/* * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionSet.inline.hpp" #include "gc/g1/heterogeneousHeapRegionManager.hpp" #include "memory/allocation.hpp" HeterogeneousHeapRegionManager* HeterogeneousHeapRegionManager::manager() { G1CollectedHeap* g1h = G1CollectedHeap::heap(); assert(g1h != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()"); HeapRegionManager* hrm = g1h->hrm(); assert(hrm != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()"); return (HeterogeneousHeapRegionManager*)hrm; } void HeterogeneousHeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage, G1RegionToSpaceMapper* prev_bitmap, G1RegionToSpaceMapper* next_bitmap, G1RegionToSpaceMapper* bot, G1RegionToSpaceMapper* cardtable, G1RegionToSpaceMapper* card_counts) { HeapRegionManager::initialize(heap_storage, prev_bitmap, next_bitmap, bot, cardtable, card_counts); // We commit bitmap for all regions during initialization and mark the bitmap space as special. // This allows regions to be un-committed while concurrent-marking threads are accessing the bitmap concurrently. _prev_bitmap_mapper->commit_and_set_special(); _next_bitmap_mapper->commit_and_set_special(); } // expand_by() is called to grow the heap. We grow into nvdimm now. // Dram regions are committed later as needed during mutator region allocation or // when young list target length is determined after gc cycle. uint HeterogeneousHeapRegionManager::expand_by(uint num_regions, uint node_index, WorkGang* pretouch_workers) { uint num_regions_possible = total_regions_committed() >= max_expandable_length() ? 0 : max_expandable_length() - total_regions_committed(); uint num_expanded = expand_nvdimm(MIN2(num_regions, num_regions_possible), pretouch_workers); return num_expanded; } // Expands heap starting from 'start' index. The question is should we expand from one memory (e.g. nvdimm) to another (e.g. dram). // Looking at the code, expand_at() is called for humongous allocation where 'start' is in nv-dimm. // So we only allocate regions in the same kind of memory as 'start'. uint HeterogeneousHeapRegionManager::expand_at(uint start, uint num_regions, uint node_index, WorkGang* pretouch_workers) { if (num_regions == 0) { return 0; } uint target_num_regions = MIN2(num_regions, max_expandable_length() - total_regions_committed()); uint end = is_in_nvdimm(start) ? end_index_of_nvdimm() : end_index_of_dram(); uint num_expanded = expand_in_range(start, end, target_num_regions, pretouch_workers); assert(total_regions_committed() <= max_expandable_length(), "must be"); return num_expanded; } // This function ensures that there are 'expected_num_regions' committed regions in dram. // If new regions are committed, it un-commits that many regions from nv-dimm. // If there are already more regions committed in dram, extra regions are un-committed. void HeterogeneousHeapRegionManager::adjust_dram_regions(uint expected_num_regions, WorkGang* pretouch_workers) { // Release back the extra regions allocated in evacuation failure scenario. if(_no_borrowed_regions > 0) { _no_borrowed_regions -= shrink_dram(_no_borrowed_regions); _no_borrowed_regions -= shrink_nvdimm(_no_borrowed_regions); } if(expected_num_regions > free_list_dram_length()) { // If we are going to expand DRAM, we expand a little more so that we can absorb small variations in Young gen sizing. uint targeted_dram_regions = expected_num_regions * (1 + (double)G1YoungExpansionBufferPercent / 100); uint to_be_made_available = targeted_dram_regions - free_list_dram_length(); #ifdef ASSERT uint total_committed_before = total_regions_committed(); #endif uint can_be_made_available = shrink_nvdimm(to_be_made_available); uint ret = expand_dram(can_be_made_available, pretouch_workers); #ifdef ASSERT assert(ret == can_be_made_available, "should be equal"); assert(total_committed_before == total_regions_committed(), "invariant not met"); #endif } else { uint to_be_released = free_list_dram_length() - expected_num_regions; // if number of extra DRAM regions is small, do not shrink. if (to_be_released < expected_num_regions * G1YoungExpansionBufferPercent / 100) { return; } #ifdef ASSERT uint total_committed_before = total_regions_committed(); #endif uint ret = shrink_dram(to_be_released); assert(ret == to_be_released, "Should be able to shrink by given amount"); ret = expand_nvdimm(to_be_released, pretouch_workers); #ifdef ASSERT assert(ret == to_be_released, "Should be able to expand by given amount"); assert(total_committed_before == total_regions_committed(), "invariant not met"); #endif } } uint HeterogeneousHeapRegionManager::total_regions_committed() const { return num_committed_dram() + num_committed_nvdimm(); } uint HeterogeneousHeapRegionManager::num_committed_dram() const { // This class does not keep count of committed regions in dram and nv-dimm. // G1RegionToHeteroSpaceMapper keeps this information. return static_cast(_heap_mapper)->num_committed_dram(); } uint HeterogeneousHeapRegionManager::num_committed_nvdimm() const { // See comment for num_committed_dram() return static_cast(_heap_mapper)->num_committed_nvdimm(); } // Return maximum number of regions that heap can expand to. uint HeterogeneousHeapRegionManager::max_expandable_length() const { return _max_regions; } uint HeterogeneousHeapRegionManager::find_unavailable_in_range(uint start_idx, uint end_idx, uint* res_idx) const { guarantee(res_idx != NULL, "checking"); guarantee(start_idx <= (max_length() + 1), "checking"); uint num_regions = 0; uint cur = start_idx; while (cur <= end_idx && is_available(cur)) { cur++; } if (cur == end_idx + 1) { return num_regions; } *res_idx = cur; while (cur <= end_idx && !is_available(cur)) { cur++; } num_regions = cur - *res_idx; #ifdef ASSERT for (uint i = *res_idx; i < (*res_idx + num_regions); i++) { assert(!is_available(i), "just checking"); } assert(cur == end_idx + 1 || num_regions == 0 || is_available(cur), "The region at the current position %u must be available or at the end", cur); #endif return num_regions; } uint HeterogeneousHeapRegionManager::expand_dram(uint num_regions, WorkGang* pretouch_workers) { return expand_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, pretouch_workers); } uint HeterogeneousHeapRegionManager::expand_nvdimm(uint num_regions, WorkGang* pretouch_workers) { return expand_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, pretouch_workers); } // Follows same logic as expand_at() form HeapRegionManager. uint HeterogeneousHeapRegionManager::expand_in_range(uint start, uint end, uint num_regions, WorkGang* pretouch_gang) { uint so_far = 0; uint chunk_start = 0; uint num_last_found = 0; while (so_far < num_regions && (num_last_found = find_unavailable_in_range(start, end, &chunk_start)) > 0) { uint to_commit = MIN2(num_regions - so_far, num_last_found); make_regions_available(chunk_start, to_commit, G1MemoryNodeManager::AnyNodeIndex, pretouch_gang); so_far += to_commit; start = chunk_start + to_commit + 1; } return so_far; } // Shrink in the range of indexes which are reserved for dram. uint HeterogeneousHeapRegionManager::shrink_dram(uint num_regions, bool update_free_list) { return shrink_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, update_free_list); } // Shrink in the range of indexes which are reserved for nv-dimm. uint HeterogeneousHeapRegionManager::shrink_nvdimm(uint num_regions, bool update_free_list) { return shrink_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, update_free_list); } // Find empty regions in given range, un-commit them and return the count. uint HeterogeneousHeapRegionManager::shrink_in_range(uint start, uint end, uint num_regions, bool update_free_list) { if (num_regions == 0) { return 0; } uint so_far = 0; uint idx_last_found = 0; uint num_last_found; while (so_far < num_regions && (num_last_found = find_empty_in_range_reverse(start, end, &idx_last_found)) > 0) { uint to_uncommit = MIN2(num_regions - so_far, num_last_found); if(update_free_list) { _free_list.remove_starting_at(at(idx_last_found + num_last_found - to_uncommit), to_uncommit); } uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit); so_far += to_uncommit; end = idx_last_found; } return so_far; } uint HeterogeneousHeapRegionManager::find_empty_in_range_reverse(uint start_idx, uint end_idx, uint* res_idx) { guarantee(res_idx != NULL, "checking"); guarantee(start_idx < max_length(), "checking"); guarantee(end_idx < max_length(), "checking"); if(start_idx > end_idx) { return 0; } uint num_regions_found = 0; jlong cur = end_idx; while (cur >= start_idx && !(is_available(cur) && at(cur)->is_empty())) { cur--; } if (cur == start_idx - 1) { return num_regions_found; } jlong old_cur = cur; // cur indexes the first empty region while (cur >= start_idx && is_available(cur) && at(cur)->is_empty()) { cur--; } *res_idx = cur + 1; num_regions_found = old_cur - cur; #ifdef ASSERT for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) { assert(at(i)->is_empty(), "just checking"); } #endif return num_regions_found; } HeapRegion* HeterogeneousHeapRegionManager::allocate_free_region(HeapRegionType type, uint node_index) { // We want to prevent mutators from proceeding when we have borrowed regions from the last collection. This // will force a full collection to remedy the situation. // Free region requests from GC threads can proceed. if(type.is_eden() || type.is_humongous()) { if(has_borrowed_regions()) { return NULL; } } // old and humongous regions are allocated from nv-dimm; eden and survivor regions are allocated from dram // assumption: dram regions take higher indexes bool from_nvdimm = (type.is_old() || type.is_humongous()) ? true : false; bool from_head = from_nvdimm; HeapRegion* hr = _free_list.remove_region(from_head); if (hr != NULL && ( (from_nvdimm && !is_in_nvdimm(hr->hrm_index())) || (!from_nvdimm && !is_in_dram(hr->hrm_index())) ) ) { _free_list.add_ordered(hr); hr = NULL; } #ifdef ASSERT uint total_committed_before = total_regions_committed(); #endif if (hr == NULL) { if (!from_nvdimm) { uint ret = shrink_nvdimm(1); if (ret == 1) { ret = expand_dram(1, NULL); assert(ret == 1, "We should be able to commit one region"); hr = _free_list.remove_region(from_head); } } else { /*is_old*/ uint ret = shrink_dram(1); if (ret == 1) { ret = expand_nvdimm(1, NULL); assert(ret == 1, "We should be able to commit one region"); hr = _free_list.remove_region(from_head); } } } #ifdef ASSERT assert(total_committed_before == total_regions_committed(), "invariant not met"); #endif // When an old region is requested (which happens during collection pause) and we can't find any empty region // in the set of available regions (which is an evacuation failure scenario), we borrow (or pre-allocate) an unavailable region // from nv-dimm. This region is used to evacuate surviving objects from eden, survivor or old. if(hr == NULL && type.is_old()) { hr = borrow_old_region_for_gc(); } if (hr != NULL) { assert(hr->next() == NULL, "Single region should not have next"); assert(is_available(hr->hrm_index()), "Must be committed"); } return hr; } uint HeterogeneousHeapRegionManager::find_contiguous_only_empty(size_t num) { if (has_borrowed_regions()) { return G1_NO_HRM_INDEX; } return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, true); } uint HeterogeneousHeapRegionManager::find_contiguous_empty_or_unavailable(size_t num) { if (has_borrowed_regions()) { return G1_NO_HRM_INDEX; } return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, false); } uint HeterogeneousHeapRegionManager::find_contiguous(size_t start, size_t end, size_t num, bool empty_only) { uint found = 0; size_t length_found = 0; uint cur = (uint)start; uint length_unavailable = 0; while (length_found < num && cur <= end) { HeapRegion* hr = _regions.get_by_index(cur); if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) { // This region is a potential candidate for allocation into. if (!is_available(cur)) { if(shrink_dram(1) == 1) { uint ret = expand_in_range(cur, cur, 1, NULL); assert(ret == 1, "We should be able to expand at this index"); } else { length_unavailable++; } } length_found++; } else { // This region is not a candidate. The next region is the next possible one. found = cur + 1; length_found = 0; } cur++; } if (length_found == num) { for (uint i = found; i < (found + num); i++) { HeapRegion* hr = _regions.get_by_index(i); // sanity check guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()), "Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT " that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr)); } if (!empty_only && length_unavailable > (max_expandable_length() - total_regions_committed())) { // if 'length_unavailable' number of regions will be made available, we will exceed max regions. return G1_NO_HRM_INDEX; } return found; } else { return G1_NO_HRM_INDEX; } } uint HeterogeneousHeapRegionManager::find_highest_free(bool* expanded) { // Loop downwards from the highest dram region index, looking for an // entry which is either free or not yet committed. If not yet // committed, expand_at that index. uint curr = end_index_of_dram(); while (true) { HeapRegion *hr = _regions.get_by_index(curr); if (hr == NULL && !(total_regions_committed() < _max_regions)) { uint res = shrink_nvdimm(1); if (res == 1) { res = expand_in_range(curr, curr, 1, NULL); assert(res == 1, "We should be able to expand since shrink was successful"); *expanded = true; return curr; } } else { if (hr->is_free()) { *expanded = false; return curr; } } if (curr == start_index_of_dram()) { return G1_NO_HRM_INDEX; } curr--; } } // We need to override this since region 0 which serves are dummy region in base class may not be available here. // This is a corner condition when either number of regions is small. When adaptive sizing is used, initial heap size // could be just one region. This region is commited in dram to be used for young generation, leaving region 0 (which is in nvdimm) // unavailable. HeapRegion* HeterogeneousHeapRegionManager::get_dummy_region() { uint curr = 0; while (curr < _regions.length()) { if (is_available(curr)) { return new_heap_region(curr); } curr++; } assert(false, "We should always find a region available for dummy region"); return NULL; } // First shrink in dram, then in nv-dimm. uint HeterogeneousHeapRegionManager::shrink_by(uint num_regions) { // This call is made at end of full collection. Before making this call the region sets are tore down (tear_down_region_sets()). // So shrink() calls below do not need to remove uncomitted regions from free list. uint ret = shrink_dram(num_regions, false /* update_free_list */); ret += shrink_nvdimm(num_regions - ret, false /* update_free_list */); return ret; } void HeterogeneousHeapRegionManager::verify() { HeapRegionManager::verify(); } uint HeterogeneousHeapRegionManager::free_list_dram_length() const { return _free_list.num_of_regions_in_range(start_index_of_dram(), end_index_of_dram()); } uint HeterogeneousHeapRegionManager::free_list_nvdimm_length() const { return _free_list.num_of_regions_in_range(start_index_of_nvdimm(), end_index_of_nvdimm()); } bool HeterogeneousHeapRegionManager::is_in_nvdimm(uint index) const { return index >= start_index_of_nvdimm() && index <= end_index_of_nvdimm(); } bool HeterogeneousHeapRegionManager::is_in_dram(uint index) const { return index >= start_index_of_dram() && index <= end_index_of_dram(); } // We have to make sure full collection copies all surviving objects to NV-DIMM. // We might not have enough regions in nvdimm_set, so we need to make more regions on NV-DIMM available for full collection. // Note: by doing this we are breaking the in-variant that total number of committed regions is equal to current heap size. // After full collection ends, we will re-establish this in-variant by freeing DRAM regions. void HeterogeneousHeapRegionManager::prepare_for_full_collection_start() { _total_commited_before_full_gc = total_regions_committed() - _no_borrowed_regions; _no_borrowed_regions = 0; expand_nvdimm(num_committed_dram(), NULL); remove_all_free_regions(); } // We need to bring back the total committed regions to before full collection start. // Unless we are close to OOM, all regular (not pinned) regions in DRAM should be free. // We shrink all free regions in DRAM and if needed from NV-DIMM (when there are pinned DRAM regions) // If we can't bring back committed regions count to _total_commited_before_full_gc, we keep the extra count in _no_borrowed_regions. // When this GC finishes, new regions won't be allocated since has_borrowed_regions() is true. VM will be forced to re-try GC // with clear soft references followed by OOM error in worst case. void HeterogeneousHeapRegionManager::prepare_for_full_collection_end() { uint shrink_size = total_regions_committed() - _total_commited_before_full_gc; uint so_far = 0; uint idx_last_found = 0; uint num_last_found; uint end = (uint)_regions.length() - 1; while (so_far < shrink_size && (num_last_found = find_empty_in_range_reverse(0, end, &idx_last_found)) > 0) { uint to_uncommit = MIN2(shrink_size - so_far, num_last_found); uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit); so_far += to_uncommit; end = idx_last_found; } // See comment above the function. _no_borrowed_regions = shrink_size - so_far; } uint HeterogeneousHeapRegionManager::start_index_of_dram() const { return _max_regions;} uint HeterogeneousHeapRegionManager::end_index_of_dram() const { return 2*_max_regions - 1; } uint HeterogeneousHeapRegionManager::start_index_of_nvdimm() const { return 0; } uint HeterogeneousHeapRegionManager::end_index_of_nvdimm() const { return _max_regions - 1; } // This function is called when there are no free nv-dimm regions. // It borrows a region from the set of unavailable regions in nv-dimm for GC purpose. HeapRegion* HeterogeneousHeapRegionManager::borrow_old_region_for_gc() { assert(free_list_nvdimm_length() == 0, "this function should be called only when there are no nv-dimm regions in free list"); uint ret = expand_nvdimm(1, NULL); if(ret != 1) { return NULL; } HeapRegion* hr = _free_list.remove_region(true /*from_head*/); assert(is_in_nvdimm(hr->hrm_index()), "allocated region should be in nv-dimm"); _no_borrowed_regions++; return hr; } bool HeterogeneousHeapRegionManager::has_borrowed_regions() const { return _no_borrowed_regions > 0; }