1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "prims/resolvedMethodTable.hpp"
  78 #include "runtime/atomic.hpp"
  79 #include "runtime/init.hpp"
  80 #include "runtime/orderAccess.inline.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "utilities/align.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/stack.inline.hpp"
  85 
  86 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  87 
  88 // INVARIANTS/NOTES
  89 //
  90 // All allocation activity covered by the G1CollectedHeap interface is
  91 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  92 // and allocate_new_tlab, which are the "entry" points to the
  93 // allocation code from the rest of the JVM.  (Note that this does not
  94 // apply to TLAB allocation, which is not part of this interface: it
  95 // is done by clients of this interface.)
  96 
  97 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
  98  private:
  99   size_t _num_dirtied;
 100   G1CollectedHeap* _g1h;
 101   G1SATBCardTableLoggingModRefBS* _g1_bs;
 102 
 103   HeapRegion* region_for_card(jbyte* card_ptr) const {
 104     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 105   }
 106 
 107   bool will_become_free(HeapRegion* hr) const {
 108     // A region will be freed by free_collection_set if the region is in the
 109     // collection set and has not had an evacuation failure.
 110     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 111   }
 112 
 113  public:
 114   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 115     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 116 
 117   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 118     HeapRegion* hr = region_for_card(card_ptr);
 119 
 120     // Should only dirty cards in regions that won't be freed.
 121     if (!will_become_free(hr)) {
 122       *card_ptr = CardTableModRefBS::dirty_card_val();
 123       _num_dirtied++;
 124     }
 125 
 126     return true;
 127   }
 128 
 129   size_t num_dirtied()   const { return _num_dirtied; }
 130 };
 131 
 132 
 133 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 134   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 135 }
 136 
 137 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 138   // The from card cache is not the memory that is actually committed. So we cannot
 139   // take advantage of the zero_filled parameter.
 140   reset_from_card_cache(start_idx, num_regions);
 141 }
 142 
 143 // Returns true if the reference points to an object that
 144 // can move in an incremental collection.
 145 bool G1CollectedHeap::is_scavengable(const void* p) {
 146   HeapRegion* hr = heap_region_containing(p);
 147   return !hr->is_pinned();
 148 }
 149 
 150 // Private methods.
 151 
 152 HeapRegion*
 153 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 154   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 155   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 156     if (!_secondary_free_list.is_empty()) {
 157       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 158                                       "secondary_free_list has %u entries",
 159                                       _secondary_free_list.length());
 160       // It looks as if there are free regions available on the
 161       // secondary_free_list. Let's move them to the free_list and try
 162       // again to allocate from it.
 163       append_secondary_free_list();
 164 
 165       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 166              "empty we should have moved at least one entry to the free_list");
 167       HeapRegion* res = _hrm.allocate_free_region(is_old);
 168       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 169                                       "allocated " HR_FORMAT " from secondary_free_list",
 170                                       HR_FORMAT_PARAMS(res));
 171       return res;
 172     }
 173 
 174     // Wait here until we get notified either when (a) there are no
 175     // more free regions coming or (b) some regions have been moved on
 176     // the secondary_free_list.
 177     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 178   }
 179 
 180   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 181                                   "could not allocate from secondary_free_list");
 182   return NULL;
 183 }
 184 
 185 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 186   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 187          "the only time we use this to allocate a humongous region is "
 188          "when we are allocating a single humongous region");
 189 
 190   HeapRegion* res;
 191   if (G1StressConcRegionFreeing) {
 192     if (!_secondary_free_list.is_empty()) {
 193       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 194                                       "forced to look at the secondary_free_list");
 195       res = new_region_try_secondary_free_list(is_old);
 196       if (res != NULL) {
 197         return res;
 198       }
 199     }
 200   }
 201 
 202   res = _hrm.allocate_free_region(is_old);
 203 
 204   if (res == NULL) {
 205     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 206                                     "res == NULL, trying the secondary_free_list");
 207     res = new_region_try_secondary_free_list(is_old);
 208   }
 209   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 210     // Currently, only attempts to allocate GC alloc regions set
 211     // do_expand to true. So, we should only reach here during a
 212     // safepoint. If this assumption changes we might have to
 213     // reconsider the use of _expand_heap_after_alloc_failure.
 214     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 215 
 216     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 217                               word_size * HeapWordSize);
 218 
 219     if (expand(word_size * HeapWordSize)) {
 220       // Given that expand() succeeded in expanding the heap, and we
 221       // always expand the heap by an amount aligned to the heap
 222       // region size, the free list should in theory not be empty.
 223       // In either case allocate_free_region() will check for NULL.
 224       res = _hrm.allocate_free_region(is_old);
 225     } else {
 226       _expand_heap_after_alloc_failure = false;
 227     }
 228   }
 229   return res;
 230 }
 231 
 232 HeapWord*
 233 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 234                                                            uint num_regions,
 235                                                            size_t word_size,
 236                                                            AllocationContext_t context) {
 237   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 238   assert(is_humongous(word_size), "word_size should be humongous");
 239   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 240 
 241   // Index of last region in the series.
 242   uint last = first + num_regions - 1;
 243 
 244   // We need to initialize the region(s) we just discovered. This is
 245   // a bit tricky given that it can happen concurrently with
 246   // refinement threads refining cards on these regions and
 247   // potentially wanting to refine the BOT as they are scanning
 248   // those cards (this can happen shortly after a cleanup; see CR
 249   // 6991377). So we have to set up the region(s) carefully and in
 250   // a specific order.
 251 
 252   // The word size sum of all the regions we will allocate.
 253   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 254   assert(word_size <= word_size_sum, "sanity");
 255 
 256   // This will be the "starts humongous" region.
 257   HeapRegion* first_hr = region_at(first);
 258   // The header of the new object will be placed at the bottom of
 259   // the first region.
 260   HeapWord* new_obj = first_hr->bottom();
 261   // This will be the new top of the new object.
 262   HeapWord* obj_top = new_obj + word_size;
 263 
 264   // First, we need to zero the header of the space that we will be
 265   // allocating. When we update top further down, some refinement
 266   // threads might try to scan the region. By zeroing the header we
 267   // ensure that any thread that will try to scan the region will
 268   // come across the zero klass word and bail out.
 269   //
 270   // NOTE: It would not have been correct to have used
 271   // CollectedHeap::fill_with_object() and make the space look like
 272   // an int array. The thread that is doing the allocation will
 273   // later update the object header to a potentially different array
 274   // type and, for a very short period of time, the klass and length
 275   // fields will be inconsistent. This could cause a refinement
 276   // thread to calculate the object size incorrectly.
 277   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 278 
 279   // Next, pad out the unused tail of the last region with filler
 280   // objects, for improved usage accounting.
 281   // How many words we use for filler objects.
 282   size_t word_fill_size = word_size_sum - word_size;
 283 
 284   // How many words memory we "waste" which cannot hold a filler object.
 285   size_t words_not_fillable = 0;
 286 
 287   if (word_fill_size >= min_fill_size()) {
 288     fill_with_objects(obj_top, word_fill_size);
 289   } else if (word_fill_size > 0) {
 290     // We have space to fill, but we cannot fit an object there.
 291     words_not_fillable = word_fill_size;
 292     word_fill_size = 0;
 293   }
 294 
 295   // We will set up the first region as "starts humongous". This
 296   // will also update the BOT covering all the regions to reflect
 297   // that there is a single object that starts at the bottom of the
 298   // first region.
 299   first_hr->set_starts_humongous(obj_top, word_fill_size);
 300   first_hr->set_allocation_context(context);
 301   // Then, if there are any, we will set up the "continues
 302   // humongous" regions.
 303   HeapRegion* hr = NULL;
 304   for (uint i = first + 1; i <= last; ++i) {
 305     hr = region_at(i);
 306     hr->set_continues_humongous(first_hr);
 307     hr->set_allocation_context(context);
 308   }
 309 
 310   // Up to this point no concurrent thread would have been able to
 311   // do any scanning on any region in this series. All the top
 312   // fields still point to bottom, so the intersection between
 313   // [bottom,top] and [card_start,card_end] will be empty. Before we
 314   // update the top fields, we'll do a storestore to make sure that
 315   // no thread sees the update to top before the zeroing of the
 316   // object header and the BOT initialization.
 317   OrderAccess::storestore();
 318 
 319   // Now, we will update the top fields of the "continues humongous"
 320   // regions except the last one.
 321   for (uint i = first; i < last; ++i) {
 322     hr = region_at(i);
 323     hr->set_top(hr->end());
 324   }
 325 
 326   hr = region_at(last);
 327   // If we cannot fit a filler object, we must set top to the end
 328   // of the humongous object, otherwise we cannot iterate the heap
 329   // and the BOT will not be complete.
 330   hr->set_top(hr->end() - words_not_fillable);
 331 
 332   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 333          "obj_top should be in last region");
 334 
 335   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 336 
 337   assert(words_not_fillable == 0 ||
 338          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 339          "Miscalculation in humongous allocation");
 340 
 341   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 342 
 343   for (uint i = first; i <= last; ++i) {
 344     hr = region_at(i);
 345     _humongous_set.add(hr);
 346     _hr_printer.alloc(hr);
 347   }
 348 
 349   return new_obj;
 350 }
 351 
 352 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 353   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 354   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 355 }
 356 
 357 // If could fit into free regions w/o expansion, try.
 358 // Otherwise, if can expand, do so.
 359 // Otherwise, if using ex regions might help, try with ex given back.
 360 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 361   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 362 
 363   _verifier->verify_region_sets_optional();
 364 
 365   uint first = G1_NO_HRM_INDEX;
 366   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 367 
 368   if (obj_regions == 1) {
 369     // Only one region to allocate, try to use a fast path by directly allocating
 370     // from the free lists. Do not try to expand here, we will potentially do that
 371     // later.
 372     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 373     if (hr != NULL) {
 374       first = hr->hrm_index();
 375     }
 376   } else {
 377     // We can't allocate humongous regions spanning more than one region while
 378     // cleanupComplete() is running, since some of the regions we find to be
 379     // empty might not yet be added to the free list. It is not straightforward
 380     // to know in which list they are on so that we can remove them. We only
 381     // need to do this if we need to allocate more than one region to satisfy the
 382     // current humongous allocation request. If we are only allocating one region
 383     // we use the one-region region allocation code (see above), that already
 384     // potentially waits for regions from the secondary free list.
 385     wait_while_free_regions_coming();
 386     append_secondary_free_list_if_not_empty_with_lock();
 387 
 388     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 389     // are lucky enough to find some.
 390     first = _hrm.find_contiguous_only_empty(obj_regions);
 391     if (first != G1_NO_HRM_INDEX) {
 392       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 393     }
 394   }
 395 
 396   if (first == G1_NO_HRM_INDEX) {
 397     // Policy: We could not find enough regions for the humongous object in the
 398     // free list. Look through the heap to find a mix of free and uncommitted regions.
 399     // If so, try expansion.
 400     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 401     if (first != G1_NO_HRM_INDEX) {
 402       // We found something. Make sure these regions are committed, i.e. expand
 403       // the heap. Alternatively we could do a defragmentation GC.
 404       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 405                                     word_size * HeapWordSize);
 406 
 407       _hrm.expand_at(first, obj_regions, workers());
 408       g1_policy()->record_new_heap_size(num_regions());
 409 
 410 #ifdef ASSERT
 411       for (uint i = first; i < first + obj_regions; ++i) {
 412         HeapRegion* hr = region_at(i);
 413         assert(hr->is_free(), "sanity");
 414         assert(hr->is_empty(), "sanity");
 415         assert(is_on_master_free_list(hr), "sanity");
 416       }
 417 #endif
 418       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 419     } else {
 420       // Policy: Potentially trigger a defragmentation GC.
 421     }
 422   }
 423 
 424   HeapWord* result = NULL;
 425   if (first != G1_NO_HRM_INDEX) {
 426     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 427                                                        word_size, context);
 428     assert(result != NULL, "it should always return a valid result");
 429 
 430     // A successful humongous object allocation changes the used space
 431     // information of the old generation so we need to recalculate the
 432     // sizes and update the jstat counters here.
 433     g1mm()->update_sizes();
 434   }
 435 
 436   _verifier->verify_region_sets_optional();
 437 
 438   return result;
 439 }
 440 
 441 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 442   assert_heap_not_locked_and_not_at_safepoint();
 443   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 444 
 445   uint dummy_gc_count_before;
 446   uint dummy_gclocker_retry_count = 0;
 447   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 448 }
 449 
 450 HeapWord*
 451 G1CollectedHeap::mem_allocate(size_t word_size,
 452                               bool*  gc_overhead_limit_was_exceeded) {
 453   assert_heap_not_locked_and_not_at_safepoint();
 454 
 455   // Loop until the allocation is satisfied, or unsatisfied after GC.
 456   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 457     uint gc_count_before;
 458 
 459     HeapWord* result = NULL;
 460     if (!is_humongous(word_size)) {
 461       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 462     } else {
 463       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 464     }
 465     if (result != NULL) {
 466       return result;
 467     }
 468 
 469     // Create the garbage collection operation...
 470     VM_G1CollectForAllocation op(gc_count_before, word_size);
 471     op.set_allocation_context(AllocationContext::current());
 472 
 473     // ...and get the VM thread to execute it.
 474     VMThread::execute(&op);
 475 
 476     if (op.prologue_succeeded() && op.pause_succeeded()) {
 477       // If the operation was successful we'll return the result even
 478       // if it is NULL. If the allocation attempt failed immediately
 479       // after a Full GC, it's unlikely we'll be able to allocate now.
 480       HeapWord* result = op.result();
 481       if (result != NULL && !is_humongous(word_size)) {
 482         // Allocations that take place on VM operations do not do any
 483         // card dirtying and we have to do it here. We only have to do
 484         // this for non-humongous allocations, though.
 485         dirty_young_block(result, word_size);
 486       }
 487       return result;
 488     } else {
 489       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 490         return NULL;
 491       }
 492       assert(op.result() == NULL,
 493              "the result should be NULL if the VM op did not succeed");
 494     }
 495 
 496     // Give a warning if we seem to be looping forever.
 497     if ((QueuedAllocationWarningCount > 0) &&
 498         (try_count % QueuedAllocationWarningCount == 0)) {
 499       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 500     }
 501   }
 502 
 503   ShouldNotReachHere();
 504   return NULL;
 505 }
 506 
 507 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 508                                                    AllocationContext_t context,
 509                                                    uint* gc_count_before_ret,
 510                                                    uint* gclocker_retry_count_ret) {
 511   // Make sure you read the note in attempt_allocation_humongous().
 512 
 513   assert_heap_not_locked_and_not_at_safepoint();
 514   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 515          "be called for humongous allocation requests");
 516 
 517   // We should only get here after the first-level allocation attempt
 518   // (attempt_allocation()) failed to allocate.
 519 
 520   // We will loop until a) we manage to successfully perform the
 521   // allocation or b) we successfully schedule a collection which
 522   // fails to perform the allocation. b) is the only case when we'll
 523   // return NULL.
 524   HeapWord* result = NULL;
 525   for (int try_count = 1; /* we'll return */; try_count += 1) {
 526     bool should_try_gc;
 527     uint gc_count_before;
 528 
 529     {
 530       MutexLockerEx x(Heap_lock);
 531       result = _allocator->attempt_allocation_locked(word_size, context);
 532       if (result != NULL) {
 533         return result;
 534       }
 535 
 536       if (GCLocker::is_active_and_needs_gc()) {
 537         if (g1_policy()->can_expand_young_list()) {
 538           // No need for an ergo verbose message here,
 539           // can_expand_young_list() does this when it returns true.
 540           result = _allocator->attempt_allocation_force(word_size, context);
 541           if (result != NULL) {
 542             return result;
 543           }
 544         }
 545         should_try_gc = false;
 546       } else {
 547         // The GCLocker may not be active but the GCLocker initiated
 548         // GC may not yet have been performed (GCLocker::needs_gc()
 549         // returns true). In this case we do not try this GC and
 550         // wait until the GCLocker initiated GC is performed, and
 551         // then retry the allocation.
 552         if (GCLocker::needs_gc()) {
 553           should_try_gc = false;
 554         } else {
 555           // Read the GC count while still holding the Heap_lock.
 556           gc_count_before = total_collections();
 557           should_try_gc = true;
 558         }
 559       }
 560     }
 561 
 562     if (should_try_gc) {
 563       bool succeeded;
 564       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 565                                    GCCause::_g1_inc_collection_pause);
 566       if (result != NULL) {
 567         assert(succeeded, "only way to get back a non-NULL result");
 568         return result;
 569       }
 570 
 571       if (succeeded) {
 572         // If we get here we successfully scheduled a collection which
 573         // failed to allocate. No point in trying to allocate
 574         // further. We'll just return NULL.
 575         MutexLockerEx x(Heap_lock);
 576         *gc_count_before_ret = total_collections();
 577         return NULL;
 578       }
 579     } else {
 580       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 581         MutexLockerEx x(Heap_lock);
 582         *gc_count_before_ret = total_collections();
 583         return NULL;
 584       }
 585       // The GCLocker is either active or the GCLocker initiated
 586       // GC has not yet been performed. Stall until it is and
 587       // then retry the allocation.
 588       GCLocker::stall_until_clear();
 589       (*gclocker_retry_count_ret) += 1;
 590     }
 591 
 592     // We can reach here if we were unsuccessful in scheduling a
 593     // collection (because another thread beat us to it) or if we were
 594     // stalled due to the GC locker. In either can we should retry the
 595     // allocation attempt in case another thread successfully
 596     // performed a collection and reclaimed enough space. We do the
 597     // first attempt (without holding the Heap_lock) here and the
 598     // follow-on attempt will be at the start of the next loop
 599     // iteration (after taking the Heap_lock).
 600     result = _allocator->attempt_allocation(word_size, context);
 601     if (result != NULL) {
 602       return result;
 603     }
 604 
 605     // Give a warning if we seem to be looping forever.
 606     if ((QueuedAllocationWarningCount > 0) &&
 607         (try_count % QueuedAllocationWarningCount == 0)) {
 608       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 609                       "retries %d times", try_count);
 610     }
 611   }
 612 
 613   ShouldNotReachHere();
 614   return NULL;
 615 }
 616 
 617 void G1CollectedHeap::begin_archive_alloc_range() {
 618   assert_at_safepoint(true /* should_be_vm_thread */);
 619   if (_archive_allocator == NULL) {
 620     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 621   }
 622 }
 623 
 624 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 625   // Allocations in archive regions cannot be of a size that would be considered
 626   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 627   // may be different at archive-restore time.
 628   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 629 }
 630 
 631 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 632   assert_at_safepoint(true /* should_be_vm_thread */);
 633   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 634   if (is_archive_alloc_too_large(word_size)) {
 635     return NULL;
 636   }
 637   return _archive_allocator->archive_mem_allocate(word_size);
 638 }
 639 
 640 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 641                                               size_t end_alignment_in_bytes) {
 642   assert_at_safepoint(true /* should_be_vm_thread */);
 643   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 644 
 645   // Call complete_archive to do the real work, filling in the MemRegion
 646   // array with the archive regions.
 647   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 648   delete _archive_allocator;
 649   _archive_allocator = NULL;
 650 }
 651 
 652 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 653   assert(ranges != NULL, "MemRegion array NULL");
 654   assert(count != 0, "No MemRegions provided");
 655   MemRegion reserved = _hrm.reserved();
 656   for (size_t i = 0; i < count; i++) {
 657     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 658       return false;
 659     }
 660   }
 661   return true;
 662 }
 663 
 664 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 665   assert(!is_init_completed(), "Expect to be called at JVM init time");
 666   assert(ranges != NULL, "MemRegion array NULL");
 667   assert(count != 0, "No MemRegions provided");
 668   MutexLockerEx x(Heap_lock);
 669 
 670   MemRegion reserved = _hrm.reserved();
 671   HeapWord* prev_last_addr = NULL;
 672   HeapRegion* prev_last_region = NULL;
 673 
 674   // Temporarily disable pretouching of heap pages. This interface is used
 675   // when mmap'ing archived heap data in, so pre-touching is wasted.
 676   FlagSetting fs(AlwaysPreTouch, false);
 677 
 678   // Enable archive object checking used by G1MarkSweep. We have to let it know
 679   // about each archive range, so that objects in those ranges aren't marked.
 680   G1ArchiveAllocator::enable_archive_object_check();
 681 
 682   // For each specified MemRegion range, allocate the corresponding G1
 683   // regions and mark them as archive regions. We expect the ranges in
 684   // ascending starting address order, without overlap.
 685   for (size_t i = 0; i < count; i++) {
 686     MemRegion curr_range = ranges[i];
 687     HeapWord* start_address = curr_range.start();
 688     size_t word_size = curr_range.word_size();
 689     HeapWord* last_address = curr_range.last();
 690     size_t commits = 0;
 691 
 692     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 693               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 694               p2i(start_address), p2i(last_address));
 695     guarantee(start_address > prev_last_addr,
 696               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 697               p2i(start_address), p2i(prev_last_addr));
 698     prev_last_addr = last_address;
 699 
 700     // Check for ranges that start in the same G1 region in which the previous
 701     // range ended, and adjust the start address so we don't try to allocate
 702     // the same region again. If the current range is entirely within that
 703     // region, skip it, just adjusting the recorded top.
 704     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 705     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 706       start_address = start_region->end();
 707       if (start_address > last_address) {
 708         increase_used(word_size * HeapWordSize);
 709         start_region->set_top(last_address + 1);
 710         continue;
 711       }
 712       start_region->set_top(start_address);
 713       curr_range = MemRegion(start_address, last_address + 1);
 714       start_region = _hrm.addr_to_region(start_address);
 715     }
 716 
 717     // Perform the actual region allocation, exiting if it fails.
 718     // Then note how much new space we have allocated.
 719     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 720       return false;
 721     }
 722     increase_used(word_size * HeapWordSize);
 723     if (commits != 0) {
 724       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 725                                 HeapRegion::GrainWords * HeapWordSize * commits);
 726 
 727     }
 728 
 729     // Mark each G1 region touched by the range as archive, add it to the old set,
 730     // and set the allocation context and top.
 731     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 732     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 733     prev_last_region = last_region;
 734 
 735     while (curr_region != NULL) {
 736       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 737              "Region already in use (index %u)", curr_region->hrm_index());
 738       curr_region->set_allocation_context(AllocationContext::system());
 739       curr_region->set_archive();
 740       _hr_printer.alloc(curr_region);
 741       _old_set.add(curr_region);
 742       if (curr_region != last_region) {
 743         curr_region->set_top(curr_region->end());
 744         curr_region = _hrm.next_region_in_heap(curr_region);
 745       } else {
 746         curr_region->set_top(last_address + 1);
 747         curr_region = NULL;
 748       }
 749     }
 750 
 751     // Notify mark-sweep of the archive range.
 752     G1ArchiveAllocator::set_range_archive(curr_range, true);
 753   }
 754   return true;
 755 }
 756 
 757 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 758   assert(!is_init_completed(), "Expect to be called at JVM init time");
 759   assert(ranges != NULL, "MemRegion array NULL");
 760   assert(count != 0, "No MemRegions provided");
 761   MemRegion reserved = _hrm.reserved();
 762   HeapWord *prev_last_addr = NULL;
 763   HeapRegion* prev_last_region = NULL;
 764 
 765   // For each MemRegion, create filler objects, if needed, in the G1 regions
 766   // that contain the address range. The address range actually within the
 767   // MemRegion will not be modified. That is assumed to have been initialized
 768   // elsewhere, probably via an mmap of archived heap data.
 769   MutexLockerEx x(Heap_lock);
 770   for (size_t i = 0; i < count; i++) {
 771     HeapWord* start_address = ranges[i].start();
 772     HeapWord* last_address = ranges[i].last();
 773 
 774     assert(reserved.contains(start_address) && reserved.contains(last_address),
 775            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 776            p2i(start_address), p2i(last_address));
 777     assert(start_address > prev_last_addr,
 778            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 779            p2i(start_address), p2i(prev_last_addr));
 780 
 781     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 782     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 783     HeapWord* bottom_address = start_region->bottom();
 784 
 785     // Check for a range beginning in the same region in which the
 786     // previous one ended.
 787     if (start_region == prev_last_region) {
 788       bottom_address = prev_last_addr + 1;
 789     }
 790 
 791     // Verify that the regions were all marked as archive regions by
 792     // alloc_archive_regions.
 793     HeapRegion* curr_region = start_region;
 794     while (curr_region != NULL) {
 795       guarantee(curr_region->is_archive(),
 796                 "Expected archive region at index %u", curr_region->hrm_index());
 797       if (curr_region != last_region) {
 798         curr_region = _hrm.next_region_in_heap(curr_region);
 799       } else {
 800         curr_region = NULL;
 801       }
 802     }
 803 
 804     prev_last_addr = last_address;
 805     prev_last_region = last_region;
 806 
 807     // Fill the memory below the allocated range with dummy object(s),
 808     // if the region bottom does not match the range start, or if the previous
 809     // range ended within the same G1 region, and there is a gap.
 810     if (start_address != bottom_address) {
 811       size_t fill_size = pointer_delta(start_address, bottom_address);
 812       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 813       increase_used(fill_size * HeapWordSize);
 814     }
 815   }
 816 }
 817 
 818 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 819                                                      uint* gc_count_before_ret,
 820                                                      uint* gclocker_retry_count_ret) {
 821   assert_heap_not_locked_and_not_at_safepoint();
 822   assert(!is_humongous(word_size), "attempt_allocation() should not "
 823          "be called for humongous allocation requests");
 824 
 825   AllocationContext_t context = AllocationContext::current();
 826   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 827 
 828   if (result == NULL) {
 829     result = attempt_allocation_slow(word_size,
 830                                      context,
 831                                      gc_count_before_ret,
 832                                      gclocker_retry_count_ret);
 833   }
 834   assert_heap_not_locked();
 835   if (result != NULL) {
 836     dirty_young_block(result, word_size);
 837   }
 838   return result;
 839 }
 840 
 841 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 842   assert(!is_init_completed(), "Expect to be called at JVM init time");
 843   assert(ranges != NULL, "MemRegion array NULL");
 844   assert(count != 0, "No MemRegions provided");
 845   MemRegion reserved = _hrm.reserved();
 846   HeapWord* prev_last_addr = NULL;
 847   HeapRegion* prev_last_region = NULL;
 848   size_t size_used = 0;
 849   size_t uncommitted_regions = 0;
 850 
 851   // For each Memregion, free the G1 regions that constitute it, and
 852   // notify mark-sweep that the range is no longer to be considered 'archive.'
 853   MutexLockerEx x(Heap_lock);
 854   for (size_t i = 0; i < count; i++) {
 855     HeapWord* start_address = ranges[i].start();
 856     HeapWord* last_address = ranges[i].last();
 857 
 858     assert(reserved.contains(start_address) && reserved.contains(last_address),
 859            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 860            p2i(start_address), p2i(last_address));
 861     assert(start_address > prev_last_addr,
 862            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 863            p2i(start_address), p2i(prev_last_addr));
 864     size_used += ranges[i].byte_size();
 865     prev_last_addr = last_address;
 866 
 867     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 868     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 869 
 870     // Check for ranges that start in the same G1 region in which the previous
 871     // range ended, and adjust the start address so we don't try to free
 872     // the same region again. If the current range is entirely within that
 873     // region, skip it.
 874     if (start_region == prev_last_region) {
 875       start_address = start_region->end();
 876       if (start_address > last_address) {
 877         continue;
 878       }
 879       start_region = _hrm.addr_to_region(start_address);
 880     }
 881     prev_last_region = last_region;
 882 
 883     // After verifying that each region was marked as an archive region by
 884     // alloc_archive_regions, set it free and empty and uncommit it.
 885     HeapRegion* curr_region = start_region;
 886     while (curr_region != NULL) {
 887       guarantee(curr_region->is_archive(),
 888                 "Expected archive region at index %u", curr_region->hrm_index());
 889       uint curr_index = curr_region->hrm_index();
 890       _old_set.remove(curr_region);
 891       curr_region->set_free();
 892       curr_region->set_top(curr_region->bottom());
 893       if (curr_region != last_region) {
 894         curr_region = _hrm.next_region_in_heap(curr_region);
 895       } else {
 896         curr_region = NULL;
 897       }
 898       _hrm.shrink_at(curr_index, 1);
 899       uncommitted_regions++;
 900     }
 901 
 902     // Notify mark-sweep that this is no longer an archive range.
 903     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 904   }
 905 
 906   if (uncommitted_regions != 0) {
 907     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 908                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 909   }
 910   decrease_used(size_used);
 911 }
 912 
 913 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 914                                                         uint* gc_count_before_ret,
 915                                                         uint* gclocker_retry_count_ret) {
 916   // The structure of this method has a lot of similarities to
 917   // attempt_allocation_slow(). The reason these two were not merged
 918   // into a single one is that such a method would require several "if
 919   // allocation is not humongous do this, otherwise do that"
 920   // conditional paths which would obscure its flow. In fact, an early
 921   // version of this code did use a unified method which was harder to
 922   // follow and, as a result, it had subtle bugs that were hard to
 923   // track down. So keeping these two methods separate allows each to
 924   // be more readable. It will be good to keep these two in sync as
 925   // much as possible.
 926 
 927   assert_heap_not_locked_and_not_at_safepoint();
 928   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 929          "should only be called for humongous allocations");
 930 
 931   // Humongous objects can exhaust the heap quickly, so we should check if we
 932   // need to start a marking cycle at each humongous object allocation. We do
 933   // the check before we do the actual allocation. The reason for doing it
 934   // before the allocation is that we avoid having to keep track of the newly
 935   // allocated memory while we do a GC.
 936   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 937                                            word_size)) {
 938     collect(GCCause::_g1_humongous_allocation);
 939   }
 940 
 941   // We will loop until a) we manage to successfully perform the
 942   // allocation or b) we successfully schedule a collection which
 943   // fails to perform the allocation. b) is the only case when we'll
 944   // return NULL.
 945   HeapWord* result = NULL;
 946   for (int try_count = 1; /* we'll return */; try_count += 1) {
 947     bool should_try_gc;
 948     uint gc_count_before;
 949 
 950     {
 951       MutexLockerEx x(Heap_lock);
 952 
 953       // Given that humongous objects are not allocated in young
 954       // regions, we'll first try to do the allocation without doing a
 955       // collection hoping that there's enough space in the heap.
 956       result = humongous_obj_allocate(word_size, AllocationContext::current());
 957       if (result != NULL) {
 958         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 959         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 960         return result;
 961       }
 962 
 963       if (GCLocker::is_active_and_needs_gc()) {
 964         should_try_gc = false;
 965       } else {
 966          // The GCLocker may not be active but the GCLocker initiated
 967         // GC may not yet have been performed (GCLocker::needs_gc()
 968         // returns true). In this case we do not try this GC and
 969         // wait until the GCLocker initiated GC is performed, and
 970         // then retry the allocation.
 971         if (GCLocker::needs_gc()) {
 972           should_try_gc = false;
 973         } else {
 974           // Read the GC count while still holding the Heap_lock.
 975           gc_count_before = total_collections();
 976           should_try_gc = true;
 977         }
 978       }
 979     }
 980 
 981     if (should_try_gc) {
 982       // If we failed to allocate the humongous object, we should try to
 983       // do a collection pause (if we're allowed) in case it reclaims
 984       // enough space for the allocation to succeed after the pause.
 985 
 986       bool succeeded;
 987       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 988                                    GCCause::_g1_humongous_allocation);
 989       if (result != NULL) {
 990         assert(succeeded, "only way to get back a non-NULL result");
 991         return result;
 992       }
 993 
 994       if (succeeded) {
 995         // If we get here we successfully scheduled a collection which
 996         // failed to allocate. No point in trying to allocate
 997         // further. We'll just return NULL.
 998         MutexLockerEx x(Heap_lock);
 999         *gc_count_before_ret = total_collections();
1000         return NULL;
1001       }
1002     } else {
1003       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1004         MutexLockerEx x(Heap_lock);
1005         *gc_count_before_ret = total_collections();
1006         return NULL;
1007       }
1008       // The GCLocker is either active or the GCLocker initiated
1009       // GC has not yet been performed. Stall until it is and
1010       // then retry the allocation.
1011       GCLocker::stall_until_clear();
1012       (*gclocker_retry_count_ret) += 1;
1013     }
1014 
1015     // We can reach here if we were unsuccessful in scheduling a
1016     // collection (because another thread beat us to it) or if we were
1017     // stalled due to the GC locker. In either can we should retry the
1018     // allocation attempt in case another thread successfully
1019     // performed a collection and reclaimed enough space.  Give a
1020     // warning if we seem to be looping forever.
1021 
1022     if ((QueuedAllocationWarningCount > 0) &&
1023         (try_count % QueuedAllocationWarningCount == 0)) {
1024       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1025                       "retries %d times", try_count);
1026     }
1027   }
1028 
1029   ShouldNotReachHere();
1030   return NULL;
1031 }
1032 
1033 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1034                                                            AllocationContext_t context,
1035                                                            bool expect_null_mutator_alloc_region) {
1036   assert_at_safepoint(true /* should_be_vm_thread */);
1037   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1038          "the current alloc region was unexpectedly found to be non-NULL");
1039 
1040   if (!is_humongous(word_size)) {
1041     return _allocator->attempt_allocation_locked(word_size, context);
1042   } else {
1043     HeapWord* result = humongous_obj_allocate(word_size, context);
1044     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1045       collector_state()->set_initiate_conc_mark_if_possible(true);
1046     }
1047     return result;
1048   }
1049 
1050   ShouldNotReachHere();
1051 }
1052 
1053 class PostMCRemSetClearClosure: public HeapRegionClosure {
1054   G1CollectedHeap* _g1h;
1055   ModRefBarrierSet* _mr_bs;
1056 public:
1057   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1058     _g1h(g1h), _mr_bs(mr_bs) {}
1059 
1060   bool doHeapRegion(HeapRegion* r) {
1061     HeapRegionRemSet* hrrs = r->rem_set();
1062 
1063     _g1h->reset_gc_time_stamps(r);
1064 
1065     if (r->is_continues_humongous()) {
1066       // We'll assert that the strong code root list and RSet is empty
1067       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1068       assert(hrrs->occupied() == 0, "RSet should be empty");
1069     } else {
1070       hrrs->clear();
1071     }
1072     // You might think here that we could clear just the cards
1073     // corresponding to the used region.  But no: if we leave a dirty card
1074     // in a region we might allocate into, then it would prevent that card
1075     // from being enqueued, and cause it to be missed.
1076     // Re: the performance cost: we shouldn't be doing full GC anyway!
1077     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1078 
1079     return false;
1080   }
1081 };
1082 
1083 void G1CollectedHeap::clear_rsets_post_compaction() {
1084   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1085   heap_region_iterate(&rs_clear);
1086 }
1087 
1088 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1089   G1CollectedHeap*   _g1h;
1090   RebuildRSOopClosure _cl;
1091 public:
1092   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1093     _cl(g1->g1_rem_set(), worker_i),
1094     _g1h(g1)
1095   { }
1096 
1097   bool doHeapRegion(HeapRegion* r) {
1098     if (!r->is_continues_humongous()) {
1099       _cl.set_from(r);
1100       r->oop_iterate(&_cl);
1101     }
1102     return false;
1103   }
1104 };
1105 
1106 class ParRebuildRSTask: public AbstractGangTask {
1107   G1CollectedHeap* _g1;
1108   HeapRegionClaimer _hrclaimer;
1109 
1110 public:
1111   ParRebuildRSTask(G1CollectedHeap* g1) :
1112       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1113 
1114   void work(uint worker_id) {
1115     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1116     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1117   }
1118 };
1119 
1120 class PostCompactionPrinterClosure: public HeapRegionClosure {
1121 private:
1122   G1HRPrinter* _hr_printer;
1123 public:
1124   bool doHeapRegion(HeapRegion* hr) {
1125     assert(!hr->is_young(), "not expecting to find young regions");
1126     _hr_printer->post_compaction(hr);
1127     return false;
1128   }
1129 
1130   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1131     : _hr_printer(hr_printer) { }
1132 };
1133 
1134 void G1CollectedHeap::print_hrm_post_compaction() {
1135   if (_hr_printer.is_active()) {
1136     PostCompactionPrinterClosure cl(hr_printer());
1137     heap_region_iterate(&cl);
1138   }
1139 
1140 }
1141 
1142 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1143                                          bool clear_all_soft_refs) {
1144   assert_at_safepoint(true /* should_be_vm_thread */);
1145 
1146   if (GCLocker::check_active_before_gc()) {
1147     return false;
1148   }
1149 
1150   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1151   gc_timer->register_gc_start();
1152 
1153   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1154   GCIdMark gc_id_mark;
1155   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1156 
1157   SvcGCMarker sgcm(SvcGCMarker::FULL);
1158   ResourceMark rm;
1159 
1160   print_heap_before_gc();
1161   print_heap_regions();
1162   trace_heap_before_gc(gc_tracer);
1163 
1164   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1165 
1166   _verifier->verify_region_sets_optional();
1167 
1168   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1169                            collector_policy()->should_clear_all_soft_refs();
1170 
1171   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1172 
1173   {
1174     IsGCActiveMark x;
1175 
1176     // Timing
1177     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1178     GCTraceCPUTime tcpu;
1179 
1180     {
1181       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1182       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1183       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1184 
1185       G1HeapTransition heap_transition(this);
1186       g1_policy()->record_full_collection_start();
1187 
1188       // Note: When we have a more flexible GC logging framework that
1189       // allows us to add optional attributes to a GC log record we
1190       // could consider timing and reporting how long we wait in the
1191       // following two methods.
1192       wait_while_free_regions_coming();
1193       // If we start the compaction before the CM threads finish
1194       // scanning the root regions we might trip them over as we'll
1195       // be moving objects / updating references. So let's wait until
1196       // they are done. By telling them to abort, they should complete
1197       // early.
1198       _cm->root_regions()->abort();
1199       _cm->root_regions()->wait_until_scan_finished();
1200       append_secondary_free_list_if_not_empty_with_lock();
1201 
1202       gc_prologue(true);
1203       increment_total_collections(true /* full gc */);
1204       increment_old_marking_cycles_started();
1205 
1206       assert(used() == recalculate_used(), "Should be equal");
1207 
1208       _verifier->verify_before_gc();
1209 
1210       _verifier->check_bitmaps("Full GC Start");
1211       pre_full_gc_dump(gc_timer);
1212 
1213 #if defined(COMPILER2) || INCLUDE_JVMCI
1214       DerivedPointerTable::clear();
1215 #endif
1216 
1217       // Disable discovery and empty the discovered lists
1218       // for the CM ref processor.
1219       ref_processor_cm()->disable_discovery();
1220       ref_processor_cm()->abandon_partial_discovery();
1221       ref_processor_cm()->verify_no_references_recorded();
1222 
1223       // Abandon current iterations of concurrent marking and concurrent
1224       // refinement, if any are in progress.
1225       concurrent_mark()->abort();
1226 
1227       // Make sure we'll choose a new allocation region afterwards.
1228       _allocator->release_mutator_alloc_region();
1229       _allocator->abandon_gc_alloc_regions();
1230       g1_rem_set()->cleanupHRRS();
1231 
1232       // We may have added regions to the current incremental collection
1233       // set between the last GC or pause and now. We need to clear the
1234       // incremental collection set and then start rebuilding it afresh
1235       // after this full GC.
1236       abandon_collection_set(collection_set());
1237 
1238       tear_down_region_sets(false /* free_list_only */);
1239       collector_state()->set_gcs_are_young(true);
1240 
1241       // See the comments in g1CollectedHeap.hpp and
1242       // G1CollectedHeap::ref_processing_init() about
1243       // how reference processing currently works in G1.
1244 
1245       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1246       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1247 
1248       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1249       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1250 
1251       ref_processor_stw()->enable_discovery();
1252       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1253 
1254       // Do collection work
1255       {
1256         HandleMark hm;  // Discard invalid handles created during gc
1257         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1258       }
1259 
1260       assert(num_free_regions() == 0, "we should not have added any free regions");
1261       rebuild_region_sets(false /* free_list_only */);
1262 
1263       ReferenceProcessorPhaseTimes pt(NULL, ref_processor_stw()->num_q());
1264 
1265       // Enqueue any discovered reference objects that have
1266       // not been removed from the discovered lists.
1267       ref_processor_stw()->enqueue_discovered_references(NULL, &pt);
1268 
1269       pt.print_enqueue_phase();
1270 
1271 #if defined(COMPILER2) || INCLUDE_JVMCI
1272       DerivedPointerTable::update_pointers();
1273 #endif
1274 
1275       MemoryService::track_memory_usage();
1276 
1277       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1278       ref_processor_stw()->verify_no_references_recorded();
1279 
1280       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1281       ClassLoaderDataGraph::purge();
1282       MetaspaceAux::verify_metrics();
1283 
1284       // Note: since we've just done a full GC, concurrent
1285       // marking is no longer active. Therefore we need not
1286       // re-enable reference discovery for the CM ref processor.
1287       // That will be done at the start of the next marking cycle.
1288       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1289       ref_processor_cm()->verify_no_references_recorded();
1290 
1291       reset_gc_time_stamp();
1292       // Since everything potentially moved, we will clear all remembered
1293       // sets, and clear all cards.  Later we will rebuild remembered
1294       // sets. We will also reset the GC time stamps of the regions.
1295       clear_rsets_post_compaction();
1296       check_gc_time_stamps();
1297 
1298       resize_if_necessary_after_full_collection();
1299 
1300       // We should do this after we potentially resize the heap so
1301       // that all the COMMIT / UNCOMMIT events are generated before
1302       // the compaction events.
1303       print_hrm_post_compaction();
1304 
1305       if (_hot_card_cache->use_cache()) {
1306         _hot_card_cache->reset_card_counts();
1307         _hot_card_cache->reset_hot_cache();
1308       }
1309 
1310       // Rebuild remembered sets of all regions.
1311       uint n_workers =
1312         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1313                                                 workers()->active_workers(),
1314                                                 Threads::number_of_non_daemon_threads());
1315       workers()->update_active_workers(n_workers);
1316       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1317 
1318       ParRebuildRSTask rebuild_rs_task(this);
1319       workers()->run_task(&rebuild_rs_task);
1320 
1321       // Rebuild the strong code root lists for each region
1322       rebuild_strong_code_roots();
1323 
1324       if (true) { // FIXME
1325         MetaspaceGC::compute_new_size();
1326       }
1327 
1328 #ifdef TRACESPINNING
1329       ParallelTaskTerminator::print_termination_counts();
1330 #endif
1331 
1332       // Discard all rset updates
1333       JavaThread::dirty_card_queue_set().abandon_logs();
1334       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1335 
1336       // At this point there should be no regions in the
1337       // entire heap tagged as young.
1338       assert(check_young_list_empty(), "young list should be empty at this point");
1339 
1340       // Update the number of full collections that have been completed.
1341       increment_old_marking_cycles_completed(false /* concurrent */);
1342 
1343       _hrm.verify_optional();
1344       _verifier->verify_region_sets_optional();
1345 
1346       _verifier->verify_after_gc();
1347 
1348       // Clear the previous marking bitmap, if needed for bitmap verification.
1349       // Note we cannot do this when we clear the next marking bitmap in
1350       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1351       // objects marked during a full GC against the previous bitmap.
1352       // But we need to clear it before calling check_bitmaps below since
1353       // the full GC has compacted objects and updated TAMS but not updated
1354       // the prev bitmap.
1355       if (G1VerifyBitmaps) {
1356         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1357         _cm->clear_prev_bitmap(workers());
1358       }
1359       _verifier->check_bitmaps("Full GC End");
1360 
1361       start_new_collection_set();
1362 
1363       _allocator->init_mutator_alloc_region();
1364 
1365       g1_policy()->record_full_collection_end();
1366 
1367       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1368       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1369       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1370       // before any GC notifications are raised.
1371       g1mm()->update_sizes();
1372 
1373       gc_epilogue(true);
1374 
1375       heap_transition.print();
1376 
1377       print_heap_after_gc();
1378       print_heap_regions();
1379       trace_heap_after_gc(gc_tracer);
1380 
1381       post_full_gc_dump(gc_timer);
1382     }
1383 
1384     gc_timer->register_gc_end();
1385     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1386   }
1387 
1388   return true;
1389 }
1390 
1391 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1392   // Currently, there is no facility in the do_full_collection(bool) API to notify
1393   // the caller that the collection did not succeed (e.g., because it was locked
1394   // out by the GC locker). So, right now, we'll ignore the return value.
1395   bool dummy = do_full_collection(true,                /* explicit_gc */
1396                                   clear_all_soft_refs);
1397 }
1398 
1399 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1400   // Include bytes that will be pre-allocated to support collections, as "used".
1401   const size_t used_after_gc = used();
1402   const size_t capacity_after_gc = capacity();
1403   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1404 
1405   // This is enforced in arguments.cpp.
1406   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1407          "otherwise the code below doesn't make sense");
1408 
1409   // We don't have floating point command-line arguments
1410   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1411   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1412   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1413   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1414 
1415   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1416   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1417 
1418   // We have to be careful here as these two calculations can overflow
1419   // 32-bit size_t's.
1420   double used_after_gc_d = (double) used_after_gc;
1421   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1422   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1423 
1424   // Let's make sure that they are both under the max heap size, which
1425   // by default will make them fit into a size_t.
1426   double desired_capacity_upper_bound = (double) max_heap_size;
1427   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1428                                     desired_capacity_upper_bound);
1429   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1430                                     desired_capacity_upper_bound);
1431 
1432   // We can now safely turn them into size_t's.
1433   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1434   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1435 
1436   // This assert only makes sense here, before we adjust them
1437   // with respect to the min and max heap size.
1438   assert(minimum_desired_capacity <= maximum_desired_capacity,
1439          "minimum_desired_capacity = " SIZE_FORMAT ", "
1440          "maximum_desired_capacity = " SIZE_FORMAT,
1441          minimum_desired_capacity, maximum_desired_capacity);
1442 
1443   // Should not be greater than the heap max size. No need to adjust
1444   // it with respect to the heap min size as it's a lower bound (i.e.,
1445   // we'll try to make the capacity larger than it, not smaller).
1446   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1447   // Should not be less than the heap min size. No need to adjust it
1448   // with respect to the heap max size as it's an upper bound (i.e.,
1449   // we'll try to make the capacity smaller than it, not greater).
1450   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1451 
1452   if (capacity_after_gc < minimum_desired_capacity) {
1453     // Don't expand unless it's significant
1454     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1455 
1456     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1457                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1458                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1459 
1460     expand(expand_bytes, _workers);
1461 
1462     // No expansion, now see if we want to shrink
1463   } else if (capacity_after_gc > maximum_desired_capacity) {
1464     // Capacity too large, compute shrinking size
1465     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1466 
1467     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1468                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1469                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1470 
1471     shrink(shrink_bytes);
1472   }
1473 }
1474 
1475 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1476                                                             AllocationContext_t context,
1477                                                             bool do_gc,
1478                                                             bool clear_all_soft_refs,
1479                                                             bool expect_null_mutator_alloc_region,
1480                                                             bool* gc_succeeded) {
1481   *gc_succeeded = true;
1482   // Let's attempt the allocation first.
1483   HeapWord* result =
1484     attempt_allocation_at_safepoint(word_size,
1485                                     context,
1486                                     expect_null_mutator_alloc_region);
1487   if (result != NULL) {
1488     assert(*gc_succeeded, "sanity");
1489     return result;
1490   }
1491 
1492   // In a G1 heap, we're supposed to keep allocation from failing by
1493   // incremental pauses.  Therefore, at least for now, we'll favor
1494   // expansion over collection.  (This might change in the future if we can
1495   // do something smarter than full collection to satisfy a failed alloc.)
1496   result = expand_and_allocate(word_size, context);
1497   if (result != NULL) {
1498     assert(*gc_succeeded, "sanity");
1499     return result;
1500   }
1501 
1502   if (do_gc) {
1503     // Expansion didn't work, we'll try to do a Full GC.
1504     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1505                                        clear_all_soft_refs);
1506   }
1507 
1508   return NULL;
1509 }
1510 
1511 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1512                                                      AllocationContext_t context,
1513                                                      bool* succeeded) {
1514   assert_at_safepoint(true /* should_be_vm_thread */);
1515 
1516   // Attempts to allocate followed by Full GC.
1517   HeapWord* result =
1518     satisfy_failed_allocation_helper(word_size,
1519                                      context,
1520                                      true,  /* do_gc */
1521                                      false, /* clear_all_soft_refs */
1522                                      false, /* expect_null_mutator_alloc_region */
1523                                      succeeded);
1524 
1525   if (result != NULL || !*succeeded) {
1526     return result;
1527   }
1528 
1529   // Attempts to allocate followed by Full GC that will collect all soft references.
1530   result = satisfy_failed_allocation_helper(word_size,
1531                                             context,
1532                                             true, /* do_gc */
1533                                             true, /* clear_all_soft_refs */
1534                                             true, /* expect_null_mutator_alloc_region */
1535                                             succeeded);
1536 
1537   if (result != NULL || !*succeeded) {
1538     return result;
1539   }
1540 
1541   // Attempts to allocate, no GC
1542   result = satisfy_failed_allocation_helper(word_size,
1543                                             context,
1544                                             false, /* do_gc */
1545                                             false, /* clear_all_soft_refs */
1546                                             true,  /* expect_null_mutator_alloc_region */
1547                                             succeeded);
1548 
1549   if (result != NULL) {
1550     assert(*succeeded, "sanity");
1551     return result;
1552   }
1553 
1554   assert(!collector_policy()->should_clear_all_soft_refs(),
1555          "Flag should have been handled and cleared prior to this point");
1556 
1557   // What else?  We might try synchronous finalization later.  If the total
1558   // space available is large enough for the allocation, then a more
1559   // complete compaction phase than we've tried so far might be
1560   // appropriate.
1561   assert(*succeeded, "sanity");
1562   return NULL;
1563 }
1564 
1565 // Attempting to expand the heap sufficiently
1566 // to support an allocation of the given "word_size".  If
1567 // successful, perform the allocation and return the address of the
1568 // allocated block, or else "NULL".
1569 
1570 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1571   assert_at_safepoint(true /* should_be_vm_thread */);
1572 
1573   _verifier->verify_region_sets_optional();
1574 
1575   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1576   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1577                             word_size * HeapWordSize);
1578 
1579 
1580   if (expand(expand_bytes, _workers)) {
1581     _hrm.verify_optional();
1582     _verifier->verify_region_sets_optional();
1583     return attempt_allocation_at_safepoint(word_size,
1584                                            context,
1585                                            false /* expect_null_mutator_alloc_region */);
1586   }
1587   return NULL;
1588 }
1589 
1590 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1591   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1592   aligned_expand_bytes = align_up(aligned_expand_bytes,
1593                                        HeapRegion::GrainBytes);
1594 
1595   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1596                             expand_bytes, aligned_expand_bytes);
1597 
1598   if (is_maximal_no_gc()) {
1599     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1600     return false;
1601   }
1602 
1603   double expand_heap_start_time_sec = os::elapsedTime();
1604   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1605   assert(regions_to_expand > 0, "Must expand by at least one region");
1606 
1607   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1608   if (expand_time_ms != NULL) {
1609     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1610   }
1611 
1612   if (expanded_by > 0) {
1613     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1614     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1615     g1_policy()->record_new_heap_size(num_regions());
1616   } else {
1617     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1618 
1619     // The expansion of the virtual storage space was unsuccessful.
1620     // Let's see if it was because we ran out of swap.
1621     if (G1ExitOnExpansionFailure &&
1622         _hrm.available() >= regions_to_expand) {
1623       // We had head room...
1624       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1625     }
1626   }
1627   return regions_to_expand > 0;
1628 }
1629 
1630 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1631   size_t aligned_shrink_bytes =
1632     ReservedSpace::page_align_size_down(shrink_bytes);
1633   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1634                                          HeapRegion::GrainBytes);
1635   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1636 
1637   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1638   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1639 
1640 
1641   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1642                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1643   if (num_regions_removed > 0) {
1644     g1_policy()->record_new_heap_size(num_regions());
1645   } else {
1646     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1647   }
1648 }
1649 
1650 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1651   _verifier->verify_region_sets_optional();
1652 
1653   // We should only reach here at the end of a Full GC which means we
1654   // should not not be holding to any GC alloc regions. The method
1655   // below will make sure of that and do any remaining clean up.
1656   _allocator->abandon_gc_alloc_regions();
1657 
1658   // Instead of tearing down / rebuilding the free lists here, we
1659   // could instead use the remove_all_pending() method on free_list to
1660   // remove only the ones that we need to remove.
1661   tear_down_region_sets(true /* free_list_only */);
1662   shrink_helper(shrink_bytes);
1663   rebuild_region_sets(true /* free_list_only */);
1664 
1665   _hrm.verify_optional();
1666   _verifier->verify_region_sets_optional();
1667 }
1668 
1669 // Public methods.
1670 
1671 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1672   CollectedHeap(),
1673   _collector_policy(collector_policy),
1674   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1675   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1676   _g1_policy(create_g1_policy(_gc_timer_stw)),
1677   _collection_set(this, _g1_policy),
1678   _dirty_card_queue_set(false),
1679   _is_alive_closure_cm(this),
1680   _is_alive_closure_stw(this),
1681   _ref_processor_cm(NULL),
1682   _ref_processor_stw(NULL),
1683   _bot(NULL),
1684   _hot_card_cache(NULL),
1685   _g1_rem_set(NULL),
1686   _cg1r(NULL),
1687   _g1mm(NULL),
1688   _preserved_marks_set(true /* in_c_heap */),
1689   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1690   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1691   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1692   _humongous_reclaim_candidates(),
1693   _has_humongous_reclaim_candidates(false),
1694   _archive_allocator(NULL),
1695   _free_regions_coming(false),
1696   _gc_time_stamp(0),
1697   _summary_bytes_used(0),
1698   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1699   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1700   _expand_heap_after_alloc_failure(true),
1701   _old_marking_cycles_started(0),
1702   _old_marking_cycles_completed(0),
1703   _in_cset_fast_test() {
1704 
1705   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1706                           /* are_GC_task_threads */true,
1707                           /* are_ConcurrentGC_threads */false);
1708   _workers->initialize_workers();
1709   _verifier = new G1HeapVerifier(this);
1710 
1711   _allocator = G1Allocator::create_allocator(this);
1712 
1713   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1714 
1715   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1716 
1717   // Override the default _filler_array_max_size so that no humongous filler
1718   // objects are created.
1719   _filler_array_max_size = _humongous_object_threshold_in_words;
1720 
1721   uint n_queues = ParallelGCThreads;
1722   _task_queues = new RefToScanQueueSet(n_queues);
1723 
1724   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1725 
1726   for (uint i = 0; i < n_queues; i++) {
1727     RefToScanQueue* q = new RefToScanQueue();
1728     q->initialize();
1729     _task_queues->register_queue(i, q);
1730     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1731   }
1732 
1733   // Initialize the G1EvacuationFailureALot counters and flags.
1734   NOT_PRODUCT(reset_evacuation_should_fail();)
1735 
1736   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1737 }
1738 
1739 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1740                                                                  size_t size,
1741                                                                  size_t translation_factor) {
1742   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1743   // Allocate a new reserved space, preferring to use large pages.
1744   ReservedSpace rs(size, preferred_page_size);
1745   G1RegionToSpaceMapper* result  =
1746     G1RegionToSpaceMapper::create_mapper(rs,
1747                                          size,
1748                                          rs.alignment(),
1749                                          HeapRegion::GrainBytes,
1750                                          translation_factor,
1751                                          mtGC);
1752 
1753   os::trace_page_sizes_for_requested_size(description,
1754                                           size,
1755                                           preferred_page_size,
1756                                           rs.alignment(),
1757                                           rs.base(),
1758                                           rs.size());
1759 
1760   return result;
1761 }
1762 
1763 jint G1CollectedHeap::initialize_concurrent_refinement() {
1764   jint ecode = JNI_OK;
1765   _cg1r = ConcurrentG1Refine::create(&ecode);
1766   return ecode;
1767 }
1768 
1769 jint G1CollectedHeap::initialize() {
1770   CollectedHeap::pre_initialize();
1771   os::enable_vtime();
1772 
1773   // Necessary to satisfy locking discipline assertions.
1774 
1775   MutexLocker x(Heap_lock);
1776 
1777   // While there are no constraints in the GC code that HeapWordSize
1778   // be any particular value, there are multiple other areas in the
1779   // system which believe this to be true (e.g. oop->object_size in some
1780   // cases incorrectly returns the size in wordSize units rather than
1781   // HeapWordSize).
1782   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1783 
1784   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1785   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1786   size_t heap_alignment = collector_policy()->heap_alignment();
1787 
1788   // Ensure that the sizes are properly aligned.
1789   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1790   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1791   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1792 
1793   // Reserve the maximum.
1794 
1795   // When compressed oops are enabled, the preferred heap base
1796   // is calculated by subtracting the requested size from the
1797   // 32Gb boundary and using the result as the base address for
1798   // heap reservation. If the requested size is not aligned to
1799   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1800   // into the ReservedHeapSpace constructor) then the actual
1801   // base of the reserved heap may end up differing from the
1802   // address that was requested (i.e. the preferred heap base).
1803   // If this happens then we could end up using a non-optimal
1804   // compressed oops mode.
1805 
1806   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1807                                                  heap_alignment);
1808 
1809   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1810 
1811   // Create the barrier set for the entire reserved region.
1812   G1SATBCardTableLoggingModRefBS* bs
1813     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1814   bs->initialize();
1815   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1816   set_barrier_set(bs);
1817 
1818   // Create the hot card cache.
1819   _hot_card_cache = new G1HotCardCache(this);
1820 
1821   // Carve out the G1 part of the heap.
1822   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1823   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1824   G1RegionToSpaceMapper* heap_storage =
1825     G1RegionToSpaceMapper::create_mapper(g1_rs,
1826                                          g1_rs.size(),
1827                                          page_size,
1828                                          HeapRegion::GrainBytes,
1829                                          1,
1830                                          mtJavaHeap);
1831   os::trace_page_sizes("Heap",
1832                        collector_policy()->min_heap_byte_size(),
1833                        max_byte_size,
1834                        page_size,
1835                        heap_rs.base(),
1836                        heap_rs.size());
1837   heap_storage->set_mapping_changed_listener(&_listener);
1838 
1839   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1840   G1RegionToSpaceMapper* bot_storage =
1841     create_aux_memory_mapper("Block Offset Table",
1842                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1843                              G1BlockOffsetTable::heap_map_factor());
1844 
1845   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1846   G1RegionToSpaceMapper* cardtable_storage =
1847     create_aux_memory_mapper("Card Table",
1848                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1849                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1850 
1851   G1RegionToSpaceMapper* card_counts_storage =
1852     create_aux_memory_mapper("Card Counts Table",
1853                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1854                              G1CardCounts::heap_map_factor());
1855 
1856   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1857   G1RegionToSpaceMapper* prev_bitmap_storage =
1858     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1859   G1RegionToSpaceMapper* next_bitmap_storage =
1860     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1861 
1862   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1863   g1_barrier_set()->initialize(cardtable_storage);
1864   // Do later initialization work for concurrent refinement.
1865   _hot_card_cache->initialize(card_counts_storage);
1866 
1867   // 6843694 - ensure that the maximum region index can fit
1868   // in the remembered set structures.
1869   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1870   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1871 
1872   // Also create a G1 rem set.
1873   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1874   _g1_rem_set->initialize(max_capacity(), max_regions());
1875 
1876   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1877   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1878   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1879             "too many cards per region");
1880 
1881   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1882 
1883   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1884 
1885   {
1886     HeapWord* start = _hrm.reserved().start();
1887     HeapWord* end = _hrm.reserved().end();
1888     size_t granularity = HeapRegion::GrainBytes;
1889 
1890     _in_cset_fast_test.initialize(start, end, granularity);
1891     _humongous_reclaim_candidates.initialize(start, end, granularity);
1892   }
1893 
1894   // Create the G1ConcurrentMark data structure and thread.
1895   // (Must do this late, so that "max_regions" is defined.)
1896   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1897   if (_cm == NULL || !_cm->completed_initialization()) {
1898     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1899     return JNI_ENOMEM;
1900   }
1901   _cmThread = _cm->cmThread();
1902 
1903   // Now expand into the initial heap size.
1904   if (!expand(init_byte_size, _workers)) {
1905     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1906     return JNI_ENOMEM;
1907   }
1908 
1909   // Perform any initialization actions delegated to the policy.
1910   g1_policy()->init(this, &_collection_set);
1911 
1912   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1913                                                SATB_Q_FL_lock,
1914                                                G1SATBProcessCompletedThreshold,
1915                                                Shared_SATB_Q_lock);
1916 
1917   jint ecode = initialize_concurrent_refinement();
1918   if (ecode != JNI_OK) {
1919     return ecode;
1920   }
1921 
1922   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1923                                                 DirtyCardQ_FL_lock,
1924                                                 (int)concurrent_g1_refine()->yellow_zone(),
1925                                                 (int)concurrent_g1_refine()->red_zone(),
1926                                                 Shared_DirtyCardQ_lock,
1927                                                 NULL,  // fl_owner
1928                                                 true); // init_free_ids
1929 
1930   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1931                                     DirtyCardQ_FL_lock,
1932                                     -1, // never trigger processing
1933                                     -1, // no limit on length
1934                                     Shared_DirtyCardQ_lock,
1935                                     &JavaThread::dirty_card_queue_set());
1936 
1937   // Here we allocate the dummy HeapRegion that is required by the
1938   // G1AllocRegion class.
1939   HeapRegion* dummy_region = _hrm.get_dummy_region();
1940 
1941   // We'll re-use the same region whether the alloc region will
1942   // require BOT updates or not and, if it doesn't, then a non-young
1943   // region will complain that it cannot support allocations without
1944   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1945   dummy_region->set_eden();
1946   // Make sure it's full.
1947   dummy_region->set_top(dummy_region->end());
1948   G1AllocRegion::setup(this, dummy_region);
1949 
1950   _allocator->init_mutator_alloc_region();
1951 
1952   // Do create of the monitoring and management support so that
1953   // values in the heap have been properly initialized.
1954   _g1mm = new G1MonitoringSupport(this);
1955 
1956   G1StringDedup::initialize();
1957 
1958   _preserved_marks_set.init(ParallelGCThreads);
1959 
1960   _collection_set.initialize(max_regions());
1961 
1962   return JNI_OK;
1963 }
1964 
1965 void G1CollectedHeap::stop() {
1966   // Stop all concurrent threads. We do this to make sure these threads
1967   // do not continue to execute and access resources (e.g. logging)
1968   // that are destroyed during shutdown.
1969   _cg1r->stop();
1970   _cmThread->stop();
1971   if (G1StringDedup::is_enabled()) {
1972     G1StringDedup::stop();
1973   }
1974 }
1975 
1976 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1977   return HeapRegion::max_region_size();
1978 }
1979 
1980 void G1CollectedHeap::post_initialize() {
1981   ref_processing_init();
1982 }
1983 
1984 void G1CollectedHeap::ref_processing_init() {
1985   // Reference processing in G1 currently works as follows:
1986   //
1987   // * There are two reference processor instances. One is
1988   //   used to record and process discovered references
1989   //   during concurrent marking; the other is used to
1990   //   record and process references during STW pauses
1991   //   (both full and incremental).
1992   // * Both ref processors need to 'span' the entire heap as
1993   //   the regions in the collection set may be dotted around.
1994   //
1995   // * For the concurrent marking ref processor:
1996   //   * Reference discovery is enabled at initial marking.
1997   //   * Reference discovery is disabled and the discovered
1998   //     references processed etc during remarking.
1999   //   * Reference discovery is MT (see below).
2000   //   * Reference discovery requires a barrier (see below).
2001   //   * Reference processing may or may not be MT
2002   //     (depending on the value of ParallelRefProcEnabled
2003   //     and ParallelGCThreads).
2004   //   * A full GC disables reference discovery by the CM
2005   //     ref processor and abandons any entries on it's
2006   //     discovered lists.
2007   //
2008   // * For the STW processor:
2009   //   * Non MT discovery is enabled at the start of a full GC.
2010   //   * Processing and enqueueing during a full GC is non-MT.
2011   //   * During a full GC, references are processed after marking.
2012   //
2013   //   * Discovery (may or may not be MT) is enabled at the start
2014   //     of an incremental evacuation pause.
2015   //   * References are processed near the end of a STW evacuation pause.
2016   //   * For both types of GC:
2017   //     * Discovery is atomic - i.e. not concurrent.
2018   //     * Reference discovery will not need a barrier.
2019 
2020   MemRegion mr = reserved_region();
2021 
2022   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
2023 
2024   // Concurrent Mark ref processor
2025   _ref_processor_cm =
2026     new ReferenceProcessor(mr,    // span
2027                            mt_processing,
2028                                 // mt processing
2029                            ParallelGCThreads,
2030                                 // degree of mt processing
2031                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2032                                 // mt discovery
2033                            MAX2(ParallelGCThreads, ConcGCThreads),
2034                                 // degree of mt discovery
2035                            false,
2036                                 // Reference discovery is not atomic
2037                            &_is_alive_closure_cm);
2038                                 // is alive closure
2039                                 // (for efficiency/performance)
2040 
2041   // STW ref processor
2042   _ref_processor_stw =
2043     new ReferenceProcessor(mr,    // span
2044                            mt_processing,
2045                                 // mt processing
2046                            ParallelGCThreads,
2047                                 // degree of mt processing
2048                            (ParallelGCThreads > 1),
2049                                 // mt discovery
2050                            ParallelGCThreads,
2051                                 // degree of mt discovery
2052                            true,
2053                                 // Reference discovery is atomic
2054                            &_is_alive_closure_stw);
2055                                 // is alive closure
2056                                 // (for efficiency/performance)
2057 }
2058 
2059 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2060   return _collector_policy;
2061 }
2062 
2063 size_t G1CollectedHeap::capacity() const {
2064   return _hrm.length() * HeapRegion::GrainBytes;
2065 }
2066 
2067 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2068   hr->reset_gc_time_stamp();
2069 }
2070 
2071 #ifndef PRODUCT
2072 
2073 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2074 private:
2075   unsigned _gc_time_stamp;
2076   bool _failures;
2077 
2078 public:
2079   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2080     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2081 
2082   virtual bool doHeapRegion(HeapRegion* hr) {
2083     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2084     if (_gc_time_stamp != region_gc_time_stamp) {
2085       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2086                             region_gc_time_stamp, _gc_time_stamp);
2087       _failures = true;
2088     }
2089     return false;
2090   }
2091 
2092   bool failures() { return _failures; }
2093 };
2094 
2095 void G1CollectedHeap::check_gc_time_stamps() {
2096   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2097   heap_region_iterate(&cl);
2098   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2099 }
2100 #endif // PRODUCT
2101 
2102 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2103   _hot_card_cache->drain(cl, worker_i);
2104 }
2105 
2106 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2107   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2108   size_t n_completed_buffers = 0;
2109   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
2110     n_completed_buffers++;
2111   }
2112   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2113   dcqs.clear_n_completed_buffers();
2114   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2115 }
2116 
2117 // Computes the sum of the storage used by the various regions.
2118 size_t G1CollectedHeap::used() const {
2119   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2120   if (_archive_allocator != NULL) {
2121     result += _archive_allocator->used();
2122   }
2123   return result;
2124 }
2125 
2126 size_t G1CollectedHeap::used_unlocked() const {
2127   return _summary_bytes_used;
2128 }
2129 
2130 class SumUsedClosure: public HeapRegionClosure {
2131   size_t _used;
2132 public:
2133   SumUsedClosure() : _used(0) {}
2134   bool doHeapRegion(HeapRegion* r) {
2135     _used += r->used();
2136     return false;
2137   }
2138   size_t result() { return _used; }
2139 };
2140 
2141 size_t G1CollectedHeap::recalculate_used() const {
2142   double recalculate_used_start = os::elapsedTime();
2143 
2144   SumUsedClosure blk;
2145   heap_region_iterate(&blk);
2146 
2147   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2148   return blk.result();
2149 }
2150 
2151 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2152   switch (cause) {
2153     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2154     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2155     case GCCause::_update_allocation_context_stats_inc: return true;
2156     case GCCause::_wb_conc_mark:                        return true;
2157     default :                                           return false;
2158   }
2159 }
2160 
2161 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2162   switch (cause) {
2163     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2164     case GCCause::_g1_humongous_allocation: return true;
2165     default:                                return is_user_requested_concurrent_full_gc(cause);
2166   }
2167 }
2168 
2169 #ifndef PRODUCT
2170 void G1CollectedHeap::allocate_dummy_regions() {
2171   // Let's fill up most of the region
2172   size_t word_size = HeapRegion::GrainWords - 1024;
2173   // And as a result the region we'll allocate will be humongous.
2174   guarantee(is_humongous(word_size), "sanity");
2175 
2176   // _filler_array_max_size is set to humongous object threshold
2177   // but temporarily change it to use CollectedHeap::fill_with_object().
2178   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2179 
2180   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2181     // Let's use the existing mechanism for the allocation
2182     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2183                                                  AllocationContext::system());
2184     if (dummy_obj != NULL) {
2185       MemRegion mr(dummy_obj, word_size);
2186       CollectedHeap::fill_with_object(mr);
2187     } else {
2188       // If we can't allocate once, we probably cannot allocate
2189       // again. Let's get out of the loop.
2190       break;
2191     }
2192   }
2193 }
2194 #endif // !PRODUCT
2195 
2196 void G1CollectedHeap::increment_old_marking_cycles_started() {
2197   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2198          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2199          "Wrong marking cycle count (started: %d, completed: %d)",
2200          _old_marking_cycles_started, _old_marking_cycles_completed);
2201 
2202   _old_marking_cycles_started++;
2203 }
2204 
2205 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2206   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2207 
2208   // We assume that if concurrent == true, then the caller is a
2209   // concurrent thread that was joined the Suspendible Thread
2210   // Set. If there's ever a cheap way to check this, we should add an
2211   // assert here.
2212 
2213   // Given that this method is called at the end of a Full GC or of a
2214   // concurrent cycle, and those can be nested (i.e., a Full GC can
2215   // interrupt a concurrent cycle), the number of full collections
2216   // completed should be either one (in the case where there was no
2217   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2218   // behind the number of full collections started.
2219 
2220   // This is the case for the inner caller, i.e. a Full GC.
2221   assert(concurrent ||
2222          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2223          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2224          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2225          "is inconsistent with _old_marking_cycles_completed = %u",
2226          _old_marking_cycles_started, _old_marking_cycles_completed);
2227 
2228   // This is the case for the outer caller, i.e. the concurrent cycle.
2229   assert(!concurrent ||
2230          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2231          "for outer caller (concurrent cycle): "
2232          "_old_marking_cycles_started = %u "
2233          "is inconsistent with _old_marking_cycles_completed = %u",
2234          _old_marking_cycles_started, _old_marking_cycles_completed);
2235 
2236   _old_marking_cycles_completed += 1;
2237 
2238   // We need to clear the "in_progress" flag in the CM thread before
2239   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2240   // is set) so that if a waiter requests another System.gc() it doesn't
2241   // incorrectly see that a marking cycle is still in progress.
2242   if (concurrent) {
2243     _cmThread->set_idle();
2244   }
2245 
2246   // This notify_all() will ensure that a thread that called
2247   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2248   // and it's waiting for a full GC to finish will be woken up. It is
2249   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2250   FullGCCount_lock->notify_all();
2251 }
2252 
2253 void G1CollectedHeap::collect(GCCause::Cause cause) {
2254   assert_heap_not_locked();
2255 
2256   uint gc_count_before;
2257   uint old_marking_count_before;
2258   uint full_gc_count_before;
2259   bool retry_gc;
2260 
2261   do {
2262     retry_gc = false;
2263 
2264     {
2265       MutexLocker ml(Heap_lock);
2266 
2267       // Read the GC count while holding the Heap_lock
2268       gc_count_before = total_collections();
2269       full_gc_count_before = total_full_collections();
2270       old_marking_count_before = _old_marking_cycles_started;
2271     }
2272 
2273     if (should_do_concurrent_full_gc(cause)) {
2274       // Schedule an initial-mark evacuation pause that will start a
2275       // concurrent cycle. We're setting word_size to 0 which means that
2276       // we are not requesting a post-GC allocation.
2277       VM_G1IncCollectionPause op(gc_count_before,
2278                                  0,     /* word_size */
2279                                  true,  /* should_initiate_conc_mark */
2280                                  g1_policy()->max_pause_time_ms(),
2281                                  cause);
2282       op.set_allocation_context(AllocationContext::current());
2283 
2284       VMThread::execute(&op);
2285       if (!op.pause_succeeded()) {
2286         if (old_marking_count_before == _old_marking_cycles_started) {
2287           retry_gc = op.should_retry_gc();
2288         } else {
2289           // A Full GC happened while we were trying to schedule the
2290           // initial-mark GC. No point in starting a new cycle given
2291           // that the whole heap was collected anyway.
2292         }
2293 
2294         if (retry_gc) {
2295           if (GCLocker::is_active_and_needs_gc()) {
2296             GCLocker::stall_until_clear();
2297           }
2298         }
2299       }
2300     } else {
2301       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2302           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2303 
2304         // Schedule a standard evacuation pause. We're setting word_size
2305         // to 0 which means that we are not requesting a post-GC allocation.
2306         VM_G1IncCollectionPause op(gc_count_before,
2307                                    0,     /* word_size */
2308                                    false, /* should_initiate_conc_mark */
2309                                    g1_policy()->max_pause_time_ms(),
2310                                    cause);
2311         VMThread::execute(&op);
2312       } else {
2313         // Schedule a Full GC.
2314         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2315         VMThread::execute(&op);
2316       }
2317     }
2318   } while (retry_gc);
2319 }
2320 
2321 bool G1CollectedHeap::is_in(const void* p) const {
2322   if (_hrm.reserved().contains(p)) {
2323     // Given that we know that p is in the reserved space,
2324     // heap_region_containing() should successfully
2325     // return the containing region.
2326     HeapRegion* hr = heap_region_containing(p);
2327     return hr->is_in(p);
2328   } else {
2329     return false;
2330   }
2331 }
2332 
2333 #ifdef ASSERT
2334 bool G1CollectedHeap::is_in_exact(const void* p) const {
2335   bool contains = reserved_region().contains(p);
2336   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2337   if (contains && available) {
2338     return true;
2339   } else {
2340     return false;
2341   }
2342 }
2343 #endif
2344 
2345 // Iteration functions.
2346 
2347 // Iterates an ObjectClosure over all objects within a HeapRegion.
2348 
2349 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2350   ObjectClosure* _cl;
2351 public:
2352   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2353   bool doHeapRegion(HeapRegion* r) {
2354     if (!r->is_continues_humongous()) {
2355       r->object_iterate(_cl);
2356     }
2357     return false;
2358   }
2359 };
2360 
2361 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2362   IterateObjectClosureRegionClosure blk(cl);
2363   heap_region_iterate(&blk);
2364 }
2365 
2366 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2367   _hrm.iterate(cl);
2368 }
2369 
2370 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2371                                               uint worker_id,
2372                                               HeapRegionClaimer *hrclaimer) const {
2373   _hrm.par_iterate(cl, worker_id, hrclaimer);
2374 }
2375 
2376 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2377   _collection_set.iterate(cl);
2378 }
2379 
2380 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2381   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2382 }
2383 
2384 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2385   HeapRegion* result = _hrm.next_region_in_heap(from);
2386   while (result != NULL && result->is_pinned()) {
2387     result = _hrm.next_region_in_heap(result);
2388   }
2389   return result;
2390 }
2391 
2392 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2393   HeapRegion* hr = heap_region_containing(addr);
2394   return hr->block_start(addr);
2395 }
2396 
2397 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2398   HeapRegion* hr = heap_region_containing(addr);
2399   return hr->block_size(addr);
2400 }
2401 
2402 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2403   HeapRegion* hr = heap_region_containing(addr);
2404   return hr->block_is_obj(addr);
2405 }
2406 
2407 bool G1CollectedHeap::supports_tlab_allocation() const {
2408   return true;
2409 }
2410 
2411 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2412   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2413 }
2414 
2415 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2416   return _eden.length() * HeapRegion::GrainBytes;
2417 }
2418 
2419 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2420 // must be equal to the humongous object limit.
2421 size_t G1CollectedHeap::max_tlab_size() const {
2422   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2423 }
2424 
2425 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2426   AllocationContext_t context = AllocationContext::current();
2427   return _allocator->unsafe_max_tlab_alloc(context);
2428 }
2429 
2430 size_t G1CollectedHeap::max_capacity() const {
2431   return _hrm.reserved().byte_size();
2432 }
2433 
2434 jlong G1CollectedHeap::millis_since_last_gc() {
2435   // See the notes in GenCollectedHeap::millis_since_last_gc()
2436   // for more information about the implementation.
2437   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2438     _g1_policy->collection_pause_end_millis();
2439   if (ret_val < 0) {
2440     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2441       ". returning zero instead.", ret_val);
2442     return 0;
2443   }
2444   return ret_val;
2445 }
2446 
2447 void G1CollectedHeap::prepare_for_verify() {
2448   _verifier->prepare_for_verify();
2449 }
2450 
2451 void G1CollectedHeap::verify(VerifyOption vo) {
2452   _verifier->verify(vo);
2453 }
2454 
2455 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2456   return true;
2457 }
2458 
2459 const char* const* G1CollectedHeap::concurrent_phases() const {
2460   return _cmThread->concurrent_phases();
2461 }
2462 
2463 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2464   return _cmThread->request_concurrent_phase(phase);
2465 }
2466 
2467 class PrintRegionClosure: public HeapRegionClosure {
2468   outputStream* _st;
2469 public:
2470   PrintRegionClosure(outputStream* st) : _st(st) {}
2471   bool doHeapRegion(HeapRegion* r) {
2472     r->print_on(_st);
2473     return false;
2474   }
2475 };
2476 
2477 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2478                                        const HeapRegion* hr,
2479                                        const VerifyOption vo) const {
2480   switch (vo) {
2481   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2482   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2483   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2484   default:                            ShouldNotReachHere();
2485   }
2486   return false; // keep some compilers happy
2487 }
2488 
2489 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2490                                        const VerifyOption vo) const {
2491   switch (vo) {
2492   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2493   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2494   case VerifyOption_G1UseMarkWord: {
2495     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2496     return !obj->is_gc_marked() && !hr->is_archive();
2497   }
2498   default:                            ShouldNotReachHere();
2499   }
2500   return false; // keep some compilers happy
2501 }
2502 
2503 void G1CollectedHeap::print_heap_regions() const {
2504   LogTarget(Trace, gc, heap, region) lt;
2505   if (lt.is_enabled()) {
2506     LogStream ls(lt);
2507     print_regions_on(&ls);
2508   }
2509 }
2510 
2511 void G1CollectedHeap::print_on(outputStream* st) const {
2512   st->print(" %-20s", "garbage-first heap");
2513   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2514             capacity()/K, used_unlocked()/K);
2515   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2516             p2i(_hrm.reserved().start()),
2517             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2518             p2i(_hrm.reserved().end()));
2519   st->cr();
2520   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2521   uint young_regions = young_regions_count();
2522   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2523             (size_t) young_regions * HeapRegion::GrainBytes / K);
2524   uint survivor_regions = survivor_regions_count();
2525   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2526             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2527   st->cr();
2528   MetaspaceAux::print_on(st);
2529 }
2530 
2531 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2532   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2533                "HS=humongous(starts), HC=humongous(continues), "
2534                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2535                "AC=allocation context, "
2536                "TAMS=top-at-mark-start (previous, next)");
2537   PrintRegionClosure blk(st);
2538   heap_region_iterate(&blk);
2539 }
2540 
2541 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2542   print_on(st);
2543 
2544   // Print the per-region information.
2545   print_regions_on(st);
2546 }
2547 
2548 void G1CollectedHeap::print_on_error(outputStream* st) const {
2549   this->CollectedHeap::print_on_error(st);
2550 
2551   if (_cm != NULL) {
2552     st->cr();
2553     _cm->print_on_error(st);
2554   }
2555 }
2556 
2557 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2558   workers()->print_worker_threads_on(st);
2559   _cmThread->print_on(st);
2560   st->cr();
2561   _cm->print_worker_threads_on(st);
2562   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2563   if (G1StringDedup::is_enabled()) {
2564     G1StringDedup::print_worker_threads_on(st);
2565   }
2566 }
2567 
2568 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2569   workers()->threads_do(tc);
2570   tc->do_thread(_cmThread);
2571   _cm->threads_do(tc);
2572   _cg1r->threads_do(tc); // also iterates over the sample thread
2573   if (G1StringDedup::is_enabled()) {
2574     G1StringDedup::threads_do(tc);
2575   }
2576 }
2577 
2578 void G1CollectedHeap::print_tracing_info() const {
2579   g1_rem_set()->print_summary_info();
2580   concurrent_mark()->print_summary_info();
2581 }
2582 
2583 #ifndef PRODUCT
2584 // Helpful for debugging RSet issues.
2585 
2586 class PrintRSetsClosure : public HeapRegionClosure {
2587 private:
2588   const char* _msg;
2589   size_t _occupied_sum;
2590 
2591 public:
2592   bool doHeapRegion(HeapRegion* r) {
2593     HeapRegionRemSet* hrrs = r->rem_set();
2594     size_t occupied = hrrs->occupied();
2595     _occupied_sum += occupied;
2596 
2597     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2598     if (occupied == 0) {
2599       tty->print_cr("  RSet is empty");
2600     } else {
2601       hrrs->print();
2602     }
2603     tty->print_cr("----------");
2604     return false;
2605   }
2606 
2607   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2608     tty->cr();
2609     tty->print_cr("========================================");
2610     tty->print_cr("%s", msg);
2611     tty->cr();
2612   }
2613 
2614   ~PrintRSetsClosure() {
2615     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2616     tty->print_cr("========================================");
2617     tty->cr();
2618   }
2619 };
2620 
2621 void G1CollectedHeap::print_cset_rsets() {
2622   PrintRSetsClosure cl("Printing CSet RSets");
2623   collection_set_iterate(&cl);
2624 }
2625 
2626 void G1CollectedHeap::print_all_rsets() {
2627   PrintRSetsClosure cl("Printing All RSets");;
2628   heap_region_iterate(&cl);
2629 }
2630 #endif // PRODUCT
2631 
2632 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2633 
2634   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2635   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2636   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2637 
2638   size_t eden_capacity_bytes =
2639     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2640 
2641   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2642   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2643                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2644 }
2645 
2646 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2647   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2648                        stats->unused(), stats->used(), stats->region_end_waste(),
2649                        stats->regions_filled(), stats->direct_allocated(),
2650                        stats->failure_used(), stats->failure_waste());
2651 }
2652 
2653 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2654   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2655   gc_tracer->report_gc_heap_summary(when, heap_summary);
2656 
2657   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2658   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2659 }
2660 
2661 G1CollectedHeap* G1CollectedHeap::heap() {
2662   CollectedHeap* heap = Universe::heap();
2663   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2664   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2665   return (G1CollectedHeap*)heap;
2666 }
2667 
2668 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2669   // always_do_update_barrier = false;
2670   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2671 
2672   double start = os::elapsedTime();
2673   // Fill TLAB's and such
2674   accumulate_statistics_all_tlabs();
2675   ensure_parsability(true);
2676   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2677 
2678   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2679 }
2680 
2681 void G1CollectedHeap::gc_epilogue(bool full) {
2682   // we are at the end of the GC. Total collections has already been increased.
2683   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2684 
2685   // FIXME: what is this about?
2686   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2687   // is set.
2688 #if defined(COMPILER2) || INCLUDE_JVMCI
2689   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2690 #endif
2691   // always_do_update_barrier = true;
2692 
2693   double start = os::elapsedTime();
2694   resize_all_tlabs();
2695   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2696 
2697   allocation_context_stats().update(full);
2698 
2699   // We have just completed a GC. Update the soft reference
2700   // policy with the new heap occupancy
2701   Universe::update_heap_info_at_gc();
2702 }
2703 
2704 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2705                                                uint gc_count_before,
2706                                                bool* succeeded,
2707                                                GCCause::Cause gc_cause) {
2708   assert_heap_not_locked_and_not_at_safepoint();
2709   VM_G1IncCollectionPause op(gc_count_before,
2710                              word_size,
2711                              false, /* should_initiate_conc_mark */
2712                              g1_policy()->max_pause_time_ms(),
2713                              gc_cause);
2714 
2715   op.set_allocation_context(AllocationContext::current());
2716   VMThread::execute(&op);
2717 
2718   HeapWord* result = op.result();
2719   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2720   assert(result == NULL || ret_succeeded,
2721          "the result should be NULL if the VM did not succeed");
2722   *succeeded = ret_succeeded;
2723 
2724   assert_heap_not_locked();
2725   return result;
2726 }
2727 
2728 void
2729 G1CollectedHeap::doConcurrentMark() {
2730   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2731   if (!_cmThread->in_progress()) {
2732     _cmThread->set_started();
2733     CGC_lock->notify();
2734   }
2735 }
2736 
2737 size_t G1CollectedHeap::pending_card_num() {
2738   size_t extra_cards = 0;
2739   JavaThread *curr = Threads::first();
2740   while (curr != NULL) {
2741     DirtyCardQueue& dcq = curr->dirty_card_queue();
2742     extra_cards += dcq.size();
2743     curr = curr->next();
2744   }
2745   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2746   size_t buffer_size = dcqs.buffer_size();
2747   size_t buffer_num = dcqs.completed_buffers_num();
2748 
2749   return buffer_size * buffer_num + extra_cards;
2750 }
2751 
2752 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2753  private:
2754   size_t _total_humongous;
2755   size_t _candidate_humongous;
2756 
2757   DirtyCardQueue _dcq;
2758 
2759   // We don't nominate objects with many remembered set entries, on
2760   // the assumption that such objects are likely still live.
2761   bool is_remset_small(HeapRegion* region) const {
2762     HeapRegionRemSet* const rset = region->rem_set();
2763     return G1EagerReclaimHumongousObjectsWithStaleRefs
2764       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2765       : rset->is_empty();
2766   }
2767 
2768   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2769     assert(region->is_starts_humongous(), "Must start a humongous object");
2770 
2771     oop obj = oop(region->bottom());
2772 
2773     // Dead objects cannot be eager reclaim candidates. Due to class
2774     // unloading it is unsafe to query their classes so we return early.
2775     if (heap->is_obj_dead(obj, region)) {
2776       return false;
2777     }
2778 
2779     // Candidate selection must satisfy the following constraints
2780     // while concurrent marking is in progress:
2781     //
2782     // * In order to maintain SATB invariants, an object must not be
2783     // reclaimed if it was allocated before the start of marking and
2784     // has not had its references scanned.  Such an object must have
2785     // its references (including type metadata) scanned to ensure no
2786     // live objects are missed by the marking process.  Objects
2787     // allocated after the start of concurrent marking don't need to
2788     // be scanned.
2789     //
2790     // * An object must not be reclaimed if it is on the concurrent
2791     // mark stack.  Objects allocated after the start of concurrent
2792     // marking are never pushed on the mark stack.
2793     //
2794     // Nominating only objects allocated after the start of concurrent
2795     // marking is sufficient to meet both constraints.  This may miss
2796     // some objects that satisfy the constraints, but the marking data
2797     // structures don't support efficiently performing the needed
2798     // additional tests or scrubbing of the mark stack.
2799     //
2800     // However, we presently only nominate is_typeArray() objects.
2801     // A humongous object containing references induces remembered
2802     // set entries on other regions.  In order to reclaim such an
2803     // object, those remembered sets would need to be cleaned up.
2804     //
2805     // We also treat is_typeArray() objects specially, allowing them
2806     // to be reclaimed even if allocated before the start of
2807     // concurrent mark.  For this we rely on mark stack insertion to
2808     // exclude is_typeArray() objects, preventing reclaiming an object
2809     // that is in the mark stack.  We also rely on the metadata for
2810     // such objects to be built-in and so ensured to be kept live.
2811     // Frequent allocation and drop of large binary blobs is an
2812     // important use case for eager reclaim, and this special handling
2813     // may reduce needed headroom.
2814 
2815     return obj->is_typeArray() && is_remset_small(region);
2816   }
2817 
2818  public:
2819   RegisterHumongousWithInCSetFastTestClosure()
2820   : _total_humongous(0),
2821     _candidate_humongous(0),
2822     _dcq(&JavaThread::dirty_card_queue_set()) {
2823   }
2824 
2825   virtual bool doHeapRegion(HeapRegion* r) {
2826     if (!r->is_starts_humongous()) {
2827       return false;
2828     }
2829     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2830 
2831     bool is_candidate = humongous_region_is_candidate(g1h, r);
2832     uint rindex = r->hrm_index();
2833     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2834     if (is_candidate) {
2835       _candidate_humongous++;
2836       g1h->register_humongous_region_with_cset(rindex);
2837       // Is_candidate already filters out humongous object with large remembered sets.
2838       // If we have a humongous object with a few remembered sets, we simply flush these
2839       // remembered set entries into the DCQS. That will result in automatic
2840       // re-evaluation of their remembered set entries during the following evacuation
2841       // phase.
2842       if (!r->rem_set()->is_empty()) {
2843         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2844                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2845         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2846         HeapRegionRemSetIterator hrrs(r->rem_set());
2847         size_t card_index;
2848         while (hrrs.has_next(card_index)) {
2849           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2850           // The remembered set might contain references to already freed
2851           // regions. Filter out such entries to avoid failing card table
2852           // verification.
2853           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2854             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2855               *card_ptr = CardTableModRefBS::dirty_card_val();
2856               _dcq.enqueue(card_ptr);
2857             }
2858           }
2859         }
2860         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2861                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2862                hrrs.n_yielded(), r->rem_set()->occupied());
2863         r->rem_set()->clear_locked();
2864       }
2865       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2866     }
2867     _total_humongous++;
2868 
2869     return false;
2870   }
2871 
2872   size_t total_humongous() const { return _total_humongous; }
2873   size_t candidate_humongous() const { return _candidate_humongous; }
2874 
2875   void flush_rem_set_entries() { _dcq.flush(); }
2876 };
2877 
2878 void G1CollectedHeap::register_humongous_regions_with_cset() {
2879   if (!G1EagerReclaimHumongousObjects) {
2880     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2881     return;
2882   }
2883   double time = os::elapsed_counter();
2884 
2885   // Collect reclaim candidate information and register candidates with cset.
2886   RegisterHumongousWithInCSetFastTestClosure cl;
2887   heap_region_iterate(&cl);
2888 
2889   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2890   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2891                                                                   cl.total_humongous(),
2892                                                                   cl.candidate_humongous());
2893   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2894 
2895   // Finally flush all remembered set entries to re-check into the global DCQS.
2896   cl.flush_rem_set_entries();
2897 }
2898 
2899 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2900   public:
2901     bool doHeapRegion(HeapRegion* hr) {
2902       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2903         hr->verify_rem_set();
2904       }
2905       return false;
2906     }
2907 };
2908 
2909 uint G1CollectedHeap::num_task_queues() const {
2910   return _task_queues->size();
2911 }
2912 
2913 #if TASKQUEUE_STATS
2914 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2915   st->print_raw_cr("GC Task Stats");
2916   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2917   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2918 }
2919 
2920 void G1CollectedHeap::print_taskqueue_stats() const {
2921   if (!log_is_enabled(Trace, gc, task, stats)) {
2922     return;
2923   }
2924   Log(gc, task, stats) log;
2925   ResourceMark rm;
2926   LogStream ls(log.trace());
2927   outputStream* st = &ls;
2928 
2929   print_taskqueue_stats_hdr(st);
2930 
2931   TaskQueueStats totals;
2932   const uint n = num_task_queues();
2933   for (uint i = 0; i < n; ++i) {
2934     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2935     totals += task_queue(i)->stats;
2936   }
2937   st->print_raw("tot "); totals.print(st); st->cr();
2938 
2939   DEBUG_ONLY(totals.verify());
2940 }
2941 
2942 void G1CollectedHeap::reset_taskqueue_stats() {
2943   const uint n = num_task_queues();
2944   for (uint i = 0; i < n; ++i) {
2945     task_queue(i)->stats.reset();
2946   }
2947 }
2948 #endif // TASKQUEUE_STATS
2949 
2950 void G1CollectedHeap::wait_for_root_region_scanning() {
2951   double scan_wait_start = os::elapsedTime();
2952   // We have to wait until the CM threads finish scanning the
2953   // root regions as it's the only way to ensure that all the
2954   // objects on them have been correctly scanned before we start
2955   // moving them during the GC.
2956   bool waited = _cm->root_regions()->wait_until_scan_finished();
2957   double wait_time_ms = 0.0;
2958   if (waited) {
2959     double scan_wait_end = os::elapsedTime();
2960     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2961   }
2962   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2963 }
2964 
2965 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2966 private:
2967   G1HRPrinter* _hr_printer;
2968 public:
2969   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2970 
2971   virtual bool doHeapRegion(HeapRegion* r) {
2972     _hr_printer->cset(r);
2973     return false;
2974   }
2975 };
2976 
2977 void G1CollectedHeap::start_new_collection_set() {
2978   collection_set()->start_incremental_building();
2979 
2980   clear_cset_fast_test();
2981 
2982   guarantee(_eden.length() == 0, "eden should have been cleared");
2983   g1_policy()->transfer_survivors_to_cset(survivor());
2984 }
2985 
2986 bool
2987 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2988   assert_at_safepoint(true /* should_be_vm_thread */);
2989   guarantee(!is_gc_active(), "collection is not reentrant");
2990 
2991   if (GCLocker::check_active_before_gc()) {
2992     return false;
2993   }
2994 
2995   _gc_timer_stw->register_gc_start();
2996 
2997   GCIdMark gc_id_mark;
2998   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2999 
3000   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3001   ResourceMark rm;
3002 
3003   g1_policy()->note_gc_start();
3004 
3005   wait_for_root_region_scanning();
3006 
3007   print_heap_before_gc();
3008   print_heap_regions();
3009   trace_heap_before_gc(_gc_tracer_stw);
3010 
3011   _verifier->verify_region_sets_optional();
3012   _verifier->verify_dirty_young_regions();
3013 
3014   // We should not be doing initial mark unless the conc mark thread is running
3015   if (!_cmThread->should_terminate()) {
3016     // This call will decide whether this pause is an initial-mark
3017     // pause. If it is, during_initial_mark_pause() will return true
3018     // for the duration of this pause.
3019     g1_policy()->decide_on_conc_mark_initiation();
3020   }
3021 
3022   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3023   assert(!collector_state()->during_initial_mark_pause() ||
3024           collector_state()->gcs_are_young(), "sanity");
3025 
3026   // We also do not allow mixed GCs during marking.
3027   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3028 
3029   // Record whether this pause is an initial mark. When the current
3030   // thread has completed its logging output and it's safe to signal
3031   // the CM thread, the flag's value in the policy has been reset.
3032   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3033 
3034   // Inner scope for scope based logging, timers, and stats collection
3035   {
3036     EvacuationInfo evacuation_info;
3037 
3038     if (collector_state()->during_initial_mark_pause()) {
3039       // We are about to start a marking cycle, so we increment the
3040       // full collection counter.
3041       increment_old_marking_cycles_started();
3042       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3043     }
3044 
3045     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3046 
3047     GCTraceCPUTime tcpu;
3048 
3049     FormatBuffer<> gc_string("Pause ");
3050     if (collector_state()->during_initial_mark_pause()) {
3051       gc_string.append("Initial Mark");
3052     } else if (collector_state()->gcs_are_young()) {
3053       gc_string.append("Young");
3054     } else {
3055       gc_string.append("Mixed");
3056     }
3057     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3058 
3059     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3060                                                                   workers()->active_workers(),
3061                                                                   Threads::number_of_non_daemon_threads());
3062     workers()->update_active_workers(active_workers);
3063     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3064 
3065     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3066     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3067 
3068     // If the secondary_free_list is not empty, append it to the
3069     // free_list. No need to wait for the cleanup operation to finish;
3070     // the region allocation code will check the secondary_free_list
3071     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3072     // set, skip this step so that the region allocation code has to
3073     // get entries from the secondary_free_list.
3074     if (!G1StressConcRegionFreeing) {
3075       append_secondary_free_list_if_not_empty_with_lock();
3076     }
3077 
3078     G1HeapTransition heap_transition(this);
3079     size_t heap_used_bytes_before_gc = used();
3080 
3081     // Don't dynamically change the number of GC threads this early.  A value of
3082     // 0 is used to indicate serial work.  When parallel work is done,
3083     // it will be set.
3084 
3085     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3086       IsGCActiveMark x;
3087 
3088       gc_prologue(false);
3089       increment_total_collections(false /* full gc */);
3090       increment_gc_time_stamp();
3091 
3092       if (VerifyRememberedSets) {
3093         log_info(gc, verify)("[Verifying RemSets before GC]");
3094         VerifyRegionRemSetClosure v_cl;
3095         heap_region_iterate(&v_cl);
3096       }
3097 
3098       _verifier->verify_before_gc();
3099 
3100       _verifier->check_bitmaps("GC Start");
3101 
3102 #if defined(COMPILER2) || INCLUDE_JVMCI
3103       DerivedPointerTable::clear();
3104 #endif
3105 
3106       // Please see comment in g1CollectedHeap.hpp and
3107       // G1CollectedHeap::ref_processing_init() to see how
3108       // reference processing currently works in G1.
3109 
3110       // Enable discovery in the STW reference processor
3111       if (g1_policy()->should_process_references()) {
3112         ref_processor_stw()->enable_discovery();
3113       } else {
3114         ref_processor_stw()->disable_discovery();
3115       }
3116 
3117       {
3118         // We want to temporarily turn off discovery by the
3119         // CM ref processor, if necessary, and turn it back on
3120         // on again later if we do. Using a scoped
3121         // NoRefDiscovery object will do this.
3122         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3123 
3124         // Forget the current alloc region (we might even choose it to be part
3125         // of the collection set!).
3126         _allocator->release_mutator_alloc_region();
3127 
3128         // This timing is only used by the ergonomics to handle our pause target.
3129         // It is unclear why this should not include the full pause. We will
3130         // investigate this in CR 7178365.
3131         //
3132         // Preserving the old comment here if that helps the investigation:
3133         //
3134         // The elapsed time induced by the start time below deliberately elides
3135         // the possible verification above.
3136         double sample_start_time_sec = os::elapsedTime();
3137 
3138         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3139 
3140         if (collector_state()->during_initial_mark_pause()) {
3141           concurrent_mark()->checkpointRootsInitialPre();
3142         }
3143 
3144         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3145 
3146         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3147 
3148         // Make sure the remembered sets are up to date. This needs to be
3149         // done before register_humongous_regions_with_cset(), because the
3150         // remembered sets are used there to choose eager reclaim candidates.
3151         // If the remembered sets are not up to date we might miss some
3152         // entries that need to be handled.
3153         g1_rem_set()->cleanupHRRS();
3154 
3155         register_humongous_regions_with_cset();
3156 
3157         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3158 
3159         // We call this after finalize_cset() to
3160         // ensure that the CSet has been finalized.
3161         _cm->verify_no_cset_oops();
3162 
3163         if (_hr_printer.is_active()) {
3164           G1PrintCollectionSetClosure cl(&_hr_printer);
3165           _collection_set.iterate(&cl);
3166         }
3167 
3168         // Initialize the GC alloc regions.
3169         _allocator->init_gc_alloc_regions(evacuation_info);
3170 
3171         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3172         pre_evacuate_collection_set();
3173 
3174         // Actually do the work...
3175         evacuate_collection_set(evacuation_info, &per_thread_states);
3176 
3177         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3178 
3179         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3180         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3181 
3182         eagerly_reclaim_humongous_regions();
3183 
3184         record_obj_copy_mem_stats();
3185         _survivor_evac_stats.adjust_desired_plab_sz();
3186         _old_evac_stats.adjust_desired_plab_sz();
3187 
3188         double start = os::elapsedTime();
3189         start_new_collection_set();
3190         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3191 
3192         if (evacuation_failed()) {
3193           set_used(recalculate_used());
3194           if (_archive_allocator != NULL) {
3195             _archive_allocator->clear_used();
3196           }
3197           for (uint i = 0; i < ParallelGCThreads; i++) {
3198             if (_evacuation_failed_info_array[i].has_failed()) {
3199               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3200             }
3201           }
3202         } else {
3203           // The "used" of the the collection set have already been subtracted
3204           // when they were freed.  Add in the bytes evacuated.
3205           increase_used(g1_policy()->bytes_copied_during_gc());
3206         }
3207 
3208         if (collector_state()->during_initial_mark_pause()) {
3209           // We have to do this before we notify the CM threads that
3210           // they can start working to make sure that all the
3211           // appropriate initialization is done on the CM object.
3212           concurrent_mark()->checkpointRootsInitialPost();
3213           collector_state()->set_mark_in_progress(true);
3214           // Note that we don't actually trigger the CM thread at
3215           // this point. We do that later when we're sure that
3216           // the current thread has completed its logging output.
3217         }
3218 
3219         allocate_dummy_regions();
3220 
3221         _allocator->init_mutator_alloc_region();
3222 
3223         {
3224           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3225           if (expand_bytes > 0) {
3226             size_t bytes_before = capacity();
3227             // No need for an ergo logging here,
3228             // expansion_amount() does this when it returns a value > 0.
3229             double expand_ms;
3230             if (!expand(expand_bytes, _workers, &expand_ms)) {
3231               // We failed to expand the heap. Cannot do anything about it.
3232             }
3233             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3234           }
3235         }
3236 
3237         // We redo the verification but now wrt to the new CSet which
3238         // has just got initialized after the previous CSet was freed.
3239         _cm->verify_no_cset_oops();
3240 
3241         // This timing is only used by the ergonomics to handle our pause target.
3242         // It is unclear why this should not include the full pause. We will
3243         // investigate this in CR 7178365.
3244         double sample_end_time_sec = os::elapsedTime();
3245         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3246         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3247         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3248 
3249         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3250         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3251 
3252         MemoryService::track_memory_usage();
3253 
3254         if (VerifyRememberedSets) {
3255           log_info(gc, verify)("[Verifying RemSets after GC]");
3256           VerifyRegionRemSetClosure v_cl;
3257           heap_region_iterate(&v_cl);
3258         }
3259 
3260         _verifier->verify_after_gc();
3261         _verifier->check_bitmaps("GC End");
3262 
3263         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3264         ref_processor_stw()->verify_no_references_recorded();
3265 
3266         // CM reference discovery will be re-enabled if necessary.
3267       }
3268 
3269 #ifdef TRACESPINNING
3270       ParallelTaskTerminator::print_termination_counts();
3271 #endif
3272 
3273       gc_epilogue(false);
3274     }
3275 
3276     // Print the remainder of the GC log output.
3277     if (evacuation_failed()) {
3278       log_info(gc)("To-space exhausted");
3279     }
3280 
3281     g1_policy()->print_phases();
3282     heap_transition.print();
3283 
3284     // It is not yet to safe to tell the concurrent mark to
3285     // start as we have some optional output below. We don't want the
3286     // output from the concurrent mark thread interfering with this
3287     // logging output either.
3288 
3289     _hrm.verify_optional();
3290     _verifier->verify_region_sets_optional();
3291 
3292     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3293     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3294 
3295     print_heap_after_gc();
3296     print_heap_regions();
3297     trace_heap_after_gc(_gc_tracer_stw);
3298 
3299     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3300     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3301     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3302     // before any GC notifications are raised.
3303     g1mm()->update_sizes();
3304 
3305     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3306     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3307     _gc_timer_stw->register_gc_end();
3308     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3309   }
3310   // It should now be safe to tell the concurrent mark thread to start
3311   // without its logging output interfering with the logging output
3312   // that came from the pause.
3313 
3314   if (should_start_conc_mark) {
3315     // CAUTION: after the doConcurrentMark() call below,
3316     // the concurrent marking thread(s) could be running
3317     // concurrently with us. Make sure that anything after
3318     // this point does not assume that we are the only GC thread
3319     // running. Note: of course, the actual marking work will
3320     // not start until the safepoint itself is released in
3321     // SuspendibleThreadSet::desynchronize().
3322     doConcurrentMark();
3323   }
3324 
3325   return true;
3326 }
3327 
3328 void G1CollectedHeap::remove_self_forwarding_pointers() {
3329   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3330   workers()->run_task(&rsfp_task);
3331 }
3332 
3333 void G1CollectedHeap::restore_after_evac_failure() {
3334   double remove_self_forwards_start = os::elapsedTime();
3335 
3336   remove_self_forwarding_pointers();
3337   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3338   _preserved_marks_set.restore(&task_executor);
3339 
3340   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3341 }
3342 
3343 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3344   if (!_evacuation_failed) {
3345     _evacuation_failed = true;
3346   }
3347 
3348   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3349   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3350 }
3351 
3352 bool G1ParEvacuateFollowersClosure::offer_termination() {
3353   G1ParScanThreadState* const pss = par_scan_state();
3354   start_term_time();
3355   const bool res = terminator()->offer_termination();
3356   end_term_time();
3357   return res;
3358 }
3359 
3360 void G1ParEvacuateFollowersClosure::do_void() {
3361   G1ParScanThreadState* const pss = par_scan_state();
3362   pss->trim_queue();
3363   do {
3364     pss->steal_and_trim_queue(queues());
3365   } while (!offer_termination());
3366 }
3367 
3368 class G1ParTask : public AbstractGangTask {
3369 protected:
3370   G1CollectedHeap*         _g1h;
3371   G1ParScanThreadStateSet* _pss;
3372   RefToScanQueueSet*       _queues;
3373   G1RootProcessor*         _root_processor;
3374   ParallelTaskTerminator   _terminator;
3375   uint                     _n_workers;
3376 
3377 public:
3378   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3379     : AbstractGangTask("G1 collection"),
3380       _g1h(g1h),
3381       _pss(per_thread_states),
3382       _queues(task_queues),
3383       _root_processor(root_processor),
3384       _terminator(n_workers, _queues),
3385       _n_workers(n_workers)
3386   {}
3387 
3388   void work(uint worker_id) {
3389     if (worker_id >= _n_workers) return;  // no work needed this round
3390 
3391     double start_sec = os::elapsedTime();
3392     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3393 
3394     {
3395       ResourceMark rm;
3396       HandleMark   hm;
3397 
3398       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3399 
3400       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3401       pss->set_ref_processor(rp);
3402 
3403       double start_strong_roots_sec = os::elapsedTime();
3404 
3405       _root_processor->evacuate_roots(pss->closures(), worker_id);
3406 
3407       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3408       // treating the nmethods visited to act as roots for concurrent marking.
3409       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3410       // objects copied by the current evacuation.
3411       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3412                                                       pss->closures()->weak_codeblobs(),
3413                                                       worker_id);
3414 
3415       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3416 
3417       double term_sec = 0.0;
3418       size_t evac_term_attempts = 0;
3419       {
3420         double start = os::elapsedTime();
3421         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3422         evac.do_void();
3423 
3424         evac_term_attempts = evac.term_attempts();
3425         term_sec = evac.term_time();
3426         double elapsed_sec = os::elapsedTime() - start;
3427         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3428         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3429         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3430       }
3431 
3432       assert(pss->queue_is_empty(), "should be empty");
3433 
3434       if (log_is_enabled(Debug, gc, task, stats)) {
3435         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3436         size_t lab_waste;
3437         size_t lab_undo_waste;
3438         pss->waste(lab_waste, lab_undo_waste);
3439         _g1h->print_termination_stats(worker_id,
3440                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3441                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3442                                       term_sec * 1000.0,                          /* evac term time */
3443                                       evac_term_attempts,                         /* evac term attempts */
3444                                       lab_waste,                                  /* alloc buffer waste */
3445                                       lab_undo_waste                              /* undo waste */
3446                                       );
3447       }
3448 
3449       // Close the inner scope so that the ResourceMark and HandleMark
3450       // destructors are executed here and are included as part of the
3451       // "GC Worker Time".
3452     }
3453     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3454   }
3455 };
3456 
3457 void G1CollectedHeap::print_termination_stats_hdr() {
3458   log_debug(gc, task, stats)("GC Termination Stats");
3459   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3460   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3461   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3462 }
3463 
3464 void G1CollectedHeap::print_termination_stats(uint worker_id,
3465                                               double elapsed_ms,
3466                                               double strong_roots_ms,
3467                                               double term_ms,
3468                                               size_t term_attempts,
3469                                               size_t alloc_buffer_waste,
3470                                               size_t undo_waste) const {
3471   log_debug(gc, task, stats)
3472               ("%3d %9.2f %9.2f %6.2f "
3473                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3474                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3475                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3476                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3477                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3478                alloc_buffer_waste * HeapWordSize / K,
3479                undo_waste * HeapWordSize / K);
3480 }
3481 
3482 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3483 private:
3484   BoolObjectClosure* _is_alive;
3485   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3486 
3487   int _initial_string_table_size;
3488   int _initial_symbol_table_size;
3489 
3490   bool  _process_strings;
3491   int _strings_processed;
3492   int _strings_removed;
3493 
3494   bool  _process_symbols;
3495   int _symbols_processed;
3496   int _symbols_removed;
3497 
3498   bool _process_string_dedup;
3499 
3500 public:
3501   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3502     AbstractGangTask("String/Symbol Unlinking"),
3503     _is_alive(is_alive),
3504     _dedup_closure(is_alive, NULL, false),
3505     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3506     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3507     _process_string_dedup(process_string_dedup) {
3508 
3509     _initial_string_table_size = StringTable::the_table()->table_size();
3510     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3511     if (process_strings) {
3512       StringTable::clear_parallel_claimed_index();
3513     }
3514     if (process_symbols) {
3515       SymbolTable::clear_parallel_claimed_index();
3516     }
3517   }
3518 
3519   ~G1StringAndSymbolCleaningTask() {
3520     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3521               "claim value %d after unlink less than initial string table size %d",
3522               StringTable::parallel_claimed_index(), _initial_string_table_size);
3523     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3524               "claim value %d after unlink less than initial symbol table size %d",
3525               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3526 
3527     log_info(gc, stringtable)(
3528         "Cleaned string and symbol table, "
3529         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3530         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3531         strings_processed(), strings_removed(),
3532         symbols_processed(), symbols_removed());
3533   }
3534 
3535   void work(uint worker_id) {
3536     int strings_processed = 0;
3537     int strings_removed = 0;
3538     int symbols_processed = 0;
3539     int symbols_removed = 0;
3540     if (_process_strings) {
3541       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3542       Atomic::add(strings_processed, &_strings_processed);
3543       Atomic::add(strings_removed, &_strings_removed);
3544     }
3545     if (_process_symbols) {
3546       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3547       Atomic::add(symbols_processed, &_symbols_processed);
3548       Atomic::add(symbols_removed, &_symbols_removed);
3549     }
3550     if (_process_string_dedup) {
3551       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3552     }
3553   }
3554 
3555   size_t strings_processed() const { return (size_t)_strings_processed; }
3556   size_t strings_removed()   const { return (size_t)_strings_removed; }
3557 
3558   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3559   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3560 };
3561 
3562 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3563 private:
3564   static Monitor* _lock;
3565 
3566   BoolObjectClosure* const _is_alive;
3567   const bool               _unloading_occurred;
3568   const uint               _num_workers;
3569 
3570   // Variables used to claim nmethods.
3571   CompiledMethod* _first_nmethod;
3572   volatile CompiledMethod* _claimed_nmethod;
3573 
3574   // The list of nmethods that need to be processed by the second pass.
3575   volatile CompiledMethod* _postponed_list;
3576   volatile uint            _num_entered_barrier;
3577 
3578  public:
3579   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3580       _is_alive(is_alive),
3581       _unloading_occurred(unloading_occurred),
3582       _num_workers(num_workers),
3583       _first_nmethod(NULL),
3584       _claimed_nmethod(NULL),
3585       _postponed_list(NULL),
3586       _num_entered_barrier(0)
3587   {
3588     CompiledMethod::increase_unloading_clock();
3589     // Get first alive nmethod
3590     CompiledMethodIterator iter = CompiledMethodIterator();
3591     if(iter.next_alive()) {
3592       _first_nmethod = iter.method();
3593     }
3594     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3595   }
3596 
3597   ~G1CodeCacheUnloadingTask() {
3598     CodeCache::verify_clean_inline_caches();
3599 
3600     CodeCache::set_needs_cache_clean(false);
3601     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3602 
3603     CodeCache::verify_icholder_relocations();
3604   }
3605 
3606  private:
3607   void add_to_postponed_list(CompiledMethod* nm) {
3608       CompiledMethod* old;
3609       do {
3610         old = (CompiledMethod*)_postponed_list;
3611         nm->set_unloading_next(old);
3612       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3613   }
3614 
3615   void clean_nmethod(CompiledMethod* nm) {
3616     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3617 
3618     if (postponed) {
3619       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3620       add_to_postponed_list(nm);
3621     }
3622 
3623     // Mark that this thread has been cleaned/unloaded.
3624     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3625     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3626   }
3627 
3628   void clean_nmethod_postponed(CompiledMethod* nm) {
3629     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3630   }
3631 
3632   static const int MaxClaimNmethods = 16;
3633 
3634   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3635     CompiledMethod* first;
3636     CompiledMethodIterator last;
3637 
3638     do {
3639       *num_claimed_nmethods = 0;
3640 
3641       first = (CompiledMethod*)_claimed_nmethod;
3642       last = CompiledMethodIterator(first);
3643 
3644       if (first != NULL) {
3645 
3646         for (int i = 0; i < MaxClaimNmethods; i++) {
3647           if (!last.next_alive()) {
3648             break;
3649           }
3650           claimed_nmethods[i] = last.method();
3651           (*num_claimed_nmethods)++;
3652         }
3653       }
3654 
3655     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3656   }
3657 
3658   CompiledMethod* claim_postponed_nmethod() {
3659     CompiledMethod* claim;
3660     CompiledMethod* next;
3661 
3662     do {
3663       claim = (CompiledMethod*)_postponed_list;
3664       if (claim == NULL) {
3665         return NULL;
3666       }
3667 
3668       next = claim->unloading_next();
3669 
3670     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3671 
3672     return claim;
3673   }
3674 
3675  public:
3676   // Mark that we're done with the first pass of nmethod cleaning.
3677   void barrier_mark(uint worker_id) {
3678     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3679     _num_entered_barrier++;
3680     if (_num_entered_barrier == _num_workers) {
3681       ml.notify_all();
3682     }
3683   }
3684 
3685   // See if we have to wait for the other workers to
3686   // finish their first-pass nmethod cleaning work.
3687   void barrier_wait(uint worker_id) {
3688     if (_num_entered_barrier < _num_workers) {
3689       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3690       while (_num_entered_barrier < _num_workers) {
3691           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3692       }
3693     }
3694   }
3695 
3696   // Cleaning and unloading of nmethods. Some work has to be postponed
3697   // to the second pass, when we know which nmethods survive.
3698   void work_first_pass(uint worker_id) {
3699     // The first nmethods is claimed by the first worker.
3700     if (worker_id == 0 && _first_nmethod != NULL) {
3701       clean_nmethod(_first_nmethod);
3702       _first_nmethod = NULL;
3703     }
3704 
3705     int num_claimed_nmethods;
3706     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3707 
3708     while (true) {
3709       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3710 
3711       if (num_claimed_nmethods == 0) {
3712         break;
3713       }
3714 
3715       for (int i = 0; i < num_claimed_nmethods; i++) {
3716         clean_nmethod(claimed_nmethods[i]);
3717       }
3718     }
3719   }
3720 
3721   void work_second_pass(uint worker_id) {
3722     CompiledMethod* nm;
3723     // Take care of postponed nmethods.
3724     while ((nm = claim_postponed_nmethod()) != NULL) {
3725       clean_nmethod_postponed(nm);
3726     }
3727   }
3728 };
3729 
3730 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3731 
3732 class G1KlassCleaningTask : public StackObj {
3733   BoolObjectClosure*                      _is_alive;
3734   volatile jint                           _clean_klass_tree_claimed;
3735   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3736 
3737  public:
3738   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3739       _is_alive(is_alive),
3740       _clean_klass_tree_claimed(0),
3741       _klass_iterator() {
3742   }
3743 
3744  private:
3745   bool claim_clean_klass_tree_task() {
3746     if (_clean_klass_tree_claimed) {
3747       return false;
3748     }
3749 
3750     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3751   }
3752 
3753   InstanceKlass* claim_next_klass() {
3754     Klass* klass;
3755     do {
3756       klass =_klass_iterator.next_klass();
3757     } while (klass != NULL && !klass->is_instance_klass());
3758 
3759     // this can be null so don't call InstanceKlass::cast
3760     return static_cast<InstanceKlass*>(klass);
3761   }
3762 
3763 public:
3764 
3765   void clean_klass(InstanceKlass* ik) {
3766     ik->clean_weak_instanceklass_links(_is_alive);
3767   }
3768 
3769   void work() {
3770     ResourceMark rm;
3771 
3772     // One worker will clean the subklass/sibling klass tree.
3773     if (claim_clean_klass_tree_task()) {
3774       Klass::clean_subklass_tree(_is_alive);
3775     }
3776 
3777     // All workers will help cleaning the classes,
3778     InstanceKlass* klass;
3779     while ((klass = claim_next_klass()) != NULL) {
3780       clean_klass(klass);
3781     }
3782   }
3783 };
3784 
3785 class G1ResolvedMethodCleaningTask : public StackObj {
3786   BoolObjectClosure* _is_alive;
3787   volatile jint      _resolved_method_task_claimed;
3788 public:
3789   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3790       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3791 
3792   bool claim_resolved_method_task() {
3793     if (_resolved_method_task_claimed) {
3794       return false;
3795     }
3796     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3797   }
3798 
3799   // These aren't big, one thread can do it all.
3800   void work() {
3801     if (claim_resolved_method_task()) {
3802       ResolvedMethodTable::unlink(_is_alive);
3803     }
3804   }
3805 };
3806 
3807 
3808 // To minimize the remark pause times, the tasks below are done in parallel.
3809 class G1ParallelCleaningTask : public AbstractGangTask {
3810 private:
3811   G1StringAndSymbolCleaningTask _string_symbol_task;
3812   G1CodeCacheUnloadingTask      _code_cache_task;
3813   G1KlassCleaningTask           _klass_cleaning_task;
3814   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3815 
3816 public:
3817   // The constructor is run in the VMThread.
3818   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3819       AbstractGangTask("Parallel Cleaning"),
3820       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3821       _code_cache_task(num_workers, is_alive, unloading_occurred),
3822       _klass_cleaning_task(is_alive),
3823       _resolved_method_cleaning_task(is_alive) {
3824   }
3825 
3826   // The parallel work done by all worker threads.
3827   void work(uint worker_id) {
3828     // Do first pass of code cache cleaning.
3829     _code_cache_task.work_first_pass(worker_id);
3830 
3831     // Let the threads mark that the first pass is done.
3832     _code_cache_task.barrier_mark(worker_id);
3833 
3834     // Clean the Strings and Symbols.
3835     _string_symbol_task.work(worker_id);
3836 
3837     // Clean unreferenced things in the ResolvedMethodTable
3838     _resolved_method_cleaning_task.work();
3839 
3840     // Wait for all workers to finish the first code cache cleaning pass.
3841     _code_cache_task.barrier_wait(worker_id);
3842 
3843     // Do the second code cache cleaning work, which realize on
3844     // the liveness information gathered during the first pass.
3845     _code_cache_task.work_second_pass(worker_id);
3846 
3847     // Clean all klasses that were not unloaded.
3848     _klass_cleaning_task.work();
3849   }
3850 };
3851 
3852 
3853 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3854                                         bool class_unloading_occurred) {
3855   uint n_workers = workers()->active_workers();
3856 
3857   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3858   workers()->run_task(&g1_unlink_task);
3859 }
3860 
3861 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3862                                        bool process_strings,
3863                                        bool process_symbols,
3864                                        bool process_string_dedup) {
3865   if (!process_strings && !process_symbols && !process_string_dedup) {
3866     // Nothing to clean.
3867     return;
3868   }
3869 
3870   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3871   workers()->run_task(&g1_unlink_task);
3872 
3873 }
3874 
3875 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3876  private:
3877   DirtyCardQueueSet* _queue;
3878   G1CollectedHeap* _g1h;
3879  public:
3880   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3881     _queue(queue), _g1h(g1h) { }
3882 
3883   virtual void work(uint worker_id) {
3884     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3885     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3886 
3887     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3888     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3889 
3890     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3891   }
3892 };
3893 
3894 void G1CollectedHeap::redirty_logged_cards() {
3895   double redirty_logged_cards_start = os::elapsedTime();
3896 
3897   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3898   dirty_card_queue_set().reset_for_par_iteration();
3899   workers()->run_task(&redirty_task);
3900 
3901   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3902   dcq.merge_bufferlists(&dirty_card_queue_set());
3903   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3904 
3905   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3906 }
3907 
3908 // Weak Reference Processing support
3909 
3910 // An always "is_alive" closure that is used to preserve referents.
3911 // If the object is non-null then it's alive.  Used in the preservation
3912 // of referent objects that are pointed to by reference objects
3913 // discovered by the CM ref processor.
3914 class G1AlwaysAliveClosure: public BoolObjectClosure {
3915   G1CollectedHeap* _g1;
3916 public:
3917   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3918   bool do_object_b(oop p) {
3919     if (p != NULL) {
3920       return true;
3921     }
3922     return false;
3923   }
3924 };
3925 
3926 bool G1STWIsAliveClosure::do_object_b(oop p) {
3927   // An object is reachable if it is outside the collection set,
3928   // or is inside and copied.
3929   return !_g1->is_in_cset(p) || p->is_forwarded();
3930 }
3931 
3932 // Non Copying Keep Alive closure
3933 class G1KeepAliveClosure: public OopClosure {
3934   G1CollectedHeap* _g1;
3935 public:
3936   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3937   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3938   void do_oop(oop* p) {
3939     oop obj = *p;
3940     assert(obj != NULL, "the caller should have filtered out NULL values");
3941 
3942     const InCSetState cset_state = _g1->in_cset_state(obj);
3943     if (!cset_state.is_in_cset_or_humongous()) {
3944       return;
3945     }
3946     if (cset_state.is_in_cset()) {
3947       assert( obj->is_forwarded(), "invariant" );
3948       *p = obj->forwardee();
3949     } else {
3950       assert(!obj->is_forwarded(), "invariant" );
3951       assert(cset_state.is_humongous(),
3952              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3953       _g1->set_humongous_is_live(obj);
3954     }
3955   }
3956 };
3957 
3958 // Copying Keep Alive closure - can be called from both
3959 // serial and parallel code as long as different worker
3960 // threads utilize different G1ParScanThreadState instances
3961 // and different queues.
3962 
3963 class G1CopyingKeepAliveClosure: public OopClosure {
3964   G1CollectedHeap*         _g1h;
3965   OopClosure*              _copy_non_heap_obj_cl;
3966   G1ParScanThreadState*    _par_scan_state;
3967 
3968 public:
3969   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3970                             OopClosure* non_heap_obj_cl,
3971                             G1ParScanThreadState* pss):
3972     _g1h(g1h),
3973     _copy_non_heap_obj_cl(non_heap_obj_cl),
3974     _par_scan_state(pss)
3975   {}
3976 
3977   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3978   virtual void do_oop(      oop* p) { do_oop_work(p); }
3979 
3980   template <class T> void do_oop_work(T* p) {
3981     oop obj = oopDesc::load_decode_heap_oop(p);
3982 
3983     if (_g1h->is_in_cset_or_humongous(obj)) {
3984       // If the referent object has been forwarded (either copied
3985       // to a new location or to itself in the event of an
3986       // evacuation failure) then we need to update the reference
3987       // field and, if both reference and referent are in the G1
3988       // heap, update the RSet for the referent.
3989       //
3990       // If the referent has not been forwarded then we have to keep
3991       // it alive by policy. Therefore we have copy the referent.
3992       //
3993       // If the reference field is in the G1 heap then we can push
3994       // on the PSS queue. When the queue is drained (after each
3995       // phase of reference processing) the object and it's followers
3996       // will be copied, the reference field set to point to the
3997       // new location, and the RSet updated. Otherwise we need to
3998       // use the the non-heap or metadata closures directly to copy
3999       // the referent object and update the pointer, while avoiding
4000       // updating the RSet.
4001 
4002       if (_g1h->is_in_g1_reserved(p)) {
4003         _par_scan_state->push_on_queue(p);
4004       } else {
4005         assert(!Metaspace::contains((const void*)p),
4006                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4007         _copy_non_heap_obj_cl->do_oop(p);
4008       }
4009     }
4010   }
4011 };
4012 
4013 // Serial drain queue closure. Called as the 'complete_gc'
4014 // closure for each discovered list in some of the
4015 // reference processing phases.
4016 
4017 class G1STWDrainQueueClosure: public VoidClosure {
4018 protected:
4019   G1CollectedHeap* _g1h;
4020   G1ParScanThreadState* _par_scan_state;
4021 
4022   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4023 
4024 public:
4025   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4026     _g1h(g1h),
4027     _par_scan_state(pss)
4028   { }
4029 
4030   void do_void() {
4031     G1ParScanThreadState* const pss = par_scan_state();
4032     pss->trim_queue();
4033   }
4034 };
4035 
4036 // Parallel Reference Processing closures
4037 
4038 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4039 // processing during G1 evacuation pauses.
4040 
4041 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4042 private:
4043   G1CollectedHeap*          _g1h;
4044   G1ParScanThreadStateSet*  _pss;
4045   RefToScanQueueSet*        _queues;
4046   WorkGang*                 _workers;
4047   uint                      _active_workers;
4048 
4049 public:
4050   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4051                            G1ParScanThreadStateSet* per_thread_states,
4052                            WorkGang* workers,
4053                            RefToScanQueueSet *task_queues,
4054                            uint n_workers) :
4055     _g1h(g1h),
4056     _pss(per_thread_states),
4057     _queues(task_queues),
4058     _workers(workers),
4059     _active_workers(n_workers)
4060   {
4061     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4062   }
4063 
4064   // Executes the given task using concurrent marking worker threads.
4065   virtual void execute(ProcessTask& task);
4066   virtual void execute(EnqueueTask& task);
4067 };
4068 
4069 // Gang task for possibly parallel reference processing
4070 
4071 class G1STWRefProcTaskProxy: public AbstractGangTask {
4072   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4073   ProcessTask&     _proc_task;
4074   G1CollectedHeap* _g1h;
4075   G1ParScanThreadStateSet* _pss;
4076   RefToScanQueueSet* _task_queues;
4077   ParallelTaskTerminator* _terminator;
4078 
4079 public:
4080   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4081                         G1CollectedHeap* g1h,
4082                         G1ParScanThreadStateSet* per_thread_states,
4083                         RefToScanQueueSet *task_queues,
4084                         ParallelTaskTerminator* terminator) :
4085     AbstractGangTask("Process reference objects in parallel"),
4086     _proc_task(proc_task),
4087     _g1h(g1h),
4088     _pss(per_thread_states),
4089     _task_queues(task_queues),
4090     _terminator(terminator)
4091   {}
4092 
4093   virtual void work(uint worker_id) {
4094     // The reference processing task executed by a single worker.
4095     ResourceMark rm;
4096     HandleMark   hm;
4097 
4098     G1STWIsAliveClosure is_alive(_g1h);
4099 
4100     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4101     pss->set_ref_processor(NULL);
4102 
4103     // Keep alive closure.
4104     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4105 
4106     // Complete GC closure
4107     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4108 
4109     // Call the reference processing task's work routine.
4110     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4111 
4112     // Note we cannot assert that the refs array is empty here as not all
4113     // of the processing tasks (specifically phase2 - pp2_work) execute
4114     // the complete_gc closure (which ordinarily would drain the queue) so
4115     // the queue may not be empty.
4116   }
4117 };
4118 
4119 // Driver routine for parallel reference processing.
4120 // Creates an instance of the ref processing gang
4121 // task and has the worker threads execute it.
4122 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4123   assert(_workers != NULL, "Need parallel worker threads.");
4124 
4125   ParallelTaskTerminator terminator(_active_workers, _queues);
4126   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4127 
4128   _workers->run_task(&proc_task_proxy);
4129 }
4130 
4131 // Gang task for parallel reference enqueueing.
4132 
4133 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4134   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4135   EnqueueTask& _enq_task;
4136 
4137 public:
4138   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4139     AbstractGangTask("Enqueue reference objects in parallel"),
4140     _enq_task(enq_task)
4141   { }
4142 
4143   virtual void work(uint worker_id) {
4144     _enq_task.work(worker_id);
4145   }
4146 };
4147 
4148 // Driver routine for parallel reference enqueueing.
4149 // Creates an instance of the ref enqueueing gang
4150 // task and has the worker threads execute it.
4151 
4152 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4153   assert(_workers != NULL, "Need parallel worker threads.");
4154 
4155   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4156 
4157   _workers->run_task(&enq_task_proxy);
4158 }
4159 
4160 // End of weak reference support closures
4161 
4162 // Abstract task used to preserve (i.e. copy) any referent objects
4163 // that are in the collection set and are pointed to by reference
4164 // objects discovered by the CM ref processor.
4165 
4166 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4167 protected:
4168   G1CollectedHeap*         _g1h;
4169   G1ParScanThreadStateSet* _pss;
4170   RefToScanQueueSet*       _queues;
4171   ParallelTaskTerminator   _terminator;
4172   uint                     _n_workers;
4173 
4174 public:
4175   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4176     AbstractGangTask("ParPreserveCMReferents"),
4177     _g1h(g1h),
4178     _pss(per_thread_states),
4179     _queues(task_queues),
4180     _terminator(workers, _queues),
4181     _n_workers(workers)
4182   {
4183     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4184   }
4185 
4186   void work(uint worker_id) {
4187     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4188 
4189     ResourceMark rm;
4190     HandleMark   hm;
4191 
4192     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4193     pss->set_ref_processor(NULL);
4194     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4195 
4196     // Is alive closure
4197     G1AlwaysAliveClosure always_alive(_g1h);
4198 
4199     // Copying keep alive closure. Applied to referent objects that need
4200     // to be copied.
4201     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4202 
4203     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4204 
4205     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4206     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4207 
4208     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4209     // So this must be true - but assert just in case someone decides to
4210     // change the worker ids.
4211     assert(worker_id < limit, "sanity");
4212     assert(!rp->discovery_is_atomic(), "check this code");
4213 
4214     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4215     for (uint idx = worker_id; idx < limit; idx += stride) {
4216       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4217 
4218       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4219       while (iter.has_next()) {
4220         // Since discovery is not atomic for the CM ref processor, we
4221         // can see some null referent objects.
4222         iter.load_ptrs(DEBUG_ONLY(true));
4223         oop ref = iter.obj();
4224 
4225         // This will filter nulls.
4226         if (iter.is_referent_alive()) {
4227           iter.make_referent_alive();
4228         }
4229         iter.move_to_next();
4230       }
4231     }
4232 
4233     // Drain the queue - which may cause stealing
4234     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4235     drain_queue.do_void();
4236     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4237     assert(pss->queue_is_empty(), "should be");
4238   }
4239 };
4240 
4241 void G1CollectedHeap::process_weak_jni_handles() {
4242   double ref_proc_start = os::elapsedTime();
4243 
4244   G1STWIsAliveClosure is_alive(this);
4245   G1KeepAliveClosure keep_alive(this);
4246   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4247 
4248   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4249   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4250 }
4251 
4252 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4253   // Any reference objects, in the collection set, that were 'discovered'
4254   // by the CM ref processor should have already been copied (either by
4255   // applying the external root copy closure to the discovered lists, or
4256   // by following an RSet entry).
4257   //
4258   // But some of the referents, that are in the collection set, that these
4259   // reference objects point to may not have been copied: the STW ref
4260   // processor would have seen that the reference object had already
4261   // been 'discovered' and would have skipped discovering the reference,
4262   // but would not have treated the reference object as a regular oop.
4263   // As a result the copy closure would not have been applied to the
4264   // referent object.
4265   //
4266   // We need to explicitly copy these referent objects - the references
4267   // will be processed at the end of remarking.
4268   //
4269   // We also need to do this copying before we process the reference
4270   // objects discovered by the STW ref processor in case one of these
4271   // referents points to another object which is also referenced by an
4272   // object discovered by the STW ref processor.
4273   double preserve_cm_referents_time = 0.0;
4274 
4275   // To avoid spawning task when there is no work to do, check that
4276   // a concurrent cycle is active and that some references have been
4277   // discovered.
4278   if (concurrent_mark()->cmThread()->during_cycle() &&
4279       ref_processor_cm()->has_discovered_references()) {
4280     double preserve_cm_referents_start = os::elapsedTime();
4281     uint no_of_gc_workers = workers()->active_workers();
4282     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4283                                                    per_thread_states,
4284                                                    no_of_gc_workers,
4285                                                    _task_queues);
4286     workers()->run_task(&keep_cm_referents);
4287     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4288   }
4289 
4290   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4291 }
4292 
4293 // Weak Reference processing during an evacuation pause (part 1).
4294 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4295   double ref_proc_start = os::elapsedTime();
4296 
4297   ReferenceProcessor* rp = _ref_processor_stw;
4298   assert(rp->discovery_enabled(), "should have been enabled");
4299 
4300   // Closure to test whether a referent is alive.
4301   G1STWIsAliveClosure is_alive(this);
4302 
4303   // Even when parallel reference processing is enabled, the processing
4304   // of JNI refs is serial and performed serially by the current thread
4305   // rather than by a worker. The following PSS will be used for processing
4306   // JNI refs.
4307 
4308   // Use only a single queue for this PSS.
4309   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4310   pss->set_ref_processor(NULL);
4311   assert(pss->queue_is_empty(), "pre-condition");
4312 
4313   // Keep alive closure.
4314   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4315 
4316   // Serial Complete GC closure
4317   G1STWDrainQueueClosure drain_queue(this, pss);
4318 
4319   // Setup the soft refs policy...
4320   rp->setup_policy(false);
4321 
4322   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4323 
4324   ReferenceProcessorStats stats;
4325   if (!rp->processing_is_mt()) {
4326     // Serial reference processing...
4327     stats = rp->process_discovered_references(&is_alive,
4328                                               &keep_alive,
4329                                               &drain_queue,
4330                                               NULL,
4331                                               pt);
4332   } else {
4333     uint no_of_gc_workers = workers()->active_workers();
4334 
4335     // Parallel reference processing
4336     assert(no_of_gc_workers <= rp->max_num_q(),
4337            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4338            no_of_gc_workers,  rp->max_num_q());
4339 
4340     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4341     stats = rp->process_discovered_references(&is_alive,
4342                                               &keep_alive,
4343                                               &drain_queue,
4344                                               &par_task_executor,
4345                                               pt);
4346   }
4347 
4348   _gc_tracer_stw->report_gc_reference_stats(stats);
4349 
4350   // We have completed copying any necessary live referent objects.
4351   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4352 
4353   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4354   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4355 }
4356 
4357 // Weak Reference processing during an evacuation pause (part 2).
4358 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4359   double ref_enq_start = os::elapsedTime();
4360 
4361   ReferenceProcessor* rp = _ref_processor_stw;
4362   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4363 
4364   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4365 
4366   // Now enqueue any remaining on the discovered lists on to
4367   // the pending list.
4368   if (!rp->processing_is_mt()) {
4369     // Serial reference processing...
4370     rp->enqueue_discovered_references(NULL, pt);
4371   } else {
4372     // Parallel reference enqueueing
4373 
4374     uint n_workers = workers()->active_workers();
4375 
4376     assert(n_workers <= rp->max_num_q(),
4377            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4378            n_workers,  rp->max_num_q());
4379 
4380     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4381     rp->enqueue_discovered_references(&par_task_executor, pt);
4382   }
4383 
4384   rp->verify_no_references_recorded();
4385   assert(!rp->discovery_enabled(), "should have been disabled");
4386 
4387   // FIXME
4388   // CM's reference processing also cleans up the string and symbol tables.
4389   // Should we do that here also? We could, but it is a serial operation
4390   // and could significantly increase the pause time.
4391 
4392   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4393   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4394 }
4395 
4396 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4397   double merge_pss_time_start = os::elapsedTime();
4398   per_thread_states->flush();
4399   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4400 }
4401 
4402 void G1CollectedHeap::pre_evacuate_collection_set() {
4403   _expand_heap_after_alloc_failure = true;
4404   _evacuation_failed = false;
4405 
4406   // Disable the hot card cache.
4407   _hot_card_cache->reset_hot_cache_claimed_index();
4408   _hot_card_cache->set_use_cache(false);
4409 
4410   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4411   _preserved_marks_set.assert_empty();
4412 
4413   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4414 
4415   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4416   if (collector_state()->during_initial_mark_pause()) {
4417     double start_clear_claimed_marks = os::elapsedTime();
4418 
4419     ClassLoaderDataGraph::clear_claimed_marks();
4420 
4421     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4422     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4423   }
4424 }
4425 
4426 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4427   // Should G1EvacuationFailureALot be in effect for this GC?
4428   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4429 
4430   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4431 
4432   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4433 
4434   double start_par_time_sec = os::elapsedTime();
4435   double end_par_time_sec;
4436 
4437   {
4438     const uint n_workers = workers()->active_workers();
4439     G1RootProcessor root_processor(this, n_workers);
4440     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4441 
4442     print_termination_stats_hdr();
4443 
4444     workers()->run_task(&g1_par_task);
4445     end_par_time_sec = os::elapsedTime();
4446 
4447     // Closing the inner scope will execute the destructor
4448     // for the G1RootProcessor object. We record the current
4449     // elapsed time before closing the scope so that time
4450     // taken for the destructor is NOT included in the
4451     // reported parallel time.
4452   }
4453 
4454   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4455   phase_times->record_par_time(par_time_ms);
4456 
4457   double code_root_fixup_time_ms =
4458         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4459   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4460 }
4461 
4462 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4463   // Process any discovered reference objects - we have
4464   // to do this _before_ we retire the GC alloc regions
4465   // as we may have to copy some 'reachable' referent
4466   // objects (and their reachable sub-graphs) that were
4467   // not copied during the pause.
4468   if (g1_policy()->should_process_references()) {
4469     preserve_cm_referents(per_thread_states);
4470     process_discovered_references(per_thread_states);
4471   } else {
4472     ref_processor_stw()->verify_no_references_recorded();
4473     process_weak_jni_handles();
4474   }
4475 
4476   if (G1StringDedup::is_enabled()) {
4477     double fixup_start = os::elapsedTime();
4478 
4479     G1STWIsAliveClosure is_alive(this);
4480     G1KeepAliveClosure keep_alive(this);
4481     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4482 
4483     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4484     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4485   }
4486 
4487   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4488 
4489   if (evacuation_failed()) {
4490     restore_after_evac_failure();
4491 
4492     // Reset the G1EvacuationFailureALot counters and flags
4493     // Note: the values are reset only when an actual
4494     // evacuation failure occurs.
4495     NOT_PRODUCT(reset_evacuation_should_fail();)
4496   }
4497 
4498   _preserved_marks_set.assert_empty();
4499 
4500   // Enqueue any remaining references remaining on the STW
4501   // reference processor's discovered lists. We need to do
4502   // this after the card table is cleaned (and verified) as
4503   // the act of enqueueing entries on to the pending list
4504   // will log these updates (and dirty their associated
4505   // cards). We need these updates logged to update any
4506   // RSets.
4507   if (g1_policy()->should_process_references()) {
4508     enqueue_discovered_references(per_thread_states);
4509   } else {
4510     g1_policy()->phase_times()->record_ref_enq_time(0);
4511   }
4512 
4513   _allocator->release_gc_alloc_regions(evacuation_info);
4514 
4515   merge_per_thread_state_info(per_thread_states);
4516 
4517   // Reset and re-enable the hot card cache.
4518   // Note the counts for the cards in the regions in the
4519   // collection set are reset when the collection set is freed.
4520   _hot_card_cache->reset_hot_cache();
4521   _hot_card_cache->set_use_cache(true);
4522 
4523   purge_code_root_memory();
4524 
4525   redirty_logged_cards();
4526 #if defined(COMPILER2) || INCLUDE_JVMCI
4527   double start = os::elapsedTime();
4528   DerivedPointerTable::update_pointers();
4529   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4530 #endif
4531   g1_policy()->print_age_table();
4532 }
4533 
4534 void G1CollectedHeap::record_obj_copy_mem_stats() {
4535   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4536 
4537   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4538                                                create_g1_evac_summary(&_old_evac_stats));
4539 }
4540 
4541 void G1CollectedHeap::free_region(HeapRegion* hr,
4542                                   FreeRegionList* free_list,
4543                                   bool skip_remset,
4544                                   bool skip_hot_card_cache,
4545                                   bool locked) {
4546   assert(!hr->is_free(), "the region should not be free");
4547   assert(!hr->is_empty(), "the region should not be empty");
4548   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4549   assert(free_list != NULL, "pre-condition");
4550 
4551   if (G1VerifyBitmaps) {
4552     MemRegion mr(hr->bottom(), hr->end());
4553     concurrent_mark()->clearRangePrevBitmap(mr);
4554   }
4555 
4556   // Clear the card counts for this region.
4557   // Note: we only need to do this if the region is not young
4558   // (since we don't refine cards in young regions).
4559   if (!skip_hot_card_cache && !hr->is_young()) {
4560     _hot_card_cache->reset_card_counts(hr);
4561   }
4562   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4563   free_list->add_ordered(hr);
4564 }
4565 
4566 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4567                                             FreeRegionList* free_list,
4568                                             bool skip_remset) {
4569   assert(hr->is_humongous(), "this is only for humongous regions");
4570   assert(free_list != NULL, "pre-condition");
4571   hr->clear_humongous();
4572   free_region(hr, free_list, skip_remset);
4573 }
4574 
4575 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4576                                            const uint humongous_regions_removed) {
4577   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4578     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4579     _old_set.bulk_remove(old_regions_removed);
4580     _humongous_set.bulk_remove(humongous_regions_removed);
4581   }
4582 
4583 }
4584 
4585 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4586   assert(list != NULL, "list can't be null");
4587   if (!list->is_empty()) {
4588     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4589     _hrm.insert_list_into_free_list(list);
4590   }
4591 }
4592 
4593 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4594   decrease_used(bytes);
4595 }
4596 
4597 class G1ParScrubRemSetTask: public AbstractGangTask {
4598 protected:
4599   G1RemSet* _g1rs;
4600   HeapRegionClaimer _hrclaimer;
4601 
4602 public:
4603   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4604     AbstractGangTask("G1 ScrubRS"),
4605     _g1rs(g1_rs),
4606     _hrclaimer(num_workers) {
4607   }
4608 
4609   void work(uint worker_id) {
4610     _g1rs->scrub(worker_id, &_hrclaimer);
4611   }
4612 };
4613 
4614 void G1CollectedHeap::scrub_rem_set() {
4615   uint num_workers = workers()->active_workers();
4616   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4617   workers()->run_task(&g1_par_scrub_rs_task);
4618 }
4619 
4620 class G1FreeCollectionSetTask : public AbstractGangTask {
4621 private:
4622 
4623   // Closure applied to all regions in the collection set to do work that needs to
4624   // be done serially in a single thread.
4625   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4626   private:
4627     EvacuationInfo* _evacuation_info;
4628     const size_t* _surviving_young_words;
4629 
4630     // Bytes used in successfully evacuated regions before the evacuation.
4631     size_t _before_used_bytes;
4632     // Bytes used in unsucessfully evacuated regions before the evacuation
4633     size_t _after_used_bytes;
4634 
4635     size_t _bytes_allocated_in_old_since_last_gc;
4636 
4637     size_t _failure_used_words;
4638     size_t _failure_waste_words;
4639 
4640     FreeRegionList _local_free_list;
4641   public:
4642     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4643       HeapRegionClosure(),
4644       _evacuation_info(evacuation_info),
4645       _surviving_young_words(surviving_young_words),
4646       _before_used_bytes(0),
4647       _after_used_bytes(0),
4648       _bytes_allocated_in_old_since_last_gc(0),
4649       _failure_used_words(0),
4650       _failure_waste_words(0),
4651       _local_free_list("Local Region List for CSet Freeing") {
4652     }
4653 
4654     virtual bool doHeapRegion(HeapRegion* r) {
4655       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4656 
4657       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4658       g1h->clear_in_cset(r);
4659 
4660       if (r->is_young()) {
4661         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4662                "Young index %d is wrong for region %u of type %s with %u young regions",
4663                r->young_index_in_cset(),
4664                r->hrm_index(),
4665                r->get_type_str(),
4666                g1h->collection_set()->young_region_length());
4667         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4668         r->record_surv_words_in_group(words_survived);
4669       }
4670 
4671       if (!r->evacuation_failed()) {
4672         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4673         _before_used_bytes += r->used();
4674         g1h->free_region(r,
4675                          &_local_free_list,
4676                          true, /* skip_remset */
4677                          true, /* skip_hot_card_cache */
4678                          true  /* locked */);
4679       } else {
4680         r->uninstall_surv_rate_group();
4681         r->set_young_index_in_cset(-1);
4682         r->set_evacuation_failed(false);
4683         // When moving a young gen region to old gen, we "allocate" that whole region
4684         // there. This is in addition to any already evacuated objects. Notify the
4685         // policy about that.
4686         // Old gen regions do not cause an additional allocation: both the objects
4687         // still in the region and the ones already moved are accounted for elsewhere.
4688         if (r->is_young()) {
4689           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4690         }
4691         // The region is now considered to be old.
4692         r->set_old();
4693         // Do some allocation statistics accounting. Regions that failed evacuation
4694         // are always made old, so there is no need to update anything in the young
4695         // gen statistics, but we need to update old gen statistics.
4696         size_t used_words = r->marked_bytes() / HeapWordSize;
4697 
4698         _failure_used_words += used_words;
4699         _failure_waste_words += HeapRegion::GrainWords - used_words;
4700 
4701         g1h->old_set_add(r);
4702         _after_used_bytes += r->used();
4703       }
4704       return false;
4705     }
4706 
4707     void complete_work() {
4708       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4709 
4710       _evacuation_info->set_regions_freed(_local_free_list.length());
4711       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4712 
4713       g1h->prepend_to_freelist(&_local_free_list);
4714       g1h->decrement_summary_bytes(_before_used_bytes);
4715 
4716       G1Policy* policy = g1h->g1_policy();
4717       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4718 
4719       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4720     }
4721   };
4722 
4723   G1CollectionSet* _collection_set;
4724   G1SerialFreeCollectionSetClosure _cl;
4725   const size_t* _surviving_young_words;
4726 
4727   size_t _rs_lengths;
4728 
4729   volatile jint _serial_work_claim;
4730 
4731   struct WorkItem {
4732     uint region_idx;
4733     bool is_young;
4734     bool evacuation_failed;
4735 
4736     WorkItem(HeapRegion* r) {
4737       region_idx = r->hrm_index();
4738       is_young = r->is_young();
4739       evacuation_failed = r->evacuation_failed();
4740     }
4741   };
4742 
4743   volatile size_t _parallel_work_claim;
4744   size_t _num_work_items;
4745   WorkItem* _work_items;
4746 
4747   void do_serial_work() {
4748     // Need to grab the lock to be allowed to modify the old region list.
4749     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4750     _collection_set->iterate(&_cl);
4751   }
4752 
4753   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4754     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4755 
4756     HeapRegion* r = g1h->region_at(region_idx);
4757     assert(!g1h->is_on_master_free_list(r), "sanity");
4758 
4759     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4760 
4761     if (!is_young) {
4762       g1h->_hot_card_cache->reset_card_counts(r);
4763     }
4764 
4765     if (!evacuation_failed) {
4766       r->rem_set()->clear_locked();
4767     }
4768   }
4769 
4770   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4771   private:
4772     size_t _cur_idx;
4773     WorkItem* _work_items;
4774   public:
4775     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4776 
4777     virtual bool doHeapRegion(HeapRegion* r) {
4778       _work_items[_cur_idx++] = WorkItem(r);
4779       return false;
4780     }
4781   };
4782 
4783   void prepare_work() {
4784     G1PrepareFreeCollectionSetClosure cl(_work_items);
4785     _collection_set->iterate(&cl);
4786   }
4787 
4788   void complete_work() {
4789     _cl.complete_work();
4790 
4791     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4792     policy->record_max_rs_lengths(_rs_lengths);
4793     policy->cset_regions_freed();
4794   }
4795 public:
4796   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4797     AbstractGangTask("G1 Free Collection Set"),
4798     _cl(evacuation_info, surviving_young_words),
4799     _collection_set(collection_set),
4800     _surviving_young_words(surviving_young_words),
4801     _serial_work_claim(0),
4802     _rs_lengths(0),
4803     _parallel_work_claim(0),
4804     _num_work_items(collection_set->region_length()),
4805     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4806     prepare_work();
4807   }
4808 
4809   ~G1FreeCollectionSetTask() {
4810     complete_work();
4811     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4812   }
4813 
4814   // Chunk size for work distribution. The chosen value has been determined experimentally
4815   // to be a good tradeoff between overhead and achievable parallelism.
4816   static uint chunk_size() { return 32; }
4817 
4818   virtual void work(uint worker_id) {
4819     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4820 
4821     // Claim serial work.
4822     if (_serial_work_claim == 0) {
4823       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4824       if (value == 0) {
4825         double serial_time = os::elapsedTime();
4826         do_serial_work();
4827         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4828       }
4829     }
4830 
4831     // Start parallel work.
4832     double young_time = 0.0;
4833     bool has_young_time = false;
4834     double non_young_time = 0.0;
4835     bool has_non_young_time = false;
4836 
4837     while (true) {
4838       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4839       size_t cur = end - chunk_size();
4840 
4841       if (cur >= _num_work_items) {
4842         break;
4843       }
4844 
4845       double start_time = os::elapsedTime();
4846 
4847       end = MIN2(end, _num_work_items);
4848 
4849       for (; cur < end; cur++) {
4850         bool is_young = _work_items[cur].is_young;
4851 
4852         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4853 
4854         double end_time = os::elapsedTime();
4855         double time_taken = end_time - start_time;
4856         if (is_young) {
4857           young_time += time_taken;
4858           has_young_time = true;
4859         } else {
4860           non_young_time += time_taken;
4861           has_non_young_time = true;
4862         }
4863         start_time = end_time;
4864       }
4865     }
4866 
4867     if (has_young_time) {
4868       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4869     }
4870     if (has_non_young_time) {
4871       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4872     }
4873   }
4874 };
4875 
4876 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4877   _eden.clear();
4878 
4879   double free_cset_start_time = os::elapsedTime();
4880 
4881   {
4882     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4883     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4884 
4885     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4886 
4887     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4888                         cl.name(),
4889                         num_workers,
4890                         _collection_set.region_length());
4891     workers()->run_task(&cl, num_workers);
4892   }
4893   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4894 
4895   collection_set->clear();
4896 }
4897 
4898 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4899  private:
4900   FreeRegionList* _free_region_list;
4901   HeapRegionSet* _proxy_set;
4902   uint _humongous_objects_reclaimed;
4903   uint _humongous_regions_reclaimed;
4904   size_t _freed_bytes;
4905  public:
4906 
4907   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4908     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4909   }
4910 
4911   virtual bool doHeapRegion(HeapRegion* r) {
4912     if (!r->is_starts_humongous()) {
4913       return false;
4914     }
4915 
4916     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4917 
4918     oop obj = (oop)r->bottom();
4919     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4920 
4921     // The following checks whether the humongous object is live are sufficient.
4922     // The main additional check (in addition to having a reference from the roots
4923     // or the young gen) is whether the humongous object has a remembered set entry.
4924     //
4925     // A humongous object cannot be live if there is no remembered set for it
4926     // because:
4927     // - there can be no references from within humongous starts regions referencing
4928     // the object because we never allocate other objects into them.
4929     // (I.e. there are no intra-region references that may be missed by the
4930     // remembered set)
4931     // - as soon there is a remembered set entry to the humongous starts region
4932     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4933     // until the end of a concurrent mark.
4934     //
4935     // It is not required to check whether the object has been found dead by marking
4936     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4937     // all objects allocated during that time are considered live.
4938     // SATB marking is even more conservative than the remembered set.
4939     // So if at this point in the collection there is no remembered set entry,
4940     // nobody has a reference to it.
4941     // At the start of collection we flush all refinement logs, and remembered sets
4942     // are completely up-to-date wrt to references to the humongous object.
4943     //
4944     // Other implementation considerations:
4945     // - never consider object arrays at this time because they would pose
4946     // considerable effort for cleaning up the the remembered sets. This is
4947     // required because stale remembered sets might reference locations that
4948     // are currently allocated into.
4949     uint region_idx = r->hrm_index();
4950     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4951         !r->rem_set()->is_empty()) {
4952       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4953                                region_idx,
4954                                (size_t)obj->size() * HeapWordSize,
4955                                p2i(r->bottom()),
4956                                r->rem_set()->occupied(),
4957                                r->rem_set()->strong_code_roots_list_length(),
4958                                next_bitmap->isMarked(r->bottom()),
4959                                g1h->is_humongous_reclaim_candidate(region_idx),
4960                                obj->is_typeArray()
4961                               );
4962       return false;
4963     }
4964 
4965     guarantee(obj->is_typeArray(),
4966               "Only eagerly reclaiming type arrays is supported, but the object "
4967               PTR_FORMAT " is not.", p2i(r->bottom()));
4968 
4969     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4970                              region_idx,
4971                              (size_t)obj->size() * HeapWordSize,
4972                              p2i(r->bottom()),
4973                              r->rem_set()->occupied(),
4974                              r->rem_set()->strong_code_roots_list_length(),
4975                              next_bitmap->isMarked(r->bottom()),
4976                              g1h->is_humongous_reclaim_candidate(region_idx),
4977                              obj->is_typeArray()
4978                             );
4979 
4980     // Need to clear mark bit of the humongous object if already set.
4981     if (next_bitmap->isMarked(r->bottom())) {
4982       next_bitmap->clear(r->bottom());
4983     }
4984     _humongous_objects_reclaimed++;
4985     do {
4986       HeapRegion* next = g1h->next_region_in_humongous(r);
4987       _freed_bytes += r->used();
4988       r->set_containing_set(NULL);
4989       _humongous_regions_reclaimed++;
4990       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4991       r = next;
4992     } while (r != NULL);
4993 
4994     return false;
4995   }
4996 
4997   uint humongous_objects_reclaimed() {
4998     return _humongous_objects_reclaimed;
4999   }
5000 
5001   uint humongous_regions_reclaimed() {
5002     return _humongous_regions_reclaimed;
5003   }
5004 
5005   size_t bytes_freed() const {
5006     return _freed_bytes;
5007   }
5008 };
5009 
5010 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5011   assert_at_safepoint(true);
5012 
5013   if (!G1EagerReclaimHumongousObjects ||
5014       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5015     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5016     return;
5017   }
5018 
5019   double start_time = os::elapsedTime();
5020 
5021   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5022 
5023   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5024   heap_region_iterate(&cl);
5025 
5026   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5027 
5028   G1HRPrinter* hrp = hr_printer();
5029   if (hrp->is_active()) {
5030     FreeRegionListIterator iter(&local_cleanup_list);
5031     while (iter.more_available()) {
5032       HeapRegion* hr = iter.get_next();
5033       hrp->cleanup(hr);
5034     }
5035   }
5036 
5037   prepend_to_freelist(&local_cleanup_list);
5038   decrement_summary_bytes(cl.bytes_freed());
5039 
5040   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5041                                                                     cl.humongous_objects_reclaimed());
5042 }
5043 
5044 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5045 public:
5046   virtual bool doHeapRegion(HeapRegion* r) {
5047     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5048     G1CollectedHeap::heap()->clear_in_cset(r);
5049     r->set_young_index_in_cset(-1);
5050     return false;
5051   }
5052 };
5053 
5054 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5055   G1AbandonCollectionSetClosure cl;
5056   collection_set->iterate(&cl);
5057 
5058   collection_set->clear();
5059   collection_set->stop_incremental_building();
5060 }
5061 
5062 void G1CollectedHeap::set_free_regions_coming() {
5063   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5064 
5065   assert(!free_regions_coming(), "pre-condition");
5066   _free_regions_coming = true;
5067 }
5068 
5069 void G1CollectedHeap::reset_free_regions_coming() {
5070   assert(free_regions_coming(), "pre-condition");
5071 
5072   {
5073     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5074     _free_regions_coming = false;
5075     SecondaryFreeList_lock->notify_all();
5076   }
5077 
5078   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5079 }
5080 
5081 void G1CollectedHeap::wait_while_free_regions_coming() {
5082   // Most of the time we won't have to wait, so let's do a quick test
5083   // first before we take the lock.
5084   if (!free_regions_coming()) {
5085     return;
5086   }
5087 
5088   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5089 
5090   {
5091     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5092     while (free_regions_coming()) {
5093       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5094     }
5095   }
5096 
5097   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5098 }
5099 
5100 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5101   return _allocator->is_retained_old_region(hr);
5102 }
5103 
5104 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5105   _eden.add(hr);
5106   _g1_policy->set_region_eden(hr);
5107 }
5108 
5109 #ifdef ASSERT
5110 
5111 class NoYoungRegionsClosure: public HeapRegionClosure {
5112 private:
5113   bool _success;
5114 public:
5115   NoYoungRegionsClosure() : _success(true) { }
5116   bool doHeapRegion(HeapRegion* r) {
5117     if (r->is_young()) {
5118       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5119                             p2i(r->bottom()), p2i(r->end()));
5120       _success = false;
5121     }
5122     return false;
5123   }
5124   bool success() { return _success; }
5125 };
5126 
5127 bool G1CollectedHeap::check_young_list_empty() {
5128   bool ret = (young_regions_count() == 0);
5129 
5130   NoYoungRegionsClosure closure;
5131   heap_region_iterate(&closure);
5132   ret = ret && closure.success();
5133 
5134   return ret;
5135 }
5136 
5137 #endif // ASSERT
5138 
5139 class TearDownRegionSetsClosure : public HeapRegionClosure {
5140 private:
5141   HeapRegionSet *_old_set;
5142 
5143 public:
5144   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5145 
5146   bool doHeapRegion(HeapRegion* r) {
5147     if (r->is_old()) {
5148       _old_set->remove(r);
5149     } else if(r->is_young()) {
5150       r->uninstall_surv_rate_group();
5151     } else {
5152       // We ignore free regions, we'll empty the free list afterwards.
5153       // We ignore humongous regions, we're not tearing down the
5154       // humongous regions set.
5155       assert(r->is_free() || r->is_humongous(),
5156              "it cannot be another type");
5157     }
5158     return false;
5159   }
5160 
5161   ~TearDownRegionSetsClosure() {
5162     assert(_old_set->is_empty(), "post-condition");
5163   }
5164 };
5165 
5166 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5167   assert_at_safepoint(true /* should_be_vm_thread */);
5168 
5169   if (!free_list_only) {
5170     TearDownRegionSetsClosure cl(&_old_set);
5171     heap_region_iterate(&cl);
5172 
5173     // Note that emptying the _young_list is postponed and instead done as
5174     // the first step when rebuilding the regions sets again. The reason for
5175     // this is that during a full GC string deduplication needs to know if
5176     // a collected region was young or old when the full GC was initiated.
5177   }
5178   _hrm.remove_all_free_regions();
5179 }
5180 
5181 void G1CollectedHeap::increase_used(size_t bytes) {
5182   _summary_bytes_used += bytes;
5183 }
5184 
5185 void G1CollectedHeap::decrease_used(size_t bytes) {
5186   assert(_summary_bytes_used >= bytes,
5187          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5188          _summary_bytes_used, bytes);
5189   _summary_bytes_used -= bytes;
5190 }
5191 
5192 void G1CollectedHeap::set_used(size_t bytes) {
5193   _summary_bytes_used = bytes;
5194 }
5195 
5196 class RebuildRegionSetsClosure : public HeapRegionClosure {
5197 private:
5198   bool            _free_list_only;
5199   HeapRegionSet*   _old_set;
5200   HeapRegionManager*   _hrm;
5201   size_t          _total_used;
5202 
5203 public:
5204   RebuildRegionSetsClosure(bool free_list_only,
5205                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5206     _free_list_only(free_list_only),
5207     _old_set(old_set), _hrm(hrm), _total_used(0) {
5208     assert(_hrm->num_free_regions() == 0, "pre-condition");
5209     if (!free_list_only) {
5210       assert(_old_set->is_empty(), "pre-condition");
5211     }
5212   }
5213 
5214   bool doHeapRegion(HeapRegion* r) {
5215     if (r->is_empty()) {
5216       // Add free regions to the free list
5217       r->set_free();
5218       r->set_allocation_context(AllocationContext::system());
5219       _hrm->insert_into_free_list(r);
5220     } else if (!_free_list_only) {
5221 
5222       if (r->is_humongous()) {
5223         // We ignore humongous regions. We left the humongous set unchanged.
5224       } else {
5225         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5226         // We now consider all regions old, so register as such. Leave
5227         // archive regions set that way, however, while still adding
5228         // them to the old set.
5229         if (!r->is_archive()) {
5230           r->set_old();
5231         }
5232         _old_set->add(r);
5233       }
5234       _total_used += r->used();
5235     }
5236 
5237     return false;
5238   }
5239 
5240   size_t total_used() {
5241     return _total_used;
5242   }
5243 };
5244 
5245 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5246   assert_at_safepoint(true /* should_be_vm_thread */);
5247 
5248   if (!free_list_only) {
5249     _eden.clear();
5250     _survivor.clear();
5251   }
5252 
5253   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5254   heap_region_iterate(&cl);
5255 
5256   if (!free_list_only) {
5257     set_used(cl.total_used());
5258     if (_archive_allocator != NULL) {
5259       _archive_allocator->clear_used();
5260     }
5261   }
5262   assert(used_unlocked() == recalculate_used(),
5263          "inconsistent used_unlocked(), "
5264          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5265          used_unlocked(), recalculate_used());
5266 }
5267 
5268 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5269   HeapRegion* hr = heap_region_containing(p);
5270   return hr->is_in(p);
5271 }
5272 
5273 // Methods for the mutator alloc region
5274 
5275 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5276                                                       bool force) {
5277   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5278   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5279   if (force || should_allocate) {
5280     HeapRegion* new_alloc_region = new_region(word_size,
5281                                               false /* is_old */,
5282                                               false /* do_expand */);
5283     if (new_alloc_region != NULL) {
5284       set_region_short_lived_locked(new_alloc_region);
5285       _hr_printer.alloc(new_alloc_region, !should_allocate);
5286       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5287       return new_alloc_region;
5288     }
5289   }
5290   return NULL;
5291 }
5292 
5293 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5294                                                   size_t allocated_bytes) {
5295   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5296   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5297 
5298   collection_set()->add_eden_region(alloc_region);
5299   increase_used(allocated_bytes);
5300   _hr_printer.retire(alloc_region);
5301   // We update the eden sizes here, when the region is retired,
5302   // instead of when it's allocated, since this is the point that its
5303   // used space has been recored in _summary_bytes_used.
5304   g1mm()->update_eden_size();
5305 }
5306 
5307 // Methods for the GC alloc regions
5308 
5309 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5310   if (dest.is_old()) {
5311     return true;
5312   } else {
5313     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5314   }
5315 }
5316 
5317 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5318   assert(FreeList_lock->owned_by_self(), "pre-condition");
5319 
5320   if (!has_more_regions(dest)) {
5321     return NULL;
5322   }
5323 
5324   const bool is_survivor = dest.is_young();
5325 
5326   HeapRegion* new_alloc_region = new_region(word_size,
5327                                             !is_survivor,
5328                                             true /* do_expand */);
5329   if (new_alloc_region != NULL) {
5330     // We really only need to do this for old regions given that we
5331     // should never scan survivors. But it doesn't hurt to do it
5332     // for survivors too.
5333     new_alloc_region->record_timestamp();
5334     if (is_survivor) {
5335       new_alloc_region->set_survivor();
5336       _survivor.add(new_alloc_region);
5337       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5338     } else {
5339       new_alloc_region->set_old();
5340       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5341     }
5342     _hr_printer.alloc(new_alloc_region);
5343     bool during_im = collector_state()->during_initial_mark_pause();
5344     new_alloc_region->note_start_of_copying(during_im);
5345     return new_alloc_region;
5346   }
5347   return NULL;
5348 }
5349 
5350 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5351                                              size_t allocated_bytes,
5352                                              InCSetState dest) {
5353   bool during_im = collector_state()->during_initial_mark_pause();
5354   alloc_region->note_end_of_copying(during_im);
5355   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5356   if (dest.is_old()) {
5357     _old_set.add(alloc_region);
5358   }
5359   _hr_printer.retire(alloc_region);
5360 }
5361 
5362 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5363   bool expanded = false;
5364   uint index = _hrm.find_highest_free(&expanded);
5365 
5366   if (index != G1_NO_HRM_INDEX) {
5367     if (expanded) {
5368       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5369                                 HeapRegion::GrainWords * HeapWordSize);
5370     }
5371     _hrm.allocate_free_regions_starting_at(index, 1);
5372     return region_at(index);
5373   }
5374   return NULL;
5375 }
5376 
5377 // Optimized nmethod scanning
5378 
5379 class RegisterNMethodOopClosure: public OopClosure {
5380   G1CollectedHeap* _g1h;
5381   nmethod* _nm;
5382 
5383   template <class T> void do_oop_work(T* p) {
5384     T heap_oop = oopDesc::load_heap_oop(p);
5385     if (!oopDesc::is_null(heap_oop)) {
5386       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5387       HeapRegion* hr = _g1h->heap_region_containing(obj);
5388       assert(!hr->is_continues_humongous(),
5389              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5390              " starting at " HR_FORMAT,
5391              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5392 
5393       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5394       hr->add_strong_code_root_locked(_nm);
5395     }
5396   }
5397 
5398 public:
5399   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5400     _g1h(g1h), _nm(nm) {}
5401 
5402   void do_oop(oop* p)       { do_oop_work(p); }
5403   void do_oop(narrowOop* p) { do_oop_work(p); }
5404 };
5405 
5406 class UnregisterNMethodOopClosure: public OopClosure {
5407   G1CollectedHeap* _g1h;
5408   nmethod* _nm;
5409 
5410   template <class T> void do_oop_work(T* p) {
5411     T heap_oop = oopDesc::load_heap_oop(p);
5412     if (!oopDesc::is_null(heap_oop)) {
5413       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5414       HeapRegion* hr = _g1h->heap_region_containing(obj);
5415       assert(!hr->is_continues_humongous(),
5416              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5417              " starting at " HR_FORMAT,
5418              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5419 
5420       hr->remove_strong_code_root(_nm);
5421     }
5422   }
5423 
5424 public:
5425   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5426     _g1h(g1h), _nm(nm) {}
5427 
5428   void do_oop(oop* p)       { do_oop_work(p); }
5429   void do_oop(narrowOop* p) { do_oop_work(p); }
5430 };
5431 
5432 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5433   CollectedHeap::register_nmethod(nm);
5434 
5435   guarantee(nm != NULL, "sanity");
5436   RegisterNMethodOopClosure reg_cl(this, nm);
5437   nm->oops_do(&reg_cl);
5438 }
5439 
5440 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5441   CollectedHeap::unregister_nmethod(nm);
5442 
5443   guarantee(nm != NULL, "sanity");
5444   UnregisterNMethodOopClosure reg_cl(this, nm);
5445   nm->oops_do(&reg_cl, true);
5446 }
5447 
5448 void G1CollectedHeap::purge_code_root_memory() {
5449   double purge_start = os::elapsedTime();
5450   G1CodeRootSet::purge();
5451   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5452   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5453 }
5454 
5455 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5456   G1CollectedHeap* _g1h;
5457 
5458 public:
5459   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5460     _g1h(g1h) {}
5461 
5462   void do_code_blob(CodeBlob* cb) {
5463     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5464     if (nm == NULL) {
5465       return;
5466     }
5467 
5468     if (ScavengeRootsInCode) {
5469       _g1h->register_nmethod(nm);
5470     }
5471   }
5472 };
5473 
5474 void G1CollectedHeap::rebuild_strong_code_roots() {
5475   RebuildStrongCodeRootClosure blob_cl(this);
5476   CodeCache::blobs_do(&blob_cl);
5477 }