1 /*
   2  * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1AllocRegion.inline.hpp"
  28 #include "gc/g1/g1EvacStats.inline.hpp"
  29 #include "gc/g1/g1EvacuationInfo.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1NUMA.hpp"
  32 #include "gc/g1/g1Policy.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionSet.inline.hpp"
  35 #include "gc/g1/heapRegionType.hpp"
  36 #include "utilities/align.hpp"
  37 
  38 G1Allocator::G1Allocator(G1CollectedHeap* heap) :
  39   _g1h(heap),
  40   _numa(heap->numa()),
  41   _survivor_is_full(false),
  42   _old_is_full(false),
  43   _num_alloc_regions(_numa->num_active_nodes()),
  44   _mutator_alloc_regions(NULL),
  45   _survivor_gc_alloc_region(heap->alloc_buffer_stats(G1HeapRegionAttr::Young)),
  46   _old_gc_alloc_region(heap->alloc_buffer_stats(G1HeapRegionAttr::Old)),
  47   _retained_old_gc_alloc_region(NULL) {
  48 
  49   _mutator_alloc_regions = NEW_C_HEAP_ARRAY(MutatorAllocRegion, _num_alloc_regions, mtGC);
  50   for (uint i = 0; i < _num_alloc_regions; i++) {
  51     ::new(_mutator_alloc_regions + i) MutatorAllocRegion(i);
  52   }
  53 }
  54 
  55 G1Allocator::~G1Allocator() {
  56   for (uint i = 0; i < _num_alloc_regions; i++) {
  57     _mutator_alloc_regions[i].~MutatorAllocRegion();
  58   }
  59   FREE_C_HEAP_ARRAY(MutatorAllocRegion, _mutator_alloc_regions);
  60 }
  61 
  62 #ifdef ASSERT
  63 bool G1Allocator::has_mutator_alloc_region() {
  64   uint node_index = current_node_index();
  65   return mutator_alloc_region(node_index)->get() != NULL;
  66 }
  67 #endif
  68 
  69 void G1Allocator::init_mutator_alloc_regions() {
  70   for (uint i = 0; i < _num_alloc_regions; i++) {
  71     assert(mutator_alloc_region(i)->get() == NULL, "pre-condition");
  72     mutator_alloc_region(i)->init();
  73   }
  74 }
  75 
  76 void G1Allocator::release_mutator_alloc_regions() {
  77   for (uint i = 0; i < _num_alloc_regions; i++) {
  78     mutator_alloc_region(i)->release();
  79     assert(mutator_alloc_region(i)->get() == NULL, "post-condition");
  80   }
  81 }
  82 
  83 bool G1Allocator::is_retained_old_region(HeapRegion* hr) {
  84   return _retained_old_gc_alloc_region == hr;
  85 }
  86 
  87 void G1Allocator::reuse_retained_old_region(G1EvacuationInfo& evacuation_info,
  88                                             OldGCAllocRegion* old,
  89                                             HeapRegion** retained_old) {
  90   HeapRegion* retained_region = *retained_old;
  91   *retained_old = NULL;
  92   assert(retained_region == NULL || !retained_region->is_archive(),
  93          "Archive region should not be alloc region (index %u)", retained_region->hrm_index());
  94 
  95   // We will discard the current GC alloc region if:
  96   // a) it's in the collection set (it can happen!),
  97   // b) it's already full (no point in using it),
  98   // c) it's empty (this means that it was emptied during
  99   // a cleanup and it should be on the free list now), or
 100   // d) it's humongous (this means that it was emptied
 101   // during a cleanup and was added to the free list, but
 102   // has been subsequently used to allocate a humongous
 103   // object that may be less than the region size).
 104   if (retained_region != NULL &&
 105       !retained_region->in_collection_set() &&
 106       !(retained_region->top() == retained_region->end()) &&
 107       !retained_region->is_empty() &&
 108       !retained_region->is_humongous()) {
 109     // The retained region was added to the old region set when it was
 110     // retired. We have to remove it now, since we don't allow regions
 111     // we allocate to in the region sets. We'll re-add it later, when
 112     // it's retired again.
 113     _g1h->old_set_remove(retained_region);
 114     old->set(retained_region);
 115     _g1h->hr_printer()->reuse(retained_region);
 116     evacuation_info.set_alloc_regions_used_before(retained_region->used());
 117   }
 118 }
 119 
 120 void G1Allocator::init_gc_alloc_regions(G1EvacuationInfo& evacuation_info) {
 121   assert_at_safepoint_on_vm_thread();
 122 
 123   _survivor_is_full = false;
 124   _old_is_full = false;
 125 
 126   _survivor_gc_alloc_region.init();
 127   _old_gc_alloc_region.init();
 128   reuse_retained_old_region(evacuation_info,
 129                             &_old_gc_alloc_region,
 130                             &_retained_old_gc_alloc_region);
 131 }
 132 
 133 void G1Allocator::release_gc_alloc_regions(G1EvacuationInfo& evacuation_info) {
 134   evacuation_info.set_allocation_regions(survivor_gc_alloc_region()->count() +
 135                                          old_gc_alloc_region()->count());
 136   survivor_gc_alloc_region()->release();
 137   // If we have an old GC alloc region to release, we'll save it in
 138   // _retained_old_gc_alloc_region. If we don't
 139   // _retained_old_gc_alloc_region will become NULL. This is what we
 140   // want either way so no reason to check explicitly for either
 141   // condition.
 142   _retained_old_gc_alloc_region = old_gc_alloc_region()->release();
 143 }
 144 
 145 void G1Allocator::abandon_gc_alloc_regions() {
 146   assert(survivor_gc_alloc_region()->get() == NULL, "pre-condition");
 147   assert(old_gc_alloc_region()->get() == NULL, "pre-condition");
 148   _retained_old_gc_alloc_region = NULL;
 149 }
 150 
 151 bool G1Allocator::survivor_is_full() const {
 152   return _survivor_is_full;
 153 }
 154 
 155 bool G1Allocator::old_is_full() const {
 156   return _old_is_full;
 157 }
 158 
 159 void G1Allocator::set_survivor_full() {
 160   _survivor_is_full = true;
 161 }
 162 
 163 void G1Allocator::set_old_full() {
 164   _old_is_full = true;
 165 }
 166 
 167 size_t G1Allocator::unsafe_max_tlab_alloc() {
 168   // Return the remaining space in the cur alloc region, but not less than
 169   // the min TLAB size.
 170 
 171   // Also, this value can be at most the humongous object threshold,
 172   // since we can't allow tlabs to grow big enough to accommodate
 173   // humongous objects.
 174 
 175   uint node_index = current_node_index();
 176   HeapRegion* hr = mutator_alloc_region(node_index)->get();
 177   size_t max_tlab = _g1h->max_tlab_size() * wordSize;
 178   if (hr == NULL) {
 179     return max_tlab;
 180   } else {
 181     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
 182   }
 183 }
 184 
 185 size_t G1Allocator::used_in_alloc_regions() {
 186   assert(Heap_lock->owner() != NULL, "Should be owned on this thread's behalf.");
 187   size_t used = 0;
 188   for (uint i = 0; i < _num_alloc_regions; i++) {
 189     used += mutator_alloc_region(i)->used_in_alloc_regions();
 190   }
 191   return used;
 192 }
 193 
 194 
 195 HeapWord* G1Allocator::par_allocate_during_gc(G1HeapRegionAttr dest,
 196                                               size_t word_size) {
 197   size_t temp = 0;
 198   HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp);
 199   assert(result == NULL || temp == word_size,
 200          "Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 201          word_size, temp, p2i(result));
 202   return result;
 203 }
 204 
 205 HeapWord* G1Allocator::par_allocate_during_gc(G1HeapRegionAttr dest,
 206                                               size_t min_word_size,
 207                                               size_t desired_word_size,
 208                                               size_t* actual_word_size) {
 209   switch (dest.type()) {
 210     case G1HeapRegionAttr::Young:
 211       return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 212     case G1HeapRegionAttr::Old:
 213       return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 214     default:
 215       ShouldNotReachHere();
 216       return NULL; // Keep some compilers happy
 217   }
 218 }
 219 
 220 HeapWord* G1Allocator::survivor_attempt_allocation(size_t min_word_size,
 221                                                    size_t desired_word_size,
 222                                                    size_t* actual_word_size) {
 223   assert(!_g1h->is_humongous(desired_word_size),
 224          "we should not be seeing humongous-size allocations in this path");
 225 
 226   HeapWord* result = survivor_gc_alloc_region()->attempt_allocation(min_word_size,
 227                                                                     desired_word_size,
 228                                                                     actual_word_size);
 229   if (result == NULL && !survivor_is_full()) {
 230     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 231     result = survivor_gc_alloc_region()->attempt_allocation_locked(min_word_size,
 232                                                                    desired_word_size,
 233                                                                    actual_word_size);
 234     if (result == NULL) {
 235       set_survivor_full();
 236     }
 237   }
 238   if (result != NULL) {
 239     _g1h->dirty_young_block(result, *actual_word_size);
 240   }
 241   return result;
 242 }
 243 
 244 HeapWord* G1Allocator::old_attempt_allocation(size_t min_word_size,
 245                                               size_t desired_word_size,
 246                                               size_t* actual_word_size) {
 247   assert(!_g1h->is_humongous(desired_word_size),
 248          "we should not be seeing humongous-size allocations in this path");
 249 
 250   HeapWord* result = old_gc_alloc_region()->attempt_allocation(min_word_size,
 251                                                                desired_word_size,
 252                                                                actual_word_size);
 253   if (result == NULL && !old_is_full()) {
 254     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 255     result = old_gc_alloc_region()->attempt_allocation_locked(min_word_size,
 256                                                               desired_word_size,
 257                                                               actual_word_size);
 258     if (result == NULL) {
 259       set_old_full();
 260     }
 261   }
 262   return result;
 263 }
 264 
 265 uint G1PLABAllocator::calc_survivor_alignment_bytes() {
 266   assert(SurvivorAlignmentInBytes >= ObjectAlignmentInBytes, "sanity");
 267   if (SurvivorAlignmentInBytes == ObjectAlignmentInBytes) {
 268     // No need to align objects in the survivors differently, return 0
 269     // which means "survivor alignment is not used".
 270     return 0;
 271   } else {
 272     assert(SurvivorAlignmentInBytes > 0, "sanity");
 273     return SurvivorAlignmentInBytes;
 274   }
 275 }
 276 
 277 G1PLABAllocator::G1PLABAllocator(G1Allocator* allocator) :
 278   _g1h(G1CollectedHeap::heap()),
 279   _allocator(allocator),
 280   _surviving_alloc_buffer(_g1h->desired_plab_sz(G1HeapRegionAttr::Young)),
 281   _tenured_alloc_buffer(_g1h->desired_plab_sz(G1HeapRegionAttr::Old)),
 282   _survivor_alignment_bytes(calc_survivor_alignment_bytes()) {
 283   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
 284     _direct_allocated[state] = 0;
 285     _alloc_buffers[state] = NULL;
 286   }
 287   _alloc_buffers[G1HeapRegionAttr::Young] = &_surviving_alloc_buffer;
 288   _alloc_buffers[G1HeapRegionAttr::Old]  = &_tenured_alloc_buffer;
 289 }
 290 
 291 bool G1PLABAllocator::may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const {
 292   return (allocation_word_sz * 100 < buffer_size * ParallelGCBufferWastePct);
 293 }
 294 
 295 HeapWord* G1PLABAllocator::allocate_direct_or_new_plab(G1HeapRegionAttr dest,
 296                                                        size_t word_sz,
 297                                                        bool* plab_refill_failed) {
 298   size_t plab_word_size = _g1h->desired_plab_sz(dest);
 299   size_t required_in_plab = PLAB::size_required_for_allocation(word_sz);
 300 
 301   // Only get a new PLAB if the allocation fits and it would not waste more than
 302   // ParallelGCBufferWastePct in the existing buffer.
 303   if ((required_in_plab <= plab_word_size) &&
 304     may_throw_away_buffer(required_in_plab, plab_word_size)) {
 305 
 306     PLAB* alloc_buf = alloc_buffer(dest);
 307     alloc_buf->retire();
 308 
 309     size_t actual_plab_size = 0;
 310     HeapWord* buf = _allocator->par_allocate_during_gc(dest,
 311                                                        required_in_plab,
 312                                                        plab_word_size,
 313                                                        &actual_plab_size);
 314 
 315     assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)),
 316            "Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 317            required_in_plab, plab_word_size, actual_plab_size, p2i(buf));
 318 
 319     if (buf != NULL) {
 320       alloc_buf->set_buf(buf, actual_plab_size);
 321 
 322       HeapWord* const obj = alloc_buf->allocate(word_sz);
 323       assert(obj != NULL, "PLAB should have been big enough, tried to allocate "
 324                           SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT,
 325                           word_sz, required_in_plab, plab_word_size);
 326       return obj;
 327     }
 328     // Otherwise.
 329     *plab_refill_failed = true;
 330   }
 331   // Try direct allocation.
 332   HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz);
 333   if (result != NULL) {
 334     _direct_allocated[dest.type()] += word_sz;
 335   }
 336   return result;
 337 }
 338 
 339 void G1PLABAllocator::undo_allocation(G1HeapRegionAttr dest, HeapWord* obj, size_t word_sz) {
 340   alloc_buffer(dest)->undo_allocation(obj, word_sz);
 341 }
 342 
 343 void G1PLABAllocator::flush_and_retire_stats() {
 344   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
 345     PLAB* const buf = _alloc_buffers[state];
 346     if (buf != NULL) {
 347       G1EvacStats* stats = _g1h->alloc_buffer_stats(state);
 348       buf->flush_and_retire_stats(stats);
 349       stats->add_direct_allocated(_direct_allocated[state]);
 350       _direct_allocated[state] = 0;
 351     }
 352   }
 353 }
 354 
 355 size_t G1PLABAllocator::waste() const {
 356   size_t result = 0;
 357   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
 358     PLAB * const buf = _alloc_buffers[state];
 359     if (buf != NULL) {
 360       result += buf->waste();
 361     }
 362   }
 363   return result;
 364 }
 365 
 366 size_t G1PLABAllocator::undo_waste() const {
 367   size_t result = 0;
 368   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
 369     PLAB * const buf = _alloc_buffers[state];
 370     if (buf != NULL) {
 371       result += buf->undo_waste();
 372     }
 373   }
 374   return result;
 375 }
 376 
 377 bool G1ArchiveAllocator::_archive_check_enabled = false;
 378 G1ArchiveRegionMap G1ArchiveAllocator::_closed_archive_region_map;
 379 G1ArchiveRegionMap G1ArchiveAllocator::_open_archive_region_map;
 380 
 381 G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h, bool open) {
 382   // Create the archive allocator, and also enable archive object checking
 383   // in mark-sweep, since we will be creating archive regions.
 384   G1ArchiveAllocator* result =  new G1ArchiveAllocator(g1h, open);
 385   enable_archive_object_check();
 386   return result;
 387 }
 388 
 389 bool G1ArchiveAllocator::alloc_new_region() {
 390   // Allocate the highest free region in the reserved heap,
 391   // and add it to our list of allocated regions. It is marked
 392   // archive and added to the old set.
 393   HeapRegion* hr = _g1h->alloc_highest_free_region();
 394   if (hr == NULL) {
 395     return false;
 396   }
 397   assert(hr->is_empty(), "expected empty region (index %u)", hr->hrm_index());
 398   if (_open) {
 399     hr->set_open_archive();
 400   } else {
 401     hr->set_closed_archive();
 402   }
 403   _g1h->policy()->remset_tracker()->update_at_allocate(hr);
 404   _g1h->archive_set_add(hr);
 405   _g1h->hr_printer()->alloc(hr);
 406   _allocated_regions.append(hr);
 407   _allocation_region = hr;
 408 
 409   // Set up _bottom and _max to begin allocating in the lowest
 410   // min_region_size'd chunk of the allocated G1 region.
 411   _bottom = hr->bottom();
 412   _max = _bottom + HeapRegion::min_region_size_in_words();
 413 
 414   // Tell mark-sweep that objects in this region are not to be marked.
 415   set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), _open);
 416 
 417   // Since we've modified the old set, call update_sizes.
 418   _g1h->g1mm()->update_sizes();
 419   return true;
 420 }
 421 
 422 HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) {
 423   assert(word_size != 0, "size must not be zero");
 424   if (_allocation_region == NULL) {
 425     if (!alloc_new_region()) {
 426       return NULL;
 427     }
 428   }
 429   HeapWord* old_top = _allocation_region->top();
 430   assert(_bottom >= _allocation_region->bottom(),
 431          "inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT,
 432          p2i(_bottom), p2i(_allocation_region->bottom()));
 433   assert(_max <= _allocation_region->end(),
 434          "inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT,
 435          p2i(_max), p2i(_allocation_region->end()));
 436   assert(_bottom <= old_top && old_top <= _max,
 437          "inconsistent allocation state: expected "
 438          PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT,
 439          p2i(_bottom), p2i(old_top), p2i(_max));
 440 
 441   // Allocate the next word_size words in the current allocation chunk.
 442   // If allocation would cross the _max boundary, insert a filler and begin
 443   // at the base of the next min_region_size'd chunk. Also advance to the next
 444   // chunk if we don't yet cross the boundary, but the remainder would be too
 445   // small to fill.
 446   HeapWord* new_top = old_top + word_size;
 447   size_t remainder = pointer_delta(_max, new_top);
 448   if ((new_top > _max) ||
 449       ((new_top < _max) && (remainder < CollectedHeap::min_fill_size()))) {
 450     if (old_top != _max) {
 451       size_t fill_size = pointer_delta(_max, old_top);
 452       CollectedHeap::fill_with_object(old_top, fill_size);
 453       _summary_bytes_used += fill_size * HeapWordSize;
 454     }
 455     _allocation_region->set_top(_max);
 456     old_top = _bottom = _max;
 457 
 458     // Check if we've just used up the last min_region_size'd chunk
 459     // in the current region, and if so, allocate a new one.
 460     if (_bottom != _allocation_region->end()) {
 461       _max = _bottom + HeapRegion::min_region_size_in_words();
 462     } else {
 463       if (!alloc_new_region()) {
 464         return NULL;
 465       }
 466       old_top = _allocation_region->bottom();
 467     }
 468   }
 469   _allocation_region->set_top(old_top + word_size);
 470   _summary_bytes_used += word_size * HeapWordSize;
 471 
 472   return old_top;
 473 }
 474 
 475 void G1ArchiveAllocator::complete_archive(GrowableArray<MemRegion>* ranges,
 476                                           size_t end_alignment_in_bytes) {
 477   assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(),
 478          "alignment " SIZE_FORMAT " too large", end_alignment_in_bytes);
 479   assert(is_aligned(end_alignment_in_bytes, HeapWordSize),
 480          "alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize);
 481 
 482   // If we've allocated nothing, simply return.
 483   if (_allocation_region == NULL) {
 484     return;
 485   }
 486 
 487   // If an end alignment was requested, insert filler objects.
 488   if (end_alignment_in_bytes != 0) {
 489     HeapWord* currtop = _allocation_region->top();
 490     HeapWord* newtop = align_up(currtop, end_alignment_in_bytes);
 491     size_t fill_size = pointer_delta(newtop, currtop);
 492     if (fill_size != 0) {
 493       if (fill_size < CollectedHeap::min_fill_size()) {
 494         // If the required fill is smaller than we can represent,
 495         // bump up to the next aligned address. We know we won't exceed the current
 496         // region boundary because the max supported alignment is smaller than the min
 497         // region size, and because the allocation code never leaves space smaller than
 498         // the min_fill_size at the top of the current allocation region.
 499         newtop = align_up(currtop + CollectedHeap::min_fill_size(),
 500                           end_alignment_in_bytes);
 501         fill_size = pointer_delta(newtop, currtop);
 502       }
 503       HeapWord* fill = archive_mem_allocate(fill_size);
 504       CollectedHeap::fill_with_objects(fill, fill_size);
 505     }
 506   }
 507 
 508   // Loop through the allocated regions, and create MemRegions summarizing
 509   // the allocated address range, combining contiguous ranges. Add the
 510   // MemRegions to the GrowableArray provided by the caller.
 511   int index = _allocated_regions.length() - 1;
 512   assert(_allocated_regions.at(index) == _allocation_region,
 513          "expected region %u at end of array, found %u",
 514          _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index());
 515   HeapWord* base_address = _allocation_region->bottom();
 516   HeapWord* top = base_address;
 517 
 518   while (index >= 0) {
 519     HeapRegion* next = _allocated_regions.at(index);
 520     HeapWord* new_base = next->bottom();
 521     HeapWord* new_top = next->top();
 522     if (new_base != top) {
 523       ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 524       base_address = new_base;
 525     }
 526     top = new_top;
 527     index = index - 1;
 528   }
 529 
 530   assert(top != base_address, "zero-sized range, address " PTR_FORMAT, p2i(base_address));
 531   ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 532   _allocated_regions.clear();
 533   _allocation_region = NULL;
 534 };