/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1Arguments.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1NUMAStats.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionSet.inline.hpp" #include "gc/g1/heterogeneousHeapRegionManager.hpp" #include "logging/logStream.hpp" #include "memory/allocation.hpp" #include "utilities/bitMap.inline.hpp" class MasterFreeRegionListChecker : public HeapRegionSetChecker { public: void check_mt_safety() { // Master Free List MT safety protocol: // (a) If we're at a safepoint, operations on the master free list // should be invoked by either the VM thread (which will serialize // them) or by the GC workers while holding the // FreeList_lock. // (b) If we're not at a safepoint, operations on the master free // list should be invoked while holding the Heap_lock. if (SafepointSynchronize::is_at_safepoint()) { guarantee(Thread::current()->is_VM_thread() || FreeList_lock->owned_by_self(), "master free list MT safety protocol at a safepoint"); } else { guarantee(Heap_lock->owned_by_self(), "master free list MT safety protocol outside a safepoint"); } } bool is_correct_type(HeapRegion* hr) { return hr->is_free(); } const char* get_description() { return "Free Regions"; } }; HeapRegionManager::HeapRegionManager() : _bot_mapper(NULL), _cardtable_mapper(NULL), _card_counts_mapper(NULL), _available_map(mtGC), _num_committed(0), _allocated_heapregions_length(0), _regions(), _heap_mapper(NULL), _prev_bitmap_mapper(NULL), _next_bitmap_mapper(NULL), _free_list("Free list", new MasterFreeRegionListChecker()) { } HeapRegionManager* HeapRegionManager::create_manager(G1CollectedHeap* heap) { if (G1Arguments::is_heterogeneous_heap()) { return new HeterogeneousHeapRegionManager((uint)(G1Arguments::heap_max_size_bytes() / HeapRegion::GrainBytes) /*heap size as num of regions*/); } return new HeapRegionManager(); } void HeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage, G1RegionToSpaceMapper* prev_bitmap, G1RegionToSpaceMapper* next_bitmap, G1RegionToSpaceMapper* bot, G1RegionToSpaceMapper* cardtable, G1RegionToSpaceMapper* card_counts) { _allocated_heapregions_length = 0; _heap_mapper = heap_storage; _prev_bitmap_mapper = prev_bitmap; _next_bitmap_mapper = next_bitmap; _bot_mapper = bot; _cardtable_mapper = cardtable; _card_counts_mapper = card_counts; MemRegion reserved = heap_storage->reserved(); _regions.initialize(reserved.start(), reserved.end(), HeapRegion::GrainBytes); _available_map.initialize(_regions.length()); } bool HeapRegionManager::is_available(uint region) const { return _available_map.at(region); } HeapRegion* HeapRegionManager::allocate_free_region(HeapRegionType type, uint requested_node_index) { HeapRegion* hr = NULL; bool from_head = !type.is_young(); G1NUMA* numa = G1NUMA::numa(); if (requested_node_index != G1NUMA::AnyNodeIndex && numa->is_enabled()) { // Try to allocate with requested node index. hr = _free_list.remove_region_with_node_index(from_head, requested_node_index); } if (hr == NULL) { // If there's a single active node or we did not get a region from our requested node, // try without requested node index. hr = _free_list.remove_region(from_head); } if (hr != NULL) { assert(hr->next() == NULL, "Single region should not have next"); assert(is_available(hr->hrm_index()), "Must be committed"); if (numa->is_enabled() && hr->node_index() < numa->num_active_nodes()) { numa->update_statistics(G1NUMAStats::NewRegionAlloc, requested_node_index, hr->node_index()); } } return hr; } #ifdef ASSERT bool HeapRegionManager::is_free(HeapRegion* hr) const { return _free_list.contains(hr); } #endif HeapRegion* HeapRegionManager::new_heap_region(uint hrm_index) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); HeapWord* bottom = g1h->bottom_addr_for_region(hrm_index); MemRegion mr(bottom, bottom + HeapRegion::GrainWords); assert(reserved().contains(mr), "invariant"); return g1h->new_heap_region(hrm_index, mr); } void HeapRegionManager::commit_regions(uint index, size_t num_regions, WorkGang* pretouch_gang) { guarantee(num_regions > 0, "Must commit more than zero regions"); guarantee(_num_committed + num_regions <= max_length(), "Cannot commit more than the maximum amount of regions"); _num_committed += (uint)num_regions; _heap_mapper->commit_regions(index, num_regions, pretouch_gang); // Also commit auxiliary data _prev_bitmap_mapper->commit_regions(index, num_regions, pretouch_gang); _next_bitmap_mapper->commit_regions(index, num_regions, pretouch_gang); _bot_mapper->commit_regions(index, num_regions, pretouch_gang); _cardtable_mapper->commit_regions(index, num_regions, pretouch_gang); _card_counts_mapper->commit_regions(index, num_regions, pretouch_gang); } void HeapRegionManager::uncommit_regions(uint start, size_t num_regions) { guarantee(num_regions >= 1, "Need to specify at least one region to uncommit, tried to uncommit zero regions at %u", start); guarantee(_num_committed >= num_regions, "pre-condition"); // Reset node index to distinguish with committed regions. for (uint i = start; i < start + num_regions; i++) { at(i)->set_node_index(G1NUMA::UnknownNodeIndex); } // Print before uncommitting. if (G1CollectedHeap::heap()->hr_printer()->is_active()) { for (uint i = start; i < start + num_regions; i++) { HeapRegion* hr = at(i); G1CollectedHeap::heap()->hr_printer()->uncommit(hr); } } _num_committed -= (uint)num_regions; _available_map.par_clear_range(start, start + num_regions, BitMap::unknown_range); _heap_mapper->uncommit_regions(start, num_regions); // Also uncommit auxiliary data _prev_bitmap_mapper->uncommit_regions(start, num_regions); _next_bitmap_mapper->uncommit_regions(start, num_regions); _bot_mapper->uncommit_regions(start, num_regions); _cardtable_mapper->uncommit_regions(start, num_regions); _card_counts_mapper->uncommit_regions(start, num_regions); } void HeapRegionManager::make_regions_available(uint start, uint num_regions, WorkGang* pretouch_gang) { guarantee(num_regions > 0, "No point in calling this for zero regions"); commit_regions(start, num_regions, pretouch_gang); for (uint i = start; i < start + num_regions; i++) { if (_regions.get_by_index(i) == NULL) { HeapRegion* new_hr = new_heap_region(i); OrderAccess::storestore(); _regions.set_by_index(i, new_hr); _allocated_heapregions_length = MAX2(_allocated_heapregions_length, i + 1); } } _available_map.par_set_range(start, start + num_regions, BitMap::unknown_range); for (uint i = start; i < start + num_regions; i++) { assert(is_available(i), "Just made region %u available but is apparently not.", i); HeapRegion* hr = at(i); if (G1CollectedHeap::heap()->hr_printer()->is_active()) { G1CollectedHeap::heap()->hr_printer()->commit(hr); } HeapWord* bottom = G1CollectedHeap::heap()->bottom_addr_for_region(i); MemRegion mr(bottom, bottom + HeapRegion::GrainWords); hr->initialize(mr); hr->set_node_index(G1NUMA::numa()->index_for_region(hr)); insert_into_free_list(at(i)); } } MemoryUsage HeapRegionManager::get_auxiliary_data_memory_usage() const { size_t used_sz = _prev_bitmap_mapper->committed_size() + _next_bitmap_mapper->committed_size() + _bot_mapper->committed_size() + _cardtable_mapper->committed_size() + _card_counts_mapper->committed_size(); size_t committed_sz = _prev_bitmap_mapper->reserved_size() + _next_bitmap_mapper->reserved_size() + _bot_mapper->reserved_size() + _cardtable_mapper->reserved_size() + _card_counts_mapper->reserved_size(); return MemoryUsage(0, used_sz, committed_sz, committed_sz); } uint HeapRegionManager::expand_by(uint num_regions, WorkGang* pretouch_workers) { return expand_at(0, num_regions, pretouch_workers); } uint HeapRegionManager::expand_at(uint start, uint num_regions, WorkGang* pretouch_workers) { if (num_regions == 0) { return 0; } uint cur = start; uint idx_last_found = 0; uint num_last_found = 0; uint expanded = 0; while (expanded < num_regions && (num_last_found = find_unavailable_from_idx(cur, &idx_last_found)) > 0) { uint to_expand = MIN2(num_regions - expanded, num_last_found); make_regions_available(idx_last_found, to_expand, pretouch_workers); expanded += to_expand; cur = idx_last_found + num_last_found + 1; } verify_optional(); return expanded; } uint HeapRegionManager::expand_on_preferred_node(uint preferred_index) { uint expand_candidate = UINT_MAX; for (uint i = 0; i < max_length(); i++) { if (is_available(i)) { // Already in use continue continue; } // Always save the candidate so we can expand later on. expand_candidate = i; if (is_on_preferred_index(expand_candidate, preferred_index)) { // We have found a candidate on the preffered node, break. break; } } if (expand_candidate == UINT_MAX) { // No regions left, expand failed. return 0; } make_regions_available(expand_candidate, 1, NULL); return 1; } bool HeapRegionManager::is_on_preferred_index(uint region_index, uint preferred_node_index) { uint region_node_index = G1NUMA::numa()->preferred_node_index_for_index(region_index); return region_node_index == preferred_node_index; } uint HeapRegionManager::find_contiguous(size_t num, bool empty_only) { uint found = 0; size_t length_found = 0; uint cur = 0; while (length_found < num && cur < max_length()) { HeapRegion* hr = _regions.get_by_index(cur); if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) { // This region is a potential candidate for allocation into. length_found++; } else { // This region is not a candidate. The next region is the next possible one. found = cur + 1; length_found = 0; } cur++; } if (length_found == num) { for (uint i = found; i < (found + num); i++) { HeapRegion* hr = _regions.get_by_index(i); // sanity check guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()), "Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT " that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr)); } return found; } else { return G1_NO_HRM_INDEX; } } HeapRegion* HeapRegionManager::next_region_in_heap(const HeapRegion* r) const { guarantee(r != NULL, "Start region must be a valid region"); guarantee(is_available(r->hrm_index()), "Trying to iterate starting from region %u which is not in the heap", r->hrm_index()); for (uint i = r->hrm_index() + 1; i < _allocated_heapregions_length; i++) { HeapRegion* hr = _regions.get_by_index(i); if (is_available(i)) { return hr; } } return NULL; } void HeapRegionManager::iterate(HeapRegionClosure* blk) const { uint len = max_length(); for (uint i = 0; i < len; i++) { if (!is_available(i)) { continue; } guarantee(at(i) != NULL, "Tried to access region %u that has a NULL HeapRegion*", i); bool res = blk->do_heap_region(at(i)); if (res) { blk->set_incomplete(); return; } } } uint HeapRegionManager::find_unavailable_from_idx(uint start_idx, uint* res_idx) const { guarantee(res_idx != NULL, "checking"); guarantee(start_idx <= (max_length() + 1), "checking"); uint num_regions = 0; uint cur = start_idx; while (cur < max_length() && is_available(cur)) { cur++; } if (cur == max_length()) { return num_regions; } *res_idx = cur; while (cur < max_length() && !is_available(cur)) { cur++; } num_regions = cur - *res_idx; #ifdef ASSERT for (uint i = *res_idx; i < (*res_idx + num_regions); i++) { assert(!is_available(i), "just checking"); } assert(cur == max_length() || num_regions == 0 || is_available(cur), "The region at the current position %u must be available or at the end of the heap.", cur); #endif return num_regions; } uint HeapRegionManager::find_highest_free(bool* expanded) { // Loop downwards from the highest region index, looking for an // entry which is either free or not yet committed. If not yet // committed, expand_at that index. uint curr = max_length() - 1; while (true) { HeapRegion *hr = _regions.get_by_index(curr); if (hr == NULL || !is_available(curr)) { uint res = expand_at(curr, 1, NULL); if (res == 1) { *expanded = true; return curr; } } else { if (hr->is_free()) { *expanded = false; return curr; } } if (curr == 0) { return G1_NO_HRM_INDEX; } curr--; } } bool HeapRegionManager::allocate_containing_regions(MemRegion range, size_t* commit_count, WorkGang* pretouch_workers) { size_t commits = 0; uint start_index = (uint)_regions.get_index_by_address(range.start()); uint last_index = (uint)_regions.get_index_by_address(range.last()); // Ensure that each G1 region in the range is free, returning false if not. // Commit those that are not yet available, and keep count. for (uint curr_index = start_index; curr_index <= last_index; curr_index++) { if (!is_available(curr_index)) { commits++; expand_at(curr_index, 1, pretouch_workers); } HeapRegion* curr_region = _regions.get_by_index(curr_index); if (!curr_region->is_free()) { return false; } } allocate_free_regions_starting_at(start_index, (last_index - start_index) + 1); *commit_count = commits; return true; } void HeapRegionManager::par_iterate(HeapRegionClosure* blk, HeapRegionClaimer* hrclaimer, const uint start_index) const { // Every worker will actually look at all regions, skipping over regions that // are currently not committed. // This also (potentially) iterates over regions newly allocated during GC. This // is no problem except for some extra work. const uint n_regions = hrclaimer->n_regions(); for (uint count = 0; count < n_regions; count++) { const uint index = (start_index + count) % n_regions; assert(index < n_regions, "sanity"); // Skip over unavailable regions if (!is_available(index)) { continue; } HeapRegion* r = _regions.get_by_index(index); // We'll ignore regions already claimed. // However, if the iteration is specified as concurrent, the values for // is_starts_humongous and is_continues_humongous can not be trusted, // and we should just blindly iterate over regions regardless of their // humongous status. if (hrclaimer->is_region_claimed(index)) { continue; } // OK, try to claim it if (!hrclaimer->claim_region(index)) { continue; } bool res = blk->do_heap_region(r); if (res) { return; } } } uint HeapRegionManager::shrink_by(uint num_regions_to_remove) { assert(length() > 0, "the region sequence should not be empty"); assert(length() <= _allocated_heapregions_length, "invariant"); assert(_allocated_heapregions_length > 0, "we should have at least one region committed"); assert(num_regions_to_remove < length(), "We should never remove all regions"); if (num_regions_to_remove == 0) { return 0; } uint removed = 0; uint cur = _allocated_heapregions_length - 1; uint idx_last_found = 0; uint num_last_found = 0; while ((removed < num_regions_to_remove) && (num_last_found = find_empty_from_idx_reverse(cur, &idx_last_found)) > 0) { uint to_remove = MIN2(num_regions_to_remove - removed, num_last_found); shrink_at(idx_last_found + num_last_found - to_remove, to_remove); cur = idx_last_found; removed += to_remove; } verify_optional(); return removed; } void HeapRegionManager::shrink_at(uint index, size_t num_regions) { #ifdef ASSERT for (uint i = index; i < (index + num_regions); i++) { assert(is_available(i), "Expected available region at index %u", i); assert(at(i)->is_empty(), "Expected empty region at index %u", i); assert(at(i)->is_free(), "Expected free region at index %u", i); } #endif uncommit_regions(index, num_regions); } uint HeapRegionManager::find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const { guarantee(start_idx < _allocated_heapregions_length, "checking"); guarantee(res_idx != NULL, "checking"); uint num_regions_found = 0; jlong cur = start_idx; while (cur != -1 && !(is_available(cur) && at(cur)->is_empty())) { cur--; } if (cur == -1) { return num_regions_found; } jlong old_cur = cur; // cur indexes the first empty region while (cur != -1 && is_available(cur) && at(cur)->is_empty()) { cur--; } *res_idx = cur + 1; num_regions_found = old_cur - cur; #ifdef ASSERT for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) { assert(at(i)->is_empty(), "just checking"); } #endif return num_regions_found; } void HeapRegionManager::verify() { guarantee(length() <= _allocated_heapregions_length, "invariant: _length: %u _allocated_length: %u", length(), _allocated_heapregions_length); guarantee(_allocated_heapregions_length <= max_length(), "invariant: _allocated_length: %u _max_length: %u", _allocated_heapregions_length, max_length()); bool prev_committed = true; uint num_committed = 0; HeapWord* prev_end = heap_bottom(); for (uint i = 0; i < _allocated_heapregions_length; i++) { if (!is_available(i)) { prev_committed = false; continue; } num_committed++; HeapRegion* hr = _regions.get_by_index(i); guarantee(hr != NULL, "invariant: i: %u", i); guarantee(!prev_committed || hr->bottom() == prev_end, "invariant i: %u " HR_FORMAT " prev_end: " PTR_FORMAT, i, HR_FORMAT_PARAMS(hr), p2i(prev_end)); guarantee(hr->hrm_index() == i, "invariant: i: %u hrm_index(): %u", i, hr->hrm_index()); // Asserts will fire if i is >= _length HeapWord* addr = hr->bottom(); guarantee(addr_to_region(addr) == hr, "sanity"); // We cannot check whether the region is part of a particular set: at the time // this method may be called, we have only completed allocation of the regions, // but not put into a region set. prev_committed = true; prev_end = hr->end(); } for (uint i = _allocated_heapregions_length; i < max_length(); i++) { guarantee(_regions.get_by_index(i) == NULL, "invariant i: %u", i); } guarantee(num_committed == _num_committed, "Found %u committed regions, but should be %u", num_committed, _num_committed); _free_list.verify(); } #ifndef PRODUCT void HeapRegionManager::verify_optional() { verify(); } #endif // PRODUCT HeapRegionClaimer::HeapRegionClaimer(uint n_workers) : _n_workers(n_workers), _n_regions(G1CollectedHeap::heap()->_hrm->_allocated_heapregions_length), _claims(NULL) { assert(n_workers > 0, "Need at least one worker."); uint* new_claims = NEW_C_HEAP_ARRAY(uint, _n_regions, mtGC); memset(new_claims, Unclaimed, sizeof(*_claims) * _n_regions); _claims = new_claims; } HeapRegionClaimer::~HeapRegionClaimer() { FREE_C_HEAP_ARRAY(uint, _claims); } uint HeapRegionClaimer::offset_for_worker(uint worker_id) const { assert(worker_id < _n_workers, "Invalid worker_id."); return _n_regions * worker_id / _n_workers; } bool HeapRegionClaimer::is_region_claimed(uint region_index) const { assert(region_index < _n_regions, "Invalid index."); return _claims[region_index] == Claimed; } bool HeapRegionClaimer::claim_region(uint region_index) { assert(region_index < _n_regions, "Invalid index."); uint old_val = Atomic::cmpxchg(Claimed, &_claims[region_index], Unclaimed); return old_val == Unclaimed; }