to enter the two overflow sync barriers
 464   void enter_first_sync_barrier(uint worker_id);
 465   void enter_second_sync_barrier(uint worker_id);
 466 
 467   // Live Data Counting data structures...
 468   // These data structures are initialized at the start of
 469   // marking. They are written to while marking is active.
 470   // They are aggregated during remark; the aggregated values
 471   // are then used to populate the _region_bm, _card_bm, and
 472   // the total live bytes, which are then subsequently updated
 473   // during cleanup.
 474 
 475   // An array of bitmaps (one bit map per task). Each bitmap
 476   // is used to record the cards spanned by the live objects
 477   // marked by that task/worker.
 478   BitMap*  _count_card_bitmaps;
 479 
 480   // Used to record the number of marked live bytes
 481   // (for each region, by worker thread).
 482   size_t** _count_marked_bytes;
 483 
 484   // Card index of the bottom of the G1 heap. Used for biasing indices into
 485   // the card bitmaps.
 486   intptr_t _heap_bottom_card_num;
 487 
 488   // Set to true when initialization is complete
 489   bool _completed_initialization;
 490 
 491   // end_timer, true to end gc timer after ending concurrent phase.
 492   void register_concurrent_phase_end_common(bool end_timer);
 493 
 494 public:
 495   // Manipulation of the global mark stack.
 496   // The push and pop operations are used by tasks for transfers
 497   // between task-local queues and the global mark stack, and use
 498   // locking for concurrency safety.
 499   bool mark_stack_push(oop* arr, int n) {
 500     _markStack.par_push_arr(arr, n);
 501     if (_markStack.overflow()) {
 502       set_has_overflown();
 503       return false;
 504     }
 505     return true;
 506   }
 507   void mark_stack_pop(oop* arr, int max, int* n) {
 508     _markStack.par_pop_arr(arr, max, n);
 509   }
 510   size_t mark_stack_size()                { return _markStack.size(); }
 511   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 512   bool mark_stack_overflow()              { return _markStack.overflow(); }
 513   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 514 
 515   G1CMRootRegions* root_regions() { return &_root_regions; }
 516 
 517   bool concurrent_marking_in_progress() {
 518     return _concurrent_marking_in_progress;
 519   }
 520   void set_concurrent_marking_in_progress() {
 521     _concurrent_marking_in_progress = true;
 522   }
 523   void clear_concurrent_marking_in_progress() {
 524     _concurrent_marking_in_progress = false;
 525   }
 526 
 527   void concurrent_cycle_start();
 528   void concurrent_cycle_end();
 529 
 530   void update_accum_task_vtime(int i, double vtime) {
 531     _accum_task_vtime[i] += vtime;
 532   }
 533 
 534   double all_task_accum_vtime() {
 535     double ret = 0.0;
 536     for (uint i = 0; i < _max_worker_id; ++i)
 537       ret += _accum_task_vtime[i];
 538     return ret;
 539   }
 540 
 541   // Attempts to steal an object from the task queues of other tasks
 542   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 543 
 544   G1ConcurrentMark(G1CollectedHeap* g1h,
 545                    G1RegionToSpaceMapper* prev_bitmap_storage,
 546                    G1RegionToSpaceMapper* next_bitmap_storage);
 547   ~G1ConcurrentMark();
 548 
 549   ConcurrentMarkThread* cmThread() { return _cmThread; }
 550 
 551   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 552   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 553 
 554   // Returns the number of GC threads to be used in a concurrent
 555   // phase based on the number of GC threads being used in a STW
 556   // phase.
 557   uint scale_parallel_threads(uint n_par_threads);
 558 
 559   // Calculates the number of GC threads to be used in a concurrent phase.
 560   uint calc_parallel_marking_threads();
 561 
 562   // The following three are interaction between CM and
 563   // G1CollectedHeap
 564 
 565   // This notifies CM that a root during initial-mark needs to be
 566   // grayed. It is MT-safe. word_size is the size of the object in
 567   // words. It is passed explicitly as sometimes we cannot calculate
 568   // it from the given object because it might be in an inconsistent
 569   // state (e.g., in to-space and being copied). So the caller is
 570   // responsible for dealing with this issue (e.g., get the size from
 571   // the from-space image when the to-space image might be
 572   // inconsistent) and always passing the size. hr is the region that
 573   // contains the object and it's passed optionally from callers who
 574   // might already have it (no point in recalculating it).
 575   inline void grayRoot(oop obj,
 576                        size_t word_size,
 577                        uint worker_id,
 578                        HeapRegion* hr = NULL);
 579 
 580   // Clear the next marking bitmap (will be called concurrently).
 581   void clearNextBitmap();
 582 
 583   // Return whether the next mark bitmap has no marks set. To be used for assertions
 584   // only. Will not yield to pause requests.
 585   bool nextMarkBitmapIsClear();
 586 
 587   // These two do the work that needs to be done before and after the
 588   // initial root checkpoint. Since this checkpoint can be done at two
 589   // different points (i.e. an explicit pause or piggy-backed on a
 590   // young collection), then it's nice to be able to easily share the
 591   // pre/post code. It might be the case that we can put everything in
 592   // the post method. TP
 593   void checkpointRootsInitialPre();
 594   void checkpointRootsInitialPost();
 595 
 596   // Scan all the root regions and mark everything reachable from
 597   // them.
 598   void scanRootRegions();
 599 
 600   // Scan a single root region and mark everything reachable from it.
 601   void scanRootRegion(HeapRegion* hr, uint worker_id);
 602 
 603   // Do concurrent phase of marking, to a tentative transitive closure.
 604   void markFromRoots();
 605 
 606   void checkpointRootsFinal(bool clear_all_soft_refs);
 607   void checkpointRootsFinalWork();
 608   void cleanup();
 609   void completeCleanup();
 610 
 611   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 612   // this carefully!
 613   inline void markPrev(oop p);
 614 
 615   // Clears marks for all objects in the given range, for the prev or
 616   // next bitmaps.  NB: the previous bitmap is usually
 617   // read-only, so use this carefully!
 618   void clearRangePrevBitmap(MemRegion mr);
 619 
 620   // Notify data structures that a GC has started.
 621   void note_start_of_gc() {
 622     _markStack.note_start_of_gc();
 623   }
 624 
 625   // Notify data structures that a GC is finished.
 626   void note_end_of_gc() {
 627     _markStack.note_end_of_gc();
 628   }
 629 
 630   // Verify that there are no CSet oops on the stacks (taskqueues /
 631   // global mark stack) and fingers (global / per-task).
 632   // If marking is not in progress, it's a no-op.
 633   void verify_no_cset_oops() PRODUCT_RETURN;
 634 
 635   inline bool isPrevMarked(oop p) const;
 636 
 637   inline bool do_yield_check(uint worker_i = 0);
 638 
 639   // Called to abort the marking cycle after a Full GC takes place.
 640   void abort();
 641 
 642   bool has_aborted()      { return _has_aborted; }
 643 
 644   void print_summary_info();
 645 
 646   void print_worker_threads_on(outputStream* st) const;
 647 
 648   void print_on_error(outputStream* st) const;
 649 
 650   // Liveness counting
 651 
 652   // Utility routine to set an exclusive range of cards on the given
 653   // card liveness bitmap
 654   inline void set_card_bitmap_range(BitMap* card_bm,
 655                                     BitMap::idx_t start_idx,
 656                                     BitMap::idx_t end_idx,
 657                                     bool is_par);
 658 
 659   // Returns the card number of the bottom of the G1 heap.
 660   // Used in biasing indices into accounting card bitmaps.
 661   intptr_t heap_bottom_card_num() const {
 662     return _heap_bottom_card_num;
 663   }
 664 
 665   // Returns the card bitmap for a given task or worker id.
 666   BitMap* count_card_bitmap_for(uint worker_id) {
 667     assert(worker_id < _max_worker_id, "oob");
 668     assert(_count_card_bitmaps != NULL, "uninitialized");
 669     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 670     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 671     return task_card_bm;
 672   }
 673 
 674   // Returns the array containing the marked bytes for each region,
 675   // for the given worker or task id.
 676   size_t* count_marked_bytes_array_for(uint worker_id) {
 677     assert(worker_id < _max_worker_id, "oob");
 678     assert(_count_marked_bytes != NULL, "uninitialized");
 679     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 680     assert(marked_bytes_array != NULL, "uninitialized");
 681     return marked_bytes_array;
 682   }
 683 
 684   // Returns the index in the liveness accounting card table bitmap
 685   // for the given address
 686   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 687 
 688   // Counts the size of the given memory region in the the given
 689   // marked_bytes array slot for the given HeapRegion.
 690   // Sets the bits in the given card bitmap that are associated with the
 691   // cards that are spanned by the memory region.
 692   inline void count_region(MemRegion mr,
 693                            HeapRegion* hr,
 694                            size_t* marked_bytes_array,
 695                            BitMap* task_card_bm);
 696 
 697   // Counts the given object in the given task/worker counting
 698   // data structures.
 699   inline void count_object(oop obj,
 700                            HeapRegion* hr,
 701                            size_t* marked_bytes_array,
 702                            BitMap* task_card_bm,
 703                            size_t word_size);
 704 
 705   // Attempts to mark the given object and, if successful, counts
 706   // the object in the given task/worker counting structures.
 707   inline bool par_mark_and_count(oop obj,
 708                                  HeapRegion* hr,
 709                                  size_t* marked_bytes_array,
 710                                  BitMap* task_card_bm);
 711 
 712   // Attempts to mark the given object and, if successful, counts
 713   // the object in the task/worker counting structures for the
 714   // given worker id.
 715   inline bool par_mark_and_count(oop obj,
 716                                  size_t word_size,
 717                                  HeapRegion* hr,
 718                                  uint worker_id);
 719 
 720   // Returns true if initialization was successfully completed.
 721   bool completed_initialization() const {
 722     return _completed_initialization;
 723   }
 724 
 725   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 726   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 727 
 728 protected:
 729   // Clear all the per-task bitmaps and arrays used to store the
 730   // counting data.
 731   void clear_all_count_data();
 732 
 733   // Aggregates the counting data for each worker/task
 734   // that was constructed while marking. Also sets
 735   // the amount of marked bytes for each region and
 736   // the top at concurrent mark count.
 737   void aggregate_count_data();
 738 
 739   // Verification routine
 740   void verify_count_data();
 741 };
 742 
 743 // A class representing a marking task.
 744 class G1CMTask : public TerminatorTerminator {
 745 private:
 746   enum PrivateConstants {
 747     // the regular clock call is called once the scanned words reaches
 748     // this limit
 749     words_scanned_period          = 12*1024,
 750     // the regular clock call is called once the number of visited
 751     // references reaches this limit
 752     refs_reached_period           = 384,
 753     // initial value for the hash seed, used in the work stealing code
 754     init_hash_seed                = 17,
 755     // how many entries will be transferred between global stack and
 756     // local queues
 757     global_stack_transfer_size    = 16
 758   };
 759 
 760   uint                        _worker_id;
 761   G1CollectedHeap*            _g1h;
 762   G1ConcurrentMark*           _cm;
 763   G1CMBitMap*                 _nextMarkBitMap;
 764   // the task queue of this task
 765   G1CMTaskQueue*              _task_queue;
 766 private:
 767   // the task queue set---needed for stealing
 768   G1CMTaskQueueSet*           _task_queues;
 769   // indicates whether the task has been claimed---this is only  for
 770   // debugging purposes
 771   bool                        _claimed;
 772 
 773   // number of calls to this task
 774   int                         _calls;
 775 
 776   // when the virtual timer reaches this time, the marking step should
 777   // exit
 778   double                      _time_target_ms;
 779   // the start time of the current marking step
 780   double                      _start_time_ms;
 781 
 782   // the oop closure used for iterations over oops
 783   G1CMOopClosure*             _cm_oop_closure;
 784 
 785   // the region this task is scanning, NULL if we're not scanning any
 786   HeapRegion*                 _curr_region;
 787   // the local finger of this task, NULL if we're not scanning a region
 788   HeapWord*                   _finger;
 789   // limit of the region this task is scanning, NULL if we're not scanning one
 790   HeapWord*                   _region_limit;
 791 
 792   // the number of words this task has scanned
 793   size_t                      _words_scanned;
 794   // When _words_scanned reaches this limit, the regular clock is
 795   // called. Notice that this might be decreased under certain
 796   // circumstances (i.e. when we believe that we did an expensive
 797   // operation).
 798   size_t                      _words_scanned_limit;
 799   // the initial value of _words_scanned_limit (i.e. what it was
 800   // before it was decreased).
 801   size_t                      _real_words_scanned_limit;
 802 
 803   // the number of references this task has visited
 804   size_t                      _refs_reached;
 805   // When _refs_reached reaches this limit, the regular clock is
 806   // called. Notice this this might be decreased under certain
 807   // circumstances (i.e. when we believe that we did an expensive
 808   // operation).
 809   size_t                      _refs_reached_limit;
 810   // the initial value of _refs_reached_limit (i.e. what it was before
 811   // it was decreased).
 812   size_t                      _real_refs_reached_limit;
 813 
 814   // used by the work stealing stuff
 815   int                         _hash_seed;
 816   // if this is true, then the task has aborted for some reason
 817   bool                        _has_aborted;
 818   // set when the task aborts because it has met its time quota
 819   bool                        _has_timed_out;
 820   // true when we're draining SATB buffers; this avoids the task
 821   // aborting due to SATB buffers being available (as we're already
 822   // dealing with them)
 823   bool                        _draining_satb_buffers;
 824 
 825   // number sequence of past step times
 826   NumberSeq                   _step_times_ms;
 827   // elapsed time of this task
 828   double                      _elapsed_time_ms;
 829   // termination time of this task
 830   double                      _termination_time_ms;
 831   // when this task got into the termination protocol
 832   double                      _termination_start_time_ms;
 833 
 834   // true when the task is during a concurrent phase, false when it is
 835   // in the remark phase (so, in the latter case, we do not have to
 836   // check all the things that we have to check during the concurrent
 837   // phase, i.e. SATB buffer availability...)
 838   bool                        _concurrent;
 839 
 840   TruncatedSeq                _marking_step_diffs_ms;
 841 
 842   // Counting data structures. Embedding the task's marked_bytes_array
 843   // and card bitmap into the actual task saves having to go through
 844   // the ConcurrentMark object.
 845   size_t*                     _marked_bytes_array;
 846   BitMap*                     _card_bm;
 847 
 848   // it updates the local fields after this task has claimed
 849   // a new region to scan
 850   void setup_for_region(HeapRegion* hr);
 851   // it brings up-to-date the limit of the region
 852   void update_region_limit();
 853 
 854   // called when either the words scanned or the refs visited limit
 855   // has been reached
 856   void reached_limit();
 857   // recalculates the words scanned and refs visited limits
 858   void recalculate_limits();
 859   // decreases the words scanned and refs visited limits when we reach
 860   // an expensive operation
 861   void decrease_limits();
 862   // it checks whether the words scanned or refs visited reached their
 863   // respective limit and calls reached_limit() if they have
 864   void check_limits() {
 865     if (_words_scanned >= _words_scanned_limit ||
 866         _refs_reached >= _refs_reached_limit) {
 867       reached_limit();
 868     }
 869   }
 870   // this is supposed to be called regularly during a marking step as
 871   // it checks a bunch of conditions that might cause the marking step
 872   // to abort
 873   void regular_clock_call();
 874   bool concurrent() { return _concurrent; }
 875 
 876   // Test whether obj might have already been passed over by the
 877   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 878   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 879 
 880   template<bool scan> void process_grey_object(oop obj);
 881 
 882 public:
 883   // It resets the task; it should be called right at the beginning of
 884   // a marking phase.
 885   void reset(G1CMBitMap* _nextMarkBitMap);
 886   // it clears all the fields that correspond to a claimed region.
 887   void clear_region_fields();
 888 
 889   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 890 
 891   // The main method of this class which performs a marking step
 892   // trying not to exceed the given duration. However, it might exit
 893   // prematurely, according to some conditions (i.e. SATB buffers are
 894   // available for processing).
 895   void do_marking_step(double target_ms,
 896                        bool do_termination,
 897                        bool is_serial);
 898 
 899   // These two calls start and stop the timer
 900   void record_start_time() {
 901     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 902   }
 903   void record_end_time() {
 904     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 905   }
 906 
 907   // returns the worker ID associated with this task.
 908   uint worker_id() { return _worker_id; }
 909 
 910   // From TerminatorTerminator. It determines whether this task should
 911   // exit the termination protocol after it's entered it.
 912   virtual bool should_exit_termination();
 913 
 914   // Resets the local region fields after a task has finished scanning a
 915   // region; or when they have become stale as a result of the region
 916   // being evacuated.
 917   void giveup_current_region();
 918 
 919   HeapWord* finger()            { return _finger; }
 920 
 921   bool has_aborted()            { return _has_aborted; }
 922   void set_has_aborted()        { _has_aborted = true; }
 923   void clear_has_aborted()      { _has_aborted = false; }
 924   bool has_timed_out()          { return _has_timed_out; }
 925   bool claimed()                { return _claimed; }
 926 
 927   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 928 
 929   // Increment the number of references this task has visited.
 930   void increment_refs_reached() { ++_refs_reached; }
 931 
 932   // Grey the object by marking it.  If not already marked, push it on
 933   // the local queue if below the finger.
 934   // Precondition: obj is in region.
 935   // Precondition: obj is below region's NTAMS.
 936   inline void make_reference_grey(oop obj, HeapRegion* region);
 937 
 938   // Grey the object (by calling make_grey_reference) if required,
 939   // e.g. obj is below its containing region's NTAMS.
 940   // Precondition: obj is a valid heap object.
 941   inline void deal_with_reference(oop obj);
 942 
 943   // It scans an object and visits its children.
 944   inline void scan_object(oop obj);
 945 
 946   // It pushes an object on the local queue.
 947   inline void push(oop obj);
 948 
 949   // These two move entries to/from the global stack.
 950   void move_entries_to_global_stack();
 951   void get_entries_from_global_stack();
 952 
 953   // It pops and scans objects from the local queue. If partially is
 954   // true, then it stops when the queue size is of a given limit. If
 955   // partially is false, then it stops when the queue is empty.
 956   void drain_local_queue(bool partially);
 957   // It moves entries from the global stack to the local queue and
 958   // drains the local queue. If partially is true, then it stops when
 959   // both the global stack and the local queue reach a given size. If
 960   // partially if false, it tries to empty them totally.
 961   void drain_global_stack(bool partially);
 962   // It keeps picking SATB buffers and processing them until no SATB
 963   // buffers are available.
 964   void drain_satb_buffers();
 965 
 966   // moves the local finger to a new location
 967   inline void move_finger_to(HeapWord* new_finger) {
 968     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 969     _finger = new_finger;
 970   }
 971 
 972   G1CMTask(uint worker_id,
 973            G1ConcurrentMark *cm,
 974            size_t* marked_bytes,
 975            BitMap* card_bm,
 976            G1CMTaskQueue* task_queue,
 977            G1CMTaskQueueSet* task_queues);
 978 
 979   // it prints statistics associated with this task
 980   void print_stats();
 981 };
 982 
 983 // Class that's used to to print out per-region liveness
 984 // information. It's currently used at the end of marking and also
 985 // after we sort the old regions at the end of the cleanup operation.
 986 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 987 private:
 988   // Accumulators for these values.
 989   size_t _total_used_bytes;
 990   size_t _total_capacity_bytes;
 991   size_t _total_prev_live_bytes;
 992   size_t _total_next_live_bytes;
 993 
 994   // These are set up when we come across a "stars humongous" region
 995   // (as this is where most of this information is stored, not in the
 996   // subsequent "continues humongous" regions). After that, for every
 997   // region in a given humongous region series we deduce the right
 998   // values for it by simply subtracting the appropriate amount from
 999   // these fields. All these values should reach 0 after we've visited
1000   // the last region in the series.
1001   size_t _hum_used_bytes;
1002   size_t _hum_capacity_bytes;
1003   size_t _hum_prev_live_bytes;
1004   size_t _hum_next_live_bytes;
1005 
1006   // Accumulator for the remembered set size
1007   size_t _total_remset_bytes;
1008 
1009   // Accumulator for strong code roots memory size
1010   size_t _total_strong_code_roots_bytes;
1011 
1012   static double perc(size_t val, size_t total) {
1013     if (total == 0) {
1014       return 0.0;
1015     } else {
1016       return 100.0 * ((double) val / (double) total);
1017     }
1018   }
1019 
1020   static double bytes_to_mb(size_t val) {
1021     return (double) val / (double) M;
1022   }
1023 
1024   // See the .cpp file.
1025   size_t get_hum_bytes(size_t* hum_bytes);
1026   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1027                      size_t* prev_live_bytes, size_t* next_live_bytes);
1028 
1029 public:
1030   // The header and footer are printed in the constructor and
1031   // destructor respectively.
1032   G1PrintRegionLivenessInfoClosure(const char* phase_name);
1033   virtual bool doHeapRegion(HeapRegion* r);
1034   ~G1PrintRegionLivenessInfoClosure();
1035 };
1036 
1037 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP