1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/jniHandles.hpp"
  40 
  41 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  42 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   if (is_server_compilation_mode_vm()) {
  61     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  62   } else {
  63     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  64   }
  65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  66     vm_exit_during_initialization("Could not allocate reference policy object");
  67   }
  68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  69             RefDiscoveryPolicy == ReferentBasedDiscovery,
  70             "Unrecognized RefDiscoveryPolicy");
  71 }
  72 
  73 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  74 #ifdef ASSERT
  75   // Verify that we're not currently discovering refs
  76   assert(!_discovering_refs, "nested call?");
  77 
  78   if (check_no_refs) {
  79     // Verify that the discovered lists are empty
  80     verify_no_references_recorded();
  81   }
  82 #endif // ASSERT
  83 
  84   // Someone could have modified the value of the static
  85   // field in the j.l.r.SoftReference class that holds the
  86   // soft reference timestamp clock using reflection or
  87   // Unsafe between GCs. Unconditionally update the static
  88   // field in ReferenceProcessor here so that we use the new
  89   // value during reference discovery.
  90 
  91   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  92   _discovering_refs = true;
  93 }
  94 
  95 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  96                                        bool      mt_processing,
  97                                        uint      mt_processing_degree,
  98                                        bool      mt_discovery,
  99                                        uint      mt_discovery_degree,
 100                                        bool      atomic_discovery,
 101                                        BoolObjectClosure* is_alive_non_header)  :
 102   _discovering_refs(false),
 103   _enqueuing_is_done(false),
 104   _is_alive_non_header(is_alive_non_header),
 105   _processing_is_mt(mt_processing),
 106   _next_id(0)
 107 {
 108   _span = span;
 109   _discovery_is_atomic = atomic_discovery;
 110   _discovery_is_mt     = mt_discovery;
 111   _num_q               = MAX2(1U, mt_processing_degree);
 112   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 113   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 114             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 115 
 116   if (_discovered_refs == NULL) {
 117     vm_exit_during_initialization("Could not allocated RefProc Array");
 118   }
 119   _discoveredSoftRefs    = &_discovered_refs[0];
 120   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 121   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 122   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 123 
 124   // Initialize all entries to NULL
 125   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 126     _discovered_refs[i].set_head(NULL);
 127     _discovered_refs[i].set_length(0);
 128   }
 129 
 130   _phase_times = new ReferenceProcessorPhaseTimes(_num_q, _processing_is_mt);
 131 
 132   setup_policy(false /* default soft ref policy */);
 133 }
 134 
 135 #ifndef PRODUCT
 136 void ReferenceProcessor::verify_no_references_recorded() {
 137   guarantee(!_discovering_refs, "Discovering refs?");
 138   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 139     guarantee(_discovered_refs[i].is_empty(),
 140               "Found non-empty discovered list at %u", i);
 141   }
 142 }
 143 #endif
 144 
 145 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 146   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 147     if (UseCompressedOops) {
 148       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 149     } else {
 150       f->do_oop((oop*)_discovered_refs[i].adr_head());
 151     }
 152   }
 153 }
 154 
 155 void ReferenceProcessor::update_soft_ref_master_clock() {
 156   // Update (advance) the soft ref master clock field. This must be done
 157   // after processing the soft ref list.
 158 
 159   // We need a monotonically non-decreasing time in ms but
 160   // os::javaTimeMillis() does not guarantee monotonicity.
 161   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 162   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 163   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 164 
 165   NOT_PRODUCT(
 166   if (now < _soft_ref_timestamp_clock) {
 167     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 168                     _soft_ref_timestamp_clock, now);
 169   }
 170   )
 171   // The values of now and _soft_ref_timestamp_clock are set using
 172   // javaTimeNanos(), which is guaranteed to be monotonically
 173   // non-decreasing provided the underlying platform provides such
 174   // a time source (and it is bug free).
 175   // In product mode, however, protect ourselves from non-monotonicity.
 176   if (now > _soft_ref_timestamp_clock) {
 177     _soft_ref_timestamp_clock = now;
 178     java_lang_ref_SoftReference::set_clock(now);
 179   }
 180   // Else leave clock stalled at its old value until time progresses
 181   // past clock value.
 182 }
 183 
 184 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 185   size_t total = 0;
 186   for (uint i = 0; i < _max_num_q; ++i) {
 187     total += lists[i].length();
 188   }
 189   return total;
 190 }
 191 
 192 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 193   BoolObjectClosure*           is_alive,
 194   OopClosure*                  keep_alive,
 195   VoidClosure*                 complete_gc,
 196   AbstractRefProcTaskExecutor* task_executor,
 197   GCTimer*                     gc_timer) {
 198 
 199   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 200   // Stop treating discovered references specially.
 201   disable_discovery();
 202 
 203   // If discovery was concurrent, someone could have modified
 204   // the value of the static field in the j.l.r.SoftReference
 205   // class that holds the soft reference timestamp clock using
 206   // reflection or Unsafe between when discovery was enabled and
 207   // now. Unconditionally update the static field in ReferenceProcessor
 208   // here so that we use the new value during processing of the
 209   // discovered soft refs.
 210 
 211   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 212 
 213   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 214                                 total_count(_discoveredWeakRefs),
 215                                 total_count(_discoveredFinalRefs),
 216                                 total_count(_discoveredPhantomRefs));
 217 
 218   // Soft references
 219   {
 220     RefProcPhaseTimesLogger tt("SoftReference", phase_times(), _discoveredSoftRefs, gc_timer);
 221     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 222                                is_alive, keep_alive, complete_gc, task_executor, gc_timer);
 223   }
 224 
 225   update_soft_ref_master_clock();
 226 
 227   // Weak references
 228   {
 229     RefProcPhaseTimesLogger tt("WeakReference", phase_times(), _discoveredWeakRefs, gc_timer);
 230     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 231                                is_alive, keep_alive, complete_gc, task_executor, gc_timer);
 232   }
 233 
 234   // Final references
 235   {
 236     RefProcPhaseTimesLogger tt("FinalReference", phase_times(), _discoveredFinalRefs, gc_timer);
 237     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 238                                is_alive, keep_alive, complete_gc, task_executor, gc_timer);
 239   }
 240 
 241   // Phantom references
 242   {
 243     RefProcPhaseTimesLogger tt("PhantomReference", phase_times(), _discoveredPhantomRefs, gc_timer);
 244     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 245                                is_alive, keep_alive, complete_gc, task_executor, gc_timer);
 246   }
 247 
 248   // Weak global JNI references. It would make more sense (semantically) to
 249   // traverse these simultaneously with the regular weak references above, but
 250   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 251   // thus use JNI weak references to circumvent the phantom references and
 252   // resurrect a "post-mortem" object.
 253   {
 254     GCTraceTime(Debug, gc, ref) tt("JNI Weak Reference", gc_timer);
 255     if (task_executor != NULL) {
 256       task_executor->set_single_threaded_mode();
 257     }
 258     process_phaseJNI(is_alive, keep_alive, complete_gc);
 259   }
 260 
 261   log_develop_trace(gc, ref)("JNI Weak Reference count: " SIZE_FORMAT, count_jni_refs());
 262 
 263   return stats;
 264 }
 265 
 266 #ifndef PRODUCT
 267 // Calculate the number of jni handles.
 268 size_t ReferenceProcessor::count_jni_refs() {
 269   class CountHandleClosure: public OopClosure {
 270   private:
 271     size_t _count;
 272   public:
 273     CountHandleClosure(): _count(0) {}
 274     void do_oop(oop* unused)       { _count++; }
 275     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 276     size_t count() { return _count; }
 277   };
 278   CountHandleClosure global_handle_count;
 279   JNIHandles::weak_oops_do(&global_handle_count);
 280   return global_handle_count.count();
 281 }
 282 #endif
 283 
 284 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 285                                           OopClosure*        keep_alive,
 286                                           VoidClosure*       complete_gc) {
 287   JNIHandles::weak_oops_do(is_alive, keep_alive);
 288   complete_gc->do_void();
 289 }
 290 
 291 void ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor, GCTimer* gc_timer) {
 292   // Enqueue references that are not made active again, and
 293   // clear the decks for the next collection (cycle).
 294   enqueue_discovered_reflists(task_executor, gc_timer);
 295 
 296   // Stop treating discovered references specially.
 297   disable_discovery();
 298 }
 299 
 300 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
 301   // Given a list of refs linked through the "discovered" field
 302   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 303   // thus distinguishing them from active References, then
 304   // prepend them to the pending list.
 305   //
 306   // The Java threads will see the Reference objects linked together through
 307   // the discovered field. Instead of trying to do the write barrier updates
 308   // in all places in the reference processor where we manipulate the discovered
 309   // field we make sure to do the barrier here where we anyway iterate through
 310   // all linked Reference objects. Note that it is important to not dirty any
 311   // cards during reference processing since this will cause card table
 312   // verification to fail for G1.
 313   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 314 
 315   oop obj = NULL;
 316   oop next_d = refs_list.head();
 317   // Walk down the list, self-looping the next field
 318   // so that the References are not considered active.
 319   while (obj != next_d) {
 320     obj = next_d;
 321     assert(obj->is_instance(), "should be an instance object");
 322     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 323     next_d = java_lang_ref_Reference::discovered(obj);
 324     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 325     assert(java_lang_ref_Reference::next(obj) == NULL,
 326            "Reference not active; should not be discovered");
 327     // Self-loop next, so as to make Ref not active.
 328     java_lang_ref_Reference::set_next_raw(obj, obj);
 329     if (next_d != obj) {
 330       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 331     } else {
 332       // This is the last object.
 333       // Swap refs_list into pending list and set obj's
 334       // discovered to what we read from the pending list.
 335       oop old = Universe::swap_reference_pending_list(refs_list.head());
 336       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 337       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 338     }
 339   }
 340 }
 341 
 342 // Parallel enqueue task
 343 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 344 public:
 345   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 346                      DiscoveredList      discovered_refs[],
 347                      int                 n_queues)
 348     : EnqueueTask(ref_processor, discovered_refs, n_queues)
 349   { }
 350 
 351   virtual void work(unsigned int work_id) {
 352     RefProcWorkerTimeTracker tt(_ref_processor.phase_times()->worker_time_sec(ReferenceProcessorPhaseTimes::RefEnqueue), work_id);
 353 
 354     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 355     // Simplest first cut: static partitioning.
 356     int index = work_id;
 357     // The increment on "index" must correspond to the maximum number of queues
 358     // (n_queues) with which that ReferenceProcessor was created.  That
 359     // is because of the "clever" way the discovered references lists were
 360     // allocated and are indexed into.
 361     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 362     for (int j = 0;
 363          j < ReferenceProcessor::number_of_subclasses_of_ref();
 364          j++, index += _n_queues) {
 365       _ref_processor.enqueue_discovered_reflist(_refs_lists[index]);
 366       _refs_lists[index].set_head(NULL);
 367       _refs_lists[index].set_length(0);
 368     }
 369   }
 370 };
 371 
 372 // Enqueue references that are not made active again
 373 void ReferenceProcessor::enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor, GCTimer* gc_timer) {
 374 
 375   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 376                                 total_count(_discoveredWeakRefs),
 377                                 total_count(_discoveredFinalRefs),
 378                                 total_count(_discoveredPhantomRefs));
 379 
 380   RefProcEnqueueTimeLogger tt(phase_times(), stats, gc_timer);
 381 
 382   if (_processing_is_mt && task_executor != NULL) {
 383     // Parallel code
 384     RefProcEnqueueTask tsk(*this, _discovered_refs, _max_num_q);
 385     task_executor->execute(tsk);
 386   } else {
 387     // Serial code: call the parent class's implementation
 388     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 389       enqueue_discovered_reflist(_discovered_refs[i]);
 390       _discovered_refs[i].set_head(NULL);
 391       _discovered_refs[i].set_length(0);
 392     }
 393   }
 394 }
 395 
 396 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 397   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 398   oop discovered = java_lang_ref_Reference::discovered(_ref);
 399   assert(_discovered_addr && discovered->is_oop_or_null(),
 400          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 401   _next = discovered;
 402   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 403   _referent = java_lang_ref_Reference::referent(_ref);
 404   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 405          "Wrong oop found in java.lang.Reference object");
 406   assert(allow_null_referent ?
 407              _referent->is_oop_or_null()
 408            : _referent->is_oop(),
 409          "Expected an oop%s for referent field at " PTR_FORMAT,
 410          (allow_null_referent ? " or NULL" : ""),
 411          p2i(_referent));
 412 }
 413 
 414 void DiscoveredListIterator::remove() {
 415   assert(_ref->is_oop(), "Dropping a bad reference");
 416   oop_store_raw(_discovered_addr, NULL);
 417 
 418   // First _prev_next ref actually points into DiscoveredList (gross).
 419   oop new_next;
 420   if (_next == _ref) {
 421     // At the end of the list, we should make _prev point to itself.
 422     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 423     // and _prev will be NULL.
 424     new_next = _prev;
 425   } else {
 426     new_next = _next;
 427   }
 428   // Remove Reference object from discovered list. Note that G1 does not need a
 429   // pre-barrier here because we know the Reference has already been found/marked,
 430   // that's how it ended up in the discovered list in the first place.
 431   oop_store_raw(_prev_next, new_next);
 432   NOT_PRODUCT(_removed++);
 433   _refs_list.dec_length(1);
 434 }
 435 
 436 void DiscoveredListIterator::clear_referent() {
 437   oop_store_raw(_referent_addr, NULL);
 438 }
 439 
 440 // NOTE: process_phase*() are largely similar, and at a high level
 441 // merely iterate over the extant list applying a predicate to
 442 // each of its elements and possibly removing that element from the
 443 // list and applying some further closures to that element.
 444 // We should consider the possibility of replacing these
 445 // process_phase*() methods by abstracting them into
 446 // a single general iterator invocation that receives appropriate
 447 // closures that accomplish this work.
 448 
 449 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 450 // referents are not alive, but that should be kept alive for policy reasons.
 451 // Keep alive the transitive closure of all such referents.
 452 void
 453 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 454                                    ReferencePolicy*   policy,
 455                                    BoolObjectClosure* is_alive,
 456                                    OopClosure*        keep_alive,
 457                                    VoidClosure*       complete_gc) {
 458   assert(policy != NULL, "Must have a non-NULL policy");
 459   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 460   // Decide which softly reachable refs should be kept alive.
 461   while (iter.has_next()) {
 462     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 463     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 464     if (referent_is_dead &&
 465         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 466       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 467                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 468       // Remove Reference object from list
 469       iter.remove();
 470       // keep the referent around
 471       iter.make_referent_alive();
 472       iter.move_to_next();
 473     } else {
 474       iter.next();
 475     }
 476   }
 477   // Close the reachable set
 478   complete_gc->do_void();
 479   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 480                              iter.removed(), iter.processed(), p2i(&refs_list));
 481 }
 482 
 483 // Traverse the list and remove any Refs that are not active, or
 484 // whose referents are either alive or NULL.
 485 void
 486 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 487                              BoolObjectClosure* is_alive,
 488                              OopClosure*        keep_alive) {
 489   assert(discovery_is_atomic(), "Error");
 490   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 491   while (iter.has_next()) {
 492     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 493     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 494     assert(next == NULL, "Should not discover inactive Reference");
 495     if (iter.is_referent_alive()) {
 496       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 497                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 498       // The referent is reachable after all.
 499       // Remove Reference object from list.
 500       iter.remove();
 501       // Update the referent pointer as necessary: Note that this
 502       // should not entail any recursive marking because the
 503       // referent must already have been traversed.
 504       iter.make_referent_alive();
 505       iter.move_to_next();
 506     } else {
 507       iter.next();
 508     }
 509   }
 510   NOT_PRODUCT(
 511     if (iter.processed() > 0) {
 512       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 513         " Refs in discovered list " INTPTR_FORMAT,
 514         iter.removed(), iter.processed(), p2i(&refs_list));
 515     }
 516   )
 517 }
 518 
 519 void
 520 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 521                                                   BoolObjectClosure* is_alive,
 522                                                   OopClosure*        keep_alive,
 523                                                   VoidClosure*       complete_gc) {
 524   assert(!discovery_is_atomic(), "Error");
 525   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 526   while (iter.has_next()) {
 527     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 528     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 529     oop next = java_lang_ref_Reference::next(iter.obj());
 530     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 531          next != NULL)) {
 532       assert(next->is_oop_or_null(), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 533       // Remove Reference object from list
 534       iter.remove();
 535       // Trace the cohorts
 536       iter.make_referent_alive();
 537       if (UseCompressedOops) {
 538         keep_alive->do_oop((narrowOop*)next_addr);
 539       } else {
 540         keep_alive->do_oop((oop*)next_addr);
 541       }
 542       iter.move_to_next();
 543     } else {
 544       iter.next();
 545     }
 546   }
 547   // Now close the newly reachable set
 548   complete_gc->do_void();
 549   NOT_PRODUCT(
 550     if (iter.processed() > 0) {
 551       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 552         " Refs in discovered list " INTPTR_FORMAT,
 553         iter.removed(), iter.processed(), p2i(&refs_list));
 554     }
 555   )
 556 }
 557 
 558 // Traverse the list and process the referents, by either
 559 // clearing them or keeping them (and their reachable
 560 // closure) alive.
 561 void
 562 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 563                                    bool               clear_referent,
 564                                    BoolObjectClosure* is_alive,
 565                                    OopClosure*        keep_alive,
 566                                    VoidClosure*       complete_gc) {
 567   ResourceMark rm;
 568   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 569   while (iter.has_next()) {
 570     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 571     if (clear_referent) {
 572       // NULL out referent pointer
 573       iter.clear_referent();
 574     } else {
 575       // keep the referent around
 576       iter.make_referent_alive();
 577     }
 578     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 579                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 580     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 581     iter.next();
 582   }
 583   // Close the reachable set
 584   complete_gc->do_void();
 585 }
 586 
 587 void
 588 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 589   oop obj = NULL;
 590   oop next = refs_list.head();
 591   while (next != obj) {
 592     obj = next;
 593     next = java_lang_ref_Reference::discovered(obj);
 594     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 595   }
 596   refs_list.set_head(NULL);
 597   refs_list.set_length(0);
 598 }
 599 
 600 void ReferenceProcessor::abandon_partial_discovery() {
 601   // loop over the lists
 602   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 603     if ((i % _max_num_q) == 0) {
 604       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 605     }
 606     clear_discovered_references(_discovered_refs[i]);
 607   }
 608 }
 609 
 610 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 611 public:
 612   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 613                     DiscoveredList      refs_lists[],
 614                     ReferencePolicy*    policy,
 615                     bool                marks_oops_alive)
 616     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 617       _policy(policy)
 618   { }
 619   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 620                     OopClosure& keep_alive,
 621                     VoidClosure& complete_gc)
 622   {
 623     RefProcWorkerTimeTracker tt(_ref_processor.phase_times()->worker_time_sec(ReferenceProcessorPhaseTimes::RefPhase1), i);
 624 
 625     _ref_processor.process_phase1(_refs_lists[i], _policy,
 626                                   &is_alive, &keep_alive, &complete_gc);
 627   }
 628 private:
 629   ReferencePolicy* _policy;
 630 };
 631 
 632 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 633 public:
 634   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 635                     DiscoveredList      refs_lists[],
 636                     bool                marks_oops_alive)
 637     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 638   { }
 639   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 640                     OopClosure& keep_alive,
 641                     VoidClosure& complete_gc)
 642   {
 643     RefProcWorkerTimeTracker tt(_ref_processor.phase_times()->worker_time_sec(ReferenceProcessorPhaseTimes::RefPhase2), i);
 644 
 645     _ref_processor.process_phase2(_refs_lists[i],
 646                                   &is_alive, &keep_alive, &complete_gc);
 647   }
 648 };
 649 
 650 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 651 public:
 652   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 653                     DiscoveredList      refs_lists[],
 654                     bool                clear_referent,
 655                     bool                marks_oops_alive)
 656     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 657       _clear_referent(clear_referent)
 658   { }
 659   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 660                     OopClosure& keep_alive,
 661                     VoidClosure& complete_gc)
 662   {
 663     RefProcWorkerTimeTracker tt(_ref_processor.phase_times()->worker_time_sec(ReferenceProcessorPhaseTimes::RefPhase3), i);
 664 
 665     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 666                                   &is_alive, &keep_alive, &complete_gc);
 667   }
 668 private:
 669   bool _clear_referent;
 670 };
 671 
 672 #ifndef PRODUCT
 673 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_refs) {
 674   if (!log_is_enabled(Trace, gc, ref)) {
 675     return;
 676   }
 677 
 678   stringStream st;
 679   for (uint i = 0; i < active_length; ++i) {
 680     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 681   }
 682   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 683 #ifdef ASSERT
 684   for (uint i = active_length; i < _max_num_q; i++) {
 685     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 686            ref_lists[i].length(), i);
 687   }
 688 #endif
 689 }
 690 #endif
 691 
 692 void ReferenceProcessor::set_active_mt_degree(uint v) {
 693   _num_q = v;
 694   _next_id = 0;
 695 }
 696 
 697 // Balances reference queues.
 698 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 699 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 700 // corresponding to the active workers will be processed.
 701 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 702 {
 703   // calculate total length
 704   size_t total_refs = 0;
 705   log_develop_trace(gc, ref)("Balance ref_lists ");
 706 
 707   for (uint i = 0; i < _max_num_q; ++i) {
 708     total_refs += ref_lists[i].length();
 709   }
 710   log_reflist_counts(ref_lists, _max_num_q, total_refs);
 711   size_t avg_refs = total_refs / _num_q + 1;
 712   uint to_idx = 0;
 713   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 714     bool move_all = false;
 715     if (from_idx >= _num_q) {
 716       move_all = ref_lists[from_idx].length() > 0;
 717     }
 718     while ((ref_lists[from_idx].length() > avg_refs) ||
 719            move_all) {
 720       assert(to_idx < _num_q, "Sanity Check!");
 721       if (ref_lists[to_idx].length() < avg_refs) {
 722         // move superfluous refs
 723         size_t refs_to_move;
 724         // Move all the Ref's if the from queue will not be processed.
 725         if (move_all) {
 726           refs_to_move = MIN2(ref_lists[from_idx].length(),
 727                               avg_refs - ref_lists[to_idx].length());
 728         } else {
 729           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 730                               avg_refs - ref_lists[to_idx].length());
 731         }
 732 
 733         assert(refs_to_move > 0, "otherwise the code below will fail");
 734 
 735         oop move_head = ref_lists[from_idx].head();
 736         oop move_tail = move_head;
 737         oop new_head  = move_head;
 738         // find an element to split the list on
 739         for (size_t j = 0; j < refs_to_move; ++j) {
 740           move_tail = new_head;
 741           new_head = java_lang_ref_Reference::discovered(new_head);
 742         }
 743 
 744         // Add the chain to the to list.
 745         if (ref_lists[to_idx].head() == NULL) {
 746           // to list is empty. Make a loop at the end.
 747           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 748         } else {
 749           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 750         }
 751         ref_lists[to_idx].set_head(move_head);
 752         ref_lists[to_idx].inc_length(refs_to_move);
 753 
 754         // Remove the chain from the from list.
 755         if (move_tail == new_head) {
 756           // We found the end of the from list.
 757           ref_lists[from_idx].set_head(NULL);
 758         } else {
 759           ref_lists[from_idx].set_head(new_head);
 760         }
 761         ref_lists[from_idx].dec_length(refs_to_move);
 762         if (ref_lists[from_idx].length() == 0) {
 763           break;
 764         }
 765       } else {
 766         to_idx = (to_idx + 1) % _num_q;
 767       }
 768     }
 769   }
 770 #ifdef ASSERT
 771   size_t balanced_total_refs = 0;
 772   for (uint i = 0; i < _num_q; ++i) {
 773     balanced_total_refs += ref_lists[i].length();
 774   }
 775   log_reflist_counts(ref_lists, _num_q, balanced_total_refs);
 776   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 777 #endif
 778 }
 779 
 780 void ReferenceProcessor::balance_all_queues() {
 781   balance_queues(_discoveredSoftRefs);
 782   balance_queues(_discoveredWeakRefs);
 783   balance_queues(_discoveredFinalRefs);
 784   balance_queues(_discoveredPhantomRefs);
 785 }
 786 
 787 void ReferenceProcessor::process_discovered_reflist(
 788   DiscoveredList               refs_lists[],
 789   ReferencePolicy*             policy,
 790   bool                         clear_referent,
 791   BoolObjectClosure*           is_alive,
 792   OopClosure*                  keep_alive,
 793   VoidClosure*                 complete_gc,
 794   AbstractRefProcTaskExecutor* task_executor,
 795   GCTimer*                     gc_timer)
 796 {
 797   bool mt_processing = task_executor != NULL && _processing_is_mt;
 798 
 799   phase_times()->set_processing_is_mt(mt_processing);
 800 
 801   // If discovery used MT and a dynamic number of GC threads, then
 802   // the queues must be balanced for correctness if fewer than the
 803   // maximum number of queues were used.  The number of queue used
 804   // during discovery may be different than the number to be used
 805   // for processing so don't depend of _num_q < _max_num_q as part
 806   // of the test.
 807   bool must_balance = _discovery_is_mt;
 808 
 809   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 810       must_balance) {
 811     RefProcBalanceQueuesTimeTracker tt(phase_times(), gc_timer);
 812     balance_queues(refs_lists);
 813   }
 814 
 815   // Phase 1 (soft refs only):
 816   // . Traverse the list and remove any SoftReferences whose
 817   //   referents are not alive, but that should be kept alive for
 818   //   policy reasons. Keep alive the transitive closure of all
 819   //   such referents.
 820   if (policy != NULL) {
 821     RefProcPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, phase_times(), gc_timer);
 822 
 823     if (mt_processing) {
 824       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 825       task_executor->execute(phase1);
 826     } else {
 827       for (uint i = 0; i < _max_num_q; i++) {
 828         process_phase1(refs_lists[i], policy,
 829                        is_alive, keep_alive, complete_gc);
 830       }
 831     }
 832   } else { // policy == NULL
 833     assert(refs_lists != _discoveredSoftRefs,
 834            "Policy must be specified for soft references.");
 835   }
 836 
 837   // Phase 2:
 838   // . Traverse the list and remove any refs whose referents are alive.
 839   {
 840     RefProcPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, phase_times(), gc_timer);
 841 
 842     if (mt_processing) {
 843       RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 844       task_executor->execute(phase2);
 845     } else {
 846       for (uint i = 0; i < _max_num_q; i++) {
 847         process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 848       }
 849     }
 850   }
 851 
 852   // Phase 3:
 853   // . Traverse the list and process referents as appropriate.
 854   {
 855     RefProcPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, phase_times(), gc_timer);
 856 
 857     if (mt_processing) {
 858       RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 859       task_executor->execute(phase3);
 860     } else {
 861       for (uint i = 0; i < _max_num_q; i++) {
 862         process_phase3(refs_lists[i], clear_referent,
 863                        is_alive, keep_alive, complete_gc);
 864       }
 865     }
 866   }
 867 }
 868 
 869 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 870   uint id = 0;
 871   // Determine the queue index to use for this object.
 872   if (_discovery_is_mt) {
 873     // During a multi-threaded discovery phase,
 874     // each thread saves to its "own" list.
 875     Thread* thr = Thread::current();
 876     id = thr->as_Worker_thread()->id();
 877   } else {
 878     // single-threaded discovery, we save in round-robin
 879     // fashion to each of the lists.
 880     if (_processing_is_mt) {
 881       id = next_id();
 882     }
 883   }
 884   assert(id < _max_num_q, "Id is out-of-bounds id %u and max id %u)", id, _max_num_q);
 885 
 886   // Get the discovered queue to which we will add
 887   DiscoveredList* list = NULL;
 888   switch (rt) {
 889     case REF_OTHER:
 890       // Unknown reference type, no special treatment
 891       break;
 892     case REF_SOFT:
 893       list = &_discoveredSoftRefs[id];
 894       break;
 895     case REF_WEAK:
 896       list = &_discoveredWeakRefs[id];
 897       break;
 898     case REF_FINAL:
 899       list = &_discoveredFinalRefs[id];
 900       break;
 901     case REF_PHANTOM:
 902       list = &_discoveredPhantomRefs[id];
 903       break;
 904     case REF_NONE:
 905       // we should not reach here if we are an InstanceRefKlass
 906     default:
 907       ShouldNotReachHere();
 908   }
 909   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 910   return list;
 911 }
 912 
 913 inline void
 914 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 915                                               oop             obj,
 916                                               HeapWord*       discovered_addr) {
 917   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 918   // First we must make sure this object is only enqueued once. CAS in a non null
 919   // discovered_addr.
 920   oop current_head = refs_list.head();
 921   // The last ref must have its discovered field pointing to itself.
 922   oop next_discovered = (current_head != NULL) ? current_head : obj;
 923 
 924   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 925                                                     NULL);
 926   if (retest == NULL) {
 927     // This thread just won the right to enqueue the object.
 928     // We have separate lists for enqueueing, so no synchronization
 929     // is necessary.
 930     refs_list.set_head(obj);
 931     refs_list.inc_length(1);
 932 
 933     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 934                                p2i(obj), obj->klass()->internal_name());
 935   } else {
 936     // If retest was non NULL, another thread beat us to it:
 937     // The reference has already been discovered...
 938     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 939                                p2i(obj), obj->klass()->internal_name());
 940     }
 941   }
 942 
 943 #ifndef PRODUCT
 944 // Non-atomic (i.e. concurrent) discovery might allow us
 945 // to observe j.l.References with NULL referents, being those
 946 // cleared concurrently by mutators during (or after) discovery.
 947 void ReferenceProcessor::verify_referent(oop obj) {
 948   bool da = discovery_is_atomic();
 949   oop referent = java_lang_ref_Reference::referent(obj);
 950   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 951          "Bad referent " INTPTR_FORMAT " found in Reference "
 952          INTPTR_FORMAT " during %satomic discovery ",
 953          p2i(referent), p2i(obj), da ? "" : "non-");
 954 }
 955 #endif
 956 
 957 // We mention two of several possible choices here:
 958 // #0: if the reference object is not in the "originating generation"
 959 //     (or part of the heap being collected, indicated by our "span"
 960 //     we don't treat it specially (i.e. we scan it as we would
 961 //     a normal oop, treating its references as strong references).
 962 //     This means that references can't be discovered unless their
 963 //     referent is also in the same span. This is the simplest,
 964 //     most "local" and most conservative approach, albeit one
 965 //     that may cause weak references to be enqueued least promptly.
 966 //     We call this choice the "ReferenceBasedDiscovery" policy.
 967 // #1: the reference object may be in any generation (span), but if
 968 //     the referent is in the generation (span) being currently collected
 969 //     then we can discover the reference object, provided
 970 //     the object has not already been discovered by
 971 //     a different concurrently running collector (as may be the
 972 //     case, for instance, if the reference object is in CMS and
 973 //     the referent in DefNewGeneration), and provided the processing
 974 //     of this reference object by the current collector will
 975 //     appear atomic to every other collector in the system.
 976 //     (Thus, for instance, a concurrent collector may not
 977 //     discover references in other generations even if the
 978 //     referent is in its own generation). This policy may,
 979 //     in certain cases, enqueue references somewhat sooner than
 980 //     might Policy #0 above, but at marginally increased cost
 981 //     and complexity in processing these references.
 982 //     We call this choice the "RefeferentBasedDiscovery" policy.
 983 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
 984   // Make sure we are discovering refs (rather than processing discovered refs).
 985   if (!_discovering_refs || !RegisterReferences) {
 986     return false;
 987   }
 988   // We only discover active references.
 989   oop next = java_lang_ref_Reference::next(obj);
 990   if (next != NULL) {   // Ref is no longer active
 991     return false;
 992   }
 993 
 994   HeapWord* obj_addr = (HeapWord*)obj;
 995   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
 996       !_span.contains(obj_addr)) {
 997     // Reference is not in the originating generation;
 998     // don't treat it specially (i.e. we want to scan it as a normal
 999     // object with strong references).
1000     return false;
1001   }
1002 
1003   // We only discover references whose referents are not (yet)
1004   // known to be strongly reachable.
1005   if (is_alive_non_header() != NULL) {
1006     verify_referent(obj);
1007     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1008       return false;  // referent is reachable
1009     }
1010   }
1011   if (rt == REF_SOFT) {
1012     // For soft refs we can decide now if these are not
1013     // current candidates for clearing, in which case we
1014     // can mark through them now, rather than delaying that
1015     // to the reference-processing phase. Since all current
1016     // time-stamp policies advance the soft-ref clock only
1017     // at a full collection cycle, this is always currently
1018     // accurate.
1019     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1020       return false;
1021     }
1022   }
1023 
1024   ResourceMark rm;      // Needed for tracing.
1025 
1026   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1027   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1028   assert(discovered->is_oop_or_null(), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1029   if (discovered != NULL) {
1030     // The reference has already been discovered...
1031     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1032                                p2i(obj), obj->klass()->internal_name());
1033     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1034       // assumes that an object is not processed twice;
1035       // if it's been already discovered it must be on another
1036       // generation's discovered list; so we won't discover it.
1037       return false;
1038     } else {
1039       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1040              "Unrecognized policy");
1041       // Check assumption that an object is not potentially
1042       // discovered twice except by concurrent collectors that potentially
1043       // trace the same Reference object twice.
1044       assert(UseConcMarkSweepGC || UseG1GC,
1045              "Only possible with a concurrent marking collector");
1046       return true;
1047     }
1048   }
1049 
1050   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1051     verify_referent(obj);
1052     // Discover if and only if EITHER:
1053     // .. reference is in our span, OR
1054     // .. we are an atomic collector and referent is in our span
1055     if (_span.contains(obj_addr) ||
1056         (discovery_is_atomic() &&
1057          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1058       // should_enqueue = true;
1059     } else {
1060       return false;
1061     }
1062   } else {
1063     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1064            _span.contains(obj_addr), "code inconsistency");
1065   }
1066 
1067   // Get the right type of discovered queue head.
1068   DiscoveredList* list = get_discovered_list(rt);
1069   if (list == NULL) {
1070     return false;   // nothing special needs to be done
1071   }
1072 
1073   if (_discovery_is_mt) {
1074     add_to_discovered_list_mt(*list, obj, discovered_addr);
1075   } else {
1076     // We do a raw store here: the field will be visited later when processing
1077     // the discovered references.
1078     oop current_head = list->head();
1079     // The last ref must have its discovered field pointing to itself.
1080     oop next_discovered = (current_head != NULL) ? current_head : obj;
1081 
1082     assert(discovered == NULL, "control point invariant");
1083     oop_store_raw(discovered_addr, next_discovered);
1084     list->set_head(obj);
1085     list->inc_length(1);
1086 
1087     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1088   }
1089   assert(obj->is_oop(), "Discovered a bad reference");
1090   verify_referent(obj);
1091   return true;
1092 }
1093 
1094 bool ReferenceProcessor::has_discovered_references() {
1095   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1096     if (!_discovered_refs[i].is_empty()) {
1097       return true;
1098     }
1099   }
1100   return false;
1101 }
1102 
1103 // Preclean the discovered references by removing those
1104 // whose referents are alive, and by marking from those that
1105 // are not active. These lists can be handled here
1106 // in any order and, indeed, concurrently.
1107 void ReferenceProcessor::preclean_discovered_references(
1108   BoolObjectClosure* is_alive,
1109   OopClosure* keep_alive,
1110   VoidClosure* complete_gc,
1111   YieldClosure* yield,
1112   GCTimer* gc_timer) {
1113 
1114   // Soft references
1115   {
1116     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1117     for (uint i = 0; i < _max_num_q; i++) {
1118       if (yield->should_return()) {
1119         return;
1120       }
1121       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1122                                   keep_alive, complete_gc, yield);
1123     }
1124   }
1125 
1126   // Weak references
1127   {
1128     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1129     for (uint i = 0; i < _max_num_q; i++) {
1130       if (yield->should_return()) {
1131         return;
1132       }
1133       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1134                                   keep_alive, complete_gc, yield);
1135     }
1136   }
1137 
1138   // Final references
1139   {
1140     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1141     for (uint i = 0; i < _max_num_q; i++) {
1142       if (yield->should_return()) {
1143         return;
1144       }
1145       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1146                                   keep_alive, complete_gc, yield);
1147     }
1148   }
1149 
1150   // Phantom references
1151   {
1152     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1153     for (uint i = 0; i < _max_num_q; i++) {
1154       if (yield->should_return()) {
1155         return;
1156       }
1157       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1158                                   keep_alive, complete_gc, yield);
1159     }
1160   }
1161 }
1162 
1163 // Walk the given discovered ref list, and remove all reference objects
1164 // whose referents are still alive, whose referents are NULL or which
1165 // are not active (have a non-NULL next field). NOTE: When we are
1166 // thus precleaning the ref lists (which happens single-threaded today),
1167 // we do not disable refs discovery to honor the correct semantics of
1168 // java.lang.Reference. As a result, we need to be careful below
1169 // that ref removal steps interleave safely with ref discovery steps
1170 // (in this thread).
1171 void
1172 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1173                                                 BoolObjectClosure* is_alive,
1174                                                 OopClosure*        keep_alive,
1175                                                 VoidClosure*       complete_gc,
1176                                                 YieldClosure*      yield) {
1177   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1178   while (iter.has_next()) {
1179     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1180     oop obj = iter.obj();
1181     oop next = java_lang_ref_Reference::next(obj);
1182     if (iter.referent() == NULL || iter.is_referent_alive() ||
1183         next != NULL) {
1184       // The referent has been cleared, or is alive, or the Reference is not
1185       // active; we need to trace and mark its cohort.
1186       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1187                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1188       // Remove Reference object from list
1189       iter.remove();
1190       // Keep alive its cohort.
1191       iter.make_referent_alive();
1192       if (UseCompressedOops) {
1193         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1194         keep_alive->do_oop(next_addr);
1195       } else {
1196         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1197         keep_alive->do_oop(next_addr);
1198       }
1199       iter.move_to_next();
1200     } else {
1201       iter.next();
1202     }
1203   }
1204   // Close the reachable set
1205   complete_gc->do_void();
1206 
1207   NOT_PRODUCT(
1208     if (iter.processed() > 0) {
1209       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1210         iter.removed(), iter.processed(), p2i(&refs_list));
1211     }
1212   )
1213 }
1214 
1215 const char* ReferenceProcessor::list_name(uint i) {
1216    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1217           "Out of bounds index");
1218 
1219    int j = i / _max_num_q;
1220    switch (j) {
1221      case 0: return "SoftRef";
1222      case 1: return "WeakRef";
1223      case 2: return "FinalRef";
1224      case 3: return "PhantomRef";
1225    }
1226    ShouldNotReachHere();
1227    return NULL;
1228 }