/* * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1NUMA.hpp" #include "logging/logStream.hpp" #include "runtime/globals.hpp" #include "runtime/os.hpp" G1NUMA* G1NUMA::_inst = NULL; size_t G1NUMA::region_size() const { assert(_region_size > 0, "Heap region size is not yet set"); return _region_size; } size_t G1NUMA::page_size() const { assert(_page_size > 0, "Page size not is yet set"); return _page_size; } bool G1NUMA::is_enabled() const { return num_active_nodes() > 1; } G1NUMA* G1NUMA::create() { guarantee(_inst == NULL, "Should be called once."); _inst = new G1NUMA(); // NUMA only supported on Linux. #ifdef LINUX _inst->initialize(UseNUMA); #else _inst->initialize(false); #endif /* LINUX */ return _inst; } // Returns memory node ids const int* G1NUMA::node_ids() const { return _node_ids; } uint G1NUMA::index_of_node_id(int node_id) const { assert(node_id >= 0, "invalid node id %d", node_id); assert(node_id < _len_node_id_to_index_map, "invalid node id %d", node_id); uint node_index = _node_id_to_index_map[node_id]; assert(node_index != G1NUMA::UnknownNodeIndex, "invalid node id %d", node_id); return node_index; } G1NUMA::G1NUMA() : _node_id_to_index_map(NULL), _len_node_id_to_index_map(0), _node_ids(NULL), _num_active_node_ids(0), _region_size(0), _page_size(0), _stats(NULL) { } void G1NUMA::initialize_without_numa() { // If NUMA is not enabled or supported, initialize as having a singel node. _num_active_node_ids = 1; _node_ids = NEW_C_HEAP_ARRAY(int, _num_active_node_ids, mtGC); _node_ids[0] = 0; // Map index 0 to node 0 _len_node_id_to_index_map = 1; _node_id_to_index_map = NEW_C_HEAP_ARRAY(uint, _len_node_id_to_index_map, mtGC); _node_id_to_index_map[0] = 0; } void G1NUMA::initialize(bool use_numa) { if (!use_numa) { initialize_without_numa(); return; } assert(UseNUMA, "Invariant"); size_t num_node_ids = os::numa_get_groups_num(); // Create an array of active node ids. _node_ids = NEW_C_HEAP_ARRAY(int, num_node_ids, mtGC); _num_active_node_ids = (uint)os::numa_get_leaf_groups(_node_ids, num_node_ids); int max_node_id = 0; for (uint i = 0; i < _num_active_node_ids; i++) { max_node_id = MAX2(max_node_id, _node_ids[i]); } // Create a mapping between node_id and index. _len_node_id_to_index_map = max_node_id + 1; _node_id_to_index_map = NEW_C_HEAP_ARRAY(uint, _len_node_id_to_index_map, mtGC); // Set all indices with unknown node id. for (int i = 0; i < _len_node_id_to_index_map; i++) { _node_id_to_index_map[i] = G1NUMA::UnknownNodeIndex; } // Set the indices for the actually retrieved node ids. for (uint i = 0; i < _num_active_node_ids; i++) { _node_id_to_index_map[_node_ids[i]] = i; } _stats = new G1NUMAStats(_node_ids, _num_active_node_ids); } G1NUMA::~G1NUMA() { delete _stats; FREE_C_HEAP_ARRAY(int, _node_id_to_index_map); FREE_C_HEAP_ARRAY(int, _node_ids); } void G1NUMA::set_region_info(size_t region_size, size_t page_size) { _region_size = region_size; _page_size = page_size; } uint G1NUMA::num_active_nodes() const { assert(_num_active_node_ids > 0, "just checking"); return _num_active_node_ids; } uint G1NUMA::index_of_current_thread() const { if (!is_enabled()) { return 0; } return index_of_node_id(os::numa_get_group_id()); } uint G1NUMA::preferred_node_index_for_index(uint region_index) const { if (region_size() >= page_size()) { // Simple case, pages are smaller than the region so we // can just alternate over the nodes. return region_index % _num_active_node_ids; } else { // Multiple regions in one page, so we need to make sure the // regions within a page is preferred on the same node. size_t regions_per_page = page_size() / region_size(); return (region_index / regions_per_page) % _num_active_node_ids; } } int G1NUMA::numa_id(int index) const { assert(index < _len_node_id_to_index_map, "Index %d out of range: [0,%d)", index, _len_node_id_to_index_map); return _node_ids[index]; } uint G1NUMA::index_of_address(HeapWord *address) const { int numa_id = os::numa_get_group_id_for_address((const void*)address); if (numa_id == -1) { return UnknownNodeIndex; } else { return index_of_node_id(numa_id); } } uint G1NUMA::index_for_region(HeapRegion* hr) const { if (!is_enabled()) { return 0; } if (AlwaysPreTouch) { // If we already pretouched, we can check actual node index here. // However, if node index is still unknown, use preferred node index. uint node_index = index_of_address(hr->bottom()); if (node_index != UnknownNodeIndex) { return node_index; } } return preferred_node_index_for_index(hr->hrm_index()); } // Request to spread the given memory evenly across the available NUMA // nodes. Which node to request for a given address is given by the // region size and the page size. Below are two examples on 4 NUMA nodes system: // 1. G1HeapRegionSize(_region_size) is larger than or equal to page size. // * Page #: |-0--||-1--||-2--||-3--||-4--||-5--||-6--||-7--||-8--||-9--||-10-||-11-||-12-||-13-||-14-||-15-| // * HeapRegion #: |----#0----||----#1----||----#2----||----#3----||----#4----||----#5----||----#6----||----#7----| // * NUMA node #: |----#0----||----#1----||----#2----||----#3----||----#0----||----#1----||----#2----||----#3----| // 2. G1HeapRegionSize(_region_size) is smaller than page size. // Memory will be touched one page at a time because G1RegionToSpaceMapper commits // pages one by one. // * Page #: |-----0----||-----1----||-----2----||-----3----||-----4----||-----5----||-----6----||-----7----| // * HeapRegion #: |-#0-||-#1-||-#2-||-#3-||-#4-||-#5-||-#6-||-#7-||-#8-||-#9-||#10-||#11-||#12-||#13-||#14-||#15-| // * NUMA node #: |----#0----||----#1----||----#2----||----#3----||----#0----||----#1----||----#2----||----#3----| void G1NUMA::request_memory_on_node(void* aligned_address, size_t size_in_bytes, uint region_index) { if (!is_enabled()) { return; } if (size_in_bytes == 0) { return; } uint node_index = preferred_node_index_for_index(region_index); assert(is_aligned(aligned_address, page_size()), "Given address (" PTR_FORMAT ") should be aligned.", p2i(aligned_address)); assert(is_aligned(size_in_bytes, page_size()), "Given size (" SIZE_FORMAT ") should be aligned.", size_in_bytes); log_trace(gc, heap, numa)("Request memory [" PTR_FORMAT ", " PTR_FORMAT ") to be NUMA id (%d)", p2i(aligned_address), p2i((char*)aligned_address + size_in_bytes), _node_ids[node_index]); os::numa_make_local((char*)aligned_address, size_in_bytes, _node_ids[node_index]); } uint G1NUMA::max_search_depth() const { // Multiple of 3 is just random number to limit iterations. // There would be some cases that 1 page may be consisted of multiple HeapRegions. return 3 * MAX2((uint)(page_size() / region_size()), (uint)1) * num_active_nodes(); } void G1NUMA::update_statistics(G1NUMAStats::NodeDataItems phase, uint requested_node_index, uint allocated_node_index) { if (_stats == NULL) { return; } uint converted_req_index; if(requested_node_index < _num_active_node_ids) { converted_req_index = requested_node_index; } else { assert(requested_node_index == AnyNodeIndex, "Requested node index %u should be AnyNodeIndex.", requested_node_index); converted_req_index = _num_active_node_ids; } _stats->update(phase, converted_req_index, allocated_node_index); } void G1NUMA::copy_statistics(G1NUMAStats::NodeDataItems phase, uint requested_node_index, size_t* allocated_stat) { if (_stats == NULL) { return; } _stats->copy(phase, requested_node_index, allocated_stat); } void G1NUMA::print_statistics() const { if (_stats == NULL) { return; } _stats->print_statistics(); } G1NodeIndexCheckClosure::G1NodeIndexCheckClosure(const char* desc, G1NUMA* numa, LogStream* ls) : _desc(desc), _numa(numa), _ls(ls) { uint num_nodes = _numa->num_active_nodes(); _matched = NEW_C_HEAP_ARRAY(uint, num_nodes, mtGC); _mismatched = NEW_C_HEAP_ARRAY(uint, num_nodes, mtGC); _total = NEW_C_HEAP_ARRAY(uint, num_nodes, mtGC); memset(_matched, 0, sizeof(uint) * num_nodes); memset(_mismatched, 0, sizeof(uint) * num_nodes); memset(_total, 0, sizeof(uint) * num_nodes); } G1NodeIndexCheckClosure::~G1NodeIndexCheckClosure() { _ls->print("%s: NUMA region verification (id: matched/mismatched/total): ", _desc); const int* numa_ids = _numa->node_ids(); for (uint i = 0; i < _numa->num_active_nodes(); i++) { _ls->print("%d: %u/%u/%u ", numa_ids[i], _matched[i], _mismatched[i], _total[i]); } FREE_C_HEAP_ARRAY(uint, _matched); FREE_C_HEAP_ARRAY(uint, _mismatched); FREE_C_HEAP_ARRAY(uint, _total); } bool G1NodeIndexCheckClosure::do_heap_region(HeapRegion* hr) { // Preferred node index will only have valid node index. uint preferred_node_index = _numa->preferred_node_index_for_index(hr->hrm_index()); // Active node index may have UnknownNodeIndex. uint active_node_index = _numa->index_of_address(hr->bottom()); if (preferred_node_index == active_node_index) { _matched[preferred_node_index]++; } else if (active_node_index != G1NUMA::UnknownNodeIndex) { _mismatched[preferred_node_index]++; } _total[preferred_node_index]++; return false; }