/* * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_G1_G1PARSCANTHREADSTATE_INLINE_HPP #define SHARE_GC_G1_G1PARSCANTHREADSTATE_INLINE_HPP #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1OopStarChunkedList.inline.hpp" #include "gc/g1/g1ParScanThreadState.hpp" #include "gc/g1/g1RemSet.hpp" #include "oops/access.inline.hpp" #include "oops/oop.inline.hpp" template void G1ParScanThreadState::do_oop_evac(T* p) { // Reference should not be NULL here as such are never pushed to the task queue. oop obj = RawAccess::oop_load(p); // Although we never intentionally push references outside of the collection // set, due to (benign) races in the claim mechanism during RSet scanning more // than one thread might claim the same card. So the same card may be // processed multiple times, and so we might get references into old gen here. // So we need to redo this check. const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); // References pushed onto the work stack should never point to a humongous region // as they are not added to the collection set due to above precondition. assert(!region_attr.is_humongous(), "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, p2i(obj), _g1h->addr_to_region((HeapWord*)obj), p2i(p)); if (!region_attr.is_in_cset()) { // In this case somebody else already did all the work. return; } markWord m = obj->mark_raw(); if (m.is_marked()) { obj = (oop) m.decode_pointer(); } else { obj = copy_to_survivor_space(region_attr, obj, m); } RawAccess::oop_store(p, obj); assert(obj != NULL, "Must be"); if (HeapRegion::is_in_same_region(p, obj)) { return; } HeapRegion* from = _g1h->heap_region_containing(p); if (!from->is_young()) { enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj); } } template inline void G1ParScanThreadState::push_on_queue(T* ref) { assert(verify_ref(ref), "sanity"); _refs->push(ref); } inline void G1ParScanThreadState::do_oop_partial_array(oop* p) { assert(has_partial_array_mask(p), "invariant"); oop from_obj = clear_partial_array_mask(p); assert(_g1h->is_in_reserved(from_obj), "must be in heap."); assert(from_obj->is_objArray(), "must be obj array"); objArrayOop from_obj_array = objArrayOop(from_obj); // The from-space object contains the real length. int length = from_obj_array->length(); assert(from_obj->is_forwarded(), "must be forwarded"); oop to_obj = from_obj->forwardee(); assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); objArrayOop to_obj_array = objArrayOop(to_obj); // We keep track of the next start index in the length field of the // to-space object. int next_index = to_obj_array->length(); assert(0 <= next_index && next_index < length, "invariant, next index: %d, length: %d", next_index, length); int start = next_index; int end = length; int remainder = end - start; // We'll try not to push a range that's smaller than ParGCArrayScanChunk. if (remainder > 2 * ParGCArrayScanChunk) { end = start + ParGCArrayScanChunk; to_obj_array->set_length(end); // Push the remainder before we process the range in case another // worker has run out of things to do and can steal it. oop* from_obj_p = set_partial_array_mask(from_obj); push_on_queue(from_obj_p); } else { assert(length == end, "sanity"); // We'll process the final range for this object. Restore the length // so that the heap remains parsable in case of evacuation failure. to_obj_array->set_length(end); } HeapRegion* hr = _g1h->heap_region_containing(to_obj); G1ScanInYoungSetter x(&_scanner, hr->is_young()); // Process indexes [start,end). It will also process the header // along with the first chunk (i.e., the chunk with start == 0). // Note that at this point the length field of to_obj_array is not // correct given that we are using it to keep track of the next // start index. oop_iterate_range() (thankfully!) ignores the length // field and only relies on the start / end parameters. It does // however return the size of the object which will be incorrect. So // we have to ignore it even if we wanted to use it. to_obj_array->oop_iterate_range(&_scanner, start, end); } inline void G1ParScanThreadState::deal_with_reference(oop* ref_to_scan) { if (!has_partial_array_mask(ref_to_scan)) { do_oop_evac(ref_to_scan); } else { do_oop_partial_array(ref_to_scan); } } inline void G1ParScanThreadState::deal_with_reference(narrowOop* ref_to_scan) { assert(!has_partial_array_mask(ref_to_scan), "NarrowOop* elements should never be partial arrays."); do_oop_evac(ref_to_scan); } inline void G1ParScanThreadState::dispatch_reference(StarTask ref) { assert(verify_task(ref), "sanity"); if (ref.is_narrow()) { deal_with_reference((narrowOop*)ref); } else { deal_with_reference((oop*)ref); } } void G1ParScanThreadState::steal_and_trim_queue(RefToScanQueueSet *task_queues) { StarTask stolen_task; while (task_queues->steal(_worker_id, stolen_task)) { assert(verify_task(stolen_task), "sanity"); dispatch_reference(stolen_task); // We've just processed a reference and we might have made // available new entries on the queues. So we have to make sure // we drain the queues as necessary. trim_queue(); } } inline bool G1ParScanThreadState::needs_partial_trimming() const { return !_refs->overflow_empty() || _refs->size() > _stack_trim_upper_threshold; } inline bool G1ParScanThreadState::is_partially_trimmed() const { return _refs->overflow_empty() && _refs->size() <= _stack_trim_lower_threshold; } inline void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { StarTask ref; // Drain the overflow stack first, so other threads can potentially steal. while (_refs->pop_overflow(ref)) { if (!_refs->try_push_to_taskqueue(ref)) { dispatch_reference(ref); } } while (_refs->pop_local(ref, threshold)) { dispatch_reference(ref); } } inline void G1ParScanThreadState::trim_queue_partially() { if (!needs_partial_trimming()) { return; } const Ticks start = Ticks::now(); do { trim_queue_to_threshold(_stack_trim_lower_threshold); } while (!is_partially_trimmed()); _trim_ticks += Ticks::now() - start; } inline Tickspan G1ParScanThreadState::trim_ticks() const { return _trim_ticks; } inline void G1ParScanThreadState::reset_trim_ticks() { _trim_ticks = Tickspan(); } template inline void G1ParScanThreadState::remember_root_into_optional_region(T* p) { oop o = RawAccess::oop_load(p); uint index = _g1h->heap_region_containing(o)->index_in_opt_cset(); assert(index < _num_optional_regions, "Trying to access optional region idx %u beyond " SIZE_FORMAT, index, _num_optional_regions); _oops_into_optional_regions[index].push_root(p); } template inline void G1ParScanThreadState::remember_reference_into_optional_region(T* p) { oop o = RawAccess::oop_load(p); uint index = _g1h->heap_region_containing(o)->index_in_opt_cset(); assert(index < _num_optional_regions, "Trying to access optional region idx %u beyond " SIZE_FORMAT, index, _num_optional_regions); _oops_into_optional_regions[index].push_oop(p); DEBUG_ONLY(verify_ref(p);) } G1OopStarChunkedList* G1ParScanThreadState::oops_into_optional_region(const HeapRegion* hr) { assert(hr->index_in_opt_cset() < _num_optional_regions, "Trying to access optional region idx %u beyond " SIZE_FORMAT " " HR_FORMAT, hr->index_in_opt_cset(), _num_optional_regions, HR_FORMAT_PARAMS(hr)); return &_oops_into_optional_regions[hr->index_in_opt_cset()]; } void G1ParScanThreadState::initialize_numa_stats() { if (_numa->is_enabled()) { LogTarget(Info, gc, heap, numa) lt; if (lt.is_enabled()) { uint num_nodes = _numa->num_active_nodes(); // Record only if there are multiple active nodes. _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); } } } void G1ParScanThreadState::flush_numa_stats() { if (_obj_alloc_stat != NULL) { uint node_index = _numa->index_of_current_thread(); _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); } } void G1ParScanThreadState::update_numa_stats(uint node_index) { if (_obj_alloc_stat != NULL) { _obj_alloc_stat[node_index]++; } } #endif // SHARE_GC_G1_G1PARSCANTHREADSTATE_INLINE_HPP