/* * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/collectorPolicy.hpp" #include "gc/shared/genCollectedHeap.hpp" #include "gc/shared/threadLocalAllocBuffer.hpp" #include "runtime/arguments.hpp" #include "runtime/commandLineFlagConstraintsGC.hpp" #include "runtime/commandLineFlagRangeList.hpp" #include "runtime/globals.hpp" #include "runtime/globals_extension.hpp" #include "runtime/thread.inline.hpp" #include "utilities/defaultStream.hpp" #if INCLUDE_ALL_GCS #include "gc/g1/g1_globals.hpp" #include "gc/g1/heapRegionBounds.inline.hpp" #include "gc/shared/plab.hpp" #endif // INCLUDE_ALL_GCS #ifdef COMPILER1 #include "c1/c1_globals.hpp" #endif // COMPILER1 #ifdef COMPILER2 #include "opto/c2_globals.hpp" #endif // COMPILER2 // Some flags that have default values that indicate that the // JVM should automatically determine an appropriate value // for that flag. In those cases it is only appropriate for the // constraint checking to be done if the user has specified the // value(s) of the flag(s) on the command line. In the constraint // checking functions, FLAG_IS_CMDLINE() is used to check if // the flag has been set by the user and so should be checked. #if INCLUDE_ALL_GCS static Flag::Error ParallelGCThreadsAndCMSWorkQueueDrainThreshold(uint threads, uintx threshold, bool verbose) { // CMSWorkQueueDrainThreshold is verified to be less than max_juint if (UseConcMarkSweepGC && (threads > (uint)(max_jint / (uint)threshold))) { CommandLineError::print(verbose, "ParallelGCThreads (" UINT32_FORMAT ") or CMSWorkQueueDrainThreshold (" UINTX_FORMAT ") is too large\n", threads, threshold); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } #endif // As ParallelGCThreads differs among GC modes, we need constraint function. Flag::Error ParallelGCThreadsConstraintFunc(uint value, bool verbose) { Flag::Error status = Flag::SUCCESS; #if INCLUDE_ALL_GCS // Parallel GC passes ParallelGCThreads when creating GrowableArray as 'int' type parameter. // So can't exceed with "max_jint" if (UseParallelGC && (value > (uint)max_jint)) { CommandLineError::print(verbose, "ParallelGCThreads (" UINT32_FORMAT ") must be " "less than or equal to " UINT32_FORMAT " for Parallel GC\n", value, max_jint); return Flag::VIOLATES_CONSTRAINT; } // To avoid overflow at ParScanClosure::do_oop_work. if (UseConcMarkSweepGC && (value > (max_jint / 10))) { CommandLineError::print(verbose, "ParallelGCThreads (" UINT32_FORMAT ") must be " "less than or equal to " UINT32_FORMAT " for CMS GC\n", value, (max_jint / 10)); return Flag::VIOLATES_CONSTRAINT; } status = ParallelGCThreadsAndCMSWorkQueueDrainThreshold(value, CMSWorkQueueDrainThreshold, verbose); #endif return status; } // As ConcGCThreads should be smaller than ParallelGCThreads, // we need constraint function. Flag::Error ConcGCThreadsConstraintFunc(uint value, bool verbose) { #if INCLUDE_ALL_GCS // CMS and G1 GCs use ConcGCThreads. if ((UseConcMarkSweepGC || UseG1GC) && (value > ParallelGCThreads)) { CommandLineError::print(verbose, "ConcGCThreads (" UINT32_FORMAT ") must be " "less than or equal to ParallelGCThreads (" UINT32_FORMAT ")\n", value, ParallelGCThreads); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } static Flag::Error MinPLABSizeBounds(const char* name, size_t value, bool verbose) { #if INCLUDE_ALL_GCS if ((UseConcMarkSweepGC || UseG1GC || UseParallelGC) && (value < PLAB::min_size())) { CommandLineError::print(verbose, "%s (" SIZE_FORMAT ") must be " "greater than or equal to ergonomic PLAB minimum size (" SIZE_FORMAT ")\n", name, value, PLAB::min_size()); return Flag::VIOLATES_CONSTRAINT; } #endif // INCLUDE_ALL_GCS return Flag::SUCCESS; } static Flag::Error MaxPLABSizeBounds(const char* name, size_t value, bool verbose) { #if INCLUDE_ALL_GCS if ((UseConcMarkSweepGC || UseG1GC || UseParallelGC) && (value > PLAB::max_size())) { CommandLineError::print(verbose, "%s (" SIZE_FORMAT ") must be " "less than or equal to ergonomic PLAB maximum size (" SIZE_FORMAT ")\n", name, value, PLAB::max_size()); return Flag::VIOLATES_CONSTRAINT; } #endif // INCLUDE_ALL_GCS return Flag::SUCCESS; } static Flag::Error MinMaxPLABSizeBounds(const char* name, size_t value, bool verbose) { Flag::Error status = MinPLABSizeBounds(name, value, verbose); if (status == Flag::SUCCESS) { return MaxPLABSizeBounds(name, value, verbose); } return status; } Flag::Error YoungPLABSizeConstraintFunc(size_t value, bool verbose) { return MinMaxPLABSizeBounds("YoungPLABSize", value, verbose); } Flag::Error OldPLABSizeConstraintFunc(size_t value, bool verbose) { Flag::Error status = Flag::SUCCESS; #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC) { if (value == 0) { CommandLineError::print(verbose, "OldPLABSize (" SIZE_FORMAT ") must be greater than 0", value); return Flag::VIOLATES_CONSTRAINT; } // For CMS, OldPLABSize is the number of free blocks of a given size that are used when // replenishing the local per-worker free list caches. // For more details, please refer to Arguments::set_cms_and_parnew_gc_flags(). status = MaxPLABSizeBounds("OldPLABSize", value, verbose); } else { status = MinMaxPLABSizeBounds("OldPLABSize", value, verbose); } #endif return status; } Flag::Error MinHeapFreeRatioConstraintFunc(uintx value, bool verbose) { if (value > MaxHeapFreeRatio) { CommandLineError::print(verbose, "MinHeapFreeRatio (" UINTX_FORMAT ") must be " "less than or equal to MaxHeapFreeRatio (" UINTX_FORMAT ")\n", value, MaxHeapFreeRatio); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error MaxHeapFreeRatioConstraintFunc(uintx value, bool verbose) { if (value < MinHeapFreeRatio) { CommandLineError::print(verbose, "MaxHeapFreeRatio (" UINTX_FORMAT ") must be " "greater than or equal to MinHeapFreeRatio (" UINTX_FORMAT ")\n", value, MinHeapFreeRatio); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } static Flag::Error CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(size_t maxHeap, intx softRef, bool verbose) { if ((softRef > 0) && ((maxHeap / M) > (max_uintx / softRef))) { CommandLineError::print(verbose, "Desired lifetime of SoftReferences cannot be expressed correctly. " "MaxHeapSize (" SIZE_FORMAT ") or SoftRefLRUPolicyMSPerMB " "(" INTX_FORMAT ") is too large\n", maxHeap, softRef); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error SoftRefLRUPolicyMSPerMBConstraintFunc(intx value, bool verbose) { return CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(MaxHeapSize, value, verbose); } Flag::Error MinMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) { if (value > MaxMetaspaceFreeRatio) { CommandLineError::print(verbose, "MinMetaspaceFreeRatio (" UINTX_FORMAT ") must be " "less than or equal to MaxMetaspaceFreeRatio (" UINTX_FORMAT ")\n", value, MaxMetaspaceFreeRatio); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error MaxMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) { if (value < MinMetaspaceFreeRatio) { CommandLineError::print(verbose, "MaxMetaspaceFreeRatio (" UINTX_FORMAT ") must be " "greater than or equal to MinMetaspaceFreeRatio (" UINTX_FORMAT ")\n", value, MinMetaspaceFreeRatio); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error InitialTenuringThresholdConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS // InitialTenuringThreshold is only used for ParallelGC. if (UseParallelGC && (value > MaxTenuringThreshold)) { CommandLineError::print(verbose, "InitialTenuringThreshold (" UINTX_FORMAT ") must be " "less than or equal to MaxTenuringThreshold (" UINTX_FORMAT ")\n", value, MaxTenuringThreshold); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error MaxTenuringThresholdConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS // As only ParallelGC uses InitialTenuringThreshold, // we don't need to compare InitialTenuringThreshold with MaxTenuringThreshold. if (UseParallelGC && (value < InitialTenuringThreshold)) { CommandLineError::print(verbose, "MaxTenuringThreshold (" UINTX_FORMAT ") must be " "greater than or equal to InitialTenuringThreshold (" UINTX_FORMAT ")\n", value, InitialTenuringThreshold); return Flag::VIOLATES_CONSTRAINT; } #endif // MaxTenuringThreshold=0 means NeverTenure=false && AlwaysTenure=true if ((value == 0) && (NeverTenure || !AlwaysTenure)) { CommandLineError::print(verbose, "MaxTenuringThreshold (0) should match to NeverTenure=false " "&& AlwaysTenure=true. But we have NeverTenure=%s " "AlwaysTenure=%s\n", NeverTenure ? "true" : "false", AlwaysTenure ? "true" : "false"); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } #if INCLUDE_ALL_GCS Flag::Error G1RSetRegionEntriesConstraintFunc(intx value, bool verbose) { if (!UseG1GC) return Flag::SUCCESS; // Default value of G1RSetRegionEntries=0 means will be set ergonomically. // Minimum value is 1. if (FLAG_IS_CMDLINE(G1RSetRegionEntries) && (value < 1)) { CommandLineError::print(verbose, "G1RSetRegionEntries (" INTX_FORMAT ") must be " "greater than or equal to 1\n", value); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error G1RSetSparseRegionEntriesConstraintFunc(intx value, bool verbose) { if (!UseG1GC) return Flag::SUCCESS; // Default value of G1RSetSparseRegionEntries=0 means will be set ergonomically. // Minimum value is 1. if (FLAG_IS_CMDLINE(G1RSetSparseRegionEntries) && (value < 1)) { CommandLineError::print(verbose, "G1RSetSparseRegionEntries (" INTX_FORMAT ") must be " "greater than or equal to 1\n", value); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error G1YoungSurvRateNumRegionsSummaryConstraintFunc(intx value, bool verbose) { if (!UseG1GC) return Flag::SUCCESS; if (value > (intx)HeapRegionBounds::target_number()) { CommandLineError::print(verbose, "G1YoungSurvRateNumRegionsSummary (" INTX_FORMAT ") must be " "less than or equal to region count (" SIZE_FORMAT ")\n", value, HeapRegionBounds::target_number()); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error G1HeapRegionSizeConstraintFunc(size_t value, bool verbose) { if (!UseG1GC) return Flag::SUCCESS; // Default value of G1HeapRegionSize=0 means will be set ergonomically. if (FLAG_IS_CMDLINE(G1HeapRegionSize) && (value < HeapRegionBounds::min_size())) { CommandLineError::print(verbose, "G1HeapRegionSize (" SIZE_FORMAT ") must be " "greater than or equal to ergonomic heap region minimum size\n", value); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error G1NewSizePercentConstraintFunc(uintx value, bool verbose) { if (!UseG1GC) return Flag::SUCCESS; if (value > G1MaxNewSizePercent) { CommandLineError::print(verbose, "G1NewSizePercent (" UINTX_FORMAT ") must be " "less than or equal to G1MaxNewSizePercent (" UINTX_FORMAT ")\n", value, G1MaxNewSizePercent); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error G1MaxNewSizePercentConstraintFunc(uintx value, bool verbose) { if (!UseG1GC) return Flag::SUCCESS; if (value < G1NewSizePercent) { CommandLineError::print(verbose, "G1MaxNewSizePercent (" UINTX_FORMAT ") must be " "greater than or equal to G1NewSizePercent (" UINTX_FORMAT ")\n", value, G1NewSizePercent); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } #endif // INCLUDE_ALL_GCS Flag::Error ParGCStridesPerThreadConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC && (value > ((uintx)max_jint / (uintx)ParallelGCThreads))) { CommandLineError::print(verbose, "ParGCStridesPerThread (" UINTX_FORMAT ") must be " "less than or equal to ergonomic maximum (" UINTX_FORMAT ")\n", value, ((uintx)max_jint / (uintx)ParallelGCThreads)); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error CMSOldPLABMinConstraintFunc(size_t value, bool verbose) { Flag::Error status = Flag::SUCCESS; #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC) { if (value > CMSOldPLABMax) { CommandLineError::print(verbose, "CMSOldPLABMin (" SIZE_FORMAT ") must be " "less than or equal to CMSOldPLABMax (" SIZE_FORMAT ")\n", value, CMSOldPLABMax); return Flag::VIOLATES_CONSTRAINT; } status = MaxPLABSizeBounds("CMSOldPLABMin", value, verbose); } #endif return status; } Flag::Error CMSOldPLABMaxConstraintFunc(size_t value, bool verbose) { Flag::Error status = Flag::SUCCESS; #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC) { status = MaxPLABSizeBounds("CMSOldPLABMax", value, verbose); } #endif return status; } Flag::Error MarkStackSizeConstraintFunc(size_t value, bool verbose) { if (value > MarkStackSizeMax) { CommandLineError::print(verbose, "MarkStackSize (" SIZE_FORMAT ") must be " "less than or equal to MarkStackSizeMax (" SIZE_FORMAT ")\n", value, MarkStackSizeMax); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error CMSPrecleanDenominatorConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC && (value <= CMSPrecleanNumerator)) { CommandLineError::print(verbose, "CMSPrecleanDenominator (" UINTX_FORMAT ") must be " "strickly greater than CMSPrecleanNumerator (" UINTX_FORMAT ")\n", value, CMSPrecleanNumerator); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error CMSPrecleanNumeratorConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC && (value >= CMSPrecleanDenominator)) { CommandLineError::print(verbose, "CMSPrecleanNumerator (" UINTX_FORMAT ") must be " "less than CMSPrecleanDenominator (" UINTX_FORMAT ")\n", value, CMSPrecleanDenominator); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error CMSSamplingGrainConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC) { size_t max_capacity = GenCollectedHeap::heap()->young_gen()->max_capacity(); if (value > max_uintx - max_capacity) { CommandLineError::print(verbose, "CMSSamplingGrain (" UINTX_FORMAT ") must be " "less than or equal to ergonomic maximum (" SIZE_FORMAT ")\n", value, max_uintx - max_capacity); return Flag::VIOLATES_CONSTRAINT; } } #endif return Flag::SUCCESS; } Flag::Error CMSWorkQueueDrainThresholdConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC) { return ParallelGCThreadsAndCMSWorkQueueDrainThreshold(ParallelGCThreads, value, verbose); } #endif return Flag::SUCCESS; } Flag::Error MaxGCPauseMillisConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseG1GC && FLAG_IS_CMDLINE(MaxGCPauseMillis) && (value >= GCPauseIntervalMillis)) { CommandLineError::print(verbose, "MaxGCPauseMillis (" UINTX_FORMAT ") must be " "less than GCPauseIntervalMillis (" UINTX_FORMAT ")\n", value, GCPauseIntervalMillis); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error GCPauseIntervalMillisConstraintFunc(uintx value, bool verbose) { #if INCLUDE_ALL_GCS if (UseG1GC) { if (FLAG_IS_CMDLINE(GCPauseIntervalMillis)) { if (value < 1) { CommandLineError::print(verbose, "GCPauseIntervalMillis (" UINTX_FORMAT ") must be " "greater than or equal to 1\n", value); return Flag::VIOLATES_CONSTRAINT; } if (value <= MaxGCPauseMillis) { CommandLineError::print(verbose, "GCPauseIntervalMillis (" UINTX_FORMAT ") must be " "greater than MaxGCPauseMillis (" UINTX_FORMAT ")\n", value, MaxGCPauseMillis); return Flag::VIOLATES_CONSTRAINT; } } } #endif return Flag::SUCCESS; } Flag::Error InitialBootClassLoaderMetaspaceSizeConstraintFunc(size_t value, bool verbose) { size_t aligned_max = (size_t)align_size_down(max_uintx/2, Metaspace::reserve_alignment_words()); if (value > aligned_max) { CommandLineError::print(verbose, "InitialBootClassLoaderMetaspaceSize (" SIZE_FORMAT ") must be " "less than or equal to aligned maximum value (" SIZE_FORMAT ")\n", value, aligned_max); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } // To avoid an overflow by 'align_size_up(value, alignment)'. static Flag::Error MaxSizeForAlignment(const char* name, size_t value, size_t alignment, bool verbose) { size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1)); if (value > aligned_max) { CommandLineError::print(verbose, "%s (" SIZE_FORMAT ") must be " "less than or equal to aligned maximum value (" SIZE_FORMAT ")\n", name, value, aligned_max); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } static Flag::Error MaxSizeForHeapAlignment(const char* name, size_t value, bool verbose) { // For G1 GC, we don't know until G1CollectorPolicy is created. size_t heap_alignment; #if INCLUDE_ALL_GCS if (UseG1GC) { heap_alignment = HeapRegionBounds::max_size(); } else #endif { heap_alignment = CollectorPolicy::compute_heap_alignment(); } return MaxSizeForAlignment(name, value, heap_alignment, verbose); } Flag::Error InitialHeapSizeConstraintFunc(size_t value, bool verbose) { return MaxSizeForHeapAlignment("InitialHeapSize", value, verbose); } Flag::Error MaxHeapSizeConstraintFunc(size_t value, bool verbose) { Flag::Error status = MaxSizeForHeapAlignment("MaxHeapSize", value, verbose); if (status == Flag::SUCCESS) { status = CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(value, SoftRefLRUPolicyMSPerMB, verbose); } return status; } Flag::Error HeapBaseMinAddressConstraintFunc(size_t value, bool verbose) { // If an overflow happened in Arguments::set_heap_size(), MaxHeapSize will have too large a value. // Check for this by ensuring that MaxHeapSize plus the requested min base address still fit within max_uintx. if (UseCompressedOops && FLAG_IS_ERGO(MaxHeapSize) && (value > (max_uintx - MaxHeapSize))) { CommandLineError::print(verbose, "HeapBaseMinAddress (" SIZE_FORMAT ") or MaxHeapSize (" SIZE_FORMAT ") is too large. " "Sum of them must be less than or equal to maximum of size_t (" SIZE_FORMAT ")\n", value, MaxHeapSize, max_uintx); return Flag::VIOLATES_CONSTRAINT; } return MaxSizeForHeapAlignment("HeapBaseMinAddress", value, verbose); } Flag::Error NewSizeConstraintFunc(size_t value, bool verbose) { #ifdef _LP64 #if INCLUDE_ALL_GCS // Overflow would happen for uint type variable of YoungGenSizer::_min_desired_young_length // when the value to be assigned exceeds uint range. // i.e. result of '(uint)(NewSize / region size(1~32MB))' // So maximum of NewSize should be 'max_juint * 1M' if (UseG1GC && (value > (max_juint * 1 * M))) { CommandLineError::print(verbose, "NewSize (" SIZE_FORMAT ") must be less than ergonomic maximum value\n", value); return Flag::VIOLATES_CONSTRAINT; } #endif // INCLUDE_ALL_GCS #endif // _LP64 return Flag::SUCCESS; } Flag::Error MinTLABSizeConstraintFunc(size_t value, bool verbose) { // At least, alignment reserve area is needed. if (value < ThreadLocalAllocBuffer::alignment_reserve_in_bytes()) { CommandLineError::print(verbose, "MinTLABSize (" SIZE_FORMAT ") must be " "greater than or equal to reserved area in TLAB (" SIZE_FORMAT ")\n", value, ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); return Flag::VIOLATES_CONSTRAINT; } if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) { CommandLineError::print(verbose, "MinTLABSize (" SIZE_FORMAT ") must be " "less than or equal to ergonomic TLAB maximum (" SIZE_FORMAT ")\n", value, ThreadLocalAllocBuffer::max_size() * HeapWordSize); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error TLABSizeConstraintFunc(size_t value, bool verbose) { // Skip for default value of zero which means set ergonomically. if (FLAG_IS_CMDLINE(TLABSize)) { if (value < MinTLABSize) { CommandLineError::print(verbose, "TLABSize (" SIZE_FORMAT ") must be " "greater than or equal to MinTLABSize (" SIZE_FORMAT ")\n", value, MinTLABSize); return Flag::VIOLATES_CONSTRAINT; } if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) { CommandLineError::print(verbose, "TLABSize (" SIZE_FORMAT ") must be " "less than or equal to ergonomic TLAB maximum size (" SIZE_FORMAT ")\n", value, (ThreadLocalAllocBuffer::max_size() * HeapWordSize)); return Flag::VIOLATES_CONSTRAINT; } } return Flag::SUCCESS; } // We will protect overflow from ThreadLocalAllocBuffer::record_slow_allocation(), // so AfterMemoryInit type is enough to check. Flag::Error TLABWasteIncrementConstraintFunc(uintx value, bool verbose) { if (UseTLAB) { size_t refill_waste_limit = Thread::current()->tlab().refill_waste_limit(); // Compare with 'max_uintx' as ThreadLocalAllocBuffer::_refill_waste_limit is 'size_t'. if (refill_waste_limit > (max_uintx - value)) { CommandLineError::print(verbose, "TLABWasteIncrement (" UINTX_FORMAT ") must be " "less than or equal to ergonomic TLAB waste increment maximum size(" SIZE_FORMAT ")\n", value, (max_uintx - refill_waste_limit)); return Flag::VIOLATES_CONSTRAINT; } } return Flag::SUCCESS; } Flag::Error SurvivorRatioConstraintFunc(uintx value, bool verbose) { if (FLAG_IS_CMDLINE(SurvivorRatio) && (value > (MaxHeapSize / Universe::heap()->collector_policy()->space_alignment()))) { CommandLineError::print(verbose, "SurvivorRatio (" UINTX_FORMAT ") must be " "less than or equal to ergonomic SurvivorRatio maximum (" SIZE_FORMAT ")\n", value, (MaxHeapSize / Universe::heap()->collector_policy()->space_alignment())); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error MetaspaceSizeConstraintFunc(size_t value, bool verbose) { if (value > MaxMetaspaceSize) { CommandLineError::print(verbose, "MetaspaceSize (" SIZE_FORMAT ") must be " "less than or equal to MaxMetaspaceSize (" SIZE_FORMAT ")\n", value, MaxMetaspaceSize); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error MaxMetaspaceSizeConstraintFunc(size_t value, bool verbose) { if (value < MetaspaceSize) { CommandLineError::print(verbose, "MaxMetaspaceSize (" SIZE_FORMAT ") must be " "greater than or equal to MetaspaceSize (" SIZE_FORMAT ")\n", value, MaxMetaspaceSize); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error SurvivorAlignmentInBytesConstraintFunc(intx value, bool verbose) { if (value != 0) { if (!is_power_of_2(value)) { CommandLineError::print(verbose, "SurvivorAlignmentInBytes (" INTX_FORMAT ") must be " "power of 2\n", value); return Flag::VIOLATES_CONSTRAINT; } if (value < ObjectAlignmentInBytes) { CommandLineError::print(verbose, "SurvivorAlignmentInBytes (" INTX_FORMAT ") must be " "greater than or equal to ObjectAlignmentInBytes (" INTX_FORMAT ")\n", value, ObjectAlignmentInBytes); return Flag::VIOLATES_CONSTRAINT; } } return Flag::SUCCESS; }