1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskqueue.inline.hpp"
  83 #include "gc/shared/weakProcessor.inline.hpp"
  84 #include "gc/shared/workerPolicy.hpp"
  85 #include "logging/log.hpp"
  86 #include "memory/allocation.hpp"
  87 #include "memory/iterator.hpp"
  88 #include "memory/resourceArea.hpp"
  89 #include "memory/universe.hpp"
  90 #include "oops/access.inline.hpp"
  91 #include "oops/compressedOops.inline.hpp"
  92 #include "oops/oop.inline.hpp"
  93 #include "runtime/atomic.hpp"
  94 #include "runtime/flags/flagSetting.hpp"
  95 #include "runtime/handles.inline.hpp"
  96 #include "runtime/init.hpp"
  97 #include "runtime/orderAccess.hpp"
  98 #include "runtime/threadSMR.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/globalDefinitions.hpp"
 102 #include "utilities/stack.inline.hpp"
 103 
 104 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 105 
 106 // INVARIANTS/NOTES
 107 //
 108 // All allocation activity covered by the G1CollectedHeap interface is
 109 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 110 // and allocate_new_tlab, which are the "entry" points to the
 111 // allocation code from the rest of the JVM.  (Note that this does not
 112 // apply to TLAB allocation, which is not part of this interface: it
 113 // is done by clients of this interface.)
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 116  private:
 117   size_t _num_dirtied;
 118   G1CollectedHeap* _g1h;
 119   G1CardTable* _g1_ct;
 120 
 121   HeapRegion* region_for_card(CardValue* card_ptr) const {
 122     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 123   }
 124 
 125   bool will_become_free(HeapRegion* hr) const {
 126     // A region will be freed by free_collection_set if the region is in the
 127     // collection set and has not had an evacuation failure.
 128     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 129   }
 130 
 131  public:
 132   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 133     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 134 
 135   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 136     HeapRegion* hr = region_for_card(card_ptr);
 137 
 138     // Should only dirty cards in regions that won't be freed.
 139     if (!will_become_free(hr)) {
 140       *card_ptr = G1CardTable::dirty_card_val();
 141       _num_dirtied++;
 142     }
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 160   Ticks start = Ticks::now();
 161   workers()->run_task(task, workers()->active_workers());
 162   return Ticks::now() - start;
 163 }
 164 
 165 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 166                                              MemRegion mr) {
 167   return new HeapRegion(hrs_index, bot(), mr);
 168 }
 169 
 170 // Private methods.
 171 
 172 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 173                                         HeapRegionType type,
 174                                         bool do_expand,
 175                                         uint node_index) {
 176   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 177          "the only time we use this to allocate a humongous region is "
 178          "when we are allocating a single humongous region");
 179 
 180   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 181 
 182   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 183     // Currently, only attempts to allocate GC alloc regions set
 184     // do_expand to true. So, we should only reach here during a
 185     // safepoint. If this assumption changes we might have to
 186     // reconsider the use of _expand_heap_after_alloc_failure.
 187     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 188 
 189     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 190                               word_size * HeapWordSize);
 191 
 192     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 193            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 194            word_size * HeapWordSize);
 195     if (expand_single_region(node_index)) {
 196       // Given that expand_single_region() succeeded in expanding the heap, and we
 197       // always expand the heap by an amount aligned to the heap
 198       // region size, the free list should in theory not be empty.
 199       // In either case allocate_free_region() will check for NULL.
 200       res = _hrm->allocate_free_region(type, node_index);
 201     } else {
 202       _expand_heap_after_alloc_failure = false;
 203     }
 204   }
 205   return res;
 206 }
 207 
 208 HeapWord*
 209 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 210                                                            uint num_regions,
 211                                                            size_t word_size) {
 212   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 213   assert(is_humongous(word_size), "word_size should be humongous");
 214   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 215 
 216   // Index of last region in the series.
 217   uint last = first + num_regions - 1;
 218 
 219   // We need to initialize the region(s) we just discovered. This is
 220   // a bit tricky given that it can happen concurrently with
 221   // refinement threads refining cards on these regions and
 222   // potentially wanting to refine the BOT as they are scanning
 223   // those cards (this can happen shortly after a cleanup; see CR
 224   // 6991377). So we have to set up the region(s) carefully and in
 225   // a specific order.
 226 
 227   // The word size sum of all the regions we will allocate.
 228   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 229   assert(word_size <= word_size_sum, "sanity");
 230 
 231   // This will be the "starts humongous" region.
 232   HeapRegion* first_hr = region_at(first);
 233   // The header of the new object will be placed at the bottom of
 234   // the first region.
 235   HeapWord* new_obj = first_hr->bottom();
 236   // This will be the new top of the new object.
 237   HeapWord* obj_top = new_obj + word_size;
 238 
 239   // First, we need to zero the header of the space that we will be
 240   // allocating. When we update top further down, some refinement
 241   // threads might try to scan the region. By zeroing the header we
 242   // ensure that any thread that will try to scan the region will
 243   // come across the zero klass word and bail out.
 244   //
 245   // NOTE: It would not have been correct to have used
 246   // CollectedHeap::fill_with_object() and make the space look like
 247   // an int array. The thread that is doing the allocation will
 248   // later update the object header to a potentially different array
 249   // type and, for a very short period of time, the klass and length
 250   // fields will be inconsistent. This could cause a refinement
 251   // thread to calculate the object size incorrectly.
 252   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 253 
 254   // Next, pad out the unused tail of the last region with filler
 255   // objects, for improved usage accounting.
 256   // How many words we use for filler objects.
 257   size_t word_fill_size = word_size_sum - word_size;
 258 
 259   // How many words memory we "waste" which cannot hold a filler object.
 260   size_t words_not_fillable = 0;
 261 
 262   if (word_fill_size >= min_fill_size()) {
 263     fill_with_objects(obj_top, word_fill_size);
 264   } else if (word_fill_size > 0) {
 265     // We have space to fill, but we cannot fit an object there.
 266     words_not_fillable = word_fill_size;
 267     word_fill_size = 0;
 268   }
 269 
 270   // We will set up the first region as "starts humongous". This
 271   // will also update the BOT covering all the regions to reflect
 272   // that there is a single object that starts at the bottom of the
 273   // first region.
 274   first_hr->set_starts_humongous(obj_top, word_fill_size);
 275   _policy->remset_tracker()->update_at_allocate(first_hr);
 276   // Then, if there are any, we will set up the "continues
 277   // humongous" regions.
 278   HeapRegion* hr = NULL;
 279   for (uint i = first + 1; i <= last; ++i) {
 280     hr = region_at(i);
 281     hr->set_continues_humongous(first_hr);
 282     _policy->remset_tracker()->update_at_allocate(hr);
 283   }
 284 
 285   // Up to this point no concurrent thread would have been able to
 286   // do any scanning on any region in this series. All the top
 287   // fields still point to bottom, so the intersection between
 288   // [bottom,top] and [card_start,card_end] will be empty. Before we
 289   // update the top fields, we'll do a storestore to make sure that
 290   // no thread sees the update to top before the zeroing of the
 291   // object header and the BOT initialization.
 292   OrderAccess::storestore();
 293 
 294   // Now, we will update the top fields of the "continues humongous"
 295   // regions except the last one.
 296   for (uint i = first; i < last; ++i) {
 297     hr = region_at(i);
 298     hr->set_top(hr->end());
 299   }
 300 
 301   hr = region_at(last);
 302   // If we cannot fit a filler object, we must set top to the end
 303   // of the humongous object, otherwise we cannot iterate the heap
 304   // and the BOT will not be complete.
 305   hr->set_top(hr->end() - words_not_fillable);
 306 
 307   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 308          "obj_top should be in last region");
 309 
 310   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 311 
 312   assert(words_not_fillable == 0 ||
 313          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 314          "Miscalculation in humongous allocation");
 315 
 316   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 317 
 318   for (uint i = first; i <= last; ++i) {
 319     hr = region_at(i);
 320     _humongous_set.add(hr);
 321     _hr_printer.alloc(hr);
 322   }
 323 
 324   return new_obj;
 325 }
 326 
 327 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 328   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 329   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 330 }
 331 
 332 // If could fit into free regions w/o expansion, try.
 333 // Otherwise, if can expand, do so.
 334 // Otherwise, if using ex regions might help, try with ex given back.
 335 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 336   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 337 
 338   _verifier->verify_region_sets_optional();
 339 
 340   uint first = G1_NO_HRM_INDEX;
 341   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 342 
 343   if (obj_regions == 1) {
 344     // Only one region to allocate, try to use a fast path by directly allocating
 345     // from the free lists. Do not try to expand here, we will potentially do that
 346     // later.
 347     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 348     if (hr != NULL) {
 349       first = hr->hrm_index();
 350     }
 351   } else {
 352     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 353     // are lucky enough to find some.
 354     first = _hrm->find_contiguous_only_empty(obj_regions);
 355     if (first != G1_NO_HRM_INDEX) {
 356       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 357     }
 358   }
 359 
 360   if (first == G1_NO_HRM_INDEX) {
 361     // Policy: We could not find enough regions for the humongous object in the
 362     // free list. Look through the heap to find a mix of free and uncommitted regions.
 363     // If so, try expansion.
 364     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 365     if (first != G1_NO_HRM_INDEX) {
 366       // We found something. Make sure these regions are committed, i.e. expand
 367       // the heap. Alternatively we could do a defragmentation GC.
 368       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 369                                     word_size * HeapWordSize);
 370 
 371       _hrm->expand_at(first, obj_regions, workers());
 372       policy()->record_new_heap_size(num_regions());
 373 
 374 #ifdef ASSERT
 375       for (uint i = first; i < first + obj_regions; ++i) {
 376         HeapRegion* hr = region_at(i);
 377         assert(hr->is_free(), "sanity");
 378         assert(hr->is_empty(), "sanity");
 379         assert(is_on_master_free_list(hr), "sanity");
 380       }
 381 #endif
 382       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 383     } else {
 384       // Policy: Potentially trigger a defragmentation GC.
 385     }
 386   }
 387 
 388   HeapWord* result = NULL;
 389   if (first != G1_NO_HRM_INDEX) {
 390     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 391     assert(result != NULL, "it should always return a valid result");
 392 
 393     // A successful humongous object allocation changes the used space
 394     // information of the old generation so we need to recalculate the
 395     // sizes and update the jstat counters here.
 396     g1mm()->update_sizes();
 397   }
 398 
 399   _verifier->verify_region_sets_optional();
 400 
 401   return result;
 402 }
 403 
 404 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 405                                              size_t requested_size,
 406                                              size_t* actual_size) {
 407   assert_heap_not_locked_and_not_at_safepoint();
 408   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 409 
 410   return attempt_allocation(min_size, requested_size, actual_size);
 411 }
 412 
 413 HeapWord*
 414 G1CollectedHeap::mem_allocate(size_t word_size,
 415                               bool*  gc_overhead_limit_was_exceeded) {
 416   assert_heap_not_locked_and_not_at_safepoint();
 417 
 418   if (is_humongous(word_size)) {
 419     return attempt_allocation_humongous(word_size);
 420   }
 421   size_t dummy = 0;
 422   return attempt_allocation(word_size, word_size, &dummy);
 423 }
 424 
 425 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 426   ResourceMark rm; // For retrieving the thread names in log messages.
 427 
 428   // Make sure you read the note in attempt_allocation_humongous().
 429 
 430   assert_heap_not_locked_and_not_at_safepoint();
 431   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 432          "be called for humongous allocation requests");
 433 
 434   // We should only get here after the first-level allocation attempt
 435   // (attempt_allocation()) failed to allocate.
 436 
 437   // We will loop until a) we manage to successfully perform the
 438   // allocation or b) we successfully schedule a collection which
 439   // fails to perform the allocation. b) is the only case when we'll
 440   // return NULL.
 441   HeapWord* result = NULL;
 442   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 443     bool should_try_gc;
 444     uint gc_count_before;
 445 
 446     {
 447       MutexLocker x(Heap_lock);
 448       result = _allocator->attempt_allocation_locked(word_size);
 449       if (result != NULL) {
 450         return result;
 451       }
 452 
 453       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 454       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 455       // waiting because the GCLocker is active to not wait too long.
 456       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 457         // No need for an ergo message here, can_expand_young_list() does this when
 458         // it returns true.
 459         result = _allocator->attempt_allocation_force(word_size);
 460         if (result != NULL) {
 461           return result;
 462         }
 463       }
 464       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 465       // the GCLocker initiated GC has been performed and then retry. This includes
 466       // the case when the GC Locker is not active but has not been performed.
 467       should_try_gc = !GCLocker::needs_gc();
 468       // Read the GC count while still holding the Heap_lock.
 469       gc_count_before = total_collections();
 470     }
 471 
 472     if (should_try_gc) {
 473       bool succeeded;
 474       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 475                                    GCCause::_g1_inc_collection_pause);
 476       if (result != NULL) {
 477         assert(succeeded, "only way to get back a non-NULL result");
 478         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 479                              Thread::current()->name(), p2i(result));
 480         return result;
 481       }
 482 
 483       if (succeeded) {
 484         // We successfully scheduled a collection which failed to allocate. No
 485         // point in trying to allocate further. We'll just return NULL.
 486         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 487                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 488         return NULL;
 489       }
 490       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 491                            Thread::current()->name(), word_size);
 492     } else {
 493       // Failed to schedule a collection.
 494       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 495         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 496                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 497         return NULL;
 498       }
 499       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 500       // The GCLocker is either active or the GCLocker initiated
 501       // GC has not yet been performed. Stall until it is and
 502       // then retry the allocation.
 503       GCLocker::stall_until_clear();
 504       gclocker_retry_count += 1;
 505     }
 506 
 507     // We can reach here if we were unsuccessful in scheduling a
 508     // collection (because another thread beat us to it) or if we were
 509     // stalled due to the GC locker. In either can we should retry the
 510     // allocation attempt in case another thread successfully
 511     // performed a collection and reclaimed enough space. We do the
 512     // first attempt (without holding the Heap_lock) here and the
 513     // follow-on attempt will be at the start of the next loop
 514     // iteration (after taking the Heap_lock).
 515     size_t dummy = 0;
 516     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 517     if (result != NULL) {
 518       return result;
 519     }
 520 
 521     // Give a warning if we seem to be looping forever.
 522     if ((QueuedAllocationWarningCount > 0) &&
 523         (try_count % QueuedAllocationWarningCount == 0)) {
 524       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 525                              Thread::current()->name(), try_count, word_size);
 526     }
 527   }
 528 
 529   ShouldNotReachHere();
 530   return NULL;
 531 }
 532 
 533 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 534   assert_at_safepoint_on_vm_thread();
 535   if (_archive_allocator == NULL) {
 536     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 537   }
 538 }
 539 
 540 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 541   // Allocations in archive regions cannot be of a size that would be considered
 542   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 543   // may be different at archive-restore time.
 544   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 545 }
 546 
 547 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 548   assert_at_safepoint_on_vm_thread();
 549   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 550   if (is_archive_alloc_too_large(word_size)) {
 551     return NULL;
 552   }
 553   return _archive_allocator->archive_mem_allocate(word_size);
 554 }
 555 
 556 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 557                                               size_t end_alignment_in_bytes) {
 558   assert_at_safepoint_on_vm_thread();
 559   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 560 
 561   // Call complete_archive to do the real work, filling in the MemRegion
 562   // array with the archive regions.
 563   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 564   delete _archive_allocator;
 565   _archive_allocator = NULL;
 566 }
 567 
 568 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 569   assert(ranges != NULL, "MemRegion array NULL");
 570   assert(count != 0, "No MemRegions provided");
 571   MemRegion reserved = _hrm->reserved();
 572   for (size_t i = 0; i < count; i++) {
 573     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 574       return false;
 575     }
 576   }
 577   return true;
 578 }
 579 
 580 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 581                                             size_t count,
 582                                             bool open) {
 583   assert(!is_init_completed(), "Expect to be called at JVM init time");
 584   assert(ranges != NULL, "MemRegion array NULL");
 585   assert(count != 0, "No MemRegions provided");
 586   MutexLocker x(Heap_lock);
 587 
 588   MemRegion reserved = _hrm->reserved();
 589   HeapWord* prev_last_addr = NULL;
 590   HeapRegion* prev_last_region = NULL;
 591 
 592   // Temporarily disable pretouching of heap pages. This interface is used
 593   // when mmap'ing archived heap data in, so pre-touching is wasted.
 594   FlagSetting fs(AlwaysPreTouch, false);
 595 
 596   // Enable archive object checking used by G1MarkSweep. We have to let it know
 597   // about each archive range, so that objects in those ranges aren't marked.
 598   G1ArchiveAllocator::enable_archive_object_check();
 599 
 600   // For each specified MemRegion range, allocate the corresponding G1
 601   // regions and mark them as archive regions. We expect the ranges
 602   // in ascending starting address order, without overlap.
 603   for (size_t i = 0; i < count; i++) {
 604     MemRegion curr_range = ranges[i];
 605     HeapWord* start_address = curr_range.start();
 606     size_t word_size = curr_range.word_size();
 607     HeapWord* last_address = curr_range.last();
 608     size_t commits = 0;
 609 
 610     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 611               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 612               p2i(start_address), p2i(last_address));
 613     guarantee(start_address > prev_last_addr,
 614               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 615               p2i(start_address), p2i(prev_last_addr));
 616     prev_last_addr = last_address;
 617 
 618     // Check for ranges that start in the same G1 region in which the previous
 619     // range ended, and adjust the start address so we don't try to allocate
 620     // the same region again. If the current range is entirely within that
 621     // region, skip it, just adjusting the recorded top.
 622     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 623     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 624       start_address = start_region->end();
 625       if (start_address > last_address) {
 626         increase_used(word_size * HeapWordSize);
 627         start_region->set_top(last_address + 1);
 628         continue;
 629       }
 630       start_region->set_top(start_address);
 631       curr_range = MemRegion(start_address, last_address + 1);
 632       start_region = _hrm->addr_to_region(start_address);
 633     }
 634 
 635     // Perform the actual region allocation, exiting if it fails.
 636     // Then note how much new space we have allocated.
 637     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 638       return false;
 639     }
 640     increase_used(word_size * HeapWordSize);
 641     if (commits != 0) {
 642       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 643                                 HeapRegion::GrainWords * HeapWordSize * commits);
 644 
 645     }
 646 
 647     // Mark each G1 region touched by the range as archive, add it to
 648     // the old set, and set top.
 649     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 650     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 651     prev_last_region = last_region;
 652 
 653     while (curr_region != NULL) {
 654       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 655              "Region already in use (index %u)", curr_region->hrm_index());
 656       if (open) {
 657         curr_region->set_open_archive();
 658       } else {
 659         curr_region->set_closed_archive();
 660       }
 661       _hr_printer.alloc(curr_region);
 662       _archive_set.add(curr_region);
 663       HeapWord* top;
 664       HeapRegion* next_region;
 665       if (curr_region != last_region) {
 666         top = curr_region->end();
 667         next_region = _hrm->next_region_in_heap(curr_region);
 668       } else {
 669         top = last_address + 1;
 670         next_region = NULL;
 671       }
 672       curr_region->set_top(top);
 673       curr_region->set_first_dead(top);
 674       curr_region->set_end_of_live(top);
 675       curr_region = next_region;
 676     }
 677 
 678     // Notify mark-sweep of the archive
 679     G1ArchiveAllocator::set_range_archive(curr_range, open);
 680   }
 681   return true;
 682 }
 683 
 684 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 685   assert(!is_init_completed(), "Expect to be called at JVM init time");
 686   assert(ranges != NULL, "MemRegion array NULL");
 687   assert(count != 0, "No MemRegions provided");
 688   MemRegion reserved = _hrm->reserved();
 689   HeapWord *prev_last_addr = NULL;
 690   HeapRegion* prev_last_region = NULL;
 691 
 692   // For each MemRegion, create filler objects, if needed, in the G1 regions
 693   // that contain the address range. The address range actually within the
 694   // MemRegion will not be modified. That is assumed to have been initialized
 695   // elsewhere, probably via an mmap of archived heap data.
 696   MutexLocker x(Heap_lock);
 697   for (size_t i = 0; i < count; i++) {
 698     HeapWord* start_address = ranges[i].start();
 699     HeapWord* last_address = ranges[i].last();
 700 
 701     assert(reserved.contains(start_address) && reserved.contains(last_address),
 702            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 703            p2i(start_address), p2i(last_address));
 704     assert(start_address > prev_last_addr,
 705            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 706            p2i(start_address), p2i(prev_last_addr));
 707 
 708     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 709     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 710     HeapWord* bottom_address = start_region->bottom();
 711 
 712     // Check for a range beginning in the same region in which the
 713     // previous one ended.
 714     if (start_region == prev_last_region) {
 715       bottom_address = prev_last_addr + 1;
 716     }
 717 
 718     // Verify that the regions were all marked as archive regions by
 719     // alloc_archive_regions.
 720     HeapRegion* curr_region = start_region;
 721     while (curr_region != NULL) {
 722       guarantee(curr_region->is_archive(),
 723                 "Expected archive region at index %u", curr_region->hrm_index());
 724       if (curr_region != last_region) {
 725         curr_region = _hrm->next_region_in_heap(curr_region);
 726       } else {
 727         curr_region = NULL;
 728       }
 729     }
 730 
 731     prev_last_addr = last_address;
 732     prev_last_region = last_region;
 733 
 734     // Fill the memory below the allocated range with dummy object(s),
 735     // if the region bottom does not match the range start, or if the previous
 736     // range ended within the same G1 region, and there is a gap.
 737     if (start_address != bottom_address) {
 738       size_t fill_size = pointer_delta(start_address, bottom_address);
 739       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 740       increase_used(fill_size * HeapWordSize);
 741     }
 742   }
 743 }
 744 
 745 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 746                                                      size_t desired_word_size,
 747                                                      size_t* actual_word_size) {
 748   assert_heap_not_locked_and_not_at_safepoint();
 749   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 750          "be called for humongous allocation requests");
 751 
 752   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 753 
 754   if (result == NULL) {
 755     *actual_word_size = desired_word_size;
 756     result = attempt_allocation_slow(desired_word_size);
 757   }
 758 
 759   assert_heap_not_locked();
 760   if (result != NULL) {
 761     assert(*actual_word_size != 0, "Actual size must have been set here");
 762     dirty_young_block(result, *actual_word_size);
 763   } else {
 764     *actual_word_size = 0;
 765   }
 766 
 767   return result;
 768 }
 769 
 770 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 771   assert(!is_init_completed(), "Expect to be called at JVM init time");
 772   assert(ranges != NULL, "MemRegion array NULL");
 773   assert(count != 0, "No MemRegions provided");
 774   MemRegion reserved = _hrm->reserved();
 775   HeapWord* prev_last_addr = NULL;
 776   HeapRegion* prev_last_region = NULL;
 777   size_t size_used = 0;
 778   size_t uncommitted_regions = 0;
 779 
 780   // For each Memregion, free the G1 regions that constitute it, and
 781   // notify mark-sweep that the range is no longer to be considered 'archive.'
 782   MutexLocker x(Heap_lock);
 783   for (size_t i = 0; i < count; i++) {
 784     HeapWord* start_address = ranges[i].start();
 785     HeapWord* last_address = ranges[i].last();
 786 
 787     assert(reserved.contains(start_address) && reserved.contains(last_address),
 788            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 789            p2i(start_address), p2i(last_address));
 790     assert(start_address > prev_last_addr,
 791            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 792            p2i(start_address), p2i(prev_last_addr));
 793     size_used += ranges[i].byte_size();
 794     prev_last_addr = last_address;
 795 
 796     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 797     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 798 
 799     // Check for ranges that start in the same G1 region in which the previous
 800     // range ended, and adjust the start address so we don't try to free
 801     // the same region again. If the current range is entirely within that
 802     // region, skip it.
 803     if (start_region == prev_last_region) {
 804       start_address = start_region->end();
 805       if (start_address > last_address) {
 806         continue;
 807       }
 808       start_region = _hrm->addr_to_region(start_address);
 809     }
 810     prev_last_region = last_region;
 811 
 812     // After verifying that each region was marked as an archive region by
 813     // alloc_archive_regions, set it free and empty and uncommit it.
 814     HeapRegion* curr_region = start_region;
 815     while (curr_region != NULL) {
 816       guarantee(curr_region->is_archive(),
 817                 "Expected archive region at index %u", curr_region->hrm_index());
 818       uint curr_index = curr_region->hrm_index();
 819       _archive_set.remove(curr_region);
 820       curr_region->set_free();
 821       curr_region->set_top(curr_region->bottom());
 822       if (curr_region != last_region) {
 823         curr_region = _hrm->next_region_in_heap(curr_region);
 824       } else {
 825         curr_region = NULL;
 826       }
 827       _hrm->shrink_at(curr_index, 1);
 828       uncommitted_regions++;
 829     }
 830 
 831     // Notify mark-sweep that this is no longer an archive range.
 832     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 833   }
 834 
 835   if (uncommitted_regions != 0) {
 836     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 837                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 838   }
 839   decrease_used(size_used);
 840 }
 841 
 842 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 843   assert(obj != NULL, "archived obj is NULL");
 844   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 845 
 846   // Loading an archived object makes it strongly reachable. If it is
 847   // loaded during concurrent marking, it must be enqueued to the SATB
 848   // queue, shading the previously white object gray.
 849   G1BarrierSet::enqueue(obj);
 850 
 851   return obj;
 852 }
 853 
 854 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 855   ResourceMark rm; // For retrieving the thread names in log messages.
 856 
 857   // The structure of this method has a lot of similarities to
 858   // attempt_allocation_slow(). The reason these two were not merged
 859   // into a single one is that such a method would require several "if
 860   // allocation is not humongous do this, otherwise do that"
 861   // conditional paths which would obscure its flow. In fact, an early
 862   // version of this code did use a unified method which was harder to
 863   // follow and, as a result, it had subtle bugs that were hard to
 864   // track down. So keeping these two methods separate allows each to
 865   // be more readable. It will be good to keep these two in sync as
 866   // much as possible.
 867 
 868   assert_heap_not_locked_and_not_at_safepoint();
 869   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 870          "should only be called for humongous allocations");
 871 
 872   // Humongous objects can exhaust the heap quickly, so we should check if we
 873   // need to start a marking cycle at each humongous object allocation. We do
 874   // the check before we do the actual allocation. The reason for doing it
 875   // before the allocation is that we avoid having to keep track of the newly
 876   // allocated memory while we do a GC.
 877   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 878                                            word_size)) {
 879     collect(GCCause::_g1_humongous_allocation);
 880   }
 881 
 882   // We will loop until a) we manage to successfully perform the
 883   // allocation or b) we successfully schedule a collection which
 884   // fails to perform the allocation. b) is the only case when we'll
 885   // return NULL.
 886   HeapWord* result = NULL;
 887   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 888     bool should_try_gc;
 889     uint gc_count_before;
 890 
 891 
 892     {
 893       MutexLocker x(Heap_lock);
 894 
 895       // Given that humongous objects are not allocated in young
 896       // regions, we'll first try to do the allocation without doing a
 897       // collection hoping that there's enough space in the heap.
 898       result = humongous_obj_allocate(word_size);
 899       if (result != NULL) {
 900         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 901         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 902         return result;
 903       }
 904 
 905       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 906       // the GCLocker initiated GC has been performed and then retry. This includes
 907       // the case when the GC Locker is not active but has not been performed.
 908       should_try_gc = !GCLocker::needs_gc();
 909       // Read the GC count while still holding the Heap_lock.
 910       gc_count_before = total_collections();
 911     }
 912 
 913     if (should_try_gc) {
 914       bool succeeded;
 915       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 916                                    GCCause::_g1_humongous_allocation);
 917       if (result != NULL) {
 918         assert(succeeded, "only way to get back a non-NULL result");
 919         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 920                              Thread::current()->name(), p2i(result));
 921         return result;
 922       }
 923 
 924       if (succeeded) {
 925         // We successfully scheduled a collection which failed to allocate. No
 926         // point in trying to allocate further. We'll just return NULL.
 927         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 928                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 929         return NULL;
 930       }
 931       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 932                            Thread::current()->name(), word_size);
 933     } else {
 934       // Failed to schedule a collection.
 935       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 936         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 937                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 938         return NULL;
 939       }
 940       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 941       // The GCLocker is either active or the GCLocker initiated
 942       // GC has not yet been performed. Stall until it is and
 943       // then retry the allocation.
 944       GCLocker::stall_until_clear();
 945       gclocker_retry_count += 1;
 946     }
 947 
 948 
 949     // We can reach here if we were unsuccessful in scheduling a
 950     // collection (because another thread beat us to it) or if we were
 951     // stalled due to the GC locker. In either can we should retry the
 952     // allocation attempt in case another thread successfully
 953     // performed a collection and reclaimed enough space.
 954     // Humongous object allocation always needs a lock, so we wait for the retry
 955     // in the next iteration of the loop, unlike for the regular iteration case.
 956     // Give a warning if we seem to be looping forever.
 957 
 958     if ((QueuedAllocationWarningCount > 0) &&
 959         (try_count % QueuedAllocationWarningCount == 0)) {
 960       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 961                              Thread::current()->name(), try_count, word_size);
 962     }
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 970                                                            bool expect_null_mutator_alloc_region) {
 971   assert_at_safepoint_on_vm_thread();
 972   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 973          "the current alloc region was unexpectedly found to be non-NULL");
 974 
 975   if (!is_humongous(word_size)) {
 976     return _allocator->attempt_allocation_locked(word_size);
 977   } else {
 978     HeapWord* result = humongous_obj_allocate(word_size);
 979     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 980       collector_state()->set_initiate_conc_mark_if_possible(true);
 981     }
 982     return result;
 983   }
 984 
 985   ShouldNotReachHere();
 986 }
 987 
 988 class PostCompactionPrinterClosure: public HeapRegionClosure {
 989 private:
 990   G1HRPrinter* _hr_printer;
 991 public:
 992   bool do_heap_region(HeapRegion* hr) {
 993     assert(!hr->is_young(), "not expecting to find young regions");
 994     _hr_printer->post_compaction(hr);
 995     return false;
 996   }
 997 
 998   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 999     : _hr_printer(hr_printer) { }
1000 };
1001 
1002 void G1CollectedHeap::print_hrm_post_compaction() {
1003   if (_hr_printer.is_active()) {
1004     PostCompactionPrinterClosure cl(hr_printer());
1005     heap_region_iterate(&cl);
1006   }
1007 }
1008 
1009 void G1CollectedHeap::abort_concurrent_cycle() {
1010   // If we start the compaction before the CM threads finish
1011   // scanning the root regions we might trip them over as we'll
1012   // be moving objects / updating references. So let's wait until
1013   // they are done. By telling them to abort, they should complete
1014   // early.
1015   _cm->root_regions()->abort();
1016   _cm->root_regions()->wait_until_scan_finished();
1017 
1018   // Disable discovery and empty the discovered lists
1019   // for the CM ref processor.
1020   _ref_processor_cm->disable_discovery();
1021   _ref_processor_cm->abandon_partial_discovery();
1022   _ref_processor_cm->verify_no_references_recorded();
1023 
1024   // Abandon current iterations of concurrent marking and concurrent
1025   // refinement, if any are in progress.
1026   concurrent_mark()->concurrent_cycle_abort();
1027 }
1028 
1029 void G1CollectedHeap::prepare_heap_for_full_collection() {
1030   // Make sure we'll choose a new allocation region afterwards.
1031   _allocator->release_mutator_alloc_regions();
1032   _allocator->abandon_gc_alloc_regions();
1033 
1034   // We may have added regions to the current incremental collection
1035   // set between the last GC or pause and now. We need to clear the
1036   // incremental collection set and then start rebuilding it afresh
1037   // after this full GC.
1038   abandon_collection_set(collection_set());
1039 
1040   tear_down_region_sets(false /* free_list_only */);
1041 
1042   hrm()->prepare_for_full_collection_start();
1043 }
1044 
1045 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1046   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1047   assert_used_and_recalculate_used_equal(this);
1048   _verifier->verify_region_sets_optional();
1049   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1050   _verifier->check_bitmaps("Full GC Start");
1051 }
1052 
1053 void G1CollectedHeap::prepare_heap_for_mutators() {
1054   hrm()->prepare_for_full_collection_end();
1055 
1056   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1057   ClassLoaderDataGraph::purge();
1058   MetaspaceUtils::verify_metrics();
1059 
1060   // Prepare heap for normal collections.
1061   assert(num_free_regions() == 0, "we should not have added any free regions");
1062   rebuild_region_sets(false /* free_list_only */);
1063   abort_refinement();
1064   resize_heap_if_necessary();
1065 
1066   // Rebuild the strong code root lists for each region
1067   rebuild_strong_code_roots();
1068 
1069   // Purge code root memory
1070   purge_code_root_memory();
1071 
1072   // Start a new incremental collection set for the next pause
1073   start_new_collection_set();
1074 
1075   _allocator->init_mutator_alloc_regions();
1076 
1077   // Post collection state updates.
1078   MetaspaceGC::compute_new_size();
1079 }
1080 
1081 void G1CollectedHeap::abort_refinement() {
1082   if (_hot_card_cache->use_cache()) {
1083     _hot_card_cache->reset_hot_cache();
1084   }
1085 
1086   // Discard all remembered set updates.
1087   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1088   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1089          "DCQS should be empty");
1090 }
1091 
1092 void G1CollectedHeap::verify_after_full_collection() {
1093   _hrm->verify_optional();
1094   _verifier->verify_region_sets_optional();
1095   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1096   // Clear the previous marking bitmap, if needed for bitmap verification.
1097   // Note we cannot do this when we clear the next marking bitmap in
1098   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1099   // objects marked during a full GC against the previous bitmap.
1100   // But we need to clear it before calling check_bitmaps below since
1101   // the full GC has compacted objects and updated TAMS but not updated
1102   // the prev bitmap.
1103   if (G1VerifyBitmaps) {
1104     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1105     _cm->clear_prev_bitmap(workers());
1106   }
1107   // This call implicitly verifies that the next bitmap is clear after Full GC.
1108   _verifier->check_bitmaps("Full GC End");
1109 
1110   // At this point there should be no regions in the
1111   // entire heap tagged as young.
1112   assert(check_young_list_empty(), "young list should be empty at this point");
1113 
1114   // Note: since we've just done a full GC, concurrent
1115   // marking is no longer active. Therefore we need not
1116   // re-enable reference discovery for the CM ref processor.
1117   // That will be done at the start of the next marking cycle.
1118   // We also know that the STW processor should no longer
1119   // discover any new references.
1120   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1121   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1122   _ref_processor_stw->verify_no_references_recorded();
1123   _ref_processor_cm->verify_no_references_recorded();
1124 }
1125 
1126 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1127   // Post collection logging.
1128   // We should do this after we potentially resize the heap so
1129   // that all the COMMIT / UNCOMMIT events are generated before
1130   // the compaction events.
1131   print_hrm_post_compaction();
1132   heap_transition->print();
1133   print_heap_after_gc();
1134   print_heap_regions();
1135 #ifdef TRACESPINNING
1136   ParallelTaskTerminator::print_termination_counts();
1137 #endif
1138 }
1139 
1140 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1141                                          bool clear_all_soft_refs) {
1142   assert_at_safepoint_on_vm_thread();
1143 
1144   if (GCLocker::check_active_before_gc()) {
1145     // Full GC was not completed.
1146     return false;
1147   }
1148 
1149   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1150       soft_ref_policy()->should_clear_all_soft_refs();
1151 
1152   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1153   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1154 
1155   collector.prepare_collection();
1156   collector.collect();
1157   collector.complete_collection();
1158 
1159   // Full collection was successfully completed.
1160   return true;
1161 }
1162 
1163 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1164   // Currently, there is no facility in the do_full_collection(bool) API to notify
1165   // the caller that the collection did not succeed (e.g., because it was locked
1166   // out by the GC locker). So, right now, we'll ignore the return value.
1167   bool dummy = do_full_collection(true,                /* explicit_gc */
1168                                   clear_all_soft_refs);
1169 }
1170 
1171 void G1CollectedHeap::resize_heap_if_necessary() {
1172   assert_at_safepoint_on_vm_thread();
1173 
1174   // Capacity, free and used after the GC counted as full regions to
1175   // include the waste in the following calculations.
1176   const size_t capacity_after_gc = capacity();
1177   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1178 
1179   // This is enforced in arguments.cpp.
1180   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1181          "otherwise the code below doesn't make sense");
1182 
1183   // We don't have floating point command-line arguments
1184   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1185   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1186   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1187   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1188 
1189   // We have to be careful here as these two calculations can overflow
1190   // 32-bit size_t's.
1191   double used_after_gc_d = (double) used_after_gc;
1192   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1193   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1194 
1195   // Let's make sure that they are both under the max heap size, which
1196   // by default will make them fit into a size_t.
1197   double desired_capacity_upper_bound = (double) MaxHeapSize;
1198   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1199                                     desired_capacity_upper_bound);
1200   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1201                                     desired_capacity_upper_bound);
1202 
1203   // We can now safely turn them into size_t's.
1204   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1205   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1206 
1207   // This assert only makes sense here, before we adjust them
1208   // with respect to the min and max heap size.
1209   assert(minimum_desired_capacity <= maximum_desired_capacity,
1210          "minimum_desired_capacity = " SIZE_FORMAT ", "
1211          "maximum_desired_capacity = " SIZE_FORMAT,
1212          minimum_desired_capacity, maximum_desired_capacity);
1213 
1214   // Should not be greater than the heap max size. No need to adjust
1215   // it with respect to the heap min size as it's a lower bound (i.e.,
1216   // we'll try to make the capacity larger than it, not smaller).
1217   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1218   // Should not be less than the heap min size. No need to adjust it
1219   // with respect to the heap max size as it's an upper bound (i.e.,
1220   // we'll try to make the capacity smaller than it, not greater).
1221   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1222 
1223   if (capacity_after_gc < minimum_desired_capacity) {
1224     // Don't expand unless it's significant
1225     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1226 
1227     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1228                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1229                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1230                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1231 
1232     expand(expand_bytes, _workers);
1233 
1234     // No expansion, now see if we want to shrink
1235   } else if (capacity_after_gc > maximum_desired_capacity) {
1236     // Capacity too large, compute shrinking size
1237     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1238 
1239     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1240                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1241                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1242                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1243 
1244     shrink(shrink_bytes);
1245   }
1246 }
1247 
1248 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1249                                                             bool do_gc,
1250                                                             bool clear_all_soft_refs,
1251                                                             bool expect_null_mutator_alloc_region,
1252                                                             bool* gc_succeeded) {
1253   *gc_succeeded = true;
1254   // Let's attempt the allocation first.
1255   HeapWord* result =
1256     attempt_allocation_at_safepoint(word_size,
1257                                     expect_null_mutator_alloc_region);
1258   if (result != NULL) {
1259     return result;
1260   }
1261 
1262   // In a G1 heap, we're supposed to keep allocation from failing by
1263   // incremental pauses.  Therefore, at least for now, we'll favor
1264   // expansion over collection.  (This might change in the future if we can
1265   // do something smarter than full collection to satisfy a failed alloc.)
1266   result = expand_and_allocate(word_size);
1267   if (result != NULL) {
1268     return result;
1269   }
1270 
1271   if (do_gc) {
1272     // Expansion didn't work, we'll try to do a Full GC.
1273     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1274                                        clear_all_soft_refs);
1275   }
1276 
1277   return NULL;
1278 }
1279 
1280 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1281                                                      bool* succeeded) {
1282   assert_at_safepoint_on_vm_thread();
1283 
1284   // Attempts to allocate followed by Full GC.
1285   HeapWord* result =
1286     satisfy_failed_allocation_helper(word_size,
1287                                      true,  /* do_gc */
1288                                      false, /* clear_all_soft_refs */
1289                                      false, /* expect_null_mutator_alloc_region */
1290                                      succeeded);
1291 
1292   if (result != NULL || !*succeeded) {
1293     return result;
1294   }
1295 
1296   // Attempts to allocate followed by Full GC that will collect all soft references.
1297   result = satisfy_failed_allocation_helper(word_size,
1298                                             true, /* do_gc */
1299                                             true, /* clear_all_soft_refs */
1300                                             true, /* expect_null_mutator_alloc_region */
1301                                             succeeded);
1302 
1303   if (result != NULL || !*succeeded) {
1304     return result;
1305   }
1306 
1307   // Attempts to allocate, no GC
1308   result = satisfy_failed_allocation_helper(word_size,
1309                                             false, /* do_gc */
1310                                             false, /* clear_all_soft_refs */
1311                                             true,  /* expect_null_mutator_alloc_region */
1312                                             succeeded);
1313 
1314   if (result != NULL) {
1315     return result;
1316   }
1317 
1318   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1319          "Flag should have been handled and cleared prior to this point");
1320 
1321   // What else?  We might try synchronous finalization later.  If the total
1322   // space available is large enough for the allocation, then a more
1323   // complete compaction phase than we've tried so far might be
1324   // appropriate.
1325   return NULL;
1326 }
1327 
1328 // Attempting to expand the heap sufficiently
1329 // to support an allocation of the given "word_size".  If
1330 // successful, perform the allocation and return the address of the
1331 // allocated block, or else "NULL".
1332 
1333 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1334   assert_at_safepoint_on_vm_thread();
1335 
1336   _verifier->verify_region_sets_optional();
1337 
1338   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1339   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1340                             word_size * HeapWordSize);
1341 
1342 
1343   if (expand(expand_bytes, _workers)) {
1344     _hrm->verify_optional();
1345     _verifier->verify_region_sets_optional();
1346     return attempt_allocation_at_safepoint(word_size,
1347                                            false /* expect_null_mutator_alloc_region */);
1348   }
1349   return NULL;
1350 }
1351 
1352 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1353   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1354   aligned_expand_bytes = align_up(aligned_expand_bytes,
1355                                        HeapRegion::GrainBytes);
1356 
1357   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1358                             expand_bytes, aligned_expand_bytes);
1359 
1360   if (is_maximal_no_gc()) {
1361     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1362     return false;
1363   }
1364 
1365   double expand_heap_start_time_sec = os::elapsedTime();
1366   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1367   assert(regions_to_expand > 0, "Must expand by at least one region");
1368 
1369   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1370   if (expand_time_ms != NULL) {
1371     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1372   }
1373 
1374   if (expanded_by > 0) {
1375     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1376     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1377     policy()->record_new_heap_size(num_regions());
1378   } else {
1379     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1380 
1381     // The expansion of the virtual storage space was unsuccessful.
1382     // Let's see if it was because we ran out of swap.
1383     if (G1ExitOnExpansionFailure &&
1384         _hrm->available() >= regions_to_expand) {
1385       // We had head room...
1386       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1387     }
1388   }
1389   return regions_to_expand > 0;
1390 }
1391 
1392 bool G1CollectedHeap::expand_single_region(uint node_index) {
1393   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1394 
1395   if (expanded_by == 0) {
1396     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1397     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1398     return false;
1399   }
1400 
1401   policy()->record_new_heap_size(num_regions());
1402   return true;
1403 }
1404 
1405 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1406   size_t aligned_shrink_bytes =
1407     ReservedSpace::page_align_size_down(shrink_bytes);
1408   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1409                                          HeapRegion::GrainBytes);
1410   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1411 
1412   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1413   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1414 
1415   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1416                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1417   if (num_regions_removed > 0) {
1418     policy()->record_new_heap_size(num_regions());
1419   } else {
1420     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1421   }
1422 }
1423 
1424 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1425   _verifier->verify_region_sets_optional();
1426 
1427   // We should only reach here at the end of a Full GC or during Remark which
1428   // means we should not not be holding to any GC alloc regions. The method
1429   // below will make sure of that and do any remaining clean up.
1430   _allocator->abandon_gc_alloc_regions();
1431 
1432   // Instead of tearing down / rebuilding the free lists here, we
1433   // could instead use the remove_all_pending() method on free_list to
1434   // remove only the ones that we need to remove.
1435   tear_down_region_sets(true /* free_list_only */);
1436   shrink_helper(shrink_bytes);
1437   rebuild_region_sets(true /* free_list_only */);
1438 
1439   _hrm->verify_optional();
1440   _verifier->verify_region_sets_optional();
1441 }
1442 
1443 class OldRegionSetChecker : public HeapRegionSetChecker {
1444 public:
1445   void check_mt_safety() {
1446     // Master Old Set MT safety protocol:
1447     // (a) If we're at a safepoint, operations on the master old set
1448     // should be invoked:
1449     // - by the VM thread (which will serialize them), or
1450     // - by the GC workers while holding the FreeList_lock, if we're
1451     //   at a safepoint for an evacuation pause (this lock is taken
1452     //   anyway when an GC alloc region is retired so that a new one
1453     //   is allocated from the free list), or
1454     // - by the GC workers while holding the OldSets_lock, if we're at a
1455     //   safepoint for a cleanup pause.
1456     // (b) If we're not at a safepoint, operations on the master old set
1457     // should be invoked while holding the Heap_lock.
1458 
1459     if (SafepointSynchronize::is_at_safepoint()) {
1460       guarantee(Thread::current()->is_VM_thread() ||
1461                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1462                 "master old set MT safety protocol at a safepoint");
1463     } else {
1464       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1465     }
1466   }
1467   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1468   const char* get_description() { return "Old Regions"; }
1469 };
1470 
1471 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1472 public:
1473   void check_mt_safety() {
1474     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1475               "May only change archive regions during initialization or safepoint.");
1476   }
1477   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1478   const char* get_description() { return "Archive Regions"; }
1479 };
1480 
1481 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1482 public:
1483   void check_mt_safety() {
1484     // Humongous Set MT safety protocol:
1485     // (a) If we're at a safepoint, operations on the master humongous
1486     // set should be invoked by either the VM thread (which will
1487     // serialize them) or by the GC workers while holding the
1488     // OldSets_lock.
1489     // (b) If we're not at a safepoint, operations on the master
1490     // humongous set should be invoked while holding the Heap_lock.
1491 
1492     if (SafepointSynchronize::is_at_safepoint()) {
1493       guarantee(Thread::current()->is_VM_thread() ||
1494                 OldSets_lock->owned_by_self(),
1495                 "master humongous set MT safety protocol at a safepoint");
1496     } else {
1497       guarantee(Heap_lock->owned_by_self(),
1498                 "master humongous set MT safety protocol outside a safepoint");
1499     }
1500   }
1501   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1502   const char* get_description() { return "Humongous Regions"; }
1503 };
1504 
1505 G1CollectedHeap::G1CollectedHeap() :
1506   CollectedHeap(),
1507   _young_gen_sampling_thread(NULL),
1508   _workers(NULL),
1509   _card_table(NULL),
1510   _soft_ref_policy(),
1511   _old_set("Old Region Set", new OldRegionSetChecker()),
1512   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1513   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1514   _bot(NULL),
1515   _listener(),
1516   _numa(G1NUMA::create()),
1517   _hrm(NULL),
1518   _allocator(NULL),
1519   _verifier(NULL),
1520   _summary_bytes_used(0),
1521   _archive_allocator(NULL),
1522   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1523   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1524   _expand_heap_after_alloc_failure(true),
1525   _g1mm(NULL),
1526   _humongous_reclaim_candidates(),
1527   _has_humongous_reclaim_candidates(false),
1528   _hr_printer(),
1529   _collector_state(),
1530   _old_marking_cycles_started(0),
1531   _old_marking_cycles_completed(0),
1532   _eden(),
1533   _survivor(),
1534   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1535   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1536   _policy(G1Policy::create_policy(_gc_timer_stw)),
1537   _heap_sizing_policy(NULL),
1538   _collection_set(this, _policy),
1539   _hot_card_cache(NULL),
1540   _rem_set(NULL),
1541   _cm(NULL),
1542   _cm_thread(NULL),
1543   _cr(NULL),
1544   _task_queues(NULL),
1545   _evacuation_failed(false),
1546   _evacuation_failed_info_array(NULL),
1547   _preserved_marks_set(true /* in_c_heap */),
1548 #ifndef PRODUCT
1549   _evacuation_failure_alot_for_current_gc(false),
1550   _evacuation_failure_alot_gc_number(0),
1551   _evacuation_failure_alot_count(0),
1552 #endif
1553   _ref_processor_stw(NULL),
1554   _is_alive_closure_stw(this),
1555   _is_subject_to_discovery_stw(this),
1556   _ref_processor_cm(NULL),
1557   _is_alive_closure_cm(this),
1558   _is_subject_to_discovery_cm(this),
1559   _region_attr() {
1560 
1561   _verifier = new G1HeapVerifier(this);
1562 
1563   _allocator = new G1Allocator(this);
1564 
1565   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1566 
1567   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1568 
1569   // Override the default _filler_array_max_size so that no humongous filler
1570   // objects are created.
1571   _filler_array_max_size = _humongous_object_threshold_in_words;
1572 
1573   uint n_queues = ParallelGCThreads;
1574   _task_queues = new RefToScanQueueSet(n_queues);
1575 
1576   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1577 
1578   for (uint i = 0; i < n_queues; i++) {
1579     RefToScanQueue* q = new RefToScanQueue();
1580     q->initialize();
1581     _task_queues->register_queue(i, q);
1582     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1583   }
1584 
1585   // Initialize the G1EvacuationFailureALot counters and flags.
1586   NOT_PRODUCT(reset_evacuation_should_fail();)
1587   _gc_tracer_stw->initialize();
1588 
1589   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1590 }
1591 
1592 static size_t actual_reserved_page_size(ReservedSpace rs) {
1593   size_t page_size = os::vm_page_size();
1594   if (UseLargePages) {
1595     // There are two ways to manage large page memory.
1596     // 1. OS supports committing large page memory.
1597     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1598     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1599     //    we reserved memory without large page.
1600     if (os::can_commit_large_page_memory() || rs.special()) {
1601       // An alignment at ReservedSpace comes from preferred page size or
1602       // heap alignment, and if the alignment came from heap alignment, it could be
1603       // larger than large pages size. So need to cap with the large page size.
1604       page_size = MIN2(rs.alignment(), os::large_page_size());
1605     }
1606   }
1607 
1608   return page_size;
1609 }
1610 
1611 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1612                                                                  size_t size,
1613                                                                  size_t translation_factor) {
1614   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1615   // Allocate a new reserved space, preferring to use large pages.
1616   ReservedSpace rs(size, preferred_page_size);
1617   size_t page_size = actual_reserved_page_size(rs);
1618   G1RegionToSpaceMapper* result  =
1619     G1RegionToSpaceMapper::create_mapper(rs,
1620                                          size,
1621                                          page_size,
1622                                          HeapRegion::GrainBytes,
1623                                          translation_factor,
1624                                          mtGC);
1625 
1626   os::trace_page_sizes_for_requested_size(description,
1627                                           size,
1628                                           preferred_page_size,
1629                                           page_size,
1630                                           rs.base(),
1631                                           rs.size());
1632 
1633   return result;
1634 }
1635 
1636 jint G1CollectedHeap::initialize_concurrent_refinement() {
1637   jint ecode = JNI_OK;
1638   _cr = G1ConcurrentRefine::create(&ecode);
1639   return ecode;
1640 }
1641 
1642 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1643   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1644   if (_young_gen_sampling_thread->osthread() == NULL) {
1645     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1646     return JNI_ENOMEM;
1647   }
1648   return JNI_OK;
1649 }
1650 
1651 jint G1CollectedHeap::initialize() {
1652   os::enable_vtime();
1653 
1654   // Necessary to satisfy locking discipline assertions.
1655 
1656   MutexLocker x(Heap_lock);
1657 
1658   // While there are no constraints in the GC code that HeapWordSize
1659   // be any particular value, there are multiple other areas in the
1660   // system which believe this to be true (e.g. oop->object_size in some
1661   // cases incorrectly returns the size in wordSize units rather than
1662   // HeapWordSize).
1663   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1664 
1665   size_t init_byte_size = InitialHeapSize;
1666   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1667 
1668   // Ensure that the sizes are properly aligned.
1669   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1670   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1671   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1672 
1673   // Reserve the maximum.
1674 
1675   // When compressed oops are enabled, the preferred heap base
1676   // is calculated by subtracting the requested size from the
1677   // 32Gb boundary and using the result as the base address for
1678   // heap reservation. If the requested size is not aligned to
1679   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1680   // into the ReservedHeapSpace constructor) then the actual
1681   // base of the reserved heap may end up differing from the
1682   // address that was requested (i.e. the preferred heap base).
1683   // If this happens then we could end up using a non-optimal
1684   // compressed oops mode.
1685 
1686   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1687                                                      HeapAlignment);
1688 
1689   initialize_reserved_region(heap_rs);
1690 
1691   // Create the barrier set for the entire reserved region.
1692   G1CardTable* ct = new G1CardTable(heap_rs.region());
1693   ct->initialize();
1694   G1BarrierSet* bs = new G1BarrierSet(ct);
1695   bs->initialize();
1696   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1697   BarrierSet::set_barrier_set(bs);
1698   _card_table = ct;
1699 
1700   {
1701     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1702     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1703     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1704   }
1705 
1706   // Create the hot card cache.
1707   _hot_card_cache = new G1HotCardCache(this);
1708 
1709   // Carve out the G1 part of the heap.
1710   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1711   size_t page_size = actual_reserved_page_size(heap_rs);
1712   G1RegionToSpaceMapper* heap_storage =
1713     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1714                                               g1_rs.size(),
1715                                               page_size,
1716                                               HeapRegion::GrainBytes,
1717                                               1,
1718                                               mtJavaHeap);
1719   if(heap_storage == NULL) {
1720     vm_shutdown_during_initialization("Could not initialize G1 heap");
1721     return JNI_ERR;
1722   }
1723 
1724   os::trace_page_sizes("Heap",
1725                        MinHeapSize,
1726                        reserved_byte_size,
1727                        page_size,
1728                        heap_rs.base(),
1729                        heap_rs.size());
1730   heap_storage->set_mapping_changed_listener(&_listener);
1731 
1732   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1733   G1RegionToSpaceMapper* bot_storage =
1734     create_aux_memory_mapper("Block Offset Table",
1735                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1736                              G1BlockOffsetTable::heap_map_factor());
1737 
1738   G1RegionToSpaceMapper* cardtable_storage =
1739     create_aux_memory_mapper("Card Table",
1740                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1741                              G1CardTable::heap_map_factor());
1742 
1743   G1RegionToSpaceMapper* card_counts_storage =
1744     create_aux_memory_mapper("Card Counts Table",
1745                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1746                              G1CardCounts::heap_map_factor());
1747 
1748   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1749   G1RegionToSpaceMapper* prev_bitmap_storage =
1750     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1751   G1RegionToSpaceMapper* next_bitmap_storage =
1752     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1753 
1754   _hrm = HeapRegionManager::create_manager(this);
1755 
1756   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1757   _card_table->initialize(cardtable_storage);
1758 
1759   // Do later initialization work for concurrent refinement.
1760   _hot_card_cache->initialize(card_counts_storage);
1761 
1762   // 6843694 - ensure that the maximum region index can fit
1763   // in the remembered set structures.
1764   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1765   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1766 
1767   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1768   // start within the first card.
1769   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1770   // Also create a G1 rem set.
1771   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1772   _rem_set->initialize(max_reserved_capacity(), max_regions());
1773 
1774   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1775   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1776   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1777             "too many cards per region");
1778 
1779   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1780 
1781   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1782 
1783   {
1784     HeapWord* start = _hrm->reserved().start();
1785     HeapWord* end = _hrm->reserved().end();
1786     size_t granularity = HeapRegion::GrainBytes;
1787 
1788     _region_attr.initialize(start, end, granularity);
1789     _humongous_reclaim_candidates.initialize(start, end, granularity);
1790   }
1791 
1792   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1793                           true /* are_GC_task_threads */,
1794                           false /* are_ConcurrentGC_threads */);
1795   if (_workers == NULL) {
1796     return JNI_ENOMEM;
1797   }
1798   _workers->initialize_workers();
1799 
1800   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1801 
1802   // Create the G1ConcurrentMark data structure and thread.
1803   // (Must do this late, so that "max_regions" is defined.)
1804   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1805   if (_cm == NULL || !_cm->completed_initialization()) {
1806     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1807     return JNI_ENOMEM;
1808   }
1809   _cm_thread = _cm->cm_thread();
1810 
1811   // Now expand into the initial heap size.
1812   if (!expand(init_byte_size, _workers)) {
1813     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1814     return JNI_ENOMEM;
1815   }
1816 
1817   // Perform any initialization actions delegated to the policy.
1818   policy()->init(this, &_collection_set);
1819 
1820   jint ecode = initialize_concurrent_refinement();
1821   if (ecode != JNI_OK) {
1822     return ecode;
1823   }
1824 
1825   ecode = initialize_young_gen_sampling_thread();
1826   if (ecode != JNI_OK) {
1827     return ecode;
1828   }
1829 
1830   {
1831     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1832     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1833     dcqs.set_max_cards(concurrent_refine()->red_zone());
1834   }
1835 
1836   // Here we allocate the dummy HeapRegion that is required by the
1837   // G1AllocRegion class.
1838   HeapRegion* dummy_region = _hrm->get_dummy_region();
1839 
1840   // We'll re-use the same region whether the alloc region will
1841   // require BOT updates or not and, if it doesn't, then a non-young
1842   // region will complain that it cannot support allocations without
1843   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1844   dummy_region->set_eden();
1845   // Make sure it's full.
1846   dummy_region->set_top(dummy_region->end());
1847   G1AllocRegion::setup(this, dummy_region);
1848 
1849   _allocator->init_mutator_alloc_regions();
1850 
1851   // Do create of the monitoring and management support so that
1852   // values in the heap have been properly initialized.
1853   _g1mm = new G1MonitoringSupport(this);
1854 
1855   G1StringDedup::initialize();
1856 
1857   _preserved_marks_set.init(ParallelGCThreads);
1858 
1859   _collection_set.initialize(max_regions());
1860 
1861   return JNI_OK;
1862 }
1863 
1864 void G1CollectedHeap::stop() {
1865   // Stop all concurrent threads. We do this to make sure these threads
1866   // do not continue to execute and access resources (e.g. logging)
1867   // that are destroyed during shutdown.
1868   _cr->stop();
1869   _young_gen_sampling_thread->stop();
1870   _cm_thread->stop();
1871   if (G1StringDedup::is_enabled()) {
1872     G1StringDedup::stop();
1873   }
1874 }
1875 
1876 void G1CollectedHeap::safepoint_synchronize_begin() {
1877   SuspendibleThreadSet::synchronize();
1878 }
1879 
1880 void G1CollectedHeap::safepoint_synchronize_end() {
1881   SuspendibleThreadSet::desynchronize();
1882 }
1883 
1884 void G1CollectedHeap::post_initialize() {
1885   CollectedHeap::post_initialize();
1886   ref_processing_init();
1887 }
1888 
1889 void G1CollectedHeap::ref_processing_init() {
1890   // Reference processing in G1 currently works as follows:
1891   //
1892   // * There are two reference processor instances. One is
1893   //   used to record and process discovered references
1894   //   during concurrent marking; the other is used to
1895   //   record and process references during STW pauses
1896   //   (both full and incremental).
1897   // * Both ref processors need to 'span' the entire heap as
1898   //   the regions in the collection set may be dotted around.
1899   //
1900   // * For the concurrent marking ref processor:
1901   //   * Reference discovery is enabled at initial marking.
1902   //   * Reference discovery is disabled and the discovered
1903   //     references processed etc during remarking.
1904   //   * Reference discovery is MT (see below).
1905   //   * Reference discovery requires a barrier (see below).
1906   //   * Reference processing may or may not be MT
1907   //     (depending on the value of ParallelRefProcEnabled
1908   //     and ParallelGCThreads).
1909   //   * A full GC disables reference discovery by the CM
1910   //     ref processor and abandons any entries on it's
1911   //     discovered lists.
1912   //
1913   // * For the STW processor:
1914   //   * Non MT discovery is enabled at the start of a full GC.
1915   //   * Processing and enqueueing during a full GC is non-MT.
1916   //   * During a full GC, references are processed after marking.
1917   //
1918   //   * Discovery (may or may not be MT) is enabled at the start
1919   //     of an incremental evacuation pause.
1920   //   * References are processed near the end of a STW evacuation pause.
1921   //   * For both types of GC:
1922   //     * Discovery is atomic - i.e. not concurrent.
1923   //     * Reference discovery will not need a barrier.
1924 
1925   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1926 
1927   // Concurrent Mark ref processor
1928   _ref_processor_cm =
1929     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1930                            mt_processing,                                  // mt processing
1931                            ParallelGCThreads,                              // degree of mt processing
1932                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1933                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1934                            false,                                          // Reference discovery is not atomic
1935                            &_is_alive_closure_cm,                          // is alive closure
1936                            true);                                          // allow changes to number of processing threads
1937 
1938   // STW ref processor
1939   _ref_processor_stw =
1940     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1941                            mt_processing,                        // mt processing
1942                            ParallelGCThreads,                    // degree of mt processing
1943                            (ParallelGCThreads > 1),              // mt discovery
1944                            ParallelGCThreads,                    // degree of mt discovery
1945                            true,                                 // Reference discovery is atomic
1946                            &_is_alive_closure_stw,               // is alive closure
1947                            true);                                // allow changes to number of processing threads
1948 }
1949 
1950 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1951   return &_soft_ref_policy;
1952 }
1953 
1954 size_t G1CollectedHeap::capacity() const {
1955   return _hrm->length() * HeapRegion::GrainBytes;
1956 }
1957 
1958 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1959   return _hrm->total_free_bytes();
1960 }
1961 
1962 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1963   _hot_card_cache->drain(cl, worker_id);
1964 }
1965 
1966 // Computes the sum of the storage used by the various regions.
1967 size_t G1CollectedHeap::used() const {
1968   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1969   if (_archive_allocator != NULL) {
1970     result += _archive_allocator->used();
1971   }
1972   return result;
1973 }
1974 
1975 size_t G1CollectedHeap::used_unlocked() const {
1976   return _summary_bytes_used;
1977 }
1978 
1979 class SumUsedClosure: public HeapRegionClosure {
1980   size_t _used;
1981 public:
1982   SumUsedClosure() : _used(0) {}
1983   bool do_heap_region(HeapRegion* r) {
1984     _used += r->used();
1985     return false;
1986   }
1987   size_t result() { return _used; }
1988 };
1989 
1990 size_t G1CollectedHeap::recalculate_used() const {
1991   SumUsedClosure blk;
1992   heap_region_iterate(&blk);
1993   return blk.result();
1994 }
1995 
1996 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1997   switch (cause) {
1998     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1999     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2000     case GCCause::_wb_conc_mark:                        return true;
2001     default :                                           return false;
2002   }
2003 }
2004 
2005 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2006   switch (cause) {
2007     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2008     case GCCause::_g1_humongous_allocation: return true;
2009     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2010     default:                                return is_user_requested_concurrent_full_gc(cause);
2011   }
2012 }
2013 
2014 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2015   if(policy()->force_upgrade_to_full()) {
2016     return true;
2017   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2018     return false;
2019   } else if (has_regions_left_for_allocation()) {
2020     return false;
2021   } else {
2022     return true;
2023   }
2024 }
2025 
2026 #ifndef PRODUCT
2027 void G1CollectedHeap::allocate_dummy_regions() {
2028   // Let's fill up most of the region
2029   size_t word_size = HeapRegion::GrainWords - 1024;
2030   // And as a result the region we'll allocate will be humongous.
2031   guarantee(is_humongous(word_size), "sanity");
2032 
2033   // _filler_array_max_size is set to humongous object threshold
2034   // but temporarily change it to use CollectedHeap::fill_with_object().
2035   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2036 
2037   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2038     // Let's use the existing mechanism for the allocation
2039     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2040     if (dummy_obj != NULL) {
2041       MemRegion mr(dummy_obj, word_size);
2042       CollectedHeap::fill_with_object(mr);
2043     } else {
2044       // If we can't allocate once, we probably cannot allocate
2045       // again. Let's get out of the loop.
2046       break;
2047     }
2048   }
2049 }
2050 #endif // !PRODUCT
2051 
2052 void G1CollectedHeap::increment_old_marking_cycles_started() {
2053   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2054          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2055          "Wrong marking cycle count (started: %d, completed: %d)",
2056          _old_marking_cycles_started, _old_marking_cycles_completed);
2057 
2058   _old_marking_cycles_started++;
2059 }
2060 
2061 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2062   MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2063 
2064   // We assume that if concurrent == true, then the caller is a
2065   // concurrent thread that was joined the Suspendible Thread
2066   // Set. If there's ever a cheap way to check this, we should add an
2067   // assert here.
2068 
2069   // Given that this method is called at the end of a Full GC or of a
2070   // concurrent cycle, and those can be nested (i.e., a Full GC can
2071   // interrupt a concurrent cycle), the number of full collections
2072   // completed should be either one (in the case where there was no
2073   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2074   // behind the number of full collections started.
2075 
2076   // This is the case for the inner caller, i.e. a Full GC.
2077   assert(concurrent ||
2078          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2079          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2080          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2081          "is inconsistent with _old_marking_cycles_completed = %u",
2082          _old_marking_cycles_started, _old_marking_cycles_completed);
2083 
2084   // This is the case for the outer caller, i.e. the concurrent cycle.
2085   assert(!concurrent ||
2086          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2087          "for outer caller (concurrent cycle): "
2088          "_old_marking_cycles_started = %u "
2089          "is inconsistent with _old_marking_cycles_completed = %u",
2090          _old_marking_cycles_started, _old_marking_cycles_completed);
2091 
2092   _old_marking_cycles_completed += 1;
2093 
2094   // We need to clear the "in_progress" flag in the CM thread before
2095   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2096   // is set) so that if a waiter requests another System.gc() it doesn't
2097   // incorrectly see that a marking cycle is still in progress.
2098   if (concurrent) {
2099     _cm_thread->set_idle();
2100   }
2101 
2102   // This notify_all() will ensure that a thread that called
2103   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2104   // and it's waiting for a full GC to finish will be woken up. It is
2105   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2106   FullGCCount_lock->notify_all();
2107 }
2108 
2109 void G1CollectedHeap::collect(GCCause::Cause cause) {
2110   try_collect(cause, true);
2111 }
2112 
2113 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2114   assert_heap_not_locked();
2115 
2116   bool gc_succeeded;
2117   bool should_retry_gc;
2118 
2119   do {
2120     should_retry_gc = false;
2121 
2122     uint gc_count_before;
2123     uint old_marking_count_before;
2124     uint full_gc_count_before;
2125 
2126     {
2127       MutexLocker ml(Heap_lock);
2128 
2129       // Read the GC count while holding the Heap_lock
2130       gc_count_before = total_collections();
2131       full_gc_count_before = total_full_collections();
2132       old_marking_count_before = _old_marking_cycles_started;
2133     }
2134 
2135     if (should_do_concurrent_full_gc(cause)) {
2136       // Schedule an initial-mark evacuation pause that will start a
2137       // concurrent cycle. We're setting word_size to 0 which means that
2138       // we are not requesting a post-GC allocation.
2139       VM_G1CollectForAllocation op(0,     /* word_size */
2140                                    gc_count_before,
2141                                    cause,
2142                                    true,  /* should_initiate_conc_mark */
2143                                    policy()->max_pause_time_ms());
2144       VMThread::execute(&op);
2145       gc_succeeded = op.gc_succeeded();
2146       if (!gc_succeeded && retry_on_gc_failure) {
2147         if (old_marking_count_before == _old_marking_cycles_started) {
2148           should_retry_gc = op.should_retry_gc();
2149         } else {
2150           // A Full GC happened while we were trying to schedule the
2151           // concurrent cycle. No point in starting a new cycle given
2152           // that the whole heap was collected anyway.
2153         }
2154 
2155         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2156           GCLocker::stall_until_clear();
2157         }
2158       }
2159     } else if (GCLocker::should_discard(cause, gc_count_before)) {
2160       // Return false to be consistent with VMOp failure due to
2161       // another collection slipping in after our gc_count but before
2162       // our request is processed.  _gc_locker collections upgraded by
2163       // GCLockerInvokesConcurrent are handled above and never discarded.
2164       return false;
2165     } else {
2166       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2167           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2168 
2169         // Schedule a standard evacuation pause. We're setting word_size
2170         // to 0 which means that we are not requesting a post-GC allocation.
2171         VM_G1CollectForAllocation op(0,     /* word_size */
2172                                      gc_count_before,
2173                                      cause,
2174                                      false, /* should_initiate_conc_mark */
2175                                      policy()->max_pause_time_ms());
2176         VMThread::execute(&op);
2177         gc_succeeded = op.gc_succeeded();
2178       } else {
2179         // Schedule a Full GC.
2180         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2181         VMThread::execute(&op);
2182         gc_succeeded = op.gc_succeeded();
2183       }
2184     }
2185   } while (should_retry_gc);
2186   return gc_succeeded;
2187 }
2188 
2189 bool G1CollectedHeap::is_in(const void* p) const {
2190   if (_hrm->reserved().contains(p)) {
2191     // Given that we know that p is in the reserved space,
2192     // heap_region_containing() should successfully
2193     // return the containing region.
2194     HeapRegion* hr = heap_region_containing(p);
2195     return hr->is_in(p);
2196   } else {
2197     return false;
2198   }
2199 }
2200 
2201 #ifdef ASSERT
2202 bool G1CollectedHeap::is_in_exact(const void* p) const {
2203   bool contains = reserved_region().contains(p);
2204   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2205   if (contains && available) {
2206     return true;
2207   } else {
2208     return false;
2209   }
2210 }
2211 #endif
2212 
2213 // Iteration functions.
2214 
2215 // Iterates an ObjectClosure over all objects within a HeapRegion.
2216 
2217 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2218   ObjectClosure* _cl;
2219 public:
2220   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2221   bool do_heap_region(HeapRegion* r) {
2222     if (!r->is_continues_humongous()) {
2223       r->object_iterate(_cl);
2224     }
2225     return false;
2226   }
2227 };
2228 
2229 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2230   IterateObjectClosureRegionClosure blk(cl);
2231   heap_region_iterate(&blk);
2232 }
2233 
2234 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2235   _hrm->iterate(cl);
2236 }
2237 
2238 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2239                                                                  HeapRegionClaimer *hrclaimer,
2240                                                                  uint worker_id) const {
2241   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2242 }
2243 
2244 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2245                                                          HeapRegionClaimer *hrclaimer) const {
2246   _hrm->par_iterate(cl, hrclaimer, 0);
2247 }
2248 
2249 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2250   _collection_set.iterate(cl);
2251 }
2252 
2253 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2254   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2255 }
2256 
2257 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2258   HeapRegion* hr = heap_region_containing(addr);
2259   return hr->block_start(addr);
2260 }
2261 
2262 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2263   HeapRegion* hr = heap_region_containing(addr);
2264   return hr->block_is_obj(addr);
2265 }
2266 
2267 bool G1CollectedHeap::supports_tlab_allocation() const {
2268   return true;
2269 }
2270 
2271 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2272   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2273 }
2274 
2275 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2276   return _eden.length() * HeapRegion::GrainBytes;
2277 }
2278 
2279 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2280 // must be equal to the humongous object limit.
2281 size_t G1CollectedHeap::max_tlab_size() const {
2282   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2283 }
2284 
2285 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2286   return _allocator->unsafe_max_tlab_alloc();
2287 }
2288 
2289 size_t G1CollectedHeap::max_capacity() const {
2290   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2291 }
2292 
2293 size_t G1CollectedHeap::max_reserved_capacity() const {
2294   return _hrm->max_length() * HeapRegion::GrainBytes;
2295 }
2296 
2297 jlong G1CollectedHeap::millis_since_last_gc() {
2298   // See the notes in GenCollectedHeap::millis_since_last_gc()
2299   // for more information about the implementation.
2300   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2301                   _policy->collection_pause_end_millis();
2302   if (ret_val < 0) {
2303     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2304       ". returning zero instead.", ret_val);
2305     return 0;
2306   }
2307   return ret_val;
2308 }
2309 
2310 void G1CollectedHeap::deduplicate_string(oop str) {
2311   assert(java_lang_String::is_instance(str), "invariant");
2312 
2313   if (G1StringDedup::is_enabled()) {
2314     G1StringDedup::deduplicate(str);
2315   }
2316 }
2317 
2318 void G1CollectedHeap::prepare_for_verify() {
2319   _verifier->prepare_for_verify();
2320 }
2321 
2322 void G1CollectedHeap::verify(VerifyOption vo) {
2323   _verifier->verify(vo);
2324 }
2325 
2326 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2327   return true;
2328 }
2329 
2330 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2331   return _cm_thread->request_concurrent_phase(phase);
2332 }
2333 
2334 bool G1CollectedHeap::is_heterogeneous_heap() const {
2335   return G1Arguments::is_heterogeneous_heap();
2336 }
2337 
2338 class PrintRegionClosure: public HeapRegionClosure {
2339   outputStream* _st;
2340 public:
2341   PrintRegionClosure(outputStream* st) : _st(st) {}
2342   bool do_heap_region(HeapRegion* r) {
2343     r->print_on(_st);
2344     return false;
2345   }
2346 };
2347 
2348 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2349                                        const HeapRegion* hr,
2350                                        const VerifyOption vo) const {
2351   switch (vo) {
2352   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2353   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2354   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2355   default:                            ShouldNotReachHere();
2356   }
2357   return false; // keep some compilers happy
2358 }
2359 
2360 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2361                                        const VerifyOption vo) const {
2362   switch (vo) {
2363   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2364   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2365   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2366   default:                            ShouldNotReachHere();
2367   }
2368   return false; // keep some compilers happy
2369 }
2370 
2371 void G1CollectedHeap::print_heap_regions() const {
2372   LogTarget(Trace, gc, heap, region) lt;
2373   if (lt.is_enabled()) {
2374     LogStream ls(lt);
2375     print_regions_on(&ls);
2376   }
2377 }
2378 
2379 void G1CollectedHeap::print_on(outputStream* st) const {
2380   st->print(" %-20s", "garbage-first heap");
2381   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2382             capacity()/K, used_unlocked()/K);
2383   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2384             p2i(_hrm->reserved().start()),
2385             p2i(_hrm->reserved().end()));
2386   st->cr();
2387   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2388   uint young_regions = young_regions_count();
2389   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2390             (size_t) young_regions * HeapRegion::GrainBytes / K);
2391   uint survivor_regions = survivor_regions_count();
2392   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2393             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2394   st->cr();
2395   if (_numa->is_enabled()) {
2396     uint num_nodes = _numa->num_active_nodes();
2397     st->print("  remaining free region(s) on each NUMA node: ");
2398     const int* node_ids = _numa->node_ids();
2399     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2400       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2401     }
2402     st->cr();
2403   }
2404   MetaspaceUtils::print_on(st);
2405 }
2406 
2407 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2408   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2409                "HS=humongous(starts), HC=humongous(continues), "
2410                "CS=collection set, F=free, "
2411                "OA=open archive, CA=closed archive, "
2412                "TAMS=top-at-mark-start (previous, next)");
2413   PrintRegionClosure blk(st);
2414   heap_region_iterate(&blk);
2415 }
2416 
2417 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2418   print_on(st);
2419 
2420   // Print the per-region information.
2421   print_regions_on(st);
2422 }
2423 
2424 void G1CollectedHeap::print_on_error(outputStream* st) const {
2425   this->CollectedHeap::print_on_error(st);
2426 
2427   if (_cm != NULL) {
2428     st->cr();
2429     _cm->print_on_error(st);
2430   }
2431 }
2432 
2433 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2434   workers()->print_worker_threads_on(st);
2435   _cm_thread->print_on(st);
2436   st->cr();
2437   _cm->print_worker_threads_on(st);
2438   _cr->print_threads_on(st);
2439   _young_gen_sampling_thread->print_on(st);
2440   if (G1StringDedup::is_enabled()) {
2441     G1StringDedup::print_worker_threads_on(st);
2442   }
2443 }
2444 
2445 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2446   workers()->threads_do(tc);
2447   tc->do_thread(_cm_thread);
2448   _cm->threads_do(tc);
2449   _cr->threads_do(tc);
2450   tc->do_thread(_young_gen_sampling_thread);
2451   if (G1StringDedup::is_enabled()) {
2452     G1StringDedup::threads_do(tc);
2453   }
2454 }
2455 
2456 void G1CollectedHeap::print_tracing_info() const {
2457   rem_set()->print_summary_info();
2458   concurrent_mark()->print_summary_info();
2459 }
2460 
2461 #ifndef PRODUCT
2462 // Helpful for debugging RSet issues.
2463 
2464 class PrintRSetsClosure : public HeapRegionClosure {
2465 private:
2466   const char* _msg;
2467   size_t _occupied_sum;
2468 
2469 public:
2470   bool do_heap_region(HeapRegion* r) {
2471     HeapRegionRemSet* hrrs = r->rem_set();
2472     size_t occupied = hrrs->occupied();
2473     _occupied_sum += occupied;
2474 
2475     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2476     if (occupied == 0) {
2477       tty->print_cr("  RSet is empty");
2478     } else {
2479       hrrs->print();
2480     }
2481     tty->print_cr("----------");
2482     return false;
2483   }
2484 
2485   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2486     tty->cr();
2487     tty->print_cr("========================================");
2488     tty->print_cr("%s", msg);
2489     tty->cr();
2490   }
2491 
2492   ~PrintRSetsClosure() {
2493     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2494     tty->print_cr("========================================");
2495     tty->cr();
2496   }
2497 };
2498 
2499 void G1CollectedHeap::print_cset_rsets() {
2500   PrintRSetsClosure cl("Printing CSet RSets");
2501   collection_set_iterate_all(&cl);
2502 }
2503 
2504 void G1CollectedHeap::print_all_rsets() {
2505   PrintRSetsClosure cl("Printing All RSets");;
2506   heap_region_iterate(&cl);
2507 }
2508 #endif // PRODUCT
2509 
2510 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2511   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2512 }
2513 
2514 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2515 
2516   size_t eden_used_bytes = _eden.used_bytes();
2517   size_t survivor_used_bytes = _survivor.used_bytes();
2518   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2519 
2520   size_t eden_capacity_bytes =
2521     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2522 
2523   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2524   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2525                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2526 }
2527 
2528 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2529   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2530                        stats->unused(), stats->used(), stats->region_end_waste(),
2531                        stats->regions_filled(), stats->direct_allocated(),
2532                        stats->failure_used(), stats->failure_waste());
2533 }
2534 
2535 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2536   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2537   gc_tracer->report_gc_heap_summary(when, heap_summary);
2538 
2539   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2540   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2541 }
2542 
2543 G1CollectedHeap* G1CollectedHeap::heap() {
2544   CollectedHeap* heap = Universe::heap();
2545   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2546   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2547   return (G1CollectedHeap*)heap;
2548 }
2549 
2550 void G1CollectedHeap::gc_prologue(bool full) {
2551   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2552 
2553   // This summary needs to be printed before incrementing total collections.
2554   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2555 
2556   // Update common counters.
2557   increment_total_collections(full /* full gc */);
2558   if (full || collector_state()->in_initial_mark_gc()) {
2559     increment_old_marking_cycles_started();
2560   }
2561 
2562   // Fill TLAB's and such
2563   double start = os::elapsedTime();
2564   ensure_parsability(true);
2565   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2566 }
2567 
2568 void G1CollectedHeap::gc_epilogue(bool full) {
2569   // Update common counters.
2570   if (full) {
2571     // Update the number of full collections that have been completed.
2572     increment_old_marking_cycles_completed(false /* concurrent */);
2573   }
2574 
2575   // We are at the end of the GC. Total collections has already been increased.
2576   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2577 
2578   // FIXME: what is this about?
2579   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2580   // is set.
2581 #if COMPILER2_OR_JVMCI
2582   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2583 #endif
2584 
2585   double start = os::elapsedTime();
2586   resize_all_tlabs();
2587   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2588 
2589   MemoryService::track_memory_usage();
2590   // We have just completed a GC. Update the soft reference
2591   // policy with the new heap occupancy
2592   Universe::update_heap_info_at_gc();
2593 
2594   // Print NUMA statistics.
2595   _numa->print();
2596 }
2597 
2598 void G1CollectedHeap::verify_numa_regions() {
2599   LogTarget(Trace, gc, heap, numa) lt;
2600 
2601   if (lt.is_enabled()) {
2602     LogStream ls(lt);
2603     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2604     NodeIndexCheckClosure cl(_numa, &ls);
2605     heap_region_iterate(&cl);
2606   }
2607 
2608   
2609 }
2610 
2611 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2612                                                uint gc_count_before,
2613                                                bool* succeeded,
2614                                                GCCause::Cause gc_cause) {
2615   assert_heap_not_locked_and_not_at_safepoint();
2616   VM_G1CollectForAllocation op(word_size,
2617                                gc_count_before,
2618                                gc_cause,
2619                                false, /* should_initiate_conc_mark */
2620                                policy()->max_pause_time_ms());
2621   VMThread::execute(&op);
2622 
2623   HeapWord* result = op.result();
2624   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2625   assert(result == NULL || ret_succeeded,
2626          "the result should be NULL if the VM did not succeed");
2627   *succeeded = ret_succeeded;
2628 
2629   assert_heap_not_locked();
2630   return result;
2631 }
2632 
2633 void G1CollectedHeap::do_concurrent_mark() {
2634   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2635   if (!_cm_thread->in_progress()) {
2636     _cm_thread->set_started();
2637     CGC_lock->notify();
2638   }
2639 }
2640 
2641 size_t G1CollectedHeap::pending_card_num() {
2642   struct CountCardsClosure : public ThreadClosure {
2643     size_t _cards;
2644     CountCardsClosure() : _cards(0) {}
2645     virtual void do_thread(Thread* t) {
2646       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2647     }
2648   } count_from_threads;
2649   Threads::threads_do(&count_from_threads);
2650 
2651   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2652   dcqs.verify_num_cards();
2653 
2654   return dcqs.num_cards() + count_from_threads._cards;
2655 }
2656 
2657 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2658   // We don't nominate objects with many remembered set entries, on
2659   // the assumption that such objects are likely still live.
2660   HeapRegionRemSet* rem_set = r->rem_set();
2661 
2662   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2663          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2664          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2665 }
2666 
2667 class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure {
2668  private:
2669   size_t _total_humongous;
2670   size_t _candidate_humongous;
2671 
2672   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2673     assert(region->is_starts_humongous(), "Must start a humongous object");
2674 
2675     oop obj = oop(region->bottom());
2676 
2677     // Dead objects cannot be eager reclaim candidates. Due to class
2678     // unloading it is unsafe to query their classes so we return early.
2679     if (g1h->is_obj_dead(obj, region)) {
2680       return false;
2681     }
2682 
2683     // If we do not have a complete remembered set for the region, then we can
2684     // not be sure that we have all references to it.
2685     if (!region->rem_set()->is_complete()) {
2686       return false;
2687     }
2688     // Candidate selection must satisfy the following constraints
2689     // while concurrent marking is in progress:
2690     //
2691     // * In order to maintain SATB invariants, an object must not be
2692     // reclaimed if it was allocated before the start of marking and
2693     // has not had its references scanned.  Such an object must have
2694     // its references (including type metadata) scanned to ensure no
2695     // live objects are missed by the marking process.  Objects
2696     // allocated after the start of concurrent marking don't need to
2697     // be scanned.
2698     //
2699     // * An object must not be reclaimed if it is on the concurrent
2700     // mark stack.  Objects allocated after the start of concurrent
2701     // marking are never pushed on the mark stack.
2702     //
2703     // Nominating only objects allocated after the start of concurrent
2704     // marking is sufficient to meet both constraints.  This may miss
2705     // some objects that satisfy the constraints, but the marking data
2706     // structures don't support efficiently performing the needed
2707     // additional tests or scrubbing of the mark stack.
2708     //
2709     // However, we presently only nominate is_typeArray() objects.
2710     // A humongous object containing references induces remembered
2711     // set entries on other regions.  In order to reclaim such an
2712     // object, those remembered sets would need to be cleaned up.
2713     //
2714     // We also treat is_typeArray() objects specially, allowing them
2715     // to be reclaimed even if allocated before the start of
2716     // concurrent mark.  For this we rely on mark stack insertion to
2717     // exclude is_typeArray() objects, preventing reclaiming an object
2718     // that is in the mark stack.  We also rely on the metadata for
2719     // such objects to be built-in and so ensured to be kept live.
2720     // Frequent allocation and drop of large binary blobs is an
2721     // important use case for eager reclaim, and this special handling
2722     // may reduce needed headroom.
2723 
2724     return obj->is_typeArray() &&
2725            g1h->is_potential_eager_reclaim_candidate(region);
2726   }
2727 
2728  public:
2729   RegisterRegionsWithRegionAttrTableClosure()
2730   : _total_humongous(0),
2731     _candidate_humongous(0) {
2732   }
2733 
2734   virtual bool do_heap_region(HeapRegion* r) {
2735     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2736 
2737     if (!r->is_starts_humongous()) {
2738       g1h->register_region_with_region_attr(r);
2739       return false;
2740     }
2741 
2742     bool is_candidate = humongous_region_is_candidate(g1h, r);
2743     uint rindex = r->hrm_index();
2744     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2745     if (is_candidate) {
2746       g1h->register_humongous_region_with_region_attr(rindex);
2747       _candidate_humongous++;
2748       // We will later handle the remembered sets of these regions.
2749     } else {
2750       g1h->register_region_with_region_attr(r);
2751     }
2752     _total_humongous++;
2753 
2754     return false;
2755   }
2756 
2757   size_t total_humongous() const { return _total_humongous; }
2758   size_t candidate_humongous() const { return _candidate_humongous; }
2759 };
2760 
2761 void G1CollectedHeap::register_regions_with_region_attr() {
2762   Ticks start = Ticks::now();
2763 
2764   RegisterRegionsWithRegionAttrTableClosure cl;
2765   heap_region_iterate(&cl);
2766 
2767   phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0,
2768                                          cl.total_humongous(),
2769                                          cl.candidate_humongous());
2770   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2771 }
2772 
2773 #ifndef PRODUCT
2774 void G1CollectedHeap::verify_region_attr_remset_update() {
2775   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2776   public:
2777     virtual bool do_heap_region(HeapRegion* r) {
2778       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2779       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2780       assert(r->rem_set()->is_tracked() == needs_remset_update,
2781              "Region %u remset tracking status (%s) different to region attribute (%s)",
2782              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2783       return false;
2784     }
2785   } cl;
2786   heap_region_iterate(&cl);
2787 }
2788 #endif
2789 
2790 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2791   public:
2792     bool do_heap_region(HeapRegion* hr) {
2793       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2794         hr->verify_rem_set();
2795       }
2796       return false;
2797     }
2798 };
2799 
2800 uint G1CollectedHeap::num_task_queues() const {
2801   return _task_queues->size();
2802 }
2803 
2804 #if TASKQUEUE_STATS
2805 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2806   st->print_raw_cr("GC Task Stats");
2807   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2808   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2809 }
2810 
2811 void G1CollectedHeap::print_taskqueue_stats() const {
2812   if (!log_is_enabled(Trace, gc, task, stats)) {
2813     return;
2814   }
2815   Log(gc, task, stats) log;
2816   ResourceMark rm;
2817   LogStream ls(log.trace());
2818   outputStream* st = &ls;
2819 
2820   print_taskqueue_stats_hdr(st);
2821 
2822   TaskQueueStats totals;
2823   const uint n = num_task_queues();
2824   for (uint i = 0; i < n; ++i) {
2825     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2826     totals += task_queue(i)->stats;
2827   }
2828   st->print_raw("tot "); totals.print(st); st->cr();
2829 
2830   DEBUG_ONLY(totals.verify());
2831 }
2832 
2833 void G1CollectedHeap::reset_taskqueue_stats() {
2834   const uint n = num_task_queues();
2835   for (uint i = 0; i < n; ++i) {
2836     task_queue(i)->stats.reset();
2837   }
2838 }
2839 #endif // TASKQUEUE_STATS
2840 
2841 void G1CollectedHeap::wait_for_root_region_scanning() {
2842   double scan_wait_start = os::elapsedTime();
2843   // We have to wait until the CM threads finish scanning the
2844   // root regions as it's the only way to ensure that all the
2845   // objects on them have been correctly scanned before we start
2846   // moving them during the GC.
2847   bool waited = _cm->root_regions()->wait_until_scan_finished();
2848   double wait_time_ms = 0.0;
2849   if (waited) {
2850     double scan_wait_end = os::elapsedTime();
2851     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2852   }
2853   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2854 }
2855 
2856 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2857 private:
2858   G1HRPrinter* _hr_printer;
2859 public:
2860   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2861 
2862   virtual bool do_heap_region(HeapRegion* r) {
2863     _hr_printer->cset(r);
2864     return false;
2865   }
2866 };
2867 
2868 void G1CollectedHeap::start_new_collection_set() {
2869   double start = os::elapsedTime();
2870 
2871   collection_set()->start_incremental_building();
2872 
2873   clear_region_attr();
2874 
2875   guarantee(_eden.length() == 0, "eden should have been cleared");
2876   policy()->transfer_survivors_to_cset(survivor());
2877 
2878   // We redo the verification but now wrt to the new CSet which
2879   // has just got initialized after the previous CSet was freed.
2880   _cm->verify_no_collection_set_oops();
2881 
2882   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2883 }
2884 
2885 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2886 
2887   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2888   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2889                                             collection_set()->optional_region_length());
2890 
2891   _cm->verify_no_collection_set_oops();
2892 
2893   if (_hr_printer.is_active()) {
2894     G1PrintCollectionSetClosure cl(&_hr_printer);
2895     _collection_set.iterate(&cl);
2896     _collection_set.iterate_optional(&cl);
2897   }
2898 }
2899 
2900 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2901   if (collector_state()->in_initial_mark_gc()) {
2902     return G1HeapVerifier::G1VerifyConcurrentStart;
2903   } else if (collector_state()->in_young_only_phase()) {
2904     return G1HeapVerifier::G1VerifyYoungNormal;
2905   } else {
2906     return G1HeapVerifier::G1VerifyMixed;
2907   }
2908 }
2909 
2910 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2911   if (VerifyRememberedSets) {
2912     log_info(gc, verify)("[Verifying RemSets before GC]");
2913     VerifyRegionRemSetClosure v_cl;
2914     heap_region_iterate(&v_cl);
2915   }
2916   _verifier->verify_before_gc(type);
2917   _verifier->check_bitmaps("GC Start");
2918   verify_numa_regions();
2919 }
2920 
2921 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2922   if (VerifyRememberedSets) {
2923     log_info(gc, verify)("[Verifying RemSets after GC]");
2924     VerifyRegionRemSetClosure v_cl;
2925     heap_region_iterate(&v_cl);
2926   }
2927   _verifier->verify_after_gc(type);
2928   _verifier->check_bitmaps("GC End");
2929 }
2930 
2931 void G1CollectedHeap::expand_heap_after_young_collection(){
2932   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2933   if (expand_bytes > 0) {
2934     // No need for an ergo logging here,
2935     // expansion_amount() does this when it returns a value > 0.
2936     double expand_ms;
2937     if (!expand(expand_bytes, _workers, &expand_ms)) {
2938       // We failed to expand the heap. Cannot do anything about it.
2939     }
2940     phase_times()->record_expand_heap_time(expand_ms);
2941   }
2942 }
2943 
2944 const char* G1CollectedHeap::young_gc_name() const {
2945   if (collector_state()->in_initial_mark_gc()) {
2946     return "Pause Young (Concurrent Start)";
2947   } else if (collector_state()->in_young_only_phase()) {
2948     if (collector_state()->in_young_gc_before_mixed()) {
2949       return "Pause Young (Prepare Mixed)";
2950     } else {
2951       return "Pause Young (Normal)";
2952     }
2953   } else {
2954     return "Pause Young (Mixed)";
2955   }
2956 }
2957 
2958 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2959   assert_at_safepoint_on_vm_thread();
2960   guarantee(!is_gc_active(), "collection is not reentrant");
2961 
2962   if (GCLocker::check_active_before_gc()) {
2963     return false;
2964   }
2965 
2966   GCIdMark gc_id_mark;
2967 
2968   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2969   ResourceMark rm;
2970 
2971   policy()->note_gc_start();
2972 
2973   _gc_timer_stw->register_gc_start();
2974   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2975 
2976   wait_for_root_region_scanning();
2977 
2978   print_heap_before_gc();
2979   print_heap_regions();
2980   trace_heap_before_gc(_gc_tracer_stw);
2981 
2982   _verifier->verify_region_sets_optional();
2983   _verifier->verify_dirty_young_regions();
2984 
2985   // We should not be doing initial mark unless the conc mark thread is running
2986   if (!_cm_thread->should_terminate()) {
2987     // This call will decide whether this pause is an initial-mark
2988     // pause. If it is, in_initial_mark_gc() will return true
2989     // for the duration of this pause.
2990     policy()->decide_on_conc_mark_initiation();
2991   }
2992 
2993   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2994   assert(!collector_state()->in_initial_mark_gc() ||
2995          collector_state()->in_young_only_phase(), "sanity");
2996   // We also do not allow mixed GCs during marking.
2997   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2998 
2999   // Record whether this pause is an initial mark. When the current
3000   // thread has completed its logging output and it's safe to signal
3001   // the CM thread, the flag's value in the policy has been reset.
3002   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3003   if (should_start_conc_mark) {
3004     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3005   }
3006 
3007   // Inner scope for scope based logging, timers, and stats collection
3008   {
3009     G1EvacuationInfo evacuation_info;
3010 
3011     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3012 
3013     GCTraceCPUTime tcpu;
3014 
3015     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3016 
3017     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3018                                                             workers()->active_workers(),
3019                                                             Threads::number_of_non_daemon_threads());
3020     active_workers = workers()->update_active_workers(active_workers);
3021     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3022 
3023     G1MonitoringScope ms(g1mm(),
3024                          false /* full_gc */,
3025                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3026 
3027     G1HeapTransition heap_transition(this);
3028     size_t heap_used_bytes_before_gc = used();
3029 
3030     {
3031       IsGCActiveMark x;
3032 
3033       gc_prologue(false);
3034 
3035       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3036       verify_before_young_collection(verify_type);
3037 
3038       {
3039         // The elapsed time induced by the start time below deliberately elides
3040         // the possible verification above.
3041         double sample_start_time_sec = os::elapsedTime();
3042 
3043         // Please see comment in g1CollectedHeap.hpp and
3044         // G1CollectedHeap::ref_processing_init() to see how
3045         // reference processing currently works in G1.
3046         _ref_processor_stw->enable_discovery();
3047 
3048         // We want to temporarily turn off discovery by the
3049         // CM ref processor, if necessary, and turn it back on
3050         // on again later if we do. Using a scoped
3051         // NoRefDiscovery object will do this.
3052         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3053 
3054         policy()->record_collection_pause_start(sample_start_time_sec);
3055 
3056         // Forget the current allocation region (we might even choose it to be part
3057         // of the collection set!).
3058         _allocator->release_mutator_alloc_regions();
3059 
3060         calculate_collection_set(evacuation_info, target_pause_time_ms);
3061 
3062         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3063         G1ParScanThreadStateSet per_thread_states(this,
3064                                                   &rdcqs,
3065                                                   workers()->active_workers(),
3066                                                   collection_set()->young_region_length(),
3067                                                   collection_set()->optional_region_length());
3068         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3069 
3070         // Actually do the work...
3071         evacuate_initial_collection_set(&per_thread_states);
3072 
3073         if (_collection_set.optional_region_length() != 0) {
3074           evacuate_optional_collection_set(&per_thread_states);
3075         }
3076         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3077 
3078         start_new_collection_set();
3079 
3080         _survivor_evac_stats.adjust_desired_plab_sz();
3081         _old_evac_stats.adjust_desired_plab_sz();
3082 
3083         if (should_start_conc_mark) {
3084           // We have to do this before we notify the CM threads that
3085           // they can start working to make sure that all the
3086           // appropriate initialization is done on the CM object.
3087           concurrent_mark()->post_initial_mark();
3088           // Note that we don't actually trigger the CM thread at
3089           // this point. We do that later when we're sure that
3090           // the current thread has completed its logging output.
3091         }
3092 
3093         allocate_dummy_regions();
3094 
3095         _allocator->init_mutator_alloc_regions();
3096 
3097         expand_heap_after_young_collection();
3098 
3099         double sample_end_time_sec = os::elapsedTime();
3100         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3101         policy()->record_collection_pause_end(pause_time_ms, heap_used_bytes_before_gc);
3102       }
3103 
3104       verify_after_young_collection(verify_type);
3105 
3106 #ifdef TRACESPINNING
3107       ParallelTaskTerminator::print_termination_counts();
3108 #endif
3109 
3110       gc_epilogue(false);
3111     }
3112 
3113     // Print the remainder of the GC log output.
3114     if (evacuation_failed()) {
3115       log_info(gc)("To-space exhausted");
3116     }
3117 
3118     policy()->print_phases();
3119     heap_transition.print();
3120 
3121     _hrm->verify_optional();
3122     _verifier->verify_region_sets_optional();
3123 
3124     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3125     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3126 
3127     print_heap_after_gc();
3128     print_heap_regions();
3129     trace_heap_after_gc(_gc_tracer_stw);
3130 
3131     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3132     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3133     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3134     // before any GC notifications are raised.
3135     g1mm()->update_sizes();
3136 
3137     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3138     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3139     _gc_timer_stw->register_gc_end();
3140     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3141   }
3142   // It should now be safe to tell the concurrent mark thread to start
3143   // without its logging output interfering with the logging output
3144   // that came from the pause.
3145 
3146   if (should_start_conc_mark) {
3147     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3148     // thread(s) could be running concurrently with us. Make sure that anything
3149     // after this point does not assume that we are the only GC thread running.
3150     // Note: of course, the actual marking work will not start until the safepoint
3151     // itself is released in SuspendibleThreadSet::desynchronize().
3152     do_concurrent_mark();
3153   }
3154 
3155   return true;
3156 }
3157 
3158 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3159   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3160   workers()->run_task(&rsfp_task);
3161 }
3162 
3163 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3164   double remove_self_forwards_start = os::elapsedTime();
3165 
3166   remove_self_forwarding_pointers(rdcqs);
3167   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3168   _preserved_marks_set.restore(&task_executor);
3169 
3170   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3171 }
3172 
3173 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3174   if (!_evacuation_failed) {
3175     _evacuation_failed = true;
3176   }
3177 
3178   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3179   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3180 }
3181 
3182 bool G1ParEvacuateFollowersClosure::offer_termination() {
3183   EventGCPhaseParallel event;
3184   G1ParScanThreadState* const pss = par_scan_state();
3185   start_term_time();
3186   const bool res = terminator()->offer_termination();
3187   end_term_time();
3188   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3189   return res;
3190 }
3191 
3192 void G1ParEvacuateFollowersClosure::do_void() {
3193   EventGCPhaseParallel event;
3194   G1ParScanThreadState* const pss = par_scan_state();
3195   pss->trim_queue();
3196   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3197   do {
3198     EventGCPhaseParallel event;
3199     pss->steal_and_trim_queue(queues());
3200     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3201   } while (!offer_termination());
3202 }
3203 
3204 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3205                                         bool class_unloading_occurred) {
3206   uint num_workers = workers()->active_workers();
3207   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3208   workers()->run_task(&unlink_task);
3209 }
3210 
3211 // Clean string dedup data structures.
3212 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3213 // record the durations of the phases. Hence the almost-copy.
3214 class G1StringDedupCleaningTask : public AbstractGangTask {
3215   BoolObjectClosure* _is_alive;
3216   OopClosure* _keep_alive;
3217   G1GCPhaseTimes* _phase_times;
3218 
3219 public:
3220   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3221                             OopClosure* keep_alive,
3222                             G1GCPhaseTimes* phase_times) :
3223     AbstractGangTask("Partial Cleaning Task"),
3224     _is_alive(is_alive),
3225     _keep_alive(keep_alive),
3226     _phase_times(phase_times)
3227   {
3228     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3229     StringDedup::gc_prologue(true);
3230   }
3231 
3232   ~G1StringDedupCleaningTask() {
3233     StringDedup::gc_epilogue();
3234   }
3235 
3236   void work(uint worker_id) {
3237     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3238     {
3239       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3240       StringDedupQueue::unlink_or_oops_do(&cl);
3241     }
3242     {
3243       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3244       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3245     }
3246   }
3247 };
3248 
3249 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3250                                             OopClosure* keep_alive,
3251                                             G1GCPhaseTimes* phase_times) {
3252   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3253   workers()->run_task(&cl);
3254 }
3255 
3256 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3257  private:
3258   G1RedirtyCardsQueueSet* _qset;
3259   G1CollectedHeap* _g1h;
3260   BufferNode* volatile _nodes;
3261 
3262   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3263     size_t buffer_size = _qset->buffer_size();
3264     BufferNode* next = Atomic::load(&_nodes);
3265     while (next != NULL) {
3266       BufferNode* node = next;
3267       next = Atomic::cmpxchg(node->next(), &_nodes, node);
3268       if (next == node) {
3269         cl->apply_to_buffer(node, buffer_size, worker_id);
3270         next = node->next();
3271       }
3272     }
3273   }
3274 
3275  public:
3276   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3277     AbstractGangTask("Redirty Cards"),
3278     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3279 
3280   virtual void work(uint worker_id) {
3281     G1GCPhaseTimes* p = _g1h->phase_times();
3282     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3283 
3284     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3285     par_apply(&cl, worker_id);
3286 
3287     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3288   }
3289 };
3290 
3291 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3292   double redirty_logged_cards_start = os::elapsedTime();
3293 
3294   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3295   workers()->run_task(&redirty_task);
3296 
3297   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3298   dcq.merge_bufferlists(rdcqs);
3299 
3300   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3301 }
3302 
3303 // Weak Reference Processing support
3304 
3305 bool G1STWIsAliveClosure::do_object_b(oop p) {
3306   // An object is reachable if it is outside the collection set,
3307   // or is inside and copied.
3308   return !_g1h->is_in_cset(p) || p->is_forwarded();
3309 }
3310 
3311 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3312   assert(obj != NULL, "must not be NULL");
3313   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3314   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3315   // may falsely indicate that this is not the case here: however the collection set only
3316   // contains old regions when concurrent mark is not running.
3317   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3318 }
3319 
3320 // Non Copying Keep Alive closure
3321 class G1KeepAliveClosure: public OopClosure {
3322   G1CollectedHeap*_g1h;
3323 public:
3324   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3325   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3326   void do_oop(oop* p) {
3327     oop obj = *p;
3328     assert(obj != NULL, "the caller should have filtered out NULL values");
3329 
3330     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3331     if (!region_attr.is_in_cset_or_humongous()) {
3332       return;
3333     }
3334     if (region_attr.is_in_cset()) {
3335       assert( obj->is_forwarded(), "invariant" );
3336       *p = obj->forwardee();
3337     } else {
3338       assert(!obj->is_forwarded(), "invariant" );
3339       assert(region_attr.is_humongous(),
3340              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3341      _g1h->set_humongous_is_live(obj);
3342     }
3343   }
3344 };
3345 
3346 // Copying Keep Alive closure - can be called from both
3347 // serial and parallel code as long as different worker
3348 // threads utilize different G1ParScanThreadState instances
3349 // and different queues.
3350 
3351 class G1CopyingKeepAliveClosure: public OopClosure {
3352   G1CollectedHeap*         _g1h;
3353   G1ParScanThreadState*    _par_scan_state;
3354 
3355 public:
3356   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3357                             G1ParScanThreadState* pss):
3358     _g1h(g1h),
3359     _par_scan_state(pss)
3360   {}
3361 
3362   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3363   virtual void do_oop(      oop* p) { do_oop_work(p); }
3364 
3365   template <class T> void do_oop_work(T* p) {
3366     oop obj = RawAccess<>::oop_load(p);
3367 
3368     if (_g1h->is_in_cset_or_humongous(obj)) {
3369       // If the referent object has been forwarded (either copied
3370       // to a new location or to itself in the event of an
3371       // evacuation failure) then we need to update the reference
3372       // field and, if both reference and referent are in the G1
3373       // heap, update the RSet for the referent.
3374       //
3375       // If the referent has not been forwarded then we have to keep
3376       // it alive by policy. Therefore we have copy the referent.
3377       //
3378       // When the queue is drained (after each phase of reference processing)
3379       // the object and it's followers will be copied, the reference field set
3380       // to point to the new location, and the RSet updated.
3381       _par_scan_state->push_on_queue(p);
3382     }
3383   }
3384 };
3385 
3386 // Serial drain queue closure. Called as the 'complete_gc'
3387 // closure for each discovered list in some of the
3388 // reference processing phases.
3389 
3390 class G1STWDrainQueueClosure: public VoidClosure {
3391 protected:
3392   G1CollectedHeap* _g1h;
3393   G1ParScanThreadState* _par_scan_state;
3394 
3395   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3396 
3397 public:
3398   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3399     _g1h(g1h),
3400     _par_scan_state(pss)
3401   { }
3402 
3403   void do_void() {
3404     G1ParScanThreadState* const pss = par_scan_state();
3405     pss->trim_queue();
3406   }
3407 };
3408 
3409 // Parallel Reference Processing closures
3410 
3411 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3412 // processing during G1 evacuation pauses.
3413 
3414 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3415 private:
3416   G1CollectedHeap*          _g1h;
3417   G1ParScanThreadStateSet*  _pss;
3418   RefToScanQueueSet*        _queues;
3419   WorkGang*                 _workers;
3420 
3421 public:
3422   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3423                            G1ParScanThreadStateSet* per_thread_states,
3424                            WorkGang* workers,
3425                            RefToScanQueueSet *task_queues) :
3426     _g1h(g1h),
3427     _pss(per_thread_states),
3428     _queues(task_queues),
3429     _workers(workers)
3430   {
3431     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3432   }
3433 
3434   // Executes the given task using concurrent marking worker threads.
3435   virtual void execute(ProcessTask& task, uint ergo_workers);
3436 };
3437 
3438 // Gang task for possibly parallel reference processing
3439 
3440 class G1STWRefProcTaskProxy: public AbstractGangTask {
3441   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3442   ProcessTask&     _proc_task;
3443   G1CollectedHeap* _g1h;
3444   G1ParScanThreadStateSet* _pss;
3445   RefToScanQueueSet* _task_queues;
3446   ParallelTaskTerminator* _terminator;
3447 
3448 public:
3449   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3450                         G1CollectedHeap* g1h,
3451                         G1ParScanThreadStateSet* per_thread_states,
3452                         RefToScanQueueSet *task_queues,
3453                         ParallelTaskTerminator* terminator) :
3454     AbstractGangTask("Process reference objects in parallel"),
3455     _proc_task(proc_task),
3456     _g1h(g1h),
3457     _pss(per_thread_states),
3458     _task_queues(task_queues),
3459     _terminator(terminator)
3460   {}
3461 
3462   virtual void work(uint worker_id) {
3463     // The reference processing task executed by a single worker.
3464     ResourceMark rm;
3465     HandleMark   hm;
3466 
3467     G1STWIsAliveClosure is_alive(_g1h);
3468 
3469     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3470     pss->set_ref_discoverer(NULL);
3471 
3472     // Keep alive closure.
3473     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3474 
3475     // Complete GC closure
3476     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3477 
3478     // Call the reference processing task's work routine.
3479     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3480 
3481     // Note we cannot assert that the refs array is empty here as not all
3482     // of the processing tasks (specifically phase2 - pp2_work) execute
3483     // the complete_gc closure (which ordinarily would drain the queue) so
3484     // the queue may not be empty.
3485   }
3486 };
3487 
3488 // Driver routine for parallel reference processing.
3489 // Creates an instance of the ref processing gang
3490 // task and has the worker threads execute it.
3491 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3492   assert(_workers != NULL, "Need parallel worker threads.");
3493 
3494   assert(_workers->active_workers() >= ergo_workers,
3495          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3496          ergo_workers, _workers->active_workers());
3497   TaskTerminator terminator(ergo_workers, _queues);
3498   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3499 
3500   _workers->run_task(&proc_task_proxy, ergo_workers);
3501 }
3502 
3503 // End of weak reference support closures
3504 
3505 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3506   double ref_proc_start = os::elapsedTime();
3507 
3508   ReferenceProcessor* rp = _ref_processor_stw;
3509   assert(rp->discovery_enabled(), "should have been enabled");
3510 
3511   // Closure to test whether a referent is alive.
3512   G1STWIsAliveClosure is_alive(this);
3513 
3514   // Even when parallel reference processing is enabled, the processing
3515   // of JNI refs is serial and performed serially by the current thread
3516   // rather than by a worker. The following PSS will be used for processing
3517   // JNI refs.
3518 
3519   // Use only a single queue for this PSS.
3520   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3521   pss->set_ref_discoverer(NULL);
3522   assert(pss->queue_is_empty(), "pre-condition");
3523 
3524   // Keep alive closure.
3525   G1CopyingKeepAliveClosure keep_alive(this, pss);
3526 
3527   // Serial Complete GC closure
3528   G1STWDrainQueueClosure drain_queue(this, pss);
3529 
3530   // Setup the soft refs policy...
3531   rp->setup_policy(false);
3532 
3533   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3534 
3535   ReferenceProcessorStats stats;
3536   if (!rp->processing_is_mt()) {
3537     // Serial reference processing...
3538     stats = rp->process_discovered_references(&is_alive,
3539                                               &keep_alive,
3540                                               &drain_queue,
3541                                               NULL,
3542                                               pt);
3543   } else {
3544     uint no_of_gc_workers = workers()->active_workers();
3545 
3546     // Parallel reference processing
3547     assert(no_of_gc_workers <= rp->max_num_queues(),
3548            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3549            no_of_gc_workers,  rp->max_num_queues());
3550 
3551     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3552     stats = rp->process_discovered_references(&is_alive,
3553                                               &keep_alive,
3554                                               &drain_queue,
3555                                               &par_task_executor,
3556                                               pt);
3557   }
3558 
3559   _gc_tracer_stw->report_gc_reference_stats(stats);
3560 
3561   // We have completed copying any necessary live referent objects.
3562   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3563 
3564   make_pending_list_reachable();
3565 
3566   assert(!rp->discovery_enabled(), "Postcondition");
3567   rp->verify_no_references_recorded();
3568 
3569   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3570   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3571 }
3572 
3573 void G1CollectedHeap::make_pending_list_reachable() {
3574   if (collector_state()->in_initial_mark_gc()) {
3575     oop pll_head = Universe::reference_pending_list();
3576     if (pll_head != NULL) {
3577       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3578       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3579     }
3580   }
3581 }
3582 
3583 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3584   double merge_pss_time_start = os::elapsedTime();
3585   per_thread_states->flush();
3586   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3587 }
3588 
3589 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3590   _expand_heap_after_alloc_failure = true;
3591   _evacuation_failed = false;
3592 
3593   // Disable the hot card cache.
3594   _hot_card_cache->reset_hot_cache_claimed_index();
3595   _hot_card_cache->set_use_cache(false);
3596 
3597   // Initialize the GC alloc regions.
3598   _allocator->init_gc_alloc_regions(evacuation_info);
3599 
3600   {
3601     Ticks start = Ticks::now();
3602     rem_set()->prepare_for_scan_heap_roots();
3603     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3604   }
3605 
3606   register_regions_with_region_attr();
3607   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3608 
3609   _preserved_marks_set.assert_empty();
3610 
3611 #if COMPILER2_OR_JVMCI
3612   DerivedPointerTable::clear();
3613 #endif
3614 
3615   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3616   if (collector_state()->in_initial_mark_gc()) {
3617     concurrent_mark()->pre_initial_mark();
3618 
3619     double start_clear_claimed_marks = os::elapsedTime();
3620 
3621     ClassLoaderDataGraph::clear_claimed_marks();
3622 
3623     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3624     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3625   }
3626 
3627   // Should G1EvacuationFailureALot be in effect for this GC?
3628   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3629 }
3630 
3631 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3632 protected:
3633   G1CollectedHeap* _g1h;
3634   G1ParScanThreadStateSet* _per_thread_states;
3635   RefToScanQueueSet* _task_queues;
3636   TaskTerminator _terminator;
3637   uint _num_workers;
3638 
3639   void evacuate_live_objects(G1ParScanThreadState* pss,
3640                              uint worker_id,
3641                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3642                              G1GCPhaseTimes::GCParPhases termination_phase) {
3643     G1GCPhaseTimes* p = _g1h->phase_times();
3644 
3645     Ticks start = Ticks::now();
3646     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3647     cl.do_void();
3648 
3649     assert(pss->queue_is_empty(), "should be empty");
3650 
3651     Tickspan evac_time = (Ticks::now() - start);
3652     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3653 
3654     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3655     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3656 
3657     if (termination_phase == G1GCPhaseTimes::Termination) {
3658       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3659       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3660     } else {
3661       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3662       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3663     }
3664   }
3665 
3666   virtual void start_work(uint worker_id) { }
3667 
3668   virtual void end_work(uint worker_id) { }
3669 
3670   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3671 
3672   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3673 
3674 public:
3675   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3676     AbstractGangTask(name),
3677     _g1h(G1CollectedHeap::heap()),
3678     _per_thread_states(per_thread_states),
3679     _task_queues(task_queues),
3680     _terminator(num_workers, _task_queues),
3681     _num_workers(num_workers)
3682   { }
3683 
3684   void work(uint worker_id) {
3685     start_work(worker_id);
3686 
3687     {
3688       ResourceMark rm;
3689       HandleMark   hm;
3690 
3691       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3692       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3693 
3694       scan_roots(pss, worker_id);
3695       evacuate_live_objects(pss, worker_id);
3696     }
3697 
3698     end_work(worker_id);
3699   }
3700 };
3701 
3702 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3703   G1RootProcessor* _root_processor;
3704 
3705   void verify_trim_ticks(G1ParScanThreadState* pss, const char* location) {
3706     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation at %s %.3lf " JLONG_FORMAT, location, pss->trim_ticks().seconds(), pss->trim_ticks().value());
3707   }
3708 
3709   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3710     _root_processor->evacuate_roots(pss, worker_id);
3711     verify_trim_ticks(pss, "roots");
3712     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3713     verify_trim_ticks(pss, "heap roots");
3714     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3715     verify_trim_ticks(pss, "scan cset");
3716   }
3717 
3718   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3719     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3720     verify_trim_ticks(pss, "evac live");
3721   }
3722 
3723   void start_work(uint worker_id) {
3724     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3725   }
3726 
3727   void end_work(uint worker_id) {
3728     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3729   }
3730 
3731 public:
3732   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3733                         G1ParScanThreadStateSet* per_thread_states,
3734                         RefToScanQueueSet* task_queues,
3735                         G1RootProcessor* root_processor,
3736                         uint num_workers) :
3737     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3738     _root_processor(root_processor)
3739   { }
3740 };
3741 
3742 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3743   G1GCPhaseTimes* p = phase_times();
3744 
3745   {
3746     Ticks start = Ticks::now();
3747     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3748     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3749   }
3750 
3751   Tickspan task_time;
3752   const uint num_workers = workers()->active_workers();
3753 
3754   Ticks start_processing = Ticks::now();
3755   {
3756     G1RootProcessor root_processor(this, num_workers);
3757     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3758     task_time = run_task(&g1_par_task);
3759     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3760     // To extract its code root fixup time we measure total time of this scope and
3761     // subtract from the time the WorkGang task took.
3762   }
3763   Tickspan total_processing = Ticks::now() - start_processing;
3764 
3765   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3766   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3767 }
3768 
3769 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3770 
3771   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3772     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3773     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3774   }
3775 
3776   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3777     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3778   }
3779 
3780 public:
3781   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3782                                 RefToScanQueueSet* queues,
3783                                 uint num_workers) :
3784     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3785   }
3786 };
3787 
3788 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3789   class G1MarkScope : public MarkScope { };
3790 
3791   Tickspan task_time;
3792 
3793   Ticks start_processing = Ticks::now();
3794   {
3795     G1MarkScope code_mark_scope;
3796     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3797     task_time = run_task(&task);
3798     // See comment in evacuate_collection_set() for the reason of the scope.
3799   }
3800   Tickspan total_processing = Ticks::now() - start_processing;
3801 
3802   G1GCPhaseTimes* p = phase_times();
3803   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3804 }
3805 
3806 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3807   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3808 
3809   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3810 
3811     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3812     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3813 
3814     if (time_left_ms < 0 ||
3815         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3816       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3817                                 _collection_set.optional_region_length(), time_left_ms);
3818       break;
3819     }
3820 
3821     {
3822       Ticks start = Ticks::now();
3823       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3824       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3825     }
3826 
3827     {
3828       Ticks start = Ticks::now();
3829       evacuate_next_optional_regions(per_thread_states);
3830       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3831     }
3832   }
3833 
3834   _collection_set.abandon_optional_collection_set(per_thread_states);
3835 }
3836 
3837 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3838                                                    G1RedirtyCardsQueueSet* rdcqs,
3839                                                    G1ParScanThreadStateSet* per_thread_states) {
3840   rem_set()->cleanup_after_scan_heap_roots();
3841 
3842   // Process any discovered reference objects - we have
3843   // to do this _before_ we retire the GC alloc regions
3844   // as we may have to copy some 'reachable' referent
3845   // objects (and their reachable sub-graphs) that were
3846   // not copied during the pause.
3847   process_discovered_references(per_thread_states);
3848 
3849   G1STWIsAliveClosure is_alive(this);
3850   G1KeepAliveClosure keep_alive(this);
3851 
3852   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3853                               phase_times()->weak_phase_times());
3854 
3855   if (G1StringDedup::is_enabled()) {
3856     double string_dedup_time_ms = os::elapsedTime();
3857 
3858     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3859 
3860     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3861     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3862   }
3863 
3864   _allocator->release_gc_alloc_regions(evacuation_info);
3865 
3866   if (evacuation_failed()) {
3867     restore_after_evac_failure(rdcqs);
3868 
3869     // Reset the G1EvacuationFailureALot counters and flags
3870     NOT_PRODUCT(reset_evacuation_should_fail();)
3871 
3872     double recalculate_used_start = os::elapsedTime();
3873     set_used(recalculate_used());
3874     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3875 
3876     if (_archive_allocator != NULL) {
3877       _archive_allocator->clear_used();
3878     }
3879     for (uint i = 0; i < ParallelGCThreads; i++) {
3880       if (_evacuation_failed_info_array[i].has_failed()) {
3881         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3882       }
3883     }
3884   } else {
3885     // The "used" of the the collection set have already been subtracted
3886     // when they were freed.  Add in the bytes evacuated.
3887     increase_used(policy()->bytes_copied_during_gc());
3888   }
3889 
3890   _preserved_marks_set.assert_empty();
3891 
3892   merge_per_thread_state_info(per_thread_states);
3893 
3894   // Reset and re-enable the hot card cache.
3895   // Note the counts for the cards in the regions in the
3896   // collection set are reset when the collection set is freed.
3897   _hot_card_cache->reset_hot_cache();
3898   _hot_card_cache->set_use_cache(true);
3899 
3900   purge_code_root_memory();
3901 
3902   redirty_logged_cards(rdcqs);
3903 
3904   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3905 
3906   eagerly_reclaim_humongous_regions();
3907 
3908   record_obj_copy_mem_stats();
3909 
3910   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3911   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3912 
3913 #if COMPILER2_OR_JVMCI
3914   double start = os::elapsedTime();
3915   DerivedPointerTable::update_pointers();
3916   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3917 #endif
3918   policy()->print_age_table();
3919 }
3920 
3921 void G1CollectedHeap::record_obj_copy_mem_stats() {
3922   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3923 
3924   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3925                                                create_g1_evac_summary(&_old_evac_stats));
3926 }
3927 
3928 void G1CollectedHeap::free_region(HeapRegion* hr,
3929                                   FreeRegionList* free_list,
3930                                   bool skip_remset,
3931                                   bool skip_hot_card_cache,
3932                                   bool locked) {
3933   assert(!hr->is_free(), "the region should not be free");
3934   assert(!hr->is_empty(), "the region should not be empty");
3935   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3936   assert(free_list != NULL, "pre-condition");
3937 
3938   if (G1VerifyBitmaps) {
3939     MemRegion mr(hr->bottom(), hr->end());
3940     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3941   }
3942 
3943   // Clear the card counts for this region.
3944   // Note: we only need to do this if the region is not young
3945   // (since we don't refine cards in young regions).
3946   if (!skip_hot_card_cache && !hr->is_young()) {
3947     _hot_card_cache->reset_card_counts(hr);
3948   }
3949   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3950   _policy->remset_tracker()->update_at_free(hr);
3951   free_list->add_ordered(hr);
3952 }
3953 
3954 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3955                                             FreeRegionList* free_list) {
3956   assert(hr->is_humongous(), "this is only for humongous regions");
3957   assert(free_list != NULL, "pre-condition");
3958   hr->clear_humongous();
3959   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3960 }
3961 
3962 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3963                                            const uint humongous_regions_removed) {
3964   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3965     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3966     _old_set.bulk_remove(old_regions_removed);
3967     _humongous_set.bulk_remove(humongous_regions_removed);
3968   }
3969 
3970 }
3971 
3972 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3973   assert(list != NULL, "list can't be null");
3974   if (!list->is_empty()) {
3975     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3976     _hrm->insert_list_into_free_list(list);
3977   }
3978 }
3979 
3980 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3981   decrease_used(bytes);
3982 }
3983 
3984 class G1FreeCollectionSetTask : public AbstractGangTask {
3985 private:
3986 
3987   // Closure applied to all regions in the collection set to do work that needs to
3988   // be done serially in a single thread.
3989   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3990   private:
3991     G1EvacuationInfo* _evacuation_info;
3992     const size_t* _surviving_young_words;
3993 
3994     // Bytes used in successfully evacuated regions before the evacuation.
3995     size_t _before_used_bytes;
3996     // Bytes used in unsucessfully evacuated regions before the evacuation
3997     size_t _after_used_bytes;
3998 
3999     size_t _bytes_allocated_in_old_since_last_gc;
4000 
4001     size_t _failure_used_words;
4002     size_t _failure_waste_words;
4003 
4004     FreeRegionList _local_free_list;
4005   public:
4006     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4007       HeapRegionClosure(),
4008       _evacuation_info(evacuation_info),
4009       _surviving_young_words(surviving_young_words),
4010       _before_used_bytes(0),
4011       _after_used_bytes(0),
4012       _bytes_allocated_in_old_since_last_gc(0),
4013       _failure_used_words(0),
4014       _failure_waste_words(0),
4015       _local_free_list("Local Region List for CSet Freeing") {
4016     }
4017 
4018     virtual bool do_heap_region(HeapRegion* r) {
4019       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4020 
4021       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4022       g1h->clear_region_attr(r);
4023 
4024       if (r->is_young()) {
4025         assert(r->young_index_in_cset() != 0 && (uint)r->young_index_in_cset() <= g1h->collection_set()->young_region_length(),
4026                "Young index %u is wrong for region %u of type %s with %u young regions",
4027                r->young_index_in_cset(),
4028                r->hrm_index(),
4029                r->get_type_str(),
4030                g1h->collection_set()->young_region_length());
4031         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4032         r->record_surv_words_in_group(words_survived);
4033       }
4034 
4035       if (!r->evacuation_failed()) {
4036         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4037         _before_used_bytes += r->used();
4038         g1h->free_region(r,
4039                          &_local_free_list,
4040                          true, /* skip_remset */
4041                          true, /* skip_hot_card_cache */
4042                          true  /* locked */);
4043       } else {
4044         r->uninstall_surv_rate_group();
4045         r->clear_young_index_in_cset();
4046         r->set_evacuation_failed(false);
4047         // When moving a young gen region to old gen, we "allocate" that whole region
4048         // there. This is in addition to any already evacuated objects. Notify the
4049         // policy about that.
4050         // Old gen regions do not cause an additional allocation: both the objects
4051         // still in the region and the ones already moved are accounted for elsewhere.
4052         if (r->is_young()) {
4053           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4054         }
4055         // The region is now considered to be old.
4056         r->set_old();
4057         // Do some allocation statistics accounting. Regions that failed evacuation
4058         // are always made old, so there is no need to update anything in the young
4059         // gen statistics, but we need to update old gen statistics.
4060         size_t used_words = r->marked_bytes() / HeapWordSize;
4061 
4062         _failure_used_words += used_words;
4063         _failure_waste_words += HeapRegion::GrainWords - used_words;
4064 
4065         g1h->old_set_add(r);
4066         _after_used_bytes += r->used();
4067       }
4068       return false;
4069     }
4070 
4071     void complete_work() {
4072       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4073 
4074       _evacuation_info->set_regions_freed(_local_free_list.length());
4075       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4076 
4077       g1h->prepend_to_freelist(&_local_free_list);
4078       g1h->decrement_summary_bytes(_before_used_bytes);
4079 
4080       G1Policy* policy = g1h->policy();
4081       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4082 
4083       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4084     }
4085   };
4086 
4087   G1CollectionSet* _collection_set;
4088   G1SerialFreeCollectionSetClosure _cl;
4089   const size_t* _surviving_young_words;
4090 
4091   size_t _rs_length;
4092 
4093   volatile jint _serial_work_claim;
4094 
4095   struct WorkItem {
4096     uint region_idx;
4097     bool is_young;
4098     bool evacuation_failed;
4099 
4100     WorkItem(HeapRegion* r) {
4101       region_idx = r->hrm_index();
4102       is_young = r->is_young();
4103       evacuation_failed = r->evacuation_failed();
4104     }
4105   };
4106 
4107   volatile size_t _parallel_work_claim;
4108   size_t _num_work_items;
4109   WorkItem* _work_items;
4110 
4111   void do_serial_work() {
4112     // Need to grab the lock to be allowed to modify the old region list.
4113     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4114     _collection_set->iterate(&_cl);
4115   }
4116 
4117   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4118     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4119 
4120     HeapRegion* r = g1h->region_at(region_idx);
4121     assert(!g1h->is_on_master_free_list(r), "sanity");
4122 
4123     Atomic::add(r->rem_set()->occupied_locked(), &_rs_length);
4124 
4125     if (!is_young) {
4126       g1h->_hot_card_cache->reset_card_counts(r);
4127     }
4128 
4129     if (!evacuation_failed) {
4130       r->rem_set()->clear_locked();
4131     }
4132   }
4133 
4134   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4135   private:
4136     size_t _cur_idx;
4137     WorkItem* _work_items;
4138   public:
4139     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4140 
4141     virtual bool do_heap_region(HeapRegion* r) {
4142       _work_items[_cur_idx++] = WorkItem(r);
4143       return false;
4144     }
4145   };
4146 
4147   void prepare_work() {
4148     G1PrepareFreeCollectionSetClosure cl(_work_items);
4149     _collection_set->iterate(&cl);
4150   }
4151 
4152   void complete_work() {
4153     _cl.complete_work();
4154 
4155     G1Policy* policy = G1CollectedHeap::heap()->policy();
4156     policy->record_max_rs_length(_rs_length);
4157     policy->cset_regions_freed();
4158   }
4159 public:
4160   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4161     AbstractGangTask("G1 Free Collection Set"),
4162     _collection_set(collection_set),
4163     _cl(evacuation_info, surviving_young_words),
4164     _surviving_young_words(surviving_young_words),
4165     _rs_length(0),
4166     _serial_work_claim(0),
4167     _parallel_work_claim(0),
4168     _num_work_items(collection_set->region_length()),
4169     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4170     prepare_work();
4171   }
4172 
4173   ~G1FreeCollectionSetTask() {
4174     complete_work();
4175     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4176   }
4177 
4178   // Chunk size for work distribution. The chosen value has been determined experimentally
4179   // to be a good tradeoff between overhead and achievable parallelism.
4180   static uint chunk_size() { return 32; }
4181 
4182   virtual void work(uint worker_id) {
4183     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4184 
4185     // Claim serial work.
4186     if (_serial_work_claim == 0) {
4187       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4188       if (value == 0) {
4189         double serial_time = os::elapsedTime();
4190         do_serial_work();
4191         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4192       }
4193     }
4194 
4195     // Start parallel work.
4196     double young_time = 0.0;
4197     bool has_young_time = false;
4198     double non_young_time = 0.0;
4199     bool has_non_young_time = false;
4200 
4201     while (true) {
4202       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4203       size_t cur = end - chunk_size();
4204 
4205       if (cur >= _num_work_items) {
4206         break;
4207       }
4208 
4209       EventGCPhaseParallel event;
4210       double start_time = os::elapsedTime();
4211 
4212       end = MIN2(end, _num_work_items);
4213 
4214       for (; cur < end; cur++) {
4215         bool is_young = _work_items[cur].is_young;
4216 
4217         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4218 
4219         double end_time = os::elapsedTime();
4220         double time_taken = end_time - start_time;
4221         if (is_young) {
4222           young_time += time_taken;
4223           has_young_time = true;
4224           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4225         } else {
4226           non_young_time += time_taken;
4227           has_non_young_time = true;
4228           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4229         }
4230         start_time = end_time;
4231       }
4232     }
4233 
4234     if (has_young_time) {
4235       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4236     }
4237     if (has_non_young_time) {
4238       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4239     }
4240   }
4241 };
4242 
4243 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4244   _eden.clear();
4245 
4246   double free_cset_start_time = os::elapsedTime();
4247 
4248   {
4249     uint const num_regions = _collection_set.region_length();
4250     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4251     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4252 
4253     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4254 
4255     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4256                         cl.name(), num_workers, num_regions);
4257     workers()->run_task(&cl, num_workers);
4258   }
4259   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4260 
4261   collection_set->clear();
4262 }
4263 
4264 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4265  private:
4266   FreeRegionList* _free_region_list;
4267   HeapRegionSet* _proxy_set;
4268   uint _humongous_objects_reclaimed;
4269   uint _humongous_regions_reclaimed;
4270   size_t _freed_bytes;
4271  public:
4272 
4273   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4274     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4275   }
4276 
4277   virtual bool do_heap_region(HeapRegion* r) {
4278     if (!r->is_starts_humongous()) {
4279       return false;
4280     }
4281 
4282     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4283 
4284     oop obj = (oop)r->bottom();
4285     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4286 
4287     // The following checks whether the humongous object is live are sufficient.
4288     // The main additional check (in addition to having a reference from the roots
4289     // or the young gen) is whether the humongous object has a remembered set entry.
4290     //
4291     // A humongous object cannot be live if there is no remembered set for it
4292     // because:
4293     // - there can be no references from within humongous starts regions referencing
4294     // the object because we never allocate other objects into them.
4295     // (I.e. there are no intra-region references that may be missed by the
4296     // remembered set)
4297     // - as soon there is a remembered set entry to the humongous starts region
4298     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4299     // until the end of a concurrent mark.
4300     //
4301     // It is not required to check whether the object has been found dead by marking
4302     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4303     // all objects allocated during that time are considered live.
4304     // SATB marking is even more conservative than the remembered set.
4305     // So if at this point in the collection there is no remembered set entry,
4306     // nobody has a reference to it.
4307     // At the start of collection we flush all refinement logs, and remembered sets
4308     // are completely up-to-date wrt to references to the humongous object.
4309     //
4310     // Other implementation considerations:
4311     // - never consider object arrays at this time because they would pose
4312     // considerable effort for cleaning up the the remembered sets. This is
4313     // required because stale remembered sets might reference locations that
4314     // are currently allocated into.
4315     uint region_idx = r->hrm_index();
4316     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4317         !r->rem_set()->is_empty()) {
4318       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4319                                region_idx,
4320                                (size_t)obj->size() * HeapWordSize,
4321                                p2i(r->bottom()),
4322                                r->rem_set()->occupied(),
4323                                r->rem_set()->strong_code_roots_list_length(),
4324                                next_bitmap->is_marked(r->bottom()),
4325                                g1h->is_humongous_reclaim_candidate(region_idx),
4326                                obj->is_typeArray()
4327                               );
4328       return false;
4329     }
4330 
4331     guarantee(obj->is_typeArray(),
4332               "Only eagerly reclaiming type arrays is supported, but the object "
4333               PTR_FORMAT " is not.", p2i(r->bottom()));
4334 
4335     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4336                              region_idx,
4337                              (size_t)obj->size() * HeapWordSize,
4338                              p2i(r->bottom()),
4339                              r->rem_set()->occupied(),
4340                              r->rem_set()->strong_code_roots_list_length(),
4341                              next_bitmap->is_marked(r->bottom()),
4342                              g1h->is_humongous_reclaim_candidate(region_idx),
4343                              obj->is_typeArray()
4344                             );
4345 
4346     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4347     cm->humongous_object_eagerly_reclaimed(r);
4348     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4349            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4350            region_idx,
4351            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4352            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4353     _humongous_objects_reclaimed++;
4354     do {
4355       HeapRegion* next = g1h->next_region_in_humongous(r);
4356       _freed_bytes += r->used();
4357       r->set_containing_set(NULL);
4358       _humongous_regions_reclaimed++;
4359       g1h->free_humongous_region(r, _free_region_list);
4360       r = next;
4361     } while (r != NULL);
4362 
4363     return false;
4364   }
4365 
4366   uint humongous_objects_reclaimed() {
4367     return _humongous_objects_reclaimed;
4368   }
4369 
4370   uint humongous_regions_reclaimed() {
4371     return _humongous_regions_reclaimed;
4372   }
4373 
4374   size_t bytes_freed() const {
4375     return _freed_bytes;
4376   }
4377 };
4378 
4379 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4380   assert_at_safepoint_on_vm_thread();
4381 
4382   if (!G1EagerReclaimHumongousObjects ||
4383       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4384     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4385     return;
4386   }
4387 
4388   double start_time = os::elapsedTime();
4389 
4390   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4391 
4392   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4393   heap_region_iterate(&cl);
4394 
4395   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4396 
4397   G1HRPrinter* hrp = hr_printer();
4398   if (hrp->is_active()) {
4399     FreeRegionListIterator iter(&local_cleanup_list);
4400     while (iter.more_available()) {
4401       HeapRegion* hr = iter.get_next();
4402       hrp->cleanup(hr);
4403     }
4404   }
4405 
4406   prepend_to_freelist(&local_cleanup_list);
4407   decrement_summary_bytes(cl.bytes_freed());
4408 
4409   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4410                                                        cl.humongous_objects_reclaimed());
4411 }
4412 
4413 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4414 public:
4415   virtual bool do_heap_region(HeapRegion* r) {
4416     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4417     G1CollectedHeap::heap()->clear_region_attr(r);
4418     r->clear_young_index_in_cset();
4419     return false;
4420   }
4421 };
4422 
4423 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4424   G1AbandonCollectionSetClosure cl;
4425   collection_set_iterate_all(&cl);
4426 
4427   collection_set->clear();
4428   collection_set->stop_incremental_building();
4429 }
4430 
4431 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4432   return _allocator->is_retained_old_region(hr);
4433 }
4434 
4435 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4436   _eden.add(hr);
4437   _policy->set_region_eden(hr);
4438 }
4439 
4440 #ifdef ASSERT
4441 
4442 class NoYoungRegionsClosure: public HeapRegionClosure {
4443 private:
4444   bool _success;
4445 public:
4446   NoYoungRegionsClosure() : _success(true) { }
4447   bool do_heap_region(HeapRegion* r) {
4448     if (r->is_young()) {
4449       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4450                             p2i(r->bottom()), p2i(r->end()));
4451       _success = false;
4452     }
4453     return false;
4454   }
4455   bool success() { return _success; }
4456 };
4457 
4458 bool G1CollectedHeap::check_young_list_empty() {
4459   bool ret = (young_regions_count() == 0);
4460 
4461   NoYoungRegionsClosure closure;
4462   heap_region_iterate(&closure);
4463   ret = ret && closure.success();
4464 
4465   return ret;
4466 }
4467 
4468 #endif // ASSERT
4469 
4470 class TearDownRegionSetsClosure : public HeapRegionClosure {
4471   HeapRegionSet *_old_set;
4472 
4473 public:
4474   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4475 
4476   bool do_heap_region(HeapRegion* r) {
4477     if (r->is_old()) {
4478       _old_set->remove(r);
4479     } else if(r->is_young()) {
4480       r->uninstall_surv_rate_group();
4481     } else {
4482       // We ignore free regions, we'll empty the free list afterwards.
4483       // We ignore humongous and archive regions, we're not tearing down these
4484       // sets.
4485       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4486              "it cannot be another type");
4487     }
4488     return false;
4489   }
4490 
4491   ~TearDownRegionSetsClosure() {
4492     assert(_old_set->is_empty(), "post-condition");
4493   }
4494 };
4495 
4496 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4497   assert_at_safepoint_on_vm_thread();
4498 
4499   if (!free_list_only) {
4500     TearDownRegionSetsClosure cl(&_old_set);
4501     heap_region_iterate(&cl);
4502 
4503     // Note that emptying the _young_list is postponed and instead done as
4504     // the first step when rebuilding the regions sets again. The reason for
4505     // this is that during a full GC string deduplication needs to know if
4506     // a collected region was young or old when the full GC was initiated.
4507   }
4508   _hrm->remove_all_free_regions();
4509 }
4510 
4511 void G1CollectedHeap::increase_used(size_t bytes) {
4512   _summary_bytes_used += bytes;
4513 }
4514 
4515 void G1CollectedHeap::decrease_used(size_t bytes) {
4516   assert(_summary_bytes_used >= bytes,
4517          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4518          _summary_bytes_used, bytes);
4519   _summary_bytes_used -= bytes;
4520 }
4521 
4522 void G1CollectedHeap::set_used(size_t bytes) {
4523   _summary_bytes_used = bytes;
4524 }
4525 
4526 class RebuildRegionSetsClosure : public HeapRegionClosure {
4527 private:
4528   bool _free_list_only;
4529 
4530   HeapRegionSet* _old_set;
4531   HeapRegionManager* _hrm;
4532 
4533   size_t _total_used;
4534 
4535 public:
4536   RebuildRegionSetsClosure(bool free_list_only,
4537                            HeapRegionSet* old_set,
4538                            HeapRegionManager* hrm) :
4539     _free_list_only(free_list_only),
4540     _old_set(old_set), _hrm(hrm), _total_used(0) {
4541     assert(_hrm->num_free_regions() == 0, "pre-condition");
4542     if (!free_list_only) {
4543       assert(_old_set->is_empty(), "pre-condition");
4544     }
4545   }
4546 
4547   bool do_heap_region(HeapRegion* r) {
4548     if (r->is_empty()) {
4549       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4550       // Add free regions to the free list
4551       r->set_free();
4552       _hrm->insert_into_free_list(r);
4553     } else if (!_free_list_only) {
4554       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4555 
4556       if (r->is_archive() || r->is_humongous()) {
4557         // We ignore archive and humongous regions. We left these sets unchanged.
4558       } else {
4559         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4560         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4561         r->move_to_old();
4562         _old_set->add(r);
4563       }
4564       _total_used += r->used();
4565     }
4566 
4567     return false;
4568   }
4569 
4570   size_t total_used() {
4571     return _total_used;
4572   }
4573 };
4574 
4575 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4576   assert_at_safepoint_on_vm_thread();
4577 
4578   if (!free_list_only) {
4579     _eden.clear();
4580     _survivor.clear();
4581   }
4582 
4583   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4584   heap_region_iterate(&cl);
4585 
4586   if (!free_list_only) {
4587     set_used(cl.total_used());
4588     if (_archive_allocator != NULL) {
4589       _archive_allocator->clear_used();
4590     }
4591   }
4592   assert_used_and_recalculate_used_equal(this);
4593 }
4594 
4595 // Methods for the mutator alloc region
4596 
4597 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4598                                                       bool force,
4599                                                       uint node_index) {
4600   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4601   bool should_allocate = policy()->should_allocate_mutator_region();
4602   if (force || should_allocate) {
4603     HeapRegion* new_alloc_region = new_region(word_size,
4604                                               HeapRegionType::Eden,
4605                                               false /* do_expand */,
4606                                               node_index);
4607     if (new_alloc_region != NULL) {
4608       set_region_short_lived_locked(new_alloc_region);
4609       _hr_printer.alloc(new_alloc_region, !should_allocate);
4610       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4611       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4612       return new_alloc_region;
4613     }
4614   }
4615   return NULL;
4616 }
4617 
4618 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4619                                                   size_t allocated_bytes) {
4620   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4621   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4622 
4623   collection_set()->add_eden_region(alloc_region);
4624   increase_used(allocated_bytes);
4625   _eden.add_used_bytes(allocated_bytes);
4626   _hr_printer.retire(alloc_region);
4627 
4628   // We update the eden sizes here, when the region is retired,
4629   // instead of when it's allocated, since this is the point that its
4630   // used space has been recorded in _summary_bytes_used.
4631   g1mm()->update_eden_size();
4632 }
4633 
4634 // Methods for the GC alloc regions
4635 
4636 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4637   if (dest.is_old()) {
4638     return true;
4639   } else {
4640     return survivor_regions_count() < policy()->max_survivor_regions();
4641   }
4642 }
4643 
4644 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4645   assert(FreeList_lock->owned_by_self(), "pre-condition");
4646 
4647   if (!has_more_regions(dest)) {
4648     return NULL;
4649   }
4650 
4651   HeapRegionType type;
4652   if (dest.is_young()) {
4653     type = HeapRegionType::Survivor;
4654   } else {
4655     type = HeapRegionType::Old;
4656   }
4657 
4658   HeapRegion* new_alloc_region = new_region(word_size,
4659                                             type,
4660                                             true /* do_expand */,
4661                                             node_index);
4662 
4663   if (new_alloc_region != NULL) {
4664     if (type.is_survivor()) {
4665       new_alloc_region->set_survivor();
4666       _survivor.add(new_alloc_region);
4667       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4668     } else {
4669       new_alloc_region->set_old();
4670       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4671     }
4672     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4673     register_region_with_region_attr(new_alloc_region);
4674     _hr_printer.alloc(new_alloc_region);
4675     return new_alloc_region;
4676   }
4677   return NULL;
4678 }
4679 
4680 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4681                                              size_t allocated_bytes,
4682                                              G1HeapRegionAttr dest) {
4683   policy()->record_bytes_copied_during_gc(allocated_bytes);
4684   if (dest.is_old()) {
4685     old_set_add(alloc_region);
4686   } else {
4687     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4688     _survivor.add_used_bytes(allocated_bytes);
4689   }
4690 
4691   bool const during_im = collector_state()->in_initial_mark_gc();
4692   if (during_im && allocated_bytes > 0) {
4693     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4694   }
4695   _hr_printer.retire(alloc_region);
4696 }
4697 
4698 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4699   bool expanded = false;
4700   uint index = _hrm->find_highest_free(&expanded);
4701 
4702   if (index != G1_NO_HRM_INDEX) {
4703     if (expanded) {
4704       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4705                                 HeapRegion::GrainWords * HeapWordSize);
4706     }
4707     _hrm->allocate_free_regions_starting_at(index, 1);
4708     return region_at(index);
4709   }
4710   return NULL;
4711 }
4712 
4713 // Optimized nmethod scanning
4714 
4715 class RegisterNMethodOopClosure: public OopClosure {
4716   G1CollectedHeap* _g1h;
4717   nmethod* _nm;
4718 
4719   template <class T> void do_oop_work(T* p) {
4720     T heap_oop = RawAccess<>::oop_load(p);
4721     if (!CompressedOops::is_null(heap_oop)) {
4722       oop obj = CompressedOops::decode_not_null(heap_oop);
4723       HeapRegion* hr = _g1h->heap_region_containing(obj);
4724       assert(!hr->is_continues_humongous(),
4725              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4726              " starting at " HR_FORMAT,
4727              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4728 
4729       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4730       hr->add_strong_code_root_locked(_nm);
4731     }
4732   }
4733 
4734 public:
4735   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4736     _g1h(g1h), _nm(nm) {}
4737 
4738   void do_oop(oop* p)       { do_oop_work(p); }
4739   void do_oop(narrowOop* p) { do_oop_work(p); }
4740 };
4741 
4742 class UnregisterNMethodOopClosure: public OopClosure {
4743   G1CollectedHeap* _g1h;
4744   nmethod* _nm;
4745 
4746   template <class T> void do_oop_work(T* p) {
4747     T heap_oop = RawAccess<>::oop_load(p);
4748     if (!CompressedOops::is_null(heap_oop)) {
4749       oop obj = CompressedOops::decode_not_null(heap_oop);
4750       HeapRegion* hr = _g1h->heap_region_containing(obj);
4751       assert(!hr->is_continues_humongous(),
4752              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4753              " starting at " HR_FORMAT,
4754              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4755 
4756       hr->remove_strong_code_root(_nm);
4757     }
4758   }
4759 
4760 public:
4761   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4762     _g1h(g1h), _nm(nm) {}
4763 
4764   void do_oop(oop* p)       { do_oop_work(p); }
4765   void do_oop(narrowOop* p) { do_oop_work(p); }
4766 };
4767 
4768 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4769   guarantee(nm != NULL, "sanity");
4770   RegisterNMethodOopClosure reg_cl(this, nm);
4771   nm->oops_do(&reg_cl);
4772 }
4773 
4774 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4775   guarantee(nm != NULL, "sanity");
4776   UnregisterNMethodOopClosure reg_cl(this, nm);
4777   nm->oops_do(&reg_cl, true);
4778 }
4779 
4780 void G1CollectedHeap::purge_code_root_memory() {
4781   double purge_start = os::elapsedTime();
4782   G1CodeRootSet::purge();
4783   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4784   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4785 }
4786 
4787 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4788   G1CollectedHeap* _g1h;
4789 
4790 public:
4791   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4792     _g1h(g1h) {}
4793 
4794   void do_code_blob(CodeBlob* cb) {
4795     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4796     if (nm == NULL) {
4797       return;
4798     }
4799 
4800     _g1h->register_nmethod(nm);
4801   }
4802 };
4803 
4804 void G1CollectedHeap::rebuild_strong_code_roots() {
4805   RebuildStrongCodeRootClosure blob_cl(this);
4806   CodeCache::blobs_do(&blob_cl);
4807 }
4808 
4809 void G1CollectedHeap::initialize_serviceability() {
4810   _g1mm->initialize_serviceability();
4811 }
4812 
4813 MemoryUsage G1CollectedHeap::memory_usage() {
4814   return _g1mm->memory_usage();
4815 }
4816 
4817 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4818   return _g1mm->memory_managers();
4819 }
4820 
4821 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4822   return _g1mm->memory_pools();
4823 }