1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "logging/log.hpp"
  82 #include "memory/allocation.hpp"
  83 #include "memory/iterator.hpp"
  84 #include "memory/resourceArea.hpp"
  85 #include "oops/access.inline.hpp"
  86 #include "oops/compressedOops.inline.hpp"
  87 #include "oops/oop.inline.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm.allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm.allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm.find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm.expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm.reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm.reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm.addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _archive_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm.next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm.reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm.next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm.reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm.addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _archive_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm.next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm.shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 }
1029 
1030 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1031   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1032   assert(used() == recalculate_used(), "Should be equal");
1033   _verifier->verify_region_sets_optional();
1034   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1035   _verifier->check_bitmaps("Full GC Start");
1036 }
1037 
1038 void G1CollectedHeap::prepare_heap_for_mutators() {
1039   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1040   ClassLoaderDataGraph::purge();
1041   MetaspaceUtils::verify_metrics();
1042 
1043   // Prepare heap for normal collections.
1044   assert(num_free_regions() == 0, "we should not have added any free regions");
1045   rebuild_region_sets(false /* free_list_only */);
1046   abort_refinement();
1047   resize_heap_if_necessary();
1048 
1049   // Rebuild the strong code root lists for each region
1050   rebuild_strong_code_roots();
1051 
1052   // Purge code root memory
1053   purge_code_root_memory();
1054 
1055   // Start a new incremental collection set for the next pause
1056   start_new_collection_set();
1057 
1058   _allocator->init_mutator_alloc_region();
1059 
1060   // Post collection state updates.
1061   MetaspaceGC::compute_new_size();
1062 }
1063 
1064 void G1CollectedHeap::abort_refinement() {
1065   if (_hot_card_cache->use_cache()) {
1066     _hot_card_cache->reset_hot_cache();
1067   }
1068 
1069   // Discard all remembered set updates.
1070   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1071   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1072 }
1073 
1074 void G1CollectedHeap::verify_after_full_collection() {
1075   _hrm.verify_optional();
1076   _verifier->verify_region_sets_optional();
1077   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1078   // Clear the previous marking bitmap, if needed for bitmap verification.
1079   // Note we cannot do this when we clear the next marking bitmap in
1080   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1081   // objects marked during a full GC against the previous bitmap.
1082   // But we need to clear it before calling check_bitmaps below since
1083   // the full GC has compacted objects and updated TAMS but not updated
1084   // the prev bitmap.
1085   if (G1VerifyBitmaps) {
1086     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1087     _cm->clear_prev_bitmap(workers());
1088   }
1089   // This call implicitly verifies that the next bitmap is clear after Full GC.
1090   _verifier->check_bitmaps("Full GC End");
1091 
1092   // At this point there should be no regions in the
1093   // entire heap tagged as young.
1094   assert(check_young_list_empty(), "young list should be empty at this point");
1095 
1096   // Note: since we've just done a full GC, concurrent
1097   // marking is no longer active. Therefore we need not
1098   // re-enable reference discovery for the CM ref processor.
1099   // That will be done at the start of the next marking cycle.
1100   // We also know that the STW processor should no longer
1101   // discover any new references.
1102   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1103   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1104   _ref_processor_stw->verify_no_references_recorded();
1105   _ref_processor_cm->verify_no_references_recorded();
1106 }
1107 
1108 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1109   // Post collection logging.
1110   // We should do this after we potentially resize the heap so
1111   // that all the COMMIT / UNCOMMIT events are generated before
1112   // the compaction events.
1113   print_hrm_post_compaction();
1114   heap_transition->print();
1115   print_heap_after_gc();
1116   print_heap_regions();
1117 #ifdef TRACESPINNING
1118   ParallelTaskTerminator::print_termination_counts();
1119 #endif
1120 }
1121 
1122 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1123                                          bool clear_all_soft_refs) {
1124   assert_at_safepoint_on_vm_thread();
1125 
1126   if (GCLocker::check_active_before_gc()) {
1127     // Full GC was not completed.
1128     return false;
1129   }
1130 
1131   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1132       soft_ref_policy()->should_clear_all_soft_refs();
1133 
1134   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1135   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1136 
1137   collector.prepare_collection();
1138   collector.collect();
1139   collector.complete_collection();
1140 
1141   // Full collection was successfully completed.
1142   return true;
1143 }
1144 
1145 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1146   // Currently, there is no facility in the do_full_collection(bool) API to notify
1147   // the caller that the collection did not succeed (e.g., because it was locked
1148   // out by the GC locker). So, right now, we'll ignore the return value.
1149   bool dummy = do_full_collection(true,                /* explicit_gc */
1150                                   clear_all_soft_refs);
1151 }
1152 
1153 void G1CollectedHeap::resize_heap_if_necessary() {
1154   // Capacity, free and used after the GC counted as full regions to
1155   // include the waste in the following calculations.
1156   const size_t capacity_after_gc = capacity();
1157   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1158 
1159   // This is enforced in arguments.cpp.
1160   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1161          "otherwise the code below doesn't make sense");
1162 
1163   // We don't have floating point command-line arguments
1164   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1165   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1166   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1167   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1168 
1169   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1170   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1171 
1172   // We have to be careful here as these two calculations can overflow
1173   // 32-bit size_t's.
1174   double used_after_gc_d = (double) used_after_gc;
1175   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1176   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1177 
1178   // Let's make sure that they are both under the max heap size, which
1179   // by default will make them fit into a size_t.
1180   double desired_capacity_upper_bound = (double) max_heap_size;
1181   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1182                                     desired_capacity_upper_bound);
1183   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1184                                     desired_capacity_upper_bound);
1185 
1186   // We can now safely turn them into size_t's.
1187   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1188   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1189 
1190   // This assert only makes sense here, before we adjust them
1191   // with respect to the min and max heap size.
1192   assert(minimum_desired_capacity <= maximum_desired_capacity,
1193          "minimum_desired_capacity = " SIZE_FORMAT ", "
1194          "maximum_desired_capacity = " SIZE_FORMAT,
1195          minimum_desired_capacity, maximum_desired_capacity);
1196 
1197   // Should not be greater than the heap max size. No need to adjust
1198   // it with respect to the heap min size as it's a lower bound (i.e.,
1199   // we'll try to make the capacity larger than it, not smaller).
1200   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1201   // Should not be less than the heap min size. No need to adjust it
1202   // with respect to the heap max size as it's an upper bound (i.e.,
1203   // we'll try to make the capacity smaller than it, not greater).
1204   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1205 
1206   if (capacity_after_gc < minimum_desired_capacity) {
1207     // Don't expand unless it's significant
1208     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1209 
1210     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1211                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1212                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1213                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1214 
1215     expand(expand_bytes, _workers);
1216 
1217     // No expansion, now see if we want to shrink
1218   } else if (capacity_after_gc > maximum_desired_capacity) {
1219     // Capacity too large, compute shrinking size
1220     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1221 
1222     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1223                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1224                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1225                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1226 
1227     shrink(shrink_bytes);
1228   }
1229 }
1230 
1231 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1232                                                             bool do_gc,
1233                                                             bool clear_all_soft_refs,
1234                                                             bool expect_null_mutator_alloc_region,
1235                                                             bool* gc_succeeded) {
1236   *gc_succeeded = true;
1237   // Let's attempt the allocation first.
1238   HeapWord* result =
1239     attempt_allocation_at_safepoint(word_size,
1240                                     expect_null_mutator_alloc_region);
1241   if (result != NULL) {
1242     return result;
1243   }
1244 
1245   // In a G1 heap, we're supposed to keep allocation from failing by
1246   // incremental pauses.  Therefore, at least for now, we'll favor
1247   // expansion over collection.  (This might change in the future if we can
1248   // do something smarter than full collection to satisfy a failed alloc.)
1249   result = expand_and_allocate(word_size);
1250   if (result != NULL) {
1251     return result;
1252   }
1253 
1254   if (do_gc) {
1255     // Expansion didn't work, we'll try to do a Full GC.
1256     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1257                                        clear_all_soft_refs);
1258   }
1259 
1260   return NULL;
1261 }
1262 
1263 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1264                                                      bool* succeeded) {
1265   assert_at_safepoint_on_vm_thread();
1266 
1267   // Attempts to allocate followed by Full GC.
1268   HeapWord* result =
1269     satisfy_failed_allocation_helper(word_size,
1270                                      true,  /* do_gc */
1271                                      false, /* clear_all_soft_refs */
1272                                      false, /* expect_null_mutator_alloc_region */
1273                                      succeeded);
1274 
1275   if (result != NULL || !*succeeded) {
1276     return result;
1277   }
1278 
1279   // Attempts to allocate followed by Full GC that will collect all soft references.
1280   result = satisfy_failed_allocation_helper(word_size,
1281                                             true, /* do_gc */
1282                                             true, /* clear_all_soft_refs */
1283                                             true, /* expect_null_mutator_alloc_region */
1284                                             succeeded);
1285 
1286   if (result != NULL || !*succeeded) {
1287     return result;
1288   }
1289 
1290   // Attempts to allocate, no GC
1291   result = satisfy_failed_allocation_helper(word_size,
1292                                             false, /* do_gc */
1293                                             false, /* clear_all_soft_refs */
1294                                             true,  /* expect_null_mutator_alloc_region */
1295                                             succeeded);
1296 
1297   if (result != NULL) {
1298     return result;
1299   }
1300 
1301   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1302          "Flag should have been handled and cleared prior to this point");
1303 
1304   // What else?  We might try synchronous finalization later.  If the total
1305   // space available is large enough for the allocation, then a more
1306   // complete compaction phase than we've tried so far might be
1307   // appropriate.
1308   return NULL;
1309 }
1310 
1311 // Attempting to expand the heap sufficiently
1312 // to support an allocation of the given "word_size".  If
1313 // successful, perform the allocation and return the address of the
1314 // allocated block, or else "NULL".
1315 
1316 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1317   assert_at_safepoint_on_vm_thread();
1318 
1319   _verifier->verify_region_sets_optional();
1320 
1321   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1322   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1323                             word_size * HeapWordSize);
1324 
1325 
1326   if (expand(expand_bytes, _workers)) {
1327     _hrm.verify_optional();
1328     _verifier->verify_region_sets_optional();
1329     return attempt_allocation_at_safepoint(word_size,
1330                                            false /* expect_null_mutator_alloc_region */);
1331   }
1332   return NULL;
1333 }
1334 
1335 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1336   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1337   aligned_expand_bytes = align_up(aligned_expand_bytes,
1338                                        HeapRegion::GrainBytes);
1339 
1340   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1341                             expand_bytes, aligned_expand_bytes);
1342 
1343   if (is_maximal_no_gc()) {
1344     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1345     return false;
1346   }
1347 
1348   double expand_heap_start_time_sec = os::elapsedTime();
1349   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1350   assert(regions_to_expand > 0, "Must expand by at least one region");
1351 
1352   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1353   if (expand_time_ms != NULL) {
1354     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1355   }
1356 
1357   if (expanded_by > 0) {
1358     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1359     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1360     g1_policy()->record_new_heap_size(num_regions());
1361   } else {
1362     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1363 
1364     // The expansion of the virtual storage space was unsuccessful.
1365     // Let's see if it was because we ran out of swap.
1366     if (G1ExitOnExpansionFailure &&
1367         _hrm.available() >= regions_to_expand) {
1368       // We had head room...
1369       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1370     }
1371   }
1372   return regions_to_expand > 0;
1373 }
1374 
1375 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1376   size_t aligned_shrink_bytes =
1377     ReservedSpace::page_align_size_down(shrink_bytes);
1378   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1379                                          HeapRegion::GrainBytes);
1380   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1381 
1382   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1383   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1384 
1385 
1386   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1387                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1388   if (num_regions_removed > 0) {
1389     g1_policy()->record_new_heap_size(num_regions());
1390   } else {
1391     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1392   }
1393 }
1394 
1395 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1396   _verifier->verify_region_sets_optional();
1397 
1398   // We should only reach here at the end of a Full GC or during Remark which
1399   // means we should not not be holding to any GC alloc regions. The method
1400   // below will make sure of that and do any remaining clean up.
1401   _allocator->abandon_gc_alloc_regions();
1402 
1403   // Instead of tearing down / rebuilding the free lists here, we
1404   // could instead use the remove_all_pending() method on free_list to
1405   // remove only the ones that we need to remove.
1406   tear_down_region_sets(true /* free_list_only */);
1407   shrink_helper(shrink_bytes);
1408   rebuild_region_sets(true /* free_list_only */);
1409 
1410   _hrm.verify_optional();
1411   _verifier->verify_region_sets_optional();
1412 }
1413 
1414 class OldRegionSetChecker : public HeapRegionSetChecker {
1415 public:
1416   void check_mt_safety() {
1417     // Master Old Set MT safety protocol:
1418     // (a) If we're at a safepoint, operations on the master old set
1419     // should be invoked:
1420     // - by the VM thread (which will serialize them), or
1421     // - by the GC workers while holding the FreeList_lock, if we're
1422     //   at a safepoint for an evacuation pause (this lock is taken
1423     //   anyway when an GC alloc region is retired so that a new one
1424     //   is allocated from the free list), or
1425     // - by the GC workers while holding the OldSets_lock, if we're at a
1426     //   safepoint for a cleanup pause.
1427     // (b) If we're not at a safepoint, operations on the master old set
1428     // should be invoked while holding the Heap_lock.
1429 
1430     if (SafepointSynchronize::is_at_safepoint()) {
1431       guarantee(Thread::current()->is_VM_thread() ||
1432                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1433                 "master old set MT safety protocol at a safepoint");
1434     } else {
1435       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1436     }
1437   }
1438   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1439   const char* get_description() { return "Old Regions"; }
1440 };
1441 
1442 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1443 public:
1444   void check_mt_safety() {
1445     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1446               "May only change archive regions during initialization or safepoint.");
1447   }
1448   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1449   const char* get_description() { return "Archive Regions"; }
1450 };
1451 
1452 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1453 public:
1454   void check_mt_safety() {
1455     // Humongous Set MT safety protocol:
1456     // (a) If we're at a safepoint, operations on the master humongous
1457     // set should be invoked by either the VM thread (which will
1458     // serialize them) or by the GC workers while holding the
1459     // OldSets_lock.
1460     // (b) If we're not at a safepoint, operations on the master
1461     // humongous set should be invoked while holding the Heap_lock.
1462 
1463     if (SafepointSynchronize::is_at_safepoint()) {
1464       guarantee(Thread::current()->is_VM_thread() ||
1465                 OldSets_lock->owned_by_self(),
1466                 "master humongous set MT safety protocol at a safepoint");
1467     } else {
1468       guarantee(Heap_lock->owned_by_self(),
1469                 "master humongous set MT safety protocol outside a safepoint");
1470     }
1471   }
1472   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1473   const char* get_description() { return "Humongous Regions"; }
1474 };
1475 
1476 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1477   CollectedHeap(),
1478   _young_gen_sampling_thread(NULL),
1479   _workers(NULL),
1480   _collector_policy(collector_policy),
1481   _card_table(NULL),
1482   _soft_ref_policy(),
1483   _old_set("Old Region Set", new OldRegionSetChecker()),
1484   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1485   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1486   _bot(NULL),
1487   _listener(),
1488   _hrm(),
1489   _allocator(NULL),
1490   _verifier(NULL),
1491   _summary_bytes_used(0),
1492   _archive_allocator(NULL),
1493   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1494   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1495   _expand_heap_after_alloc_failure(true),
1496   _g1mm(NULL),
1497   _humongous_reclaim_candidates(),
1498   _has_humongous_reclaim_candidates(false),
1499   _hr_printer(),
1500   _collector_state(),
1501   _old_marking_cycles_started(0),
1502   _old_marking_cycles_completed(0),
1503   _eden(),
1504   _survivor(),
1505   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1506   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1507   _g1_policy(new G1Policy(_gc_timer_stw)),
1508   _heap_sizing_policy(NULL),
1509   _collection_set(this, _g1_policy),
1510   _hot_card_cache(NULL),
1511   _g1_rem_set(NULL),
1512   _dirty_card_queue_set(false),
1513   _cm(NULL),
1514   _cm_thread(NULL),
1515   _cr(NULL),
1516   _task_queues(NULL),
1517   _evacuation_failed(false),
1518   _evacuation_failed_info_array(NULL),
1519   _preserved_marks_set(true /* in_c_heap */),
1520 #ifndef PRODUCT
1521   _evacuation_failure_alot_for_current_gc(false),
1522   _evacuation_failure_alot_gc_number(0),
1523   _evacuation_failure_alot_count(0),
1524 #endif
1525   _ref_processor_stw(NULL),
1526   _is_alive_closure_stw(this),
1527   _is_subject_to_discovery_stw(this),
1528   _ref_processor_cm(NULL),
1529   _is_alive_closure_cm(this),
1530   _is_subject_to_discovery_cm(this),
1531   _in_cset_fast_test() {
1532 
1533   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1534                           true /* are_GC_task_threads */,
1535                           false /* are_ConcurrentGC_threads */);
1536   _workers->initialize_workers();
1537   _verifier = new G1HeapVerifier(this);
1538 
1539   _allocator = new G1Allocator(this);
1540 
1541   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1542 
1543   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1544 
1545   // Override the default _filler_array_max_size so that no humongous filler
1546   // objects are created.
1547   _filler_array_max_size = _humongous_object_threshold_in_words;
1548 
1549   uint n_queues = ParallelGCThreads;
1550   _task_queues = new RefToScanQueueSet(n_queues);
1551 
1552   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1553 
1554   for (uint i = 0; i < n_queues; i++) {
1555     RefToScanQueue* q = new RefToScanQueue();
1556     q->initialize();
1557     _task_queues->register_queue(i, q);
1558     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1559   }
1560 
1561   // Initialize the G1EvacuationFailureALot counters and flags.
1562   NOT_PRODUCT(reset_evacuation_should_fail();)
1563 
1564   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1565 }
1566 
1567 static size_t actual_reserved_page_size(ReservedSpace rs) {
1568   size_t page_size = os::vm_page_size();
1569   if (UseLargePages) {
1570     // There are two ways to manage large page memory.
1571     // 1. OS supports committing large page memory.
1572     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1573     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1574     //    we reserved memory without large page.
1575     if (os::can_commit_large_page_memory() || rs.special()) {
1576       page_size = rs.alignment();
1577     }
1578   }
1579 
1580   return page_size;
1581 }
1582 
1583 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1584                                                                  size_t size,
1585                                                                  size_t translation_factor) {
1586   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1587   // Allocate a new reserved space, preferring to use large pages.
1588   ReservedSpace rs(size, preferred_page_size);
1589   size_t page_size = actual_reserved_page_size(rs);
1590   G1RegionToSpaceMapper* result  =
1591     G1RegionToSpaceMapper::create_mapper(rs,
1592                                          size,
1593                                          page_size,
1594                                          HeapRegion::GrainBytes,
1595                                          translation_factor,
1596                                          mtGC);
1597 
1598   os::trace_page_sizes_for_requested_size(description,
1599                                           size,
1600                                           preferred_page_size,
1601                                           page_size,
1602                                           rs.base(),
1603                                           rs.size());
1604 
1605   return result;
1606 }
1607 
1608 jint G1CollectedHeap::initialize_concurrent_refinement() {
1609   jint ecode = JNI_OK;
1610   _cr = G1ConcurrentRefine::create(&ecode);
1611   return ecode;
1612 }
1613 
1614 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1615   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1616   if (_young_gen_sampling_thread->osthread() == NULL) {
1617     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1618     return JNI_ENOMEM;
1619   }
1620   return JNI_OK;
1621 }
1622 
1623 jint G1CollectedHeap::initialize() {
1624   os::enable_vtime();
1625 
1626   // Necessary to satisfy locking discipline assertions.
1627 
1628   MutexLocker x(Heap_lock);
1629 
1630   // While there are no constraints in the GC code that HeapWordSize
1631   // be any particular value, there are multiple other areas in the
1632   // system which believe this to be true (e.g. oop->object_size in some
1633   // cases incorrectly returns the size in wordSize units rather than
1634   // HeapWordSize).
1635   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1636 
1637   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1638   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1639   size_t heap_alignment = collector_policy()->heap_alignment();
1640 
1641   // Ensure that the sizes are properly aligned.
1642   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1643   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1644   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1645 
1646   // Reserve the maximum.
1647 
1648   // When compressed oops are enabled, the preferred heap base
1649   // is calculated by subtracting the requested size from the
1650   // 32Gb boundary and using the result as the base address for
1651   // heap reservation. If the requested size is not aligned to
1652   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1653   // into the ReservedHeapSpace constructor) then the actual
1654   // base of the reserved heap may end up differing from the
1655   // address that was requested (i.e. the preferred heap base).
1656   // If this happens then we could end up using a non-optimal
1657   // compressed oops mode.
1658 
1659   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1660                                                  heap_alignment);
1661 
1662   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1663 
1664   // Create the barrier set for the entire reserved region.
1665   G1CardTable* ct = new G1CardTable(reserved_region());
1666   ct->initialize();
1667   G1BarrierSet* bs = new G1BarrierSet(ct);
1668   bs->initialize();
1669   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1670   BarrierSet::set_barrier_set(bs);
1671   _card_table = ct;
1672 
1673   // Create the hot card cache.
1674   _hot_card_cache = new G1HotCardCache(this);
1675 
1676   // Carve out the G1 part of the heap.
1677   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1678   size_t page_size = actual_reserved_page_size(heap_rs);
1679   G1RegionToSpaceMapper* heap_storage =
1680     G1RegionToSpaceMapper::create_mapper(g1_rs,
1681                                          g1_rs.size(),
1682                                          page_size,
1683                                          HeapRegion::GrainBytes,
1684                                          1,
1685                                          mtJavaHeap);
1686   os::trace_page_sizes("Heap",
1687                        collector_policy()->min_heap_byte_size(),
1688                        max_byte_size,
1689                        page_size,
1690                        heap_rs.base(),
1691                        heap_rs.size());
1692   heap_storage->set_mapping_changed_listener(&_listener);
1693 
1694   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1695   G1RegionToSpaceMapper* bot_storage =
1696     create_aux_memory_mapper("Block Offset Table",
1697                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1698                              G1BlockOffsetTable::heap_map_factor());
1699 
1700   G1RegionToSpaceMapper* cardtable_storage =
1701     create_aux_memory_mapper("Card Table",
1702                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1703                              G1CardTable::heap_map_factor());
1704 
1705   G1RegionToSpaceMapper* card_counts_storage =
1706     create_aux_memory_mapper("Card Counts Table",
1707                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1708                              G1CardCounts::heap_map_factor());
1709 
1710   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1711   G1RegionToSpaceMapper* prev_bitmap_storage =
1712     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1713   G1RegionToSpaceMapper* next_bitmap_storage =
1714     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1715 
1716   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1717   _card_table->initialize(cardtable_storage);
1718   // Do later initialization work for concurrent refinement.
1719   _hot_card_cache->initialize(card_counts_storage);
1720 
1721   // 6843694 - ensure that the maximum region index can fit
1722   // in the remembered set structures.
1723   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1724   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1725 
1726   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1727   // start within the first card.
1728   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1729   // Also create a G1 rem set.
1730   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1731   _g1_rem_set->initialize(max_capacity(), max_regions());
1732 
1733   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1734   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1735   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1736             "too many cards per region");
1737 
1738   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1739 
1740   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1741 
1742   {
1743     HeapWord* start = _hrm.reserved().start();
1744     HeapWord* end = _hrm.reserved().end();
1745     size_t granularity = HeapRegion::GrainBytes;
1746 
1747     _in_cset_fast_test.initialize(start, end, granularity);
1748     _humongous_reclaim_candidates.initialize(start, end, granularity);
1749   }
1750 
1751   // Create the G1ConcurrentMark data structure and thread.
1752   // (Must do this late, so that "max_regions" is defined.)
1753   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1754   if (_cm == NULL || !_cm->completed_initialization()) {
1755     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1756     return JNI_ENOMEM;
1757   }
1758   _cm_thread = _cm->cm_thread();
1759 
1760   // Now expand into the initial heap size.
1761   if (!expand(init_byte_size, _workers)) {
1762     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1763     return JNI_ENOMEM;
1764   }
1765 
1766   // Perform any initialization actions delegated to the policy.
1767   g1_policy()->init(this, &_collection_set);
1768 
1769   G1BarrierSet::satb_mark_queue_set().initialize(this,
1770                                                  SATB_Q_CBL_mon,
1771                                                  SATB_Q_FL_lock,
1772                                                  G1SATBProcessCompletedThreshold,
1773                                                  G1SATBBufferEnqueueingThresholdPercent,
1774                                                  Shared_SATB_Q_lock);
1775 
1776   jint ecode = initialize_concurrent_refinement();
1777   if (ecode != JNI_OK) {
1778     return ecode;
1779   }
1780 
1781   ecode = initialize_young_gen_sampling_thread();
1782   if (ecode != JNI_OK) {
1783     return ecode;
1784   }
1785 
1786   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1787                                                   DirtyCardQ_FL_lock,
1788                                                   (int)concurrent_refine()->yellow_zone(),
1789                                                   (int)concurrent_refine()->red_zone(),
1790                                                   Shared_DirtyCardQ_lock,
1791                                                   NULL,  // fl_owner
1792                                                   true); // init_free_ids
1793 
1794   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1795                                     DirtyCardQ_FL_lock,
1796                                     -1, // never trigger processing
1797                                     -1, // no limit on length
1798                                     Shared_DirtyCardQ_lock,
1799                                     &G1BarrierSet::dirty_card_queue_set());
1800 
1801   // Here we allocate the dummy HeapRegion that is required by the
1802   // G1AllocRegion class.
1803   HeapRegion* dummy_region = _hrm.get_dummy_region();
1804 
1805   // We'll re-use the same region whether the alloc region will
1806   // require BOT updates or not and, if it doesn't, then a non-young
1807   // region will complain that it cannot support allocations without
1808   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1809   dummy_region->set_eden();
1810   // Make sure it's full.
1811   dummy_region->set_top(dummy_region->end());
1812   G1AllocRegion::setup(this, dummy_region);
1813 
1814   _allocator->init_mutator_alloc_region();
1815 
1816   // Do create of the monitoring and management support so that
1817   // values in the heap have been properly initialized.
1818   _g1mm = new G1MonitoringSupport(this);
1819 
1820   G1StringDedup::initialize();
1821 
1822   _preserved_marks_set.init(ParallelGCThreads);
1823 
1824   _collection_set.initialize(max_regions());
1825 
1826   return JNI_OK;
1827 }
1828 
1829 void G1CollectedHeap::stop() {
1830   // Stop all concurrent threads. We do this to make sure these threads
1831   // do not continue to execute and access resources (e.g. logging)
1832   // that are destroyed during shutdown.
1833   _cr->stop();
1834   _young_gen_sampling_thread->stop();
1835   _cm_thread->stop();
1836   if (G1StringDedup::is_enabled()) {
1837     G1StringDedup::stop();
1838   }
1839 }
1840 
1841 void G1CollectedHeap::safepoint_synchronize_begin() {
1842   SuspendibleThreadSet::synchronize();
1843 }
1844 
1845 void G1CollectedHeap::safepoint_synchronize_end() {
1846   SuspendibleThreadSet::desynchronize();
1847 }
1848 
1849 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1850   return HeapRegion::max_region_size();
1851 }
1852 
1853 void G1CollectedHeap::post_initialize() {
1854   CollectedHeap::post_initialize();
1855   ref_processing_init();
1856 }
1857 
1858 void G1CollectedHeap::ref_processing_init() {
1859   // Reference processing in G1 currently works as follows:
1860   //
1861   // * There are two reference processor instances. One is
1862   //   used to record and process discovered references
1863   //   during concurrent marking; the other is used to
1864   //   record and process references during STW pauses
1865   //   (both full and incremental).
1866   // * Both ref processors need to 'span' the entire heap as
1867   //   the regions in the collection set may be dotted around.
1868   //
1869   // * For the concurrent marking ref processor:
1870   //   * Reference discovery is enabled at initial marking.
1871   //   * Reference discovery is disabled and the discovered
1872   //     references processed etc during remarking.
1873   //   * Reference discovery is MT (see below).
1874   //   * Reference discovery requires a barrier (see below).
1875   //   * Reference processing may or may not be MT
1876   //     (depending on the value of ParallelRefProcEnabled
1877   //     and ParallelGCThreads).
1878   //   * A full GC disables reference discovery by the CM
1879   //     ref processor and abandons any entries on it's
1880   //     discovered lists.
1881   //
1882   // * For the STW processor:
1883   //   * Non MT discovery is enabled at the start of a full GC.
1884   //   * Processing and enqueueing during a full GC is non-MT.
1885   //   * During a full GC, references are processed after marking.
1886   //
1887   //   * Discovery (may or may not be MT) is enabled at the start
1888   //     of an incremental evacuation pause.
1889   //   * References are processed near the end of a STW evacuation pause.
1890   //   * For both types of GC:
1891   //     * Discovery is atomic - i.e. not concurrent.
1892   //     * Reference discovery will not need a barrier.
1893 
1894   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1895 
1896   // Concurrent Mark ref processor
1897   _ref_processor_cm =
1898     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1899                            mt_processing,                                  // mt processing
1900                            ParallelGCThreads,                              // degree of mt processing
1901                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1902                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1903                            false,                                          // Reference discovery is not atomic
1904                            &_is_alive_closure_cm,                          // is alive closure
1905                            true);                                          // allow changes to number of processing threads
1906 
1907   // STW ref processor
1908   _ref_processor_stw =
1909     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1910                            mt_processing,                        // mt processing
1911                            ParallelGCThreads,                    // degree of mt processing
1912                            (ParallelGCThreads > 1),              // mt discovery
1913                            ParallelGCThreads,                    // degree of mt discovery
1914                            true,                                 // Reference discovery is atomic
1915                            &_is_alive_closure_stw,               // is alive closure
1916                            true);                                // allow changes to number of processing threads
1917 }
1918 
1919 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1920   return _collector_policy;
1921 }
1922 
1923 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1924   return &_soft_ref_policy;
1925 }
1926 
1927 size_t G1CollectedHeap::capacity() const {
1928   return _hrm.length() * HeapRegion::GrainBytes;
1929 }
1930 
1931 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1932   return _hrm.total_free_bytes();
1933 }
1934 
1935 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1936   _hot_card_cache->drain(cl, worker_i);
1937 }
1938 
1939 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1940   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1941   size_t n_completed_buffers = 0;
1942   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1943     n_completed_buffers++;
1944   }
1945   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1946   dcqs.clear_n_completed_buffers();
1947   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1948 }
1949 
1950 // Computes the sum of the storage used by the various regions.
1951 size_t G1CollectedHeap::used() const {
1952   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1953   if (_archive_allocator != NULL) {
1954     result += _archive_allocator->used();
1955   }
1956   return result;
1957 }
1958 
1959 size_t G1CollectedHeap::used_unlocked() const {
1960   return _summary_bytes_used;
1961 }
1962 
1963 class SumUsedClosure: public HeapRegionClosure {
1964   size_t _used;
1965 public:
1966   SumUsedClosure() : _used(0) {}
1967   bool do_heap_region(HeapRegion* r) {
1968     _used += r->used();
1969     return false;
1970   }
1971   size_t result() { return _used; }
1972 };
1973 
1974 size_t G1CollectedHeap::recalculate_used() const {
1975   SumUsedClosure blk;
1976   heap_region_iterate(&blk);
1977   return blk.result();
1978 }
1979 
1980 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1981   switch (cause) {
1982     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1983     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1984     case GCCause::_wb_conc_mark:                        return true;
1985     default :                                           return false;
1986   }
1987 }
1988 
1989 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1990   switch (cause) {
1991     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1992     case GCCause::_g1_humongous_allocation: return true;
1993     default:                                return is_user_requested_concurrent_full_gc(cause);
1994   }
1995 }
1996 
1997 #ifndef PRODUCT
1998 void G1CollectedHeap::allocate_dummy_regions() {
1999   // Let's fill up most of the region
2000   size_t word_size = HeapRegion::GrainWords - 1024;
2001   // And as a result the region we'll allocate will be humongous.
2002   guarantee(is_humongous(word_size), "sanity");
2003 
2004   // _filler_array_max_size is set to humongous object threshold
2005   // but temporarily change it to use CollectedHeap::fill_with_object().
2006   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2007 
2008   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2009     // Let's use the existing mechanism for the allocation
2010     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2011     if (dummy_obj != NULL) {
2012       MemRegion mr(dummy_obj, word_size);
2013       CollectedHeap::fill_with_object(mr);
2014     } else {
2015       // If we can't allocate once, we probably cannot allocate
2016       // again. Let's get out of the loop.
2017       break;
2018     }
2019   }
2020 }
2021 #endif // !PRODUCT
2022 
2023 void G1CollectedHeap::increment_old_marking_cycles_started() {
2024   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2025          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2026          "Wrong marking cycle count (started: %d, completed: %d)",
2027          _old_marking_cycles_started, _old_marking_cycles_completed);
2028 
2029   _old_marking_cycles_started++;
2030 }
2031 
2032 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2033   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2034 
2035   // We assume that if concurrent == true, then the caller is a
2036   // concurrent thread that was joined the Suspendible Thread
2037   // Set. If there's ever a cheap way to check this, we should add an
2038   // assert here.
2039 
2040   // Given that this method is called at the end of a Full GC or of a
2041   // concurrent cycle, and those can be nested (i.e., a Full GC can
2042   // interrupt a concurrent cycle), the number of full collections
2043   // completed should be either one (in the case where there was no
2044   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2045   // behind the number of full collections started.
2046 
2047   // This is the case for the inner caller, i.e. a Full GC.
2048   assert(concurrent ||
2049          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2050          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2051          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2052          "is inconsistent with _old_marking_cycles_completed = %u",
2053          _old_marking_cycles_started, _old_marking_cycles_completed);
2054 
2055   // This is the case for the outer caller, i.e. the concurrent cycle.
2056   assert(!concurrent ||
2057          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2058          "for outer caller (concurrent cycle): "
2059          "_old_marking_cycles_started = %u "
2060          "is inconsistent with _old_marking_cycles_completed = %u",
2061          _old_marking_cycles_started, _old_marking_cycles_completed);
2062 
2063   _old_marking_cycles_completed += 1;
2064 
2065   // We need to clear the "in_progress" flag in the CM thread before
2066   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2067   // is set) so that if a waiter requests another System.gc() it doesn't
2068   // incorrectly see that a marking cycle is still in progress.
2069   if (concurrent) {
2070     _cm_thread->set_idle();
2071   }
2072 
2073   // This notify_all() will ensure that a thread that called
2074   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2075   // and it's waiting for a full GC to finish will be woken up. It is
2076   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2077   FullGCCount_lock->notify_all();
2078 }
2079 
2080 void G1CollectedHeap::collect(GCCause::Cause cause) {
2081   assert_heap_not_locked();
2082 
2083   uint gc_count_before;
2084   uint old_marking_count_before;
2085   uint full_gc_count_before;
2086   bool retry_gc;
2087 
2088   do {
2089     retry_gc = false;
2090 
2091     {
2092       MutexLocker ml(Heap_lock);
2093 
2094       // Read the GC count while holding the Heap_lock
2095       gc_count_before = total_collections();
2096       full_gc_count_before = total_full_collections();
2097       old_marking_count_before = _old_marking_cycles_started;
2098     }
2099 
2100     if (should_do_concurrent_full_gc(cause)) {
2101       // Schedule an initial-mark evacuation pause that will start a
2102       // concurrent cycle. We're setting word_size to 0 which means that
2103       // we are not requesting a post-GC allocation.
2104       VM_G1CollectForAllocation op(0,     /* word_size */
2105                                    gc_count_before,
2106                                    cause,
2107                                    true,  /* should_initiate_conc_mark */
2108                                    g1_policy()->max_pause_time_ms());
2109       VMThread::execute(&op);
2110       if (!op.pause_succeeded()) {
2111         if (old_marking_count_before == _old_marking_cycles_started) {
2112           retry_gc = op.should_retry_gc();
2113         } else {
2114           // A Full GC happened while we were trying to schedule the
2115           // initial-mark GC. No point in starting a new cycle given
2116           // that the whole heap was collected anyway.
2117         }
2118 
2119         if (retry_gc) {
2120           if (GCLocker::is_active_and_needs_gc()) {
2121             GCLocker::stall_until_clear();
2122           }
2123         }
2124       }
2125     } else {
2126       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2127           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2128 
2129         // Schedule a standard evacuation pause. We're setting word_size
2130         // to 0 which means that we are not requesting a post-GC allocation.
2131         VM_G1CollectForAllocation op(0,     /* word_size */
2132                                      gc_count_before,
2133                                      cause,
2134                                      false, /* should_initiate_conc_mark */
2135                                      g1_policy()->max_pause_time_ms());
2136         VMThread::execute(&op);
2137       } else {
2138         // Schedule a Full GC.
2139         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2140         VMThread::execute(&op);
2141       }
2142     }
2143   } while (retry_gc);
2144 }
2145 
2146 bool G1CollectedHeap::is_in(const void* p) const {
2147   if (_hrm.reserved().contains(p)) {
2148     // Given that we know that p is in the reserved space,
2149     // heap_region_containing() should successfully
2150     // return the containing region.
2151     HeapRegion* hr = heap_region_containing(p);
2152     return hr->is_in(p);
2153   } else {
2154     return false;
2155   }
2156 }
2157 
2158 #ifdef ASSERT
2159 bool G1CollectedHeap::is_in_exact(const void* p) const {
2160   bool contains = reserved_region().contains(p);
2161   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2162   if (contains && available) {
2163     return true;
2164   } else {
2165     return false;
2166   }
2167 }
2168 #endif
2169 
2170 // Iteration functions.
2171 
2172 // Iterates an ObjectClosure over all objects within a HeapRegion.
2173 
2174 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2175   ObjectClosure* _cl;
2176 public:
2177   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2178   bool do_heap_region(HeapRegion* r) {
2179     if (!r->is_continues_humongous()) {
2180       r->object_iterate(_cl);
2181     }
2182     return false;
2183   }
2184 };
2185 
2186 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2187   IterateObjectClosureRegionClosure blk(cl);
2188   heap_region_iterate(&blk);
2189 }
2190 
2191 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2192   _hrm.iterate(cl);
2193 }
2194 
2195 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2196                                                                  HeapRegionClaimer *hrclaimer,
2197                                                                  uint worker_id) const {
2198   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2199 }
2200 
2201 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2202                                                          HeapRegionClaimer *hrclaimer) const {
2203   _hrm.par_iterate(cl, hrclaimer, 0);
2204 }
2205 
2206 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2207   _collection_set.iterate(cl);
2208 }
2209 
2210 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2211   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2212 }
2213 
2214 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2215   HeapRegion* hr = heap_region_containing(addr);
2216   return hr->block_start(addr);
2217 }
2218 
2219 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2220   HeapRegion* hr = heap_region_containing(addr);
2221   return hr->block_size(addr);
2222 }
2223 
2224 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2225   HeapRegion* hr = heap_region_containing(addr);
2226   return hr->block_is_obj(addr);
2227 }
2228 
2229 bool G1CollectedHeap::supports_tlab_allocation() const {
2230   return true;
2231 }
2232 
2233 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2234   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2235 }
2236 
2237 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2238   return _eden.length() * HeapRegion::GrainBytes;
2239 }
2240 
2241 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2242 // must be equal to the humongous object limit.
2243 size_t G1CollectedHeap::max_tlab_size() const {
2244   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2245 }
2246 
2247 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2248   return _allocator->unsafe_max_tlab_alloc();
2249 }
2250 
2251 size_t G1CollectedHeap::max_capacity() const {
2252   return _hrm.reserved().byte_size();
2253 }
2254 
2255 jlong G1CollectedHeap::millis_since_last_gc() {
2256   // See the notes in GenCollectedHeap::millis_since_last_gc()
2257   // for more information about the implementation.
2258   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2259     _g1_policy->collection_pause_end_millis();
2260   if (ret_val < 0) {
2261     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2262       ". returning zero instead.", ret_val);
2263     return 0;
2264   }
2265   return ret_val;
2266 }
2267 
2268 void G1CollectedHeap::deduplicate_string(oop str) {
2269   assert(java_lang_String::is_instance(str), "invariant");
2270 
2271   if (G1StringDedup::is_enabled()) {
2272     G1StringDedup::deduplicate(str);
2273   }
2274 }
2275 
2276 void G1CollectedHeap::prepare_for_verify() {
2277   _verifier->prepare_for_verify();
2278 }
2279 
2280 void G1CollectedHeap::verify(VerifyOption vo) {
2281   _verifier->verify(vo);
2282 }
2283 
2284 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2285   return true;
2286 }
2287 
2288 const char* const* G1CollectedHeap::concurrent_phases() const {
2289   return _cm_thread->concurrent_phases();
2290 }
2291 
2292 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2293   return _cm_thread->request_concurrent_phase(phase);
2294 }
2295 
2296 class PrintRegionClosure: public HeapRegionClosure {
2297   outputStream* _st;
2298 public:
2299   PrintRegionClosure(outputStream* st) : _st(st) {}
2300   bool do_heap_region(HeapRegion* r) {
2301     r->print_on(_st);
2302     return false;
2303   }
2304 };
2305 
2306 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2307                                        const HeapRegion* hr,
2308                                        const VerifyOption vo) const {
2309   switch (vo) {
2310   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2311   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2312   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2313   default:                            ShouldNotReachHere();
2314   }
2315   return false; // keep some compilers happy
2316 }
2317 
2318 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2319                                        const VerifyOption vo) const {
2320   switch (vo) {
2321   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2322   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2323   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2324   default:                            ShouldNotReachHere();
2325   }
2326   return false; // keep some compilers happy
2327 }
2328 
2329 void G1CollectedHeap::print_heap_regions() const {
2330   LogTarget(Trace, gc, heap, region) lt;
2331   if (lt.is_enabled()) {
2332     LogStream ls(lt);
2333     print_regions_on(&ls);
2334   }
2335 }
2336 
2337 void G1CollectedHeap::print_on(outputStream* st) const {
2338   st->print(" %-20s", "garbage-first heap");
2339   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2340             capacity()/K, used_unlocked()/K);
2341   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2342             p2i(_hrm.reserved().start()),
2343             p2i(_hrm.reserved().end()));
2344   st->cr();
2345   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2346   uint young_regions = young_regions_count();
2347   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2348             (size_t) young_regions * HeapRegion::GrainBytes / K);
2349   uint survivor_regions = survivor_regions_count();
2350   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2351             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2352   st->cr();
2353   MetaspaceUtils::print_on(st);
2354 }
2355 
2356 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2357   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2358                "HS=humongous(starts), HC=humongous(continues), "
2359                "CS=collection set, F=free, A=archive, "
2360                "TAMS=top-at-mark-start (previous, next)");
2361   PrintRegionClosure blk(st);
2362   heap_region_iterate(&blk);
2363 }
2364 
2365 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2366   print_on(st);
2367 
2368   // Print the per-region information.
2369   print_regions_on(st);
2370 }
2371 
2372 void G1CollectedHeap::print_on_error(outputStream* st) const {
2373   this->CollectedHeap::print_on_error(st);
2374 
2375   if (_cm != NULL) {
2376     st->cr();
2377     _cm->print_on_error(st);
2378   }
2379 }
2380 
2381 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2382   workers()->print_worker_threads_on(st);
2383   _cm_thread->print_on(st);
2384   st->cr();
2385   _cm->print_worker_threads_on(st);
2386   _cr->print_threads_on(st);
2387   _young_gen_sampling_thread->print_on(st);
2388   if (G1StringDedup::is_enabled()) {
2389     G1StringDedup::print_worker_threads_on(st);
2390   }
2391 }
2392 
2393 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2394   workers()->threads_do(tc);
2395   tc->do_thread(_cm_thread);
2396   _cm->threads_do(tc);
2397   _cr->threads_do(tc);
2398   tc->do_thread(_young_gen_sampling_thread);
2399   if (G1StringDedup::is_enabled()) {
2400     G1StringDedup::threads_do(tc);
2401   }
2402 }
2403 
2404 void G1CollectedHeap::print_tracing_info() const {
2405   g1_rem_set()->print_summary_info();
2406   concurrent_mark()->print_summary_info();
2407 }
2408 
2409 #ifndef PRODUCT
2410 // Helpful for debugging RSet issues.
2411 
2412 class PrintRSetsClosure : public HeapRegionClosure {
2413 private:
2414   const char* _msg;
2415   size_t _occupied_sum;
2416 
2417 public:
2418   bool do_heap_region(HeapRegion* r) {
2419     HeapRegionRemSet* hrrs = r->rem_set();
2420     size_t occupied = hrrs->occupied();
2421     _occupied_sum += occupied;
2422 
2423     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2424     if (occupied == 0) {
2425       tty->print_cr("  RSet is empty");
2426     } else {
2427       hrrs->print();
2428     }
2429     tty->print_cr("----------");
2430     return false;
2431   }
2432 
2433   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2434     tty->cr();
2435     tty->print_cr("========================================");
2436     tty->print_cr("%s", msg);
2437     tty->cr();
2438   }
2439 
2440   ~PrintRSetsClosure() {
2441     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2442     tty->print_cr("========================================");
2443     tty->cr();
2444   }
2445 };
2446 
2447 void G1CollectedHeap::print_cset_rsets() {
2448   PrintRSetsClosure cl("Printing CSet RSets");
2449   collection_set_iterate(&cl);
2450 }
2451 
2452 void G1CollectedHeap::print_all_rsets() {
2453   PrintRSetsClosure cl("Printing All RSets");;
2454   heap_region_iterate(&cl);
2455 }
2456 #endif // PRODUCT
2457 
2458 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2459 
2460   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2461   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2462   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2463 
2464   size_t eden_capacity_bytes =
2465     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2466 
2467   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2468   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2469                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2470 }
2471 
2472 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2473   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2474                        stats->unused(), stats->used(), stats->region_end_waste(),
2475                        stats->regions_filled(), stats->direct_allocated(),
2476                        stats->failure_used(), stats->failure_waste());
2477 }
2478 
2479 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2480   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2481   gc_tracer->report_gc_heap_summary(when, heap_summary);
2482 
2483   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2484   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2485 }
2486 
2487 G1CollectedHeap* G1CollectedHeap::heap() {
2488   CollectedHeap* heap = Universe::heap();
2489   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2490   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2491   return (G1CollectedHeap*)heap;
2492 }
2493 
2494 void G1CollectedHeap::gc_prologue(bool full) {
2495   // always_do_update_barrier = false;
2496   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2497 
2498   // This summary needs to be printed before incrementing total collections.
2499   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2500 
2501   // Update common counters.
2502   increment_total_collections(full /* full gc */);
2503   if (full) {
2504     increment_old_marking_cycles_started();
2505   }
2506 
2507   // Fill TLAB's and such
2508   double start = os::elapsedTime();
2509   ensure_parsability(true);
2510   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2511 }
2512 
2513 void G1CollectedHeap::gc_epilogue(bool full) {
2514   // Update common counters.
2515   if (full) {
2516     // Update the number of full collections that have been completed.
2517     increment_old_marking_cycles_completed(false /* concurrent */);
2518   }
2519 
2520   // We are at the end of the GC. Total collections has already been increased.
2521   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2522 
2523   // FIXME: what is this about?
2524   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2525   // is set.
2526 #if COMPILER2_OR_JVMCI
2527   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2528 #endif
2529   // always_do_update_barrier = true;
2530 
2531   double start = os::elapsedTime();
2532   resize_all_tlabs();
2533   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2534 
2535   MemoryService::track_memory_usage();
2536   // We have just completed a GC. Update the soft reference
2537   // policy with the new heap occupancy
2538   Universe::update_heap_info_at_gc();
2539 }
2540 
2541 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2542                                                uint gc_count_before,
2543                                                bool* succeeded,
2544                                                GCCause::Cause gc_cause) {
2545   assert_heap_not_locked_and_not_at_safepoint();
2546   VM_G1CollectForAllocation op(word_size,
2547                                gc_count_before,
2548                                gc_cause,
2549                                false, /* should_initiate_conc_mark */
2550                                g1_policy()->max_pause_time_ms());
2551   VMThread::execute(&op);
2552 
2553   HeapWord* result = op.result();
2554   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2555   assert(result == NULL || ret_succeeded,
2556          "the result should be NULL if the VM did not succeed");
2557   *succeeded = ret_succeeded;
2558 
2559   assert_heap_not_locked();
2560   return result;
2561 }
2562 
2563 void G1CollectedHeap::do_concurrent_mark() {
2564   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2565   if (!_cm_thread->in_progress()) {
2566     _cm_thread->set_started();
2567     CGC_lock->notify();
2568   }
2569 }
2570 
2571 size_t G1CollectedHeap::pending_card_num() {
2572   size_t extra_cards = 0;
2573   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2574     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2575     extra_cards += dcq.size();
2576   }
2577   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2578   size_t buffer_size = dcqs.buffer_size();
2579   size_t buffer_num = dcqs.completed_buffers_num();
2580 
2581   return buffer_size * buffer_num + extra_cards;
2582 }
2583 
2584 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2585   // We don't nominate objects with many remembered set entries, on
2586   // the assumption that such objects are likely still live.
2587   HeapRegionRemSet* rem_set = r->rem_set();
2588 
2589   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2590          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2591          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2592 }
2593 
2594 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2595  private:
2596   size_t _total_humongous;
2597   size_t _candidate_humongous;
2598 
2599   DirtyCardQueue _dcq;
2600 
2601   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2602     assert(region->is_starts_humongous(), "Must start a humongous object");
2603 
2604     oop obj = oop(region->bottom());
2605 
2606     // Dead objects cannot be eager reclaim candidates. Due to class
2607     // unloading it is unsafe to query their classes so we return early.
2608     if (g1h->is_obj_dead(obj, region)) {
2609       return false;
2610     }
2611 
2612     // If we do not have a complete remembered set for the region, then we can
2613     // not be sure that we have all references to it.
2614     if (!region->rem_set()->is_complete()) {
2615       return false;
2616     }
2617     // Candidate selection must satisfy the following constraints
2618     // while concurrent marking is in progress:
2619     //
2620     // * In order to maintain SATB invariants, an object must not be
2621     // reclaimed if it was allocated before the start of marking and
2622     // has not had its references scanned.  Such an object must have
2623     // its references (including type metadata) scanned to ensure no
2624     // live objects are missed by the marking process.  Objects
2625     // allocated after the start of concurrent marking don't need to
2626     // be scanned.
2627     //
2628     // * An object must not be reclaimed if it is on the concurrent
2629     // mark stack.  Objects allocated after the start of concurrent
2630     // marking are never pushed on the mark stack.
2631     //
2632     // Nominating only objects allocated after the start of concurrent
2633     // marking is sufficient to meet both constraints.  This may miss
2634     // some objects that satisfy the constraints, but the marking data
2635     // structures don't support efficiently performing the needed
2636     // additional tests or scrubbing of the mark stack.
2637     //
2638     // However, we presently only nominate is_typeArray() objects.
2639     // A humongous object containing references induces remembered
2640     // set entries on other regions.  In order to reclaim such an
2641     // object, those remembered sets would need to be cleaned up.
2642     //
2643     // We also treat is_typeArray() objects specially, allowing them
2644     // to be reclaimed even if allocated before the start of
2645     // concurrent mark.  For this we rely on mark stack insertion to
2646     // exclude is_typeArray() objects, preventing reclaiming an object
2647     // that is in the mark stack.  We also rely on the metadata for
2648     // such objects to be built-in and so ensured to be kept live.
2649     // Frequent allocation and drop of large binary blobs is an
2650     // important use case for eager reclaim, and this special handling
2651     // may reduce needed headroom.
2652 
2653     return obj->is_typeArray() &&
2654            g1h->is_potential_eager_reclaim_candidate(region);
2655   }
2656 
2657  public:
2658   RegisterHumongousWithInCSetFastTestClosure()
2659   : _total_humongous(0),
2660     _candidate_humongous(0),
2661     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2662   }
2663 
2664   virtual bool do_heap_region(HeapRegion* r) {
2665     if (!r->is_starts_humongous()) {
2666       return false;
2667     }
2668     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2669 
2670     bool is_candidate = humongous_region_is_candidate(g1h, r);
2671     uint rindex = r->hrm_index();
2672     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2673     if (is_candidate) {
2674       _candidate_humongous++;
2675       g1h->register_humongous_region_with_cset(rindex);
2676       // Is_candidate already filters out humongous object with large remembered sets.
2677       // If we have a humongous object with a few remembered sets, we simply flush these
2678       // remembered set entries into the DCQS. That will result in automatic
2679       // re-evaluation of their remembered set entries during the following evacuation
2680       // phase.
2681       if (!r->rem_set()->is_empty()) {
2682         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2683                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2684         G1CardTable* ct = g1h->card_table();
2685         HeapRegionRemSetIterator hrrs(r->rem_set());
2686         size_t card_index;
2687         while (hrrs.has_next(card_index)) {
2688           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2689           // The remembered set might contain references to already freed
2690           // regions. Filter out such entries to avoid failing card table
2691           // verification.
2692           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2693             if (*card_ptr != G1CardTable::dirty_card_val()) {
2694               *card_ptr = G1CardTable::dirty_card_val();
2695               _dcq.enqueue(card_ptr);
2696             }
2697           }
2698         }
2699         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2700                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2701                hrrs.n_yielded(), r->rem_set()->occupied());
2702         // We should only clear the card based remembered set here as we will not
2703         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2704         // (and probably never) we do not enter this path if there are other kind of
2705         // remembered sets for this region.
2706         r->rem_set()->clear_locked(true /* only_cardset */);
2707         // Clear_locked() above sets the state to Empty. However we want to continue
2708         // collecting remembered set entries for humongous regions that were not
2709         // reclaimed.
2710         r->rem_set()->set_state_complete();
2711       }
2712       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2713     }
2714     _total_humongous++;
2715 
2716     return false;
2717   }
2718 
2719   size_t total_humongous() const { return _total_humongous; }
2720   size_t candidate_humongous() const { return _candidate_humongous; }
2721 
2722   void flush_rem_set_entries() { _dcq.flush(); }
2723 };
2724 
2725 void G1CollectedHeap::register_humongous_regions_with_cset() {
2726   if (!G1EagerReclaimHumongousObjects) {
2727     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2728     return;
2729   }
2730   double time = os::elapsed_counter();
2731 
2732   // Collect reclaim candidate information and register candidates with cset.
2733   RegisterHumongousWithInCSetFastTestClosure cl;
2734   heap_region_iterate(&cl);
2735 
2736   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2737   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2738                                                                   cl.total_humongous(),
2739                                                                   cl.candidate_humongous());
2740   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2741 
2742   // Finally flush all remembered set entries to re-check into the global DCQS.
2743   cl.flush_rem_set_entries();
2744 }
2745 
2746 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2747   public:
2748     bool do_heap_region(HeapRegion* hr) {
2749       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2750         hr->verify_rem_set();
2751       }
2752       return false;
2753     }
2754 };
2755 
2756 uint G1CollectedHeap::num_task_queues() const {
2757   return _task_queues->size();
2758 }
2759 
2760 #if TASKQUEUE_STATS
2761 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2762   st->print_raw_cr("GC Task Stats");
2763   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2764   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2765 }
2766 
2767 void G1CollectedHeap::print_taskqueue_stats() const {
2768   if (!log_is_enabled(Trace, gc, task, stats)) {
2769     return;
2770   }
2771   Log(gc, task, stats) log;
2772   ResourceMark rm;
2773   LogStream ls(log.trace());
2774   outputStream* st = &ls;
2775 
2776   print_taskqueue_stats_hdr(st);
2777 
2778   TaskQueueStats totals;
2779   const uint n = num_task_queues();
2780   for (uint i = 0; i < n; ++i) {
2781     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2782     totals += task_queue(i)->stats;
2783   }
2784   st->print_raw("tot "); totals.print(st); st->cr();
2785 
2786   DEBUG_ONLY(totals.verify());
2787 }
2788 
2789 void G1CollectedHeap::reset_taskqueue_stats() {
2790   const uint n = num_task_queues();
2791   for (uint i = 0; i < n; ++i) {
2792     task_queue(i)->stats.reset();
2793   }
2794 }
2795 #endif // TASKQUEUE_STATS
2796 
2797 void G1CollectedHeap::wait_for_root_region_scanning() {
2798   double scan_wait_start = os::elapsedTime();
2799   // We have to wait until the CM threads finish scanning the
2800   // root regions as it's the only way to ensure that all the
2801   // objects on them have been correctly scanned before we start
2802   // moving them during the GC.
2803   bool waited = _cm->root_regions()->wait_until_scan_finished();
2804   double wait_time_ms = 0.0;
2805   if (waited) {
2806     double scan_wait_end = os::elapsedTime();
2807     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2808   }
2809   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2810 }
2811 
2812 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2813 private:
2814   G1HRPrinter* _hr_printer;
2815 public:
2816   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2817 
2818   virtual bool do_heap_region(HeapRegion* r) {
2819     _hr_printer->cset(r);
2820     return false;
2821   }
2822 };
2823 
2824 void G1CollectedHeap::start_new_collection_set() {
2825   collection_set()->start_incremental_building();
2826 
2827   clear_cset_fast_test();
2828 
2829   guarantee(_eden.length() == 0, "eden should have been cleared");
2830   g1_policy()->transfer_survivors_to_cset(survivor());
2831 }
2832 
2833 bool
2834 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2835   assert_at_safepoint_on_vm_thread();
2836   guarantee(!is_gc_active(), "collection is not reentrant");
2837 
2838   if (GCLocker::check_active_before_gc()) {
2839     return false;
2840   }
2841 
2842   _gc_timer_stw->register_gc_start();
2843 
2844   GCIdMark gc_id_mark;
2845   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2846 
2847   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2848   ResourceMark rm;
2849 
2850   g1_policy()->note_gc_start();
2851 
2852   wait_for_root_region_scanning();
2853 
2854   print_heap_before_gc();
2855   print_heap_regions();
2856   trace_heap_before_gc(_gc_tracer_stw);
2857 
2858   _verifier->verify_region_sets_optional();
2859   _verifier->verify_dirty_young_regions();
2860 
2861   // We should not be doing initial mark unless the conc mark thread is running
2862   if (!_cm_thread->should_terminate()) {
2863     // This call will decide whether this pause is an initial-mark
2864     // pause. If it is, in_initial_mark_gc() will return true
2865     // for the duration of this pause.
2866     g1_policy()->decide_on_conc_mark_initiation();
2867   }
2868 
2869   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2870   assert(!collector_state()->in_initial_mark_gc() ||
2871           collector_state()->in_young_only_phase(), "sanity");
2872 
2873   // We also do not allow mixed GCs during marking.
2874   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2875 
2876   // Record whether this pause is an initial mark. When the current
2877   // thread has completed its logging output and it's safe to signal
2878   // the CM thread, the flag's value in the policy has been reset.
2879   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2880 
2881   // Inner scope for scope based logging, timers, and stats collection
2882   {
2883     EvacuationInfo evacuation_info;
2884 
2885     if (collector_state()->in_initial_mark_gc()) {
2886       // We are about to start a marking cycle, so we increment the
2887       // full collection counter.
2888       increment_old_marking_cycles_started();
2889       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2890     }
2891 
2892     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2893 
2894     GCTraceCPUTime tcpu;
2895 
2896     G1HeapVerifier::G1VerifyType verify_type;
2897     FormatBuffer<> gc_string("Pause Young ");
2898     if (collector_state()->in_initial_mark_gc()) {
2899       gc_string.append("(Concurrent Start)");
2900       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2901     } else if (collector_state()->in_young_only_phase()) {
2902       if (collector_state()->in_young_gc_before_mixed()) {
2903         gc_string.append("(Prepare Mixed)");
2904       } else {
2905         gc_string.append("(Normal)");
2906       }
2907       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2908     } else {
2909       gc_string.append("(Mixed)");
2910       verify_type = G1HeapVerifier::G1VerifyMixed;
2911     }
2912     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2913 
2914     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2915                                                                   workers()->active_workers(),
2916                                                                   Threads::number_of_non_daemon_threads());
2917     active_workers = workers()->update_active_workers(active_workers);
2918     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2919 
2920     G1MonitoringScope ms(g1mm(),
2921                          false /* full_gc */,
2922                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2923 
2924     G1HeapTransition heap_transition(this);
2925     size_t heap_used_bytes_before_gc = used();
2926 
2927     // Don't dynamically change the number of GC threads this early.  A value of
2928     // 0 is used to indicate serial work.  When parallel work is done,
2929     // it will be set.
2930 
2931     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2932       IsGCActiveMark x;
2933 
2934       gc_prologue(false);
2935 
2936       if (VerifyRememberedSets) {
2937         log_info(gc, verify)("[Verifying RemSets before GC]");
2938         VerifyRegionRemSetClosure v_cl;
2939         heap_region_iterate(&v_cl);
2940       }
2941 
2942       _verifier->verify_before_gc(verify_type);
2943 
2944       _verifier->check_bitmaps("GC Start");
2945 
2946 #if COMPILER2_OR_JVMCI
2947       DerivedPointerTable::clear();
2948 #endif
2949 
2950       // Please see comment in g1CollectedHeap.hpp and
2951       // G1CollectedHeap::ref_processing_init() to see how
2952       // reference processing currently works in G1.
2953 
2954       // Enable discovery in the STW reference processor
2955       _ref_processor_stw->enable_discovery();
2956 
2957       {
2958         // We want to temporarily turn off discovery by the
2959         // CM ref processor, if necessary, and turn it back on
2960         // on again later if we do. Using a scoped
2961         // NoRefDiscovery object will do this.
2962         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2963 
2964         // Forget the current alloc region (we might even choose it to be part
2965         // of the collection set!).
2966         _allocator->release_mutator_alloc_region();
2967 
2968         // This timing is only used by the ergonomics to handle our pause target.
2969         // It is unclear why this should not include the full pause. We will
2970         // investigate this in CR 7178365.
2971         //
2972         // Preserving the old comment here if that helps the investigation:
2973         //
2974         // The elapsed time induced by the start time below deliberately elides
2975         // the possible verification above.
2976         double sample_start_time_sec = os::elapsedTime();
2977 
2978         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2979 
2980         if (collector_state()->in_initial_mark_gc()) {
2981           concurrent_mark()->pre_initial_mark();
2982         }
2983 
2984         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2985 
2986         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2987 
2988         // Make sure the remembered sets are up to date. This needs to be
2989         // done before register_humongous_regions_with_cset(), because the
2990         // remembered sets are used there to choose eager reclaim candidates.
2991         // If the remembered sets are not up to date we might miss some
2992         // entries that need to be handled.
2993         g1_rem_set()->cleanupHRRS();
2994 
2995         register_humongous_regions_with_cset();
2996 
2997         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2998 
2999         // We call this after finalize_cset() to
3000         // ensure that the CSet has been finalized.
3001         _cm->verify_no_cset_oops();
3002 
3003         if (_hr_printer.is_active()) {
3004           G1PrintCollectionSetClosure cl(&_hr_printer);
3005           _collection_set.iterate(&cl);
3006         }
3007 
3008         // Initialize the GC alloc regions.
3009         _allocator->init_gc_alloc_regions(evacuation_info);
3010 
3011         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3012         pre_evacuate_collection_set();
3013 
3014         // Actually do the work...
3015         evacuate_collection_set(&per_thread_states);
3016 
3017         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3018 
3019         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3020         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3021 
3022         eagerly_reclaim_humongous_regions();
3023 
3024         record_obj_copy_mem_stats();
3025         _survivor_evac_stats.adjust_desired_plab_sz();
3026         _old_evac_stats.adjust_desired_plab_sz();
3027 
3028         double start = os::elapsedTime();
3029         start_new_collection_set();
3030         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3031 
3032         if (evacuation_failed()) {
3033           double recalculate_used_start = os::elapsedTime();
3034           set_used(recalculate_used());
3035           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3036 
3037           if (_archive_allocator != NULL) {
3038             _archive_allocator->clear_used();
3039           }
3040           for (uint i = 0; i < ParallelGCThreads; i++) {
3041             if (_evacuation_failed_info_array[i].has_failed()) {
3042               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3043             }
3044           }
3045         } else {
3046           // The "used" of the the collection set have already been subtracted
3047           // when they were freed.  Add in the bytes evacuated.
3048           increase_used(g1_policy()->bytes_copied_during_gc());
3049         }
3050 
3051         if (collector_state()->in_initial_mark_gc()) {
3052           // We have to do this before we notify the CM threads that
3053           // they can start working to make sure that all the
3054           // appropriate initialization is done on the CM object.
3055           concurrent_mark()->post_initial_mark();
3056           // Note that we don't actually trigger the CM thread at
3057           // this point. We do that later when we're sure that
3058           // the current thread has completed its logging output.
3059         }
3060 
3061         allocate_dummy_regions();
3062 
3063         _allocator->init_mutator_alloc_region();
3064 
3065         {
3066           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3067           if (expand_bytes > 0) {
3068             size_t bytes_before = capacity();
3069             // No need for an ergo logging here,
3070             // expansion_amount() does this when it returns a value > 0.
3071             double expand_ms;
3072             if (!expand(expand_bytes, _workers, &expand_ms)) {
3073               // We failed to expand the heap. Cannot do anything about it.
3074             }
3075             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3076           }
3077         }
3078 
3079         // We redo the verification but now wrt to the new CSet which
3080         // has just got initialized after the previous CSet was freed.
3081         _cm->verify_no_cset_oops();
3082 
3083         // This timing is only used by the ergonomics to handle our pause target.
3084         // It is unclear why this should not include the full pause. We will
3085         // investigate this in CR 7178365.
3086         double sample_end_time_sec = os::elapsedTime();
3087         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3088         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3089         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3090 
3091         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3092         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3093 
3094         if (VerifyRememberedSets) {
3095           log_info(gc, verify)("[Verifying RemSets after GC]");
3096           VerifyRegionRemSetClosure v_cl;
3097           heap_region_iterate(&v_cl);
3098         }
3099 
3100         _verifier->verify_after_gc(verify_type);
3101         _verifier->check_bitmaps("GC End");
3102 
3103         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3104         _ref_processor_stw->verify_no_references_recorded();
3105 
3106         // CM reference discovery will be re-enabled if necessary.
3107       }
3108 
3109 #ifdef TRACESPINNING
3110       ParallelTaskTerminator::print_termination_counts();
3111 #endif
3112 
3113       gc_epilogue(false);
3114     }
3115 
3116     // Print the remainder of the GC log output.
3117     if (evacuation_failed()) {
3118       log_info(gc)("To-space exhausted");
3119     }
3120 
3121     g1_policy()->print_phases();
3122     heap_transition.print();
3123 
3124     // It is not yet to safe to tell the concurrent mark to
3125     // start as we have some optional output below. We don't want the
3126     // output from the concurrent mark thread interfering with this
3127     // logging output either.
3128 
3129     _hrm.verify_optional();
3130     _verifier->verify_region_sets_optional();
3131 
3132     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3133     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3134 
3135     print_heap_after_gc();
3136     print_heap_regions();
3137     trace_heap_after_gc(_gc_tracer_stw);
3138 
3139     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3140     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3141     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3142     // before any GC notifications are raised.
3143     g1mm()->update_sizes();
3144 
3145     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3146     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3147     _gc_timer_stw->register_gc_end();
3148     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3149   }
3150   // It should now be safe to tell the concurrent mark thread to start
3151   // without its logging output interfering with the logging output
3152   // that came from the pause.
3153 
3154   if (should_start_conc_mark) {
3155     // CAUTION: after the doConcurrentMark() call below,
3156     // the concurrent marking thread(s) could be running
3157     // concurrently with us. Make sure that anything after
3158     // this point does not assume that we are the only GC thread
3159     // running. Note: of course, the actual marking work will
3160     // not start until the safepoint itself is released in
3161     // SuspendibleThreadSet::desynchronize().
3162     do_concurrent_mark();
3163   }
3164 
3165   return true;
3166 }
3167 
3168 void G1CollectedHeap::remove_self_forwarding_pointers() {
3169   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3170   workers()->run_task(&rsfp_task);
3171 }
3172 
3173 void G1CollectedHeap::restore_after_evac_failure() {
3174   double remove_self_forwards_start = os::elapsedTime();
3175 
3176   remove_self_forwarding_pointers();
3177   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3178   _preserved_marks_set.restore(&task_executor);
3179 
3180   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3181 }
3182 
3183 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3184   if (!_evacuation_failed) {
3185     _evacuation_failed = true;
3186   }
3187 
3188   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3189   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3190 }
3191 
3192 bool G1ParEvacuateFollowersClosure::offer_termination() {
3193   EventGCPhaseParallel event;
3194   G1ParScanThreadState* const pss = par_scan_state();
3195   start_term_time();
3196   const bool res = terminator()->offer_termination();
3197   end_term_time();
3198   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3199   return res;
3200 }
3201 
3202 void G1ParEvacuateFollowersClosure::do_void() {
3203   EventGCPhaseParallel event;
3204   G1ParScanThreadState* const pss = par_scan_state();
3205   pss->trim_queue();
3206   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3207   do {
3208     EventGCPhaseParallel event;
3209     pss->steal_and_trim_queue(queues());
3210     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3211   } while (!offer_termination());
3212 }
3213 
3214 class G1ParTask : public AbstractGangTask {
3215 protected:
3216   G1CollectedHeap*         _g1h;
3217   G1ParScanThreadStateSet* _pss;
3218   RefToScanQueueSet*       _queues;
3219   G1RootProcessor*         _root_processor;
3220   ParallelTaskTerminator   _terminator;
3221   uint                     _n_workers;
3222 
3223 public:
3224   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3225     : AbstractGangTask("G1 collection"),
3226       _g1h(g1h),
3227       _pss(per_thread_states),
3228       _queues(task_queues),
3229       _root_processor(root_processor),
3230       _terminator(n_workers, _queues),
3231       _n_workers(n_workers)
3232   {}
3233 
3234   void work(uint worker_id) {
3235     if (worker_id >= _n_workers) return;  // no work needed this round
3236 
3237     double start_sec = os::elapsedTime();
3238     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3239 
3240     {
3241       ResourceMark rm;
3242       HandleMark   hm;
3243 
3244       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3245 
3246       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3247       pss->set_ref_discoverer(rp);
3248 
3249       double start_strong_roots_sec = os::elapsedTime();
3250 
3251       _root_processor->evacuate_roots(pss, worker_id);
3252 
3253       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3254       // treating the nmethods visited to act as roots for concurrent marking.
3255       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3256       // objects copied by the current evacuation.
3257       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3258 
3259       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3260 
3261       double term_sec = 0.0;
3262       size_t evac_term_attempts = 0;
3263       {
3264         double start = os::elapsedTime();
3265         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3266         evac.do_void();
3267 
3268         evac_term_attempts = evac.term_attempts();
3269         term_sec = evac.term_time();
3270         double elapsed_sec = os::elapsedTime() - start;
3271 
3272         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3273         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3274         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3275         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3276       }
3277 
3278       assert(pss->queue_is_empty(), "should be empty");
3279 
3280       if (log_is_enabled(Debug, gc, task, stats)) {
3281         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3282         size_t lab_waste;
3283         size_t lab_undo_waste;
3284         pss->waste(lab_waste, lab_undo_waste);
3285         _g1h->print_termination_stats(worker_id,
3286                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3287                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3288                                       term_sec * 1000.0,                          /* evac term time */
3289                                       evac_term_attempts,                         /* evac term attempts */
3290                                       lab_waste,                                  /* alloc buffer waste */
3291                                       lab_undo_waste                              /* undo waste */
3292                                       );
3293       }
3294 
3295       // Close the inner scope so that the ResourceMark and HandleMark
3296       // destructors are executed here and are included as part of the
3297       // "GC Worker Time".
3298     }
3299     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3300   }
3301 };
3302 
3303 void G1CollectedHeap::print_termination_stats_hdr() {
3304   log_debug(gc, task, stats)("GC Termination Stats");
3305   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3306   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3307   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3308 }
3309 
3310 void G1CollectedHeap::print_termination_stats(uint worker_id,
3311                                               double elapsed_ms,
3312                                               double strong_roots_ms,
3313                                               double term_ms,
3314                                               size_t term_attempts,
3315                                               size_t alloc_buffer_waste,
3316                                               size_t undo_waste) const {
3317   log_debug(gc, task, stats)
3318               ("%3d %9.2f %9.2f %6.2f "
3319                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3320                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3321                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3322                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3323                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3324                alloc_buffer_waste * HeapWordSize / K,
3325                undo_waste * HeapWordSize / K);
3326 }
3327 
3328 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3329                                         bool class_unloading_occurred) {
3330   uint n_workers = workers()->active_workers();
3331 
3332   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3333   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3334   workers()->run_task(&g1_unlink_task);
3335 }
3336 
3337 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3338                                        bool process_strings,
3339                                        bool process_string_dedup) {
3340   if (!process_strings && !process_string_dedup) {
3341     // Nothing to clean.
3342     return;
3343   }
3344 
3345   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3346   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3347   workers()->run_task(&g1_unlink_task);
3348 }
3349 
3350 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3351  private:
3352   DirtyCardQueueSet* _queue;
3353   G1CollectedHeap* _g1h;
3354  public:
3355   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3356     _queue(queue), _g1h(g1h) { }
3357 
3358   virtual void work(uint worker_id) {
3359     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3360     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3361 
3362     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3363     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3364 
3365     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3366   }
3367 };
3368 
3369 void G1CollectedHeap::redirty_logged_cards() {
3370   double redirty_logged_cards_start = os::elapsedTime();
3371 
3372   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3373   dirty_card_queue_set().reset_for_par_iteration();
3374   workers()->run_task(&redirty_task);
3375 
3376   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3377   dcq.merge_bufferlists(&dirty_card_queue_set());
3378   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3379 
3380   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3381 }
3382 
3383 // Weak Reference Processing support
3384 
3385 bool G1STWIsAliveClosure::do_object_b(oop p) {
3386   // An object is reachable if it is outside the collection set,
3387   // or is inside and copied.
3388   return !_g1h->is_in_cset(p) || p->is_forwarded();
3389 }
3390 
3391 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3392   assert(obj != NULL, "must not be NULL");
3393   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3394   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3395   // may falsely indicate that this is not the case here: however the collection set only
3396   // contains old regions when concurrent mark is not running.
3397   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3398 }
3399 
3400 // Non Copying Keep Alive closure
3401 class G1KeepAliveClosure: public OopClosure {
3402   G1CollectedHeap*_g1h;
3403 public:
3404   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3405   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3406   void do_oop(oop* p) {
3407     oop obj = *p;
3408     assert(obj != NULL, "the caller should have filtered out NULL values");
3409 
3410     const InCSetState cset_state =_g1h->in_cset_state(obj);
3411     if (!cset_state.is_in_cset_or_humongous()) {
3412       return;
3413     }
3414     if (cset_state.is_in_cset()) {
3415       assert( obj->is_forwarded(), "invariant" );
3416       *p = obj->forwardee();
3417     } else {
3418       assert(!obj->is_forwarded(), "invariant" );
3419       assert(cset_state.is_humongous(),
3420              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3421      _g1h->set_humongous_is_live(obj);
3422     }
3423   }
3424 };
3425 
3426 // Copying Keep Alive closure - can be called from both
3427 // serial and parallel code as long as different worker
3428 // threads utilize different G1ParScanThreadState instances
3429 // and different queues.
3430 
3431 class G1CopyingKeepAliveClosure: public OopClosure {
3432   G1CollectedHeap*         _g1h;
3433   G1ParScanThreadState*    _par_scan_state;
3434 
3435 public:
3436   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3437                             G1ParScanThreadState* pss):
3438     _g1h(g1h),
3439     _par_scan_state(pss)
3440   {}
3441 
3442   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3443   virtual void do_oop(      oop* p) { do_oop_work(p); }
3444 
3445   template <class T> void do_oop_work(T* p) {
3446     oop obj = RawAccess<>::oop_load(p);
3447 
3448     if (_g1h->is_in_cset_or_humongous(obj)) {
3449       // If the referent object has been forwarded (either copied
3450       // to a new location or to itself in the event of an
3451       // evacuation failure) then we need to update the reference
3452       // field and, if both reference and referent are in the G1
3453       // heap, update the RSet for the referent.
3454       //
3455       // If the referent has not been forwarded then we have to keep
3456       // it alive by policy. Therefore we have copy the referent.
3457       //
3458       // When the queue is drained (after each phase of reference processing)
3459       // the object and it's followers will be copied, the reference field set
3460       // to point to the new location, and the RSet updated.
3461       _par_scan_state->push_on_queue(p);
3462     }
3463   }
3464 };
3465 
3466 // Serial drain queue closure. Called as the 'complete_gc'
3467 // closure for each discovered list in some of the
3468 // reference processing phases.
3469 
3470 class G1STWDrainQueueClosure: public VoidClosure {
3471 protected:
3472   G1CollectedHeap* _g1h;
3473   G1ParScanThreadState* _par_scan_state;
3474 
3475   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3476 
3477 public:
3478   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3479     _g1h(g1h),
3480     _par_scan_state(pss)
3481   { }
3482 
3483   void do_void() {
3484     G1ParScanThreadState* const pss = par_scan_state();
3485     pss->trim_queue();
3486   }
3487 };
3488 
3489 // Parallel Reference Processing closures
3490 
3491 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3492 // processing during G1 evacuation pauses.
3493 
3494 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3495 private:
3496   G1CollectedHeap*          _g1h;
3497   G1ParScanThreadStateSet*  _pss;
3498   RefToScanQueueSet*        _queues;
3499   WorkGang*                 _workers;
3500 
3501 public:
3502   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3503                            G1ParScanThreadStateSet* per_thread_states,
3504                            WorkGang* workers,
3505                            RefToScanQueueSet *task_queues) :
3506     _g1h(g1h),
3507     _pss(per_thread_states),
3508     _queues(task_queues),
3509     _workers(workers)
3510   {
3511     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3512   }
3513 
3514   // Executes the given task using concurrent marking worker threads.
3515   virtual void execute(ProcessTask& task, uint ergo_workers);
3516 };
3517 
3518 // Gang task for possibly parallel reference processing
3519 
3520 class G1STWRefProcTaskProxy: public AbstractGangTask {
3521   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3522   ProcessTask&     _proc_task;
3523   G1CollectedHeap* _g1h;
3524   G1ParScanThreadStateSet* _pss;
3525   RefToScanQueueSet* _task_queues;
3526   ParallelTaskTerminator* _terminator;
3527 
3528 public:
3529   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3530                         G1CollectedHeap* g1h,
3531                         G1ParScanThreadStateSet* per_thread_states,
3532                         RefToScanQueueSet *task_queues,
3533                         ParallelTaskTerminator* terminator) :
3534     AbstractGangTask("Process reference objects in parallel"),
3535     _proc_task(proc_task),
3536     _g1h(g1h),
3537     _pss(per_thread_states),
3538     _task_queues(task_queues),
3539     _terminator(terminator)
3540   {}
3541 
3542   virtual void work(uint worker_id) {
3543     // The reference processing task executed by a single worker.
3544     ResourceMark rm;
3545     HandleMark   hm;
3546 
3547     G1STWIsAliveClosure is_alive(_g1h);
3548 
3549     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3550     pss->set_ref_discoverer(NULL);
3551 
3552     // Keep alive closure.
3553     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3554 
3555     // Complete GC closure
3556     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3557 
3558     // Call the reference processing task's work routine.
3559     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3560 
3561     // Note we cannot assert that the refs array is empty here as not all
3562     // of the processing tasks (specifically phase2 - pp2_work) execute
3563     // the complete_gc closure (which ordinarily would drain the queue) so
3564     // the queue may not be empty.
3565   }
3566 };
3567 
3568 // Driver routine for parallel reference processing.
3569 // Creates an instance of the ref processing gang
3570 // task and has the worker threads execute it.
3571 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3572   assert(_workers != NULL, "Need parallel worker threads.");
3573 
3574   assert(_workers->active_workers() >= ergo_workers,
3575          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3576          ergo_workers, _workers->active_workers());
3577   ParallelTaskTerminator terminator(ergo_workers, _queues);
3578   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3579 
3580   _workers->run_task(&proc_task_proxy, ergo_workers);
3581 }
3582 
3583 // End of weak reference support closures
3584 
3585 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3586   double ref_proc_start = os::elapsedTime();
3587 
3588   ReferenceProcessor* rp = _ref_processor_stw;
3589   assert(rp->discovery_enabled(), "should have been enabled");
3590 
3591   // Closure to test whether a referent is alive.
3592   G1STWIsAliveClosure is_alive(this);
3593 
3594   // Even when parallel reference processing is enabled, the processing
3595   // of JNI refs is serial and performed serially by the current thread
3596   // rather than by a worker. The following PSS will be used for processing
3597   // JNI refs.
3598 
3599   // Use only a single queue for this PSS.
3600   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3601   pss->set_ref_discoverer(NULL);
3602   assert(pss->queue_is_empty(), "pre-condition");
3603 
3604   // Keep alive closure.
3605   G1CopyingKeepAliveClosure keep_alive(this, pss);
3606 
3607   // Serial Complete GC closure
3608   G1STWDrainQueueClosure drain_queue(this, pss);
3609 
3610   // Setup the soft refs policy...
3611   rp->setup_policy(false);
3612 
3613   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3614 
3615   ReferenceProcessorStats stats;
3616   if (!rp->processing_is_mt()) {
3617     // Serial reference processing...
3618     stats = rp->process_discovered_references(&is_alive,
3619                                               &keep_alive,
3620                                               &drain_queue,
3621                                               NULL,
3622                                               pt);
3623   } else {
3624     uint no_of_gc_workers = workers()->active_workers();
3625 
3626     // Parallel reference processing
3627     assert(no_of_gc_workers <= rp->max_num_queues(),
3628            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3629            no_of_gc_workers,  rp->max_num_queues());
3630 
3631     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3632     stats = rp->process_discovered_references(&is_alive,
3633                                               &keep_alive,
3634                                               &drain_queue,
3635                                               &par_task_executor,
3636                                               pt);
3637   }
3638 
3639   _gc_tracer_stw->report_gc_reference_stats(stats);
3640 
3641   // We have completed copying any necessary live referent objects.
3642   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3643 
3644   make_pending_list_reachable();
3645 
3646   rp->verify_no_references_recorded();
3647 
3648   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3649   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3650 }
3651 
3652 void G1CollectedHeap::make_pending_list_reachable() {
3653   if (collector_state()->in_initial_mark_gc()) {
3654     oop pll_head = Universe::reference_pending_list();
3655     if (pll_head != NULL) {
3656       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3657       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3658     }
3659   }
3660 }
3661 
3662 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3663   double merge_pss_time_start = os::elapsedTime();
3664   per_thread_states->flush();
3665   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3666 }
3667 
3668 void G1CollectedHeap::pre_evacuate_collection_set() {
3669   _expand_heap_after_alloc_failure = true;
3670   _evacuation_failed = false;
3671 
3672   // Disable the hot card cache.
3673   _hot_card_cache->reset_hot_cache_claimed_index();
3674   _hot_card_cache->set_use_cache(false);
3675 
3676   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3677   _preserved_marks_set.assert_empty();
3678 
3679   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3680 
3681   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3682   if (collector_state()->in_initial_mark_gc()) {
3683     double start_clear_claimed_marks = os::elapsedTime();
3684 
3685     ClassLoaderDataGraph::clear_claimed_marks();
3686 
3687     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3688     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3689   }
3690 }
3691 
3692 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3693   // Should G1EvacuationFailureALot be in effect for this GC?
3694   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3695 
3696   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3697 
3698   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3699 
3700   double start_par_time_sec = os::elapsedTime();
3701   double end_par_time_sec;
3702 
3703   {
3704     const uint n_workers = workers()->active_workers();
3705     G1RootProcessor root_processor(this, n_workers);
3706     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3707 
3708     print_termination_stats_hdr();
3709 
3710     workers()->run_task(&g1_par_task);
3711     end_par_time_sec = os::elapsedTime();
3712 
3713     // Closing the inner scope will execute the destructor
3714     // for the G1RootProcessor object. We record the current
3715     // elapsed time before closing the scope so that time
3716     // taken for the destructor is NOT included in the
3717     // reported parallel time.
3718   }
3719 
3720   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3721   phase_times->record_par_time(par_time_ms);
3722 
3723   double code_root_fixup_time_ms =
3724         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3725   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3726 }
3727 
3728 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3729   // Also cleans the card table from temporary duplicate detection information used
3730   // during UpdateRS/ScanRS.
3731   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3732 
3733   // Process any discovered reference objects - we have
3734   // to do this _before_ we retire the GC alloc regions
3735   // as we may have to copy some 'reachable' referent
3736   // objects (and their reachable sub-graphs) that were
3737   // not copied during the pause.
3738   process_discovered_references(per_thread_states);
3739 
3740   // FIXME
3741   // CM's reference processing also cleans up the string table.
3742   // Should we do that here also? We could, but it is a serial operation
3743   // and could significantly increase the pause time.
3744 
3745   G1STWIsAliveClosure is_alive(this);
3746   G1KeepAliveClosure keep_alive(this);
3747 
3748   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3749                               g1_policy()->phase_times()->weak_phase_times());
3750 
3751   if (G1StringDedup::is_enabled()) {
3752     double fixup_start = os::elapsedTime();
3753 
3754     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3755 
3756     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3757     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3758   }
3759 
3760   if (evacuation_failed()) {
3761     restore_after_evac_failure();
3762 
3763     // Reset the G1EvacuationFailureALot counters and flags
3764     // Note: the values are reset only when an actual
3765     // evacuation failure occurs.
3766     NOT_PRODUCT(reset_evacuation_should_fail();)
3767   }
3768 
3769   _preserved_marks_set.assert_empty();
3770 
3771   _allocator->release_gc_alloc_regions(evacuation_info);
3772 
3773   merge_per_thread_state_info(per_thread_states);
3774 
3775   // Reset and re-enable the hot card cache.
3776   // Note the counts for the cards in the regions in the
3777   // collection set are reset when the collection set is freed.
3778   _hot_card_cache->reset_hot_cache();
3779   _hot_card_cache->set_use_cache(true);
3780 
3781   purge_code_root_memory();
3782 
3783   redirty_logged_cards();
3784 #if COMPILER2_OR_JVMCI
3785   double start = os::elapsedTime();
3786   DerivedPointerTable::update_pointers();
3787   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3788 #endif
3789   g1_policy()->print_age_table();
3790 }
3791 
3792 void G1CollectedHeap::record_obj_copy_mem_stats() {
3793   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3794 
3795   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3796                                                create_g1_evac_summary(&_old_evac_stats));
3797 }
3798 
3799 void G1CollectedHeap::free_region(HeapRegion* hr,
3800                                   FreeRegionList* free_list,
3801                                   bool skip_remset,
3802                                   bool skip_hot_card_cache,
3803                                   bool locked) {
3804   assert(!hr->is_free(), "the region should not be free");
3805   assert(!hr->is_empty(), "the region should not be empty");
3806   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
3807   assert(free_list != NULL, "pre-condition");
3808 
3809   if (G1VerifyBitmaps) {
3810     MemRegion mr(hr->bottom(), hr->end());
3811     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3812   }
3813 
3814   // Clear the card counts for this region.
3815   // Note: we only need to do this if the region is not young
3816   // (since we don't refine cards in young regions).
3817   if (!skip_hot_card_cache && !hr->is_young()) {
3818     _hot_card_cache->reset_card_counts(hr);
3819   }
3820   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3821   _g1_policy->remset_tracker()->update_at_free(hr);
3822   free_list->add_ordered(hr);
3823 }
3824 
3825 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3826                                             FreeRegionList* free_list) {
3827   assert(hr->is_humongous(), "this is only for humongous regions");
3828   assert(free_list != NULL, "pre-condition");
3829   hr->clear_humongous();
3830   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3831 }
3832 
3833 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3834                                            const uint humongous_regions_removed) {
3835   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3836     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3837     _old_set.bulk_remove(old_regions_removed);
3838     _humongous_set.bulk_remove(humongous_regions_removed);
3839   }
3840 
3841 }
3842 
3843 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3844   assert(list != NULL, "list can't be null");
3845   if (!list->is_empty()) {
3846     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3847     _hrm.insert_list_into_free_list(list);
3848   }
3849 }
3850 
3851 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3852   decrease_used(bytes);
3853 }
3854 
3855 class G1FreeCollectionSetTask : public AbstractGangTask {
3856 private:
3857 
3858   // Closure applied to all regions in the collection set to do work that needs to
3859   // be done serially in a single thread.
3860   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3861   private:
3862     EvacuationInfo* _evacuation_info;
3863     const size_t* _surviving_young_words;
3864 
3865     // Bytes used in successfully evacuated regions before the evacuation.
3866     size_t _before_used_bytes;
3867     // Bytes used in unsucessfully evacuated regions before the evacuation
3868     size_t _after_used_bytes;
3869 
3870     size_t _bytes_allocated_in_old_since_last_gc;
3871 
3872     size_t _failure_used_words;
3873     size_t _failure_waste_words;
3874 
3875     FreeRegionList _local_free_list;
3876   public:
3877     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3878       HeapRegionClosure(),
3879       _evacuation_info(evacuation_info),
3880       _surviving_young_words(surviving_young_words),
3881       _before_used_bytes(0),
3882       _after_used_bytes(0),
3883       _bytes_allocated_in_old_since_last_gc(0),
3884       _failure_used_words(0),
3885       _failure_waste_words(0),
3886       _local_free_list("Local Region List for CSet Freeing") {
3887     }
3888 
3889     virtual bool do_heap_region(HeapRegion* r) {
3890       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3891 
3892       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3893       g1h->clear_in_cset(r);
3894 
3895       if (r->is_young()) {
3896         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3897                "Young index %d is wrong for region %u of type %s with %u young regions",
3898                r->young_index_in_cset(),
3899                r->hrm_index(),
3900                r->get_type_str(),
3901                g1h->collection_set()->young_region_length());
3902         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3903         r->record_surv_words_in_group(words_survived);
3904       }
3905 
3906       if (!r->evacuation_failed()) {
3907         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3908         _before_used_bytes += r->used();
3909         g1h->free_region(r,
3910                          &_local_free_list,
3911                          true, /* skip_remset */
3912                          true, /* skip_hot_card_cache */
3913                          true  /* locked */);
3914       } else {
3915         r->uninstall_surv_rate_group();
3916         r->set_young_index_in_cset(-1);
3917         r->set_evacuation_failed(false);
3918         // When moving a young gen region to old gen, we "allocate" that whole region
3919         // there. This is in addition to any already evacuated objects. Notify the
3920         // policy about that.
3921         // Old gen regions do not cause an additional allocation: both the objects
3922         // still in the region and the ones already moved are accounted for elsewhere.
3923         if (r->is_young()) {
3924           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3925         }
3926         // The region is now considered to be old.
3927         r->set_old();
3928         // Do some allocation statistics accounting. Regions that failed evacuation
3929         // are always made old, so there is no need to update anything in the young
3930         // gen statistics, but we need to update old gen statistics.
3931         size_t used_words = r->marked_bytes() / HeapWordSize;
3932 
3933         _failure_used_words += used_words;
3934         _failure_waste_words += HeapRegion::GrainWords - used_words;
3935 
3936         g1h->old_set_add(r);
3937         _after_used_bytes += r->used();
3938       }
3939       return false;
3940     }
3941 
3942     void complete_work() {
3943       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3944 
3945       _evacuation_info->set_regions_freed(_local_free_list.length());
3946       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
3947 
3948       g1h->prepend_to_freelist(&_local_free_list);
3949       g1h->decrement_summary_bytes(_before_used_bytes);
3950 
3951       G1Policy* policy = g1h->g1_policy();
3952       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
3953 
3954       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
3955     }
3956   };
3957 
3958   G1CollectionSet* _collection_set;
3959   G1SerialFreeCollectionSetClosure _cl;
3960   const size_t* _surviving_young_words;
3961 
3962   size_t _rs_lengths;
3963 
3964   volatile jint _serial_work_claim;
3965 
3966   struct WorkItem {
3967     uint region_idx;
3968     bool is_young;
3969     bool evacuation_failed;
3970 
3971     WorkItem(HeapRegion* r) {
3972       region_idx = r->hrm_index();
3973       is_young = r->is_young();
3974       evacuation_failed = r->evacuation_failed();
3975     }
3976   };
3977 
3978   volatile size_t _parallel_work_claim;
3979   size_t _num_work_items;
3980   WorkItem* _work_items;
3981 
3982   void do_serial_work() {
3983     // Need to grab the lock to be allowed to modify the old region list.
3984     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3985     _collection_set->iterate(&_cl);
3986   }
3987 
3988   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
3989     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3990 
3991     HeapRegion* r = g1h->region_at(region_idx);
3992     assert(!g1h->is_on_master_free_list(r), "sanity");
3993 
3994     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
3995 
3996     if (!is_young) {
3997       g1h->_hot_card_cache->reset_card_counts(r);
3998     }
3999 
4000     if (!evacuation_failed) {
4001       r->rem_set()->clear_locked();
4002     }
4003   }
4004 
4005   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4006   private:
4007     size_t _cur_idx;
4008     WorkItem* _work_items;
4009   public:
4010     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4011 
4012     virtual bool do_heap_region(HeapRegion* r) {
4013       _work_items[_cur_idx++] = WorkItem(r);
4014       return false;
4015     }
4016   };
4017 
4018   void prepare_work() {
4019     G1PrepareFreeCollectionSetClosure cl(_work_items);
4020     _collection_set->iterate(&cl);
4021   }
4022 
4023   void complete_work() {
4024     _cl.complete_work();
4025 
4026     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4027     policy->record_max_rs_lengths(_rs_lengths);
4028     policy->cset_regions_freed();
4029   }
4030 public:
4031   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4032     AbstractGangTask("G1 Free Collection Set"),
4033     _collection_set(collection_set),
4034     _cl(evacuation_info, surviving_young_words),
4035     _surviving_young_words(surviving_young_words),
4036     _rs_lengths(0),
4037     _serial_work_claim(0),
4038     _parallel_work_claim(0),
4039     _num_work_items(collection_set->region_length()),
4040     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4041     prepare_work();
4042   }
4043 
4044   ~G1FreeCollectionSetTask() {
4045     complete_work();
4046     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4047   }
4048 
4049   // Chunk size for work distribution. The chosen value has been determined experimentally
4050   // to be a good tradeoff between overhead and achievable parallelism.
4051   static uint chunk_size() { return 32; }
4052 
4053   virtual void work(uint worker_id) {
4054     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4055 
4056     // Claim serial work.
4057     if (_serial_work_claim == 0) {
4058       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4059       if (value == 0) {
4060         double serial_time = os::elapsedTime();
4061         do_serial_work();
4062         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4063       }
4064     }
4065 
4066     // Start parallel work.
4067     double young_time = 0.0;
4068     bool has_young_time = false;
4069     double non_young_time = 0.0;
4070     bool has_non_young_time = false;
4071 
4072     while (true) {
4073       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4074       size_t cur = end - chunk_size();
4075 
4076       if (cur >= _num_work_items) {
4077         break;
4078       }
4079 
4080       EventGCPhaseParallel event;
4081       double start_time = os::elapsedTime();
4082 
4083       end = MIN2(end, _num_work_items);
4084 
4085       for (; cur < end; cur++) {
4086         bool is_young = _work_items[cur].is_young;
4087 
4088         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4089 
4090         double end_time = os::elapsedTime();
4091         double time_taken = end_time - start_time;
4092         if (is_young) {
4093           young_time += time_taken;
4094           has_young_time = true;
4095           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4096         } else {
4097           non_young_time += time_taken;
4098           has_non_young_time = true;
4099           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4100         }
4101         start_time = end_time;
4102       }
4103     }
4104 
4105     if (has_young_time) {
4106       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4107     }
4108     if (has_non_young_time) {
4109       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4110     }
4111   }
4112 };
4113 
4114 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4115   _eden.clear();
4116 
4117   double free_cset_start_time = os::elapsedTime();
4118 
4119   {
4120     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4121     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4122 
4123     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4124 
4125     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4126                         cl.name(),
4127                         num_workers,
4128                         _collection_set.region_length());
4129     workers()->run_task(&cl, num_workers);
4130   }
4131   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4132 
4133   collection_set->clear();
4134 }
4135 
4136 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4137  private:
4138   FreeRegionList* _free_region_list;
4139   HeapRegionSet* _proxy_set;
4140   uint _humongous_objects_reclaimed;
4141   uint _humongous_regions_reclaimed;
4142   size_t _freed_bytes;
4143  public:
4144 
4145   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4146     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4147   }
4148 
4149   virtual bool do_heap_region(HeapRegion* r) {
4150     if (!r->is_starts_humongous()) {
4151       return false;
4152     }
4153 
4154     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4155 
4156     oop obj = (oop)r->bottom();
4157     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4158 
4159     // The following checks whether the humongous object is live are sufficient.
4160     // The main additional check (in addition to having a reference from the roots
4161     // or the young gen) is whether the humongous object has a remembered set entry.
4162     //
4163     // A humongous object cannot be live if there is no remembered set for it
4164     // because:
4165     // - there can be no references from within humongous starts regions referencing
4166     // the object because we never allocate other objects into them.
4167     // (I.e. there are no intra-region references that may be missed by the
4168     // remembered set)
4169     // - as soon there is a remembered set entry to the humongous starts region
4170     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4171     // until the end of a concurrent mark.
4172     //
4173     // It is not required to check whether the object has been found dead by marking
4174     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4175     // all objects allocated during that time are considered live.
4176     // SATB marking is even more conservative than the remembered set.
4177     // So if at this point in the collection there is no remembered set entry,
4178     // nobody has a reference to it.
4179     // At the start of collection we flush all refinement logs, and remembered sets
4180     // are completely up-to-date wrt to references to the humongous object.
4181     //
4182     // Other implementation considerations:
4183     // - never consider object arrays at this time because they would pose
4184     // considerable effort for cleaning up the the remembered sets. This is
4185     // required because stale remembered sets might reference locations that
4186     // are currently allocated into.
4187     uint region_idx = r->hrm_index();
4188     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4189         !r->rem_set()->is_empty()) {
4190       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4191                                region_idx,
4192                                (size_t)obj->size() * HeapWordSize,
4193                                p2i(r->bottom()),
4194                                r->rem_set()->occupied(),
4195                                r->rem_set()->strong_code_roots_list_length(),
4196                                next_bitmap->is_marked(r->bottom()),
4197                                g1h->is_humongous_reclaim_candidate(region_idx),
4198                                obj->is_typeArray()
4199                               );
4200       return false;
4201     }
4202 
4203     guarantee(obj->is_typeArray(),
4204               "Only eagerly reclaiming type arrays is supported, but the object "
4205               PTR_FORMAT " is not.", p2i(r->bottom()));
4206 
4207     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4208                              region_idx,
4209                              (size_t)obj->size() * HeapWordSize,
4210                              p2i(r->bottom()),
4211                              r->rem_set()->occupied(),
4212                              r->rem_set()->strong_code_roots_list_length(),
4213                              next_bitmap->is_marked(r->bottom()),
4214                              g1h->is_humongous_reclaim_candidate(region_idx),
4215                              obj->is_typeArray()
4216                             );
4217 
4218     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4219     cm->humongous_object_eagerly_reclaimed(r);
4220     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4221            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4222            region_idx,
4223            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4224            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4225     _humongous_objects_reclaimed++;
4226     do {
4227       HeapRegion* next = g1h->next_region_in_humongous(r);
4228       _freed_bytes += r->used();
4229       r->set_containing_set(NULL);
4230       _humongous_regions_reclaimed++;
4231       g1h->free_humongous_region(r, _free_region_list);
4232       r = next;
4233     } while (r != NULL);
4234 
4235     return false;
4236   }
4237 
4238   uint humongous_objects_reclaimed() {
4239     return _humongous_objects_reclaimed;
4240   }
4241 
4242   uint humongous_regions_reclaimed() {
4243     return _humongous_regions_reclaimed;
4244   }
4245 
4246   size_t bytes_freed() const {
4247     return _freed_bytes;
4248   }
4249 };
4250 
4251 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4252   assert_at_safepoint_on_vm_thread();
4253 
4254   if (!G1EagerReclaimHumongousObjects ||
4255       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4256     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4257     return;
4258   }
4259 
4260   double start_time = os::elapsedTime();
4261 
4262   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4263 
4264   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4265   heap_region_iterate(&cl);
4266 
4267   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4268 
4269   G1HRPrinter* hrp = hr_printer();
4270   if (hrp->is_active()) {
4271     FreeRegionListIterator iter(&local_cleanup_list);
4272     while (iter.more_available()) {
4273       HeapRegion* hr = iter.get_next();
4274       hrp->cleanup(hr);
4275     }
4276   }
4277 
4278   prepend_to_freelist(&local_cleanup_list);
4279   decrement_summary_bytes(cl.bytes_freed());
4280 
4281   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4282                                                                     cl.humongous_objects_reclaimed());
4283 }
4284 
4285 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4286 public:
4287   virtual bool do_heap_region(HeapRegion* r) {
4288     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4289     G1CollectedHeap::heap()->clear_in_cset(r);
4290     r->set_young_index_in_cset(-1);
4291     return false;
4292   }
4293 };
4294 
4295 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4296   G1AbandonCollectionSetClosure cl;
4297   collection_set->iterate(&cl);
4298 
4299   collection_set->clear();
4300   collection_set->stop_incremental_building();
4301 }
4302 
4303 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4304   return _allocator->is_retained_old_region(hr);
4305 }
4306 
4307 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4308   _eden.add(hr);
4309   _g1_policy->set_region_eden(hr);
4310 }
4311 
4312 #ifdef ASSERT
4313 
4314 class NoYoungRegionsClosure: public HeapRegionClosure {
4315 private:
4316   bool _success;
4317 public:
4318   NoYoungRegionsClosure() : _success(true) { }
4319   bool do_heap_region(HeapRegion* r) {
4320     if (r->is_young()) {
4321       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4322                             p2i(r->bottom()), p2i(r->end()));
4323       _success = false;
4324     }
4325     return false;
4326   }
4327   bool success() { return _success; }
4328 };
4329 
4330 bool G1CollectedHeap::check_young_list_empty() {
4331   bool ret = (young_regions_count() == 0);
4332 
4333   NoYoungRegionsClosure closure;
4334   heap_region_iterate(&closure);
4335   ret = ret && closure.success();
4336 
4337   return ret;
4338 }
4339 
4340 #endif // ASSERT
4341 
4342 class TearDownRegionSetsClosure : public HeapRegionClosure {
4343   HeapRegionSet *_old_set;
4344 
4345 public:
4346   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4347 
4348   bool do_heap_region(HeapRegion* r) {
4349     if (r->is_old()) {
4350       _old_set->remove(r);
4351     } else if(r->is_young()) {
4352       r->uninstall_surv_rate_group();
4353     } else {
4354       // We ignore free regions, we'll empty the free list afterwards.
4355       // We ignore humongous and archive regions, we're not tearing down these
4356       // sets.
4357       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4358              "it cannot be another type");
4359     }
4360     return false;
4361   }
4362 
4363   ~TearDownRegionSetsClosure() {
4364     assert(_old_set->is_empty(), "post-condition");
4365   }
4366 };
4367 
4368 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4369   assert_at_safepoint_on_vm_thread();
4370 
4371   if (!free_list_only) {
4372     TearDownRegionSetsClosure cl(&_old_set);
4373     heap_region_iterate(&cl);
4374 
4375     // Note that emptying the _young_list is postponed and instead done as
4376     // the first step when rebuilding the regions sets again. The reason for
4377     // this is that during a full GC string deduplication needs to know if
4378     // a collected region was young or old when the full GC was initiated.
4379   }
4380   _hrm.remove_all_free_regions();
4381 }
4382 
4383 void G1CollectedHeap::increase_used(size_t bytes) {
4384   _summary_bytes_used += bytes;
4385 }
4386 
4387 void G1CollectedHeap::decrease_used(size_t bytes) {
4388   assert(_summary_bytes_used >= bytes,
4389          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4390          _summary_bytes_used, bytes);
4391   _summary_bytes_used -= bytes;
4392 }
4393 
4394 void G1CollectedHeap::set_used(size_t bytes) {
4395   _summary_bytes_used = bytes;
4396 }
4397 
4398 class RebuildRegionSetsClosure : public HeapRegionClosure {
4399 private:
4400   bool _free_list_only;
4401 
4402   HeapRegionSet* _old_set;
4403   HeapRegionManager* _hrm;
4404 
4405   size_t _total_used;
4406 
4407 public:
4408   RebuildRegionSetsClosure(bool free_list_only,
4409                            HeapRegionSet* old_set,
4410                            HeapRegionManager* hrm) :
4411     _free_list_only(free_list_only),
4412     _old_set(old_set), _hrm(hrm), _total_used(0) {
4413     assert(_hrm->num_free_regions() == 0, "pre-condition");
4414     if (!free_list_only) {
4415       assert(_old_set->is_empty(), "pre-condition");
4416     }
4417   }
4418 
4419   bool do_heap_region(HeapRegion* r) {
4420     if (r->is_empty()) {
4421       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4422       // Add free regions to the free list
4423       r->set_free();
4424       _hrm->insert_into_free_list(r);
4425     } else if (!_free_list_only) {
4426       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4427 
4428       if (r->is_archive() || r->is_humongous()) {
4429         // We ignore archive and humongous regions. We left these sets unchanged.
4430       } else {
4431         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4432         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4433         r->move_to_old();
4434         _old_set->add(r);
4435       }
4436       _total_used += r->used();
4437     }
4438 
4439     return false;
4440   }
4441 
4442   size_t total_used() {
4443     return _total_used;
4444   }
4445 };
4446 
4447 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4448   assert_at_safepoint_on_vm_thread();
4449 
4450   if (!free_list_only) {
4451     _eden.clear();
4452     _survivor.clear();
4453   }
4454 
4455   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4456   heap_region_iterate(&cl);
4457 
4458   if (!free_list_only) {
4459     set_used(cl.total_used());
4460     if (_archive_allocator != NULL) {
4461       _archive_allocator->clear_used();
4462     }
4463   }
4464   assert(used() == recalculate_used(),
4465          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4466          used(), recalculate_used());
4467 }
4468 
4469 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4470   HeapRegion* hr = heap_region_containing(p);
4471   return hr->is_in(p);
4472 }
4473 
4474 // Methods for the mutator alloc region
4475 
4476 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4477                                                       bool force) {
4478   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4479   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4480   if (force || should_allocate) {
4481     HeapRegion* new_alloc_region = new_region(word_size,
4482                                               false /* is_old */,
4483                                               false /* do_expand */);
4484     if (new_alloc_region != NULL) {
4485       set_region_short_lived_locked(new_alloc_region);
4486       _hr_printer.alloc(new_alloc_region, !should_allocate);
4487       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4488       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4489       return new_alloc_region;
4490     }
4491   }
4492   return NULL;
4493 }
4494 
4495 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4496                                                   size_t allocated_bytes) {
4497   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4498   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4499 
4500   collection_set()->add_eden_region(alloc_region);
4501   increase_used(allocated_bytes);
4502   _hr_printer.retire(alloc_region);
4503   // We update the eden sizes here, when the region is retired,
4504   // instead of when it's allocated, since this is the point that its
4505   // used space has been recorded in _summary_bytes_used.
4506   g1mm()->update_eden_size();
4507 }
4508 
4509 // Methods for the GC alloc regions
4510 
4511 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4512   if (dest.is_old()) {
4513     return true;
4514   } else {
4515     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4516   }
4517 }
4518 
4519 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4520   assert(FreeList_lock->owned_by_self(), "pre-condition");
4521 
4522   if (!has_more_regions(dest)) {
4523     return NULL;
4524   }
4525 
4526   const bool is_survivor = dest.is_young();
4527 
4528   HeapRegion* new_alloc_region = new_region(word_size,
4529                                             !is_survivor,
4530                                             true /* do_expand */);
4531   if (new_alloc_region != NULL) {
4532     if (is_survivor) {
4533       new_alloc_region->set_survivor();
4534       _survivor.add(new_alloc_region);
4535       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4536     } else {
4537       new_alloc_region->set_old();
4538       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4539     }
4540     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4541     _hr_printer.alloc(new_alloc_region);
4542     bool during_im = collector_state()->in_initial_mark_gc();
4543     new_alloc_region->note_start_of_copying(during_im);
4544     return new_alloc_region;
4545   }
4546   return NULL;
4547 }
4548 
4549 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4550                                              size_t allocated_bytes,
4551                                              InCSetState dest) {
4552   bool during_im = collector_state()->in_initial_mark_gc();
4553   alloc_region->note_end_of_copying(during_im);
4554   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4555   if (dest.is_old()) {
4556     old_set_add(alloc_region);
4557   }
4558   _hr_printer.retire(alloc_region);
4559 }
4560 
4561 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4562   bool expanded = false;
4563   uint index = _hrm.find_highest_free(&expanded);
4564 
4565   if (index != G1_NO_HRM_INDEX) {
4566     if (expanded) {
4567       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4568                                 HeapRegion::GrainWords * HeapWordSize);
4569     }
4570     _hrm.allocate_free_regions_starting_at(index, 1);
4571     return region_at(index);
4572   }
4573   return NULL;
4574 }
4575 
4576 // Optimized nmethod scanning
4577 
4578 class RegisterNMethodOopClosure: public OopClosure {
4579   G1CollectedHeap* _g1h;
4580   nmethod* _nm;
4581 
4582   template <class T> void do_oop_work(T* p) {
4583     T heap_oop = RawAccess<>::oop_load(p);
4584     if (!CompressedOops::is_null(heap_oop)) {
4585       oop obj = CompressedOops::decode_not_null(heap_oop);
4586       HeapRegion* hr = _g1h->heap_region_containing(obj);
4587       assert(!hr->is_continues_humongous(),
4588              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4589              " starting at " HR_FORMAT,
4590              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4591 
4592       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4593       hr->add_strong_code_root_locked(_nm);
4594     }
4595   }
4596 
4597 public:
4598   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4599     _g1h(g1h), _nm(nm) {}
4600 
4601   void do_oop(oop* p)       { do_oop_work(p); }
4602   void do_oop(narrowOop* p) { do_oop_work(p); }
4603 };
4604 
4605 class UnregisterNMethodOopClosure: public OopClosure {
4606   G1CollectedHeap* _g1h;
4607   nmethod* _nm;
4608 
4609   template <class T> void do_oop_work(T* p) {
4610     T heap_oop = RawAccess<>::oop_load(p);
4611     if (!CompressedOops::is_null(heap_oop)) {
4612       oop obj = CompressedOops::decode_not_null(heap_oop);
4613       HeapRegion* hr = _g1h->heap_region_containing(obj);
4614       assert(!hr->is_continues_humongous(),
4615              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4616              " starting at " HR_FORMAT,
4617              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4618 
4619       hr->remove_strong_code_root(_nm);
4620     }
4621   }
4622 
4623 public:
4624   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4625     _g1h(g1h), _nm(nm) {}
4626 
4627   void do_oop(oop* p)       { do_oop_work(p); }
4628   void do_oop(narrowOop* p) { do_oop_work(p); }
4629 };
4630 
4631 // Returns true if the reference points to an object that
4632 // can move in an incremental collection.
4633 bool G1CollectedHeap::is_scavengable(oop obj) {
4634   HeapRegion* hr = heap_region_containing(obj);
4635   return !hr->is_pinned();
4636 }
4637 
4638 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4639   guarantee(nm != NULL, "sanity");
4640   RegisterNMethodOopClosure reg_cl(this, nm);
4641   nm->oops_do(&reg_cl);
4642 }
4643 
4644 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4645   guarantee(nm != NULL, "sanity");
4646   UnregisterNMethodOopClosure reg_cl(this, nm);
4647   nm->oops_do(&reg_cl, true);
4648 }
4649 
4650 void G1CollectedHeap::purge_code_root_memory() {
4651   double purge_start = os::elapsedTime();
4652   G1CodeRootSet::purge();
4653   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4654   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4655 }
4656 
4657 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4658   G1CollectedHeap* _g1h;
4659 
4660 public:
4661   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4662     _g1h(g1h) {}
4663 
4664   void do_code_blob(CodeBlob* cb) {
4665     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4666     if (nm == NULL) {
4667       return;
4668     }
4669 
4670     if (ScavengeRootsInCode) {
4671       _g1h->register_nmethod(nm);
4672     }
4673   }
4674 };
4675 
4676 void G1CollectedHeap::rebuild_strong_code_roots() {
4677   RebuildStrongCodeRootClosure blob_cl(this);
4678   CodeCache::blobs_do(&blob_cl);
4679 }
4680 
4681 void G1CollectedHeap::initialize_serviceability() {
4682   _g1mm->initialize_serviceability();
4683 }
4684 
4685 MemoryUsage G1CollectedHeap::memory_usage() {
4686   return _g1mm->memory_usage();
4687 }
4688 
4689 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4690   return _g1mm->memory_managers();
4691 }
4692 
4693 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4694   return _g1mm->memory_pools();
4695 }