/* * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP #define SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP #include "gc/shared/modRefBarrierSet.hpp" #include "oops/oop.hpp" // This kind of "BarrierSet" allows a "CollectedHeap" to detect and // enumerate ref fields that have been modified (since the last // enumeration.) // As it currently stands, this barrier is *imprecise*: when a ref field in // an object "o" is modified, the card table entry for the card containing // the head of "o" is dirtied, not necessarily the card containing the // modified field itself. For object arrays, however, the barrier *is* // precise; only the card containing the modified element is dirtied. // Closures used to scan dirty cards should take these // considerations into account. class CardTableModRefBS: public ModRefBarrierSet { // Some classes get to look at some private stuff. friend class VMStructs; protected: enum CardValues { clean_card = -1, // The mask contains zeros in places for all other values. clean_card_mask = clean_card - 31, dirty_card = 0, precleaned_card = 1, claimed_card = 2, deferred_card = 4, last_card = 8, CT_MR_BS_last_reserved = 16 }; // a word's worth (row) of clean card values static const intptr_t clean_card_row = (intptr_t)(-1); // The declaration order of these const fields is important; see the // constructor before changing. const MemRegion _whole_heap; // the region covered by the card table size_t _guard_index; // index of very last element in the card // table; it is set to a guard value // (last_card) and should never be modified size_t _last_valid_index; // index of the last valid element const size_t _page_size; // page size used when mapping _byte_map size_t _byte_map_size; // in bytes jbyte* _byte_map; // the card marking array int _cur_covered_regions; // The covered regions should be in address order. MemRegion* _covered; // The committed regions correspond one-to-one to the covered regions. // They represent the card-table memory that has been committed to service // the corresponding covered region. It may be that committed region for // one covered region corresponds to a larger region because of page-size // roundings. Thus, a committed region for one covered region may // actually extend onto the card-table space for the next covered region. MemRegion* _committed; // The last card is a guard card, and we commit the page for it so // we can use the card for verification purposes. We make sure we never // uncommit the MemRegion for that page. MemRegion _guard_region; protected: inline size_t compute_byte_map_size(); // Finds and return the index of the region, if any, to which the given // region would be contiguous. If none exists, assign a new region and // returns its index. Requires that no more than the maximum number of // covered regions defined in the constructor are ever in use. int find_covering_region_by_base(HeapWord* base); // Same as above, but finds the region containing the given address // instead of starting at a given base address. int find_covering_region_containing(HeapWord* addr); // Resize one of the regions covered by the remembered set. virtual void resize_covered_region(MemRegion new_region); // Returns the leftmost end of a committed region corresponding to a // covered region before covered region "ind", or else "NULL" if "ind" is // the first covered region. HeapWord* largest_prev_committed_end(int ind) const; // Returns the part of the region mr that doesn't intersect with // any committed region other than self. Used to prevent uncommitting // regions that are also committed by other regions. Also protects // against uncommitting the guard region. MemRegion committed_unique_to_self(int self, MemRegion mr) const; // Mapping from address to card marking array entry jbyte* byte_for(const void* p) const { assert(_whole_heap.contains(p), "Attempt to access p = " PTR_FORMAT " out of bounds of " " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")", p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end())); jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift]; assert(result >= _byte_map && result < _byte_map + _byte_map_size, "out of bounds accessor for card marking array"); return result; } // The card table byte one after the card marking array // entry for argument address. Typically used for higher bounds // for loops iterating through the card table. jbyte* byte_after(const void* p) const { return byte_for(p) + 1; } protected: // Dirty the bytes corresponding to "mr" (not all of which must be // covered.) void dirty_MemRegion(MemRegion mr); // Clear (to clean_card) the bytes entirely contained within "mr" (not // all of which must be covered.) void clear_MemRegion(MemRegion mr); public: // Constants enum SomePublicConstants { card_shift = 9, card_size = 1 << card_shift, card_size_in_words = card_size / sizeof(HeapWord) }; static int clean_card_val() { return clean_card; } static int clean_card_mask_val() { return clean_card_mask; } static int dirty_card_val() { return dirty_card; } static int claimed_card_val() { return claimed_card; } static int precleaned_card_val() { return precleaned_card; } static int deferred_card_val() { return deferred_card; } virtual void initialize(); // *** Barrier set functions. bool has_write_ref_pre_barrier() { return false; } // Initialization utilities; covered_words is the size of the covered region // in, um, words. inline size_t cards_required(size_t covered_words) { // Add one for a guard card, used to detect errors. const size_t words = align_size_up(covered_words, card_size_in_words); return words / card_size_in_words + 1; } protected: CardTableModRefBS(MemRegion whole_heap, const BarrierSet::FakeRtti& fake_rtti); ~CardTableModRefBS(); // Record a reference update. Note that these versions are precise! // The scanning code has to handle the fact that the write barrier may be // either precise or imprecise. We make non-virtual inline variants of // these functions here for performance. void write_ref_field_work(oop obj, size_t offset, oop newVal); virtual void write_ref_field_work(void* field, oop newVal, bool release); public: bool has_write_ref_array_opt() { return true; } bool has_write_region_opt() { return true; } inline void inline_write_region(MemRegion mr) { dirty_MemRegion(mr); } protected: void write_region_work(MemRegion mr) { inline_write_region(mr); } public: inline void inline_write_ref_array(MemRegion mr) { dirty_MemRegion(mr); } protected: void write_ref_array_work(MemRegion mr) { inline_write_ref_array(mr); } public: bool is_aligned(HeapWord* addr) { return is_card_aligned(addr); } // *** Card-table-barrier-specific things. template inline void inline_write_ref_field_pre(T* field, oop newVal) {} template inline void inline_write_ref_field(T* field, oop newVal, bool release); // These are used by G1, when it uses the card table as a temporary data // structure for card claiming. bool is_card_dirty(size_t card_index) { return _byte_map[card_index] == dirty_card_val(); } void mark_card_dirty(size_t card_index) { _byte_map[card_index] = dirty_card_val(); } bool is_card_clean(size_t card_index) { return _byte_map[card_index] == clean_card_val(); } // Card marking array base (adjusted for heap low boundary) // This would be the 0th element of _byte_map, if the heap started at 0x0. // But since the heap starts at some higher address, this points to somewhere // before the beginning of the actual _byte_map. jbyte* byte_map_base; // Return true if "p" is at the start of a card. bool is_card_aligned(HeapWord* p) { jbyte* pcard = byte_for(p); return (addr_for(pcard) == p); } HeapWord* align_to_card_boundary(HeapWord* p) { jbyte* pcard = byte_for(p + card_size_in_words - 1); return addr_for(pcard); } // The kinds of precision a CardTableModRefBS may offer. enum PrecisionStyle { Precise, ObjHeadPreciseArray }; // Tells what style of precision this card table offers. PrecisionStyle precision() { return ObjHeadPreciseArray; // Only one supported for now. } // ModRefBS functions. virtual void invalidate(MemRegion mr, bool whole_heap = false); void clear(MemRegion mr); void dirty(MemRegion mr); // *** Card-table-RemSet-specific things. static uintx ct_max_alignment_constraint(); // Apply closure "cl" to the dirty cards containing some part of // MemRegion "mr". void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl); // Return the MemRegion corresponding to the first maximal run // of dirty cards lying completely within MemRegion mr. // If reset is "true", then sets those card table entries to the given // value. MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset, int reset_val); // Provide read-only access to the card table array. const jbyte* byte_for_const(const void* p) const { return byte_for(p); } const jbyte* byte_after_const(const void* p) const { return byte_after(p); } // Mapping from card marking array entry to address of first word HeapWord* addr_for(const jbyte* p) const { assert(p >= _byte_map && p < _byte_map + _byte_map_size, "out of bounds access to card marking array"); size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte)); HeapWord* result = (HeapWord*) (delta << card_shift); assert(_whole_heap.contains(result), "Returning result = " PTR_FORMAT " out of bounds of " " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")", p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end())); return result; } // Mapping from address to card marking array index. size_t index_for(void* p) { assert(_whole_heap.contains(p), "Attempt to access p = " PTR_FORMAT " out of bounds of " " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")", p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end())); return byte_for(p) - _byte_map; } const jbyte* byte_for_index(const size_t card_index) const { return _byte_map + card_index; } // Print a description of the memory for the barrier set virtual void print_on(outputStream* st) const; void verify(); void verify_guard(); // val_equals -> it will check that all cards covered by mr equal val // !val_equals -> it will check that all cards covered by mr do not equal val void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN; void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN; void verify_dirty_region(MemRegion mr) PRODUCT_RETURN; }; template<> struct BarrierSet::GetName { static const BarrierSet::Name value = BarrierSet::CardTableModRef; }; #endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP