1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1BiasedArray.hpp"
  30 #include "gc/g1/g1CardTable.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1EvacuationInfo.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1HeapTransition.hpp"
  40 #include "gc/g1/g1HeapVerifier.hpp"
  41 #include "gc/g1/g1HRPrinter.hpp"
  42 #include "gc/g1/g1HeapRegionAttr.hpp"
  43 #include "gc/g1/g1MonitoringSupport.hpp"
  44 #include "gc/g1/g1NUMA.hpp"
  45 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  46 #include "gc/g1/g1SurvivorRegions.hpp"
  47 #include "gc/g1/g1YCTypes.hpp"
  48 #include "gc/g1/heapRegionManager.hpp"
  49 #include "gc/g1/heapRegionSet.hpp"
  50 #include "gc/g1/heterogeneousHeapRegionManager.hpp"
  51 #include "gc/shared/barrierSet.hpp"
  52 #include "gc/shared/collectedHeap.hpp"
  53 #include "gc/shared/gcHeapSummary.hpp"
  54 #include "gc/shared/plab.hpp"
  55 #include "gc/shared/preservedMarks.hpp"
  56 #include "gc/shared/softRefPolicy.hpp"
  57 #include "memory/memRegion.hpp"
  58 #include "utilities/stack.hpp"
  59 
  60 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  61 // It uses the "Garbage First" heap organization and algorithm, which
  62 // may combine concurrent marking with parallel, incremental compaction of
  63 // heap subsets that will yield large amounts of garbage.
  64 
  65 // Forward declarations
  66 class HeapRegion;
  67 class GenerationSpec;
  68 class G1ParScanThreadState;
  69 class G1ParScanThreadStateSet;
  70 class G1ParScanThreadState;
  71 class MemoryPool;
  72 class MemoryManager;
  73 class ObjectClosure;
  74 class SpaceClosure;
  75 class CompactibleSpaceClosure;
  76 class Space;
  77 class G1CardTableEntryClosure;
  78 class G1CollectionSet;
  79 class G1Policy;
  80 class G1HotCardCache;
  81 class G1RemSet;
  82 class G1YoungRemSetSamplingThread;
  83 class G1ConcurrentMark;
  84 class G1ConcurrentMarkThread;
  85 class G1ConcurrentRefine;
  86 class GenerationCounters;
  87 class STWGCTimer;
  88 class G1NewTracer;
  89 class EvacuationFailedInfo;
  90 class nmethod;
  91 class WorkGang;
  92 class G1Allocator;
  93 class G1ArchiveAllocator;
  94 class G1FullGCScope;
  95 class G1HeapVerifier;
  96 class G1HeapSizingPolicy;
  97 class G1HeapSummary;
  98 class G1EvacSummary;
  99 
 100 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 101 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 102 
 103 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 104 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 105 
 106 // The G1 STW is alive closure.
 107 // An instance is embedded into the G1CH and used as the
 108 // (optional) _is_alive_non_header closure in the STW
 109 // reference processor. It is also extensively used during
 110 // reference processing during STW evacuation pauses.
 111 class G1STWIsAliveClosure : public BoolObjectClosure {
 112   G1CollectedHeap* _g1h;
 113 public:
 114   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 115   bool do_object_b(oop p);
 116 };
 117 
 118 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 119   G1CollectedHeap* _g1h;
 120 public:
 121   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 122   bool do_object_b(oop p);
 123 };
 124 
 125 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 126  private:
 127   void reset_from_card_cache(uint start_idx, size_t num_regions);
 128  public:
 129   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 130 };
 131 
 132 class G1CollectedHeap : public CollectedHeap {
 133   friend class VM_CollectForMetadataAllocation;
 134   friend class VM_G1CollectForAllocation;
 135   friend class VM_G1CollectFull;
 136   friend class VMStructs;
 137   friend class MutatorAllocRegion;
 138   friend class G1FullCollector;
 139   friend class G1GCAllocRegion;
 140   friend class G1HeapVerifier;
 141 
 142   // Closures used in implementation.
 143   friend class G1ParScanThreadState;
 144   friend class G1ParScanThreadStateSet;
 145   friend class G1EvacuateRegionsTask;
 146   friend class G1PLABAllocator;
 147 
 148   // Other related classes.
 149   friend class HeapRegionClaimer;
 150 
 151   // Testing classes.
 152   friend class G1CheckRegionAttrTableClosure;
 153 
 154 private:
 155   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 156 
 157   WorkGang* _workers;
 158   G1CardTable* _card_table;
 159 
 160   SoftRefPolicy      _soft_ref_policy;
 161 
 162   static size_t _humongous_object_threshold_in_words;
 163 
 164   // These sets keep track of old, archive and humongous regions respectively.
 165   HeapRegionSet _old_set;
 166   HeapRegionSet _archive_set;
 167   HeapRegionSet _humongous_set;
 168 
 169   void eagerly_reclaim_humongous_regions();
 170   // Start a new incremental collection set for the next pause.
 171   void start_new_collection_set();
 172 
 173   // The block offset table for the G1 heap.
 174   G1BlockOffsetTable* _bot;
 175 
 176   // Tears down the region sets / lists so that they are empty and the
 177   // regions on the heap do not belong to a region set / list. The
 178   // only exception is the humongous set which we leave unaltered. If
 179   // free_list_only is true, it will only tear down the master free
 180   // list. It is called before a Full GC (free_list_only == false) or
 181   // before heap shrinking (free_list_only == true).
 182   void tear_down_region_sets(bool free_list_only);
 183 
 184   // Rebuilds the region sets / lists so that they are repopulated to
 185   // reflect the contents of the heap. The only exception is the
 186   // humongous set which was not torn down in the first place. If
 187   // free_list_only is true, it will only rebuild the master free
 188   // list. It is called after a Full GC (free_list_only == false) or
 189   // after heap shrinking (free_list_only == true).
 190   void rebuild_region_sets(bool free_list_only);
 191 
 192   // Callback for region mapping changed events.
 193   G1RegionMappingChangedListener _listener;
 194 
 195   // Handle G1 NUMA support.
 196   G1NUMA* _numa;
 197 
 198   // The sequence of all heap regions in the heap.
 199   HeapRegionManager* _hrm;
 200 
 201   // Manages all allocations with regions except humongous object allocations.
 202   G1Allocator* _allocator;
 203 
 204   // Manages all heap verification.
 205   G1HeapVerifier* _verifier;
 206 
 207   // Outside of GC pauses, the number of bytes used in all regions other
 208   // than the current allocation region(s).
 209   volatile size_t _summary_bytes_used;
 210 
 211   void increase_used(size_t bytes);
 212   void decrease_used(size_t bytes);
 213 
 214   void set_used(size_t bytes);
 215 
 216   // Class that handles archive allocation ranges.
 217   G1ArchiveAllocator* _archive_allocator;
 218 
 219   // GC allocation statistics policy for survivors.
 220   G1EvacStats _survivor_evac_stats;
 221 
 222   // GC allocation statistics policy for tenured objects.
 223   G1EvacStats _old_evac_stats;
 224 
 225   // It specifies whether we should attempt to expand the heap after a
 226   // region allocation failure. If heap expansion fails we set this to
 227   // false so that we don't re-attempt the heap expansion (it's likely
 228   // that subsequent expansion attempts will also fail if one fails).
 229   // Currently, it is only consulted during GC and it's reset at the
 230   // start of each GC.
 231   bool _expand_heap_after_alloc_failure;
 232 
 233   // Helper for monitoring and management support.
 234   G1MonitoringSupport* _g1mm;
 235 
 236   // Records whether the region at the given index is (still) a
 237   // candidate for eager reclaim.  Only valid for humongous start
 238   // regions; other regions have unspecified values.  Humongous start
 239   // regions are initialized at start of collection pause, with
 240   // candidates removed from the set as they are found reachable from
 241   // roots or the young generation.
 242   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 243    protected:
 244     bool default_value() const { return false; }
 245    public:
 246     void clear() { G1BiasedMappedArray<bool>::clear(); }
 247     void set_candidate(uint region, bool value) {
 248       set_by_index(region, value);
 249     }
 250     bool is_candidate(uint region) {
 251       return get_by_index(region);
 252     }
 253   };
 254 
 255   HumongousReclaimCandidates _humongous_reclaim_candidates;
 256   // Stores whether during humongous object registration we found candidate regions.
 257   // If not, we can skip a few steps.
 258   bool _has_humongous_reclaim_candidates;
 259 
 260   G1HRPrinter _hr_printer;
 261 
 262   // It decides whether an explicit GC should start a concurrent cycle
 263   // instead of doing a STW GC. Currently, a concurrent cycle is
 264   // explicitly started if:
 265   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 266   // (b) cause == _g1_humongous_allocation
 267   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 268   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 269   // (e) cause == _wb_conc_mark
 270   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 271 
 272   // Return true if should upgrade to full gc after an incremental one.
 273   bool should_upgrade_to_full_gc(GCCause::Cause cause);
 274 
 275   // indicates whether we are in young or mixed GC mode
 276   G1CollectorState _collector_state;
 277 
 278   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 279   // concurrent cycles) we have started.
 280   volatile uint _old_marking_cycles_started;
 281 
 282   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 283   // concurrent cycles) we have completed.
 284   volatile uint _old_marking_cycles_completed;
 285 
 286   // This is a non-product method that is helpful for testing. It is
 287   // called at the end of a GC and artificially expands the heap by
 288   // allocating a number of dead regions. This way we can induce very
 289   // frequent marking cycles and stress the cleanup / concurrent
 290   // cleanup code more (as all the regions that will be allocated by
 291   // this method will be found dead by the marking cycle).
 292   void allocate_dummy_regions() PRODUCT_RETURN;
 293 
 294   // If the HR printer is active, dump the state of the regions in the
 295   // heap after a compaction.
 296   void print_hrm_post_compaction();
 297 
 298   // Create a memory mapper for auxiliary data structures of the given size and
 299   // translation factor.
 300   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 301                                                          size_t size,
 302                                                          size_t translation_factor);
 303 
 304   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 305 
 306   // These are macros so that, if the assert fires, we get the correct
 307   // line number, file, etc.
 308 
 309 #define heap_locking_asserts_params(_extra_message_)                          \
 310   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 311   (_extra_message_),                                                          \
 312   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 313   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 314   BOOL_TO_STR(Thread::current()->is_VM_thread())
 315 
 316 #define assert_heap_locked()                                                  \
 317   do {                                                                        \
 318     assert(Heap_lock->owned_by_self(),                                        \
 319            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 320   } while (0)
 321 
 322 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 323   do {                                                                        \
 324     assert(Heap_lock->owned_by_self() ||                                      \
 325            (SafepointSynchronize::is_at_safepoint() &&                        \
 326              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 327            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 328                                         "should be at a safepoint"));         \
 329   } while (0)
 330 
 331 #define assert_heap_locked_and_not_at_safepoint()                             \
 332   do {                                                                        \
 333     assert(Heap_lock->owned_by_self() &&                                      \
 334                                     !SafepointSynchronize::is_at_safepoint(), \
 335           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 336                                        "should not be at a safepoint"));      \
 337   } while (0)
 338 
 339 #define assert_heap_not_locked()                                              \
 340   do {                                                                        \
 341     assert(!Heap_lock->owned_by_self(),                                       \
 342         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 343   } while (0)
 344 
 345 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 346   do {                                                                        \
 347     assert(!Heap_lock->owned_by_self() &&                                     \
 348                                     !SafepointSynchronize::is_at_safepoint(), \
 349       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 350                                    "should not be at a safepoint"));          \
 351   } while (0)
 352 
 353 #define assert_at_safepoint_on_vm_thread()                                    \
 354   do {                                                                        \
 355     assert_at_safepoint();                                                    \
 356     assert(Thread::current_or_null() != NULL, "no current thread");           \
 357     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 358   } while (0)
 359 
 360 #ifdef ASSERT
 361 #define assert_used_and_recalculate_used_equal(g1h)                           \
 362   do {                                                                        \
 363     size_t cur_used_bytes = g1h->used();                                      \
 364     size_t recal_used_bytes = g1h->recalculate_used();                        \
 365     assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
 366            " same as recalculated used(" SIZE_FORMAT ").",                    \
 367            cur_used_bytes, recal_used_bytes);                                 \
 368   } while (0)
 369 #else
 370 #define assert_used_and_recalculate_used_equal(g1h) do {} while(0)
 371 #endif
 372 
 373   const char* young_gc_name() const;
 374 
 375   // The young region list.
 376   G1EdenRegions _eden;
 377   G1SurvivorRegions _survivor;
 378 
 379   STWGCTimer* _gc_timer_stw;
 380 
 381   G1NewTracer* _gc_tracer_stw;
 382 
 383   // The current policy object for the collector.
 384   G1Policy* _policy;
 385   G1HeapSizingPolicy* _heap_sizing_policy;
 386 
 387   G1CollectionSet _collection_set;
 388 
 389   // Try to allocate a single non-humongous HeapRegion sufficient for
 390   // an allocation of the given word_size. If do_expand is true,
 391   // attempt to expand the heap if necessary to satisfy the allocation
 392   // request. 'type' takes the type of region to be allocated. (Use constants
 393   // Old, Eden, Humongous, Survivor defined in HeapRegionType.)
 394   HeapRegion* new_region(size_t word_size,
 395                          HeapRegionType type,
 396                          bool do_expand,
 397                          uint node_index = G1NUMA::AnyNodeIndex);
 398 
 399   // Initialize a contiguous set of free regions of length num_regions
 400   // and starting at index first so that they appear as a single
 401   // humongous region.
 402   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 403                                                       uint num_regions,
 404                                                       size_t word_size);
 405 
 406   // Attempt to allocate a humongous object of the given size. Return
 407   // NULL if unsuccessful.
 408   HeapWord* humongous_obj_allocate(size_t word_size);
 409 
 410   // The following two methods, allocate_new_tlab() and
 411   // mem_allocate(), are the two main entry points from the runtime
 412   // into the G1's allocation routines. They have the following
 413   // assumptions:
 414   //
 415   // * They should both be called outside safepoints.
 416   //
 417   // * They should both be called without holding the Heap_lock.
 418   //
 419   // * All allocation requests for new TLABs should go to
 420   //   allocate_new_tlab().
 421   //
 422   // * All non-TLAB allocation requests should go to mem_allocate().
 423   //
 424   // * If either call cannot satisfy the allocation request using the
 425   //   current allocating region, they will try to get a new one. If
 426   //   this fails, they will attempt to do an evacuation pause and
 427   //   retry the allocation.
 428   //
 429   // * If all allocation attempts fail, even after trying to schedule
 430   //   an evacuation pause, allocate_new_tlab() will return NULL,
 431   //   whereas mem_allocate() will attempt a heap expansion and/or
 432   //   schedule a Full GC.
 433   //
 434   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 435   //   should never be called with word_size being humongous. All
 436   //   humongous allocation requests should go to mem_allocate() which
 437   //   will satisfy them with a special path.
 438 
 439   virtual HeapWord* allocate_new_tlab(size_t min_size,
 440                                       size_t requested_size,
 441                                       size_t* actual_size);
 442 
 443   virtual HeapWord* mem_allocate(size_t word_size,
 444                                  bool*  gc_overhead_limit_was_exceeded);
 445 
 446   // First-level mutator allocation attempt: try to allocate out of
 447   // the mutator alloc region without taking the Heap_lock. This
 448   // should only be used for non-humongous allocations.
 449   inline HeapWord* attempt_allocation(size_t min_word_size,
 450                                       size_t desired_word_size,
 451                                       size_t* actual_word_size);
 452 
 453   // Second-level mutator allocation attempt: take the Heap_lock and
 454   // retry the allocation attempt, potentially scheduling a GC
 455   // pause. This should only be used for non-humongous allocations.
 456   HeapWord* attempt_allocation_slow(size_t word_size);
 457 
 458   // Takes the Heap_lock and attempts a humongous allocation. It can
 459   // potentially schedule a GC pause.
 460   HeapWord* attempt_allocation_humongous(size_t word_size);
 461 
 462   // Allocation attempt that should be called during safepoints (e.g.,
 463   // at the end of a successful GC). expect_null_mutator_alloc_region
 464   // specifies whether the mutator alloc region is expected to be NULL
 465   // or not.
 466   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 467                                             bool expect_null_mutator_alloc_region);
 468 
 469   // These methods are the "callbacks" from the G1AllocRegion class.
 470 
 471   // For mutator alloc regions.
 472   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index);
 473   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 474                                    size_t allocated_bytes);
 475 
 476   // For GC alloc regions.
 477   bool has_more_regions(G1HeapRegionAttr dest);
 478   HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index);
 479   void retire_gc_alloc_region(HeapRegion* alloc_region,
 480                               size_t allocated_bytes, G1HeapRegionAttr dest);
 481 
 482   // - if explicit_gc is true, the GC is for a System.gc() etc,
 483   //   otherwise it's for a failed allocation.
 484   // - if clear_all_soft_refs is true, all soft references should be
 485   //   cleared during the GC.
 486   // - it returns false if it is unable to do the collection due to the
 487   //   GC locker being active, true otherwise.
 488   bool do_full_collection(bool explicit_gc,
 489                           bool clear_all_soft_refs);
 490 
 491   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 492   virtual void do_full_collection(bool clear_all_soft_refs);
 493 
 494   // Callback from VM_G1CollectForAllocation operation.
 495   // This function does everything necessary/possible to satisfy a
 496   // failed allocation request (including collection, expansion, etc.)
 497   HeapWord* satisfy_failed_allocation(size_t word_size,
 498                                       bool* succeeded);
 499   // Internal helpers used during full GC to split it up to
 500   // increase readability.
 501   void abort_concurrent_cycle();
 502   void verify_before_full_collection(bool explicit_gc);
 503   void prepare_heap_for_full_collection();
 504   void prepare_heap_for_mutators();
 505   void abort_refinement();
 506   void verify_after_full_collection();
 507   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 508 
 509   // Helper method for satisfy_failed_allocation()
 510   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 511                                              bool do_gc,
 512                                              bool clear_all_soft_refs,
 513                                              bool expect_null_mutator_alloc_region,
 514                                              bool* gc_succeeded);
 515 
 516   // Attempting to expand the heap sufficiently
 517   // to support an allocation of the given "word_size".  If
 518   // successful, perform the allocation and return the address of the
 519   // allocated block, or else "NULL".
 520   HeapWord* expand_and_allocate(size_t word_size);
 521 
 522   // Process any reference objects discovered.
 523   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 524 
 525   // If during an initial mark pause we may install a pending list head which is not
 526   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 527   // to discover.
 528   void make_pending_list_reachable();
 529 
 530   // Merges the information gathered on a per-thread basis for all worker threads
 531   // during GC into global variables.
 532   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 533 
 534   void verify_numa_regions(const char* desc);
 535 
 536 public:
 537   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 538 
 539   WorkGang* workers() const { return _workers; }
 540 
 541   // Runs the given AbstractGangTask with the current active workers, returning the
 542   // total time taken.
 543   Tickspan run_task(AbstractGangTask* task);
 544 
 545   G1Allocator* allocator() {
 546     return _allocator;
 547   }
 548 
 549   G1HeapVerifier* verifier() {
 550     return _verifier;
 551   }
 552 
 553   G1MonitoringSupport* g1mm() {
 554     assert(_g1mm != NULL, "should have been initialized");
 555     return _g1mm;
 556   }
 557 
 558   void resize_heap_if_necessary();
 559 
 560   G1NUMA* numa() const { return _numa; }
 561 
 562   // Expand the garbage-first heap by at least the given size (in bytes!).
 563   // Returns true if the heap was expanded by the requested amount;
 564   // false otherwise.
 565   // (Rounds up to a HeapRegion boundary.)
 566   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 567   bool expand_single_region(uint node_index);
 568 
 569   // Returns the PLAB statistics for a given destination.
 570   inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
 571 
 572   // Determines PLAB size for a given destination.
 573   inline size_t desired_plab_sz(G1HeapRegionAttr dest);
 574 
 575   // Do anything common to GC's.
 576   void gc_prologue(bool full);
 577   void gc_epilogue(bool full);
 578 
 579   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 580   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 581 
 582   // Modify the reclaim candidate set and test for presence.
 583   // These are only valid for starts_humongous regions.
 584   inline void set_humongous_reclaim_candidate(uint region, bool value);
 585   inline bool is_humongous_reclaim_candidate(uint region);
 586 
 587   // Remove from the reclaim candidate set.  Also remove from the
 588   // collection set so that later encounters avoid the slow path.
 589   inline void set_humongous_is_live(oop obj);
 590 
 591   // Register the given region to be part of the collection set.
 592   inline void register_humongous_region_with_region_attr(uint index);
 593   // Update region attributes table with information about all regions.
 594   void register_regions_with_region_attr();
 595   // We register a region with the fast "in collection set" test. We
 596   // simply set to true the array slot corresponding to this region.
 597   void register_young_region_with_region_attr(HeapRegion* r) {
 598     _region_attr.set_in_young(r->hrm_index());
 599   }
 600   inline void register_region_with_region_attr(HeapRegion* r);
 601   inline void register_old_region_with_region_attr(HeapRegion* r);
 602   inline void register_optional_region_with_region_attr(HeapRegion* r);
 603 
 604   void clear_region_attr(const HeapRegion* hr) {
 605     _region_attr.clear(hr);
 606   }
 607 
 608   void clear_region_attr() {
 609     _region_attr.clear();
 610   }
 611 
 612   // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking
 613   // for all regions.
 614   void verify_region_attr_remset_update() PRODUCT_RETURN;
 615 
 616   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 617 
 618   // This is called at the start of either a concurrent cycle or a Full
 619   // GC to update the number of old marking cycles started.
 620   void increment_old_marking_cycles_started();
 621 
 622   // This is called at the end of either a concurrent cycle or a Full
 623   // GC to update the number of old marking cycles completed. Those two
 624   // can happen in a nested fashion, i.e., we start a concurrent
 625   // cycle, a Full GC happens half-way through it which ends first,
 626   // and then the cycle notices that a Full GC happened and ends
 627   // too. The concurrent parameter is a boolean to help us do a bit
 628   // tighter consistency checking in the method. If concurrent is
 629   // false, the caller is the inner caller in the nesting (i.e., the
 630   // Full GC). If concurrent is true, the caller is the outer caller
 631   // in this nesting (i.e., the concurrent cycle). Further nesting is
 632   // not currently supported. The end of this call also notifies
 633   // the FullGCCount_lock in case a Java thread is waiting for a full
 634   // GC to happen (e.g., it called System.gc() with
 635   // +ExplicitGCInvokesConcurrent).
 636   void increment_old_marking_cycles_completed(bool concurrent);
 637 
 638   uint old_marking_cycles_completed() {
 639     return _old_marking_cycles_completed;
 640   }
 641 
 642   G1HRPrinter* hr_printer() { return &_hr_printer; }
 643 
 644   // Allocates a new heap region instance.
 645   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 646 
 647   // Allocate the highest free region in the reserved heap. This will commit
 648   // regions as necessary.
 649   HeapRegion* alloc_highest_free_region();
 650 
 651   // Frees a non-humongous region by initializing its contents and
 652   // adding it to the free list that's passed as a parameter (this is
 653   // usually a local list which will be appended to the master free
 654   // list later). The used bytes of freed regions are accumulated in
 655   // pre_used. If skip_remset is true, the region's RSet will not be freed
 656   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 657   // be freed up. The assumption is that this will be done later.
 658   // The locked parameter indicates if the caller has already taken
 659   // care of proper synchronization. This may allow some optimizations.
 660   void free_region(HeapRegion* hr,
 661                    FreeRegionList* free_list,
 662                    bool skip_remset,
 663                    bool skip_hot_card_cache = false,
 664                    bool locked = false);
 665 
 666   // It dirties the cards that cover the block so that the post
 667   // write barrier never queues anything when updating objects on this
 668   // block. It is assumed (and in fact we assert) that the block
 669   // belongs to a young region.
 670   inline void dirty_young_block(HeapWord* start, size_t word_size);
 671 
 672   // Frees a humongous region by collapsing it into individual regions
 673   // and calling free_region() for each of them. The freed regions
 674   // will be added to the free list that's passed as a parameter (this
 675   // is usually a local list which will be appended to the master free
 676   // list later).
 677   // The method assumes that only a single thread is ever calling
 678   // this for a particular region at once.
 679   void free_humongous_region(HeapRegion* hr,
 680                              FreeRegionList* free_list);
 681 
 682   // Facility for allocating in 'archive' regions in high heap memory and
 683   // recording the allocated ranges. These should all be called from the
 684   // VM thread at safepoints, without the heap lock held. They can be used
 685   // to create and archive a set of heap regions which can be mapped at the
 686   // same fixed addresses in a subsequent JVM invocation.
 687   void begin_archive_alloc_range(bool open = false);
 688 
 689   // Check if the requested size would be too large for an archive allocation.
 690   bool is_archive_alloc_too_large(size_t word_size);
 691 
 692   // Allocate memory of the requested size from the archive region. This will
 693   // return NULL if the size is too large or if no memory is available. It
 694   // does not trigger a garbage collection.
 695   HeapWord* archive_mem_allocate(size_t word_size);
 696 
 697   // Optionally aligns the end address and returns the allocated ranges in
 698   // an array of MemRegions in order of ascending addresses.
 699   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 700                                size_t end_alignment_in_bytes = 0);
 701 
 702   // Facility for allocating a fixed range within the heap and marking
 703   // the containing regions as 'archive'. For use at JVM init time, when the
 704   // caller may mmap archived heap data at the specified range(s).
 705   // Verify that the MemRegions specified in the argument array are within the
 706   // reserved heap.
 707   bool check_archive_addresses(MemRegion* range, size_t count);
 708 
 709   // Commit the appropriate G1 regions containing the specified MemRegions
 710   // and mark them as 'archive' regions. The regions in the array must be
 711   // non-overlapping and in order of ascending address.
 712   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 713 
 714   // Insert any required filler objects in the G1 regions around the specified
 715   // ranges to make the regions parseable. This must be called after
 716   // alloc_archive_regions, and after class loading has occurred.
 717   void fill_archive_regions(MemRegion* range, size_t count);
 718 
 719   // For each of the specified MemRegions, uncommit the containing G1 regions
 720   // which had been allocated by alloc_archive_regions. This should be called
 721   // rather than fill_archive_regions at JVM init time if the archive file
 722   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 723   void dealloc_archive_regions(MemRegion* range, size_t count, bool is_open);
 724 
 725   oop materialize_archived_object(oop obj);
 726 
 727 private:
 728 
 729   // Shrink the garbage-first heap by at most the given size (in bytes!).
 730   // (Rounds down to a HeapRegion boundary.)
 731   void shrink(size_t expand_bytes);
 732   void shrink_helper(size_t expand_bytes);
 733 
 734   #if TASKQUEUE_STATS
 735   static void print_taskqueue_stats_hdr(outputStream* const st);
 736   void print_taskqueue_stats() const;
 737   void reset_taskqueue_stats();
 738   #endif // TASKQUEUE_STATS
 739 
 740   // Schedule the VM operation that will do an evacuation pause to
 741   // satisfy an allocation request of word_size. *succeeded will
 742   // return whether the VM operation was successful (it did do an
 743   // evacuation pause) or not (another thread beat us to it or the GC
 744   // locker was active). Given that we should not be holding the
 745   // Heap_lock when we enter this method, we will pass the
 746   // gc_count_before (i.e., total_collections()) as a parameter since
 747   // it has to be read while holding the Heap_lock. Currently, both
 748   // methods that call do_collection_pause() release the Heap_lock
 749   // before the call, so it's easy to read gc_count_before just before.
 750   HeapWord* do_collection_pause(size_t         word_size,
 751                                 uint           gc_count_before,
 752                                 bool*          succeeded,
 753                                 GCCause::Cause gc_cause);
 754 
 755   void wait_for_root_region_scanning();
 756 
 757   // The guts of the incremental collection pause, executed by the vm
 758   // thread. It returns false if it is unable to do the collection due
 759   // to the GC locker being active, true otherwise
 760   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 761 
 762   G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
 763   void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
 764   void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
 765 
 766   void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms);
 767 
 768   // Actually do the work of evacuating the parts of the collection set.
 769   void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states);
 770   void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
 771 private:
 772   // Evacuate the next set of optional regions.
 773   void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states);
 774 
 775 public:
 776   void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 777   void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
 778                                     G1RedirtyCardsQueueSet* rdcqs,
 779                                     G1ParScanThreadStateSet* pss);
 780 
 781   void expand_heap_after_young_collection();
 782   // Update object copying statistics.
 783   void record_obj_copy_mem_stats();
 784 
 785   // The hot card cache for remembered set insertion optimization.
 786   G1HotCardCache* _hot_card_cache;
 787 
 788   // The g1 remembered set of the heap.
 789   G1RemSet* _rem_set;
 790 
 791   // After a collection pause, convert the regions in the collection set into free
 792   // regions.
 793   void free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 794 
 795   // Abandon the current collection set without recording policy
 796   // statistics or updating free lists.
 797   void abandon_collection_set(G1CollectionSet* collection_set);
 798 
 799   // The concurrent marker (and the thread it runs in.)
 800   G1ConcurrentMark* _cm;
 801   G1ConcurrentMarkThread* _cm_thread;
 802 
 803   // The concurrent refiner.
 804   G1ConcurrentRefine* _cr;
 805 
 806   // The parallel task queues
 807   RefToScanQueueSet *_task_queues;
 808 
 809   // True iff a evacuation has failed in the current collection.
 810   bool _evacuation_failed;
 811 
 812   EvacuationFailedInfo* _evacuation_failed_info_array;
 813 
 814   // Failed evacuations cause some logical from-space objects to have
 815   // forwarding pointers to themselves.  Reset them.
 816   void remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs);
 817 
 818   // Restore the objects in the regions in the collection set after an
 819   // evacuation failure.
 820   void restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs);
 821 
 822   PreservedMarksSet _preserved_marks_set;
 823 
 824   // Preserve the mark of "obj", if necessary, in preparation for its mark
 825   // word being overwritten with a self-forwarding-pointer.
 826   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m);
 827 
 828 #ifndef PRODUCT
 829   // Support for forcing evacuation failures. Analogous to
 830   // PromotionFailureALot for the other collectors.
 831 
 832   // Records whether G1EvacuationFailureALot should be in effect
 833   // for the current GC
 834   bool _evacuation_failure_alot_for_current_gc;
 835 
 836   // Used to record the GC number for interval checking when
 837   // determining whether G1EvaucationFailureALot is in effect
 838   // for the current GC.
 839   size_t _evacuation_failure_alot_gc_number;
 840 
 841   // Count of the number of evacuations between failures.
 842   volatile size_t _evacuation_failure_alot_count;
 843 
 844   // Set whether G1EvacuationFailureALot should be in effect
 845   // for the current GC (based upon the type of GC and which
 846   // command line flags are set);
 847   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 848                                                   bool during_initial_mark,
 849                                                   bool mark_or_rebuild_in_progress);
 850 
 851   inline void set_evacuation_failure_alot_for_current_gc();
 852 
 853   // Return true if it's time to cause an evacuation failure.
 854   inline bool evacuation_should_fail();
 855 
 856   // Reset the G1EvacuationFailureALot counters.  Should be called at
 857   // the end of an evacuation pause in which an evacuation failure occurred.
 858   inline void reset_evacuation_should_fail();
 859 #endif // !PRODUCT
 860 
 861   // ("Weak") Reference processing support.
 862   //
 863   // G1 has 2 instances of the reference processor class. One
 864   // (_ref_processor_cm) handles reference object discovery
 865   // and subsequent processing during concurrent marking cycles.
 866   //
 867   // The other (_ref_processor_stw) handles reference object
 868   // discovery and processing during full GCs and incremental
 869   // evacuation pauses.
 870   //
 871   // During an incremental pause, reference discovery will be
 872   // temporarily disabled for _ref_processor_cm and will be
 873   // enabled for _ref_processor_stw. At the end of the evacuation
 874   // pause references discovered by _ref_processor_stw will be
 875   // processed and discovery will be disabled. The previous
 876   // setting for reference object discovery for _ref_processor_cm
 877   // will be re-instated.
 878   //
 879   // At the start of marking:
 880   //  * Discovery by the CM ref processor is verified to be inactive
 881   //    and it's discovered lists are empty.
 882   //  * Discovery by the CM ref processor is then enabled.
 883   //
 884   // At the end of marking:
 885   //  * Any references on the CM ref processor's discovered
 886   //    lists are processed (possibly MT).
 887   //
 888   // At the start of full GC we:
 889   //  * Disable discovery by the CM ref processor and
 890   //    empty CM ref processor's discovered lists
 891   //    (without processing any entries).
 892   //  * Verify that the STW ref processor is inactive and it's
 893   //    discovered lists are empty.
 894   //  * Temporarily set STW ref processor discovery as single threaded.
 895   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 896   //    field.
 897   //  * Finally enable discovery by the STW ref processor.
 898   //
 899   // The STW ref processor is used to record any discovered
 900   // references during the full GC.
 901   //
 902   // At the end of a full GC we:
 903   //  * Enqueue any reference objects discovered by the STW ref processor
 904   //    that have non-live referents. This has the side-effect of
 905   //    making the STW ref processor inactive by disabling discovery.
 906   //  * Verify that the CM ref processor is still inactive
 907   //    and no references have been placed on it's discovered
 908   //    lists (also checked as a precondition during initial marking).
 909 
 910   // The (stw) reference processor...
 911   ReferenceProcessor* _ref_processor_stw;
 912 
 913   // During reference object discovery, the _is_alive_non_header
 914   // closure (if non-null) is applied to the referent object to
 915   // determine whether the referent is live. If so then the
 916   // reference object does not need to be 'discovered' and can
 917   // be treated as a regular oop. This has the benefit of reducing
 918   // the number of 'discovered' reference objects that need to
 919   // be processed.
 920   //
 921   // Instance of the is_alive closure for embedding into the
 922   // STW reference processor as the _is_alive_non_header field.
 923   // Supplying a value for the _is_alive_non_header field is
 924   // optional but doing so prevents unnecessary additions to
 925   // the discovered lists during reference discovery.
 926   G1STWIsAliveClosure _is_alive_closure_stw;
 927 
 928   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 929 
 930   // The (concurrent marking) reference processor...
 931   ReferenceProcessor* _ref_processor_cm;
 932 
 933   // Instance of the concurrent mark is_alive closure for embedding
 934   // into the Concurrent Marking reference processor as the
 935   // _is_alive_non_header field. Supplying a value for the
 936   // _is_alive_non_header field is optional but doing so prevents
 937   // unnecessary additions to the discovered lists during reference
 938   // discovery.
 939   G1CMIsAliveClosure _is_alive_closure_cm;
 940 
 941   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 942 public:
 943 
 944   RefToScanQueue *task_queue(uint i) const;
 945 
 946   uint num_task_queues() const;
 947 
 948   // Create a G1CollectedHeap.
 949   // Must call the initialize method afterwards.
 950   // May not return if something goes wrong.
 951   G1CollectedHeap();
 952 
 953 private:
 954   jint initialize_concurrent_refinement();
 955   jint initialize_young_gen_sampling_thread();
 956 public:
 957   // Initialize the G1CollectedHeap to have the initial and
 958   // maximum sizes and remembered and barrier sets
 959   // specified by the policy object.
 960   jint initialize();
 961 
 962   virtual void stop();
 963   virtual void safepoint_synchronize_begin();
 964   virtual void safepoint_synchronize_end();
 965 
 966   // Does operations required after initialization has been done.
 967   void post_initialize();
 968 
 969   // Initialize weak reference processing.
 970   void ref_processing_init();
 971 
 972   virtual Name kind() const {
 973     return CollectedHeap::G1;
 974   }
 975 
 976   virtual const char* name() const {
 977     return "G1";
 978   }
 979 
 980   const G1CollectorState* collector_state() const { return &_collector_state; }
 981   G1CollectorState* collector_state() { return &_collector_state; }
 982 
 983   // The current policy object for the collector.
 984   G1Policy* policy() const { return _policy; }
 985   // The remembered set.
 986   G1RemSet* rem_set() const { return _rem_set; }
 987 
 988   inline G1GCPhaseTimes* phase_times() const;
 989 
 990   HeapRegionManager* hrm() const { return _hrm; }
 991 
 992   const G1CollectionSet* collection_set() const { return &_collection_set; }
 993   G1CollectionSet* collection_set() { return &_collection_set; }
 994 
 995   virtual SoftRefPolicy* soft_ref_policy();
 996 
 997   virtual void initialize_serviceability();
 998   virtual MemoryUsage memory_usage();
 999   virtual GrowableArray<GCMemoryManager*> memory_managers();
1000   virtual GrowableArray<MemoryPool*> memory_pools();
1001 
1002   // Try to minimize the remembered set.
1003   void scrub_rem_set();
1004 
1005   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1006   void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id);
1007 
1008   // The shared block offset table array.
1009   G1BlockOffsetTable* bot() const { return _bot; }
1010 
1011   // Reference Processing accessors
1012 
1013   // The STW reference processor....
1014   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1015 
1016   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1017 
1018   // The Concurrent Marking reference processor...
1019   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1020 
1021   size_t unused_committed_regions_in_bytes() const;
1022 
1023   virtual size_t capacity() const;
1024   virtual size_t used() const;
1025   // This should be called when we're not holding the heap lock. The
1026   // result might be a bit inaccurate.
1027   size_t used_unlocked() const;
1028   size_t recalculate_used() const;
1029 
1030   // These virtual functions do the actual allocation.
1031   // Some heaps may offer a contiguous region for shared non-blocking
1032   // allocation, via inlined code (by exporting the address of the top and
1033   // end fields defining the extent of the contiguous allocation region.)
1034   // But G1CollectedHeap doesn't yet support this.
1035 
1036   virtual bool is_maximal_no_gc() const {
1037     return _hrm->available() == 0;
1038   }
1039 
1040   // Returns whether there are any regions left in the heap for allocation.
1041   bool has_regions_left_for_allocation() const {
1042     return !is_maximal_no_gc() || num_free_regions() != 0;
1043   }
1044 
1045   // The current number of regions in the heap.
1046   uint num_regions() const { return _hrm->length(); }
1047 
1048   // The max number of regions in the heap.
1049   uint max_regions() const { return _hrm->max_length(); }
1050 
1051   // Max number of regions that can be comitted.
1052   uint max_expandable_regions() const { return _hrm->max_expandable_length(); }
1053 
1054   // The number of regions that are completely free.
1055   uint num_free_regions() const { return _hrm->num_free_regions(); }
1056 
1057   // The number of regions that can be allocated into.
1058   uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); }
1059 
1060   MemoryUsage get_auxiliary_data_memory_usage() const {
1061     return _hrm->get_auxiliary_data_memory_usage();
1062   }
1063 
1064   // The number of regions that are not completely free.
1065   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1066 
1067 #ifdef ASSERT
1068   bool is_on_master_free_list(HeapRegion* hr) {
1069     return _hrm->is_free(hr);
1070   }
1071 #endif // ASSERT
1072 
1073   inline void old_set_add(HeapRegion* hr);
1074   inline void old_set_remove(HeapRegion* hr);
1075 
1076   inline void archive_set_add(HeapRegion* hr);
1077 
1078   size_t non_young_capacity_bytes() {
1079     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1080   }
1081 
1082   // Determine whether the given region is one that we are using as an
1083   // old GC alloc region.
1084   bool is_old_gc_alloc_region(HeapRegion* hr);
1085 
1086   // Perform a collection of the heap; intended for use in implementing
1087   // "System.gc".  This probably implies as full a collection as the
1088   // "CollectedHeap" supports.
1089   virtual void collect(GCCause::Cause cause);
1090 
1091   // Perform a collection of the heap with the given cause; if the VM operation
1092   // fails to execute for any reason, retry only if retry_on_gc_failure is set.
1093   // Returns whether this collection actually executed.
1094   bool try_collect(GCCause::Cause cause, bool retry_on_gc_failure);
1095 
1096   // True iff an evacuation has failed in the most-recent collection.
1097   bool evacuation_failed() { return _evacuation_failed; }
1098 
1099   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1100   void prepend_to_freelist(FreeRegionList* list);
1101   void decrement_summary_bytes(size_t bytes);
1102 
1103   virtual bool is_in(const void* p) const;
1104 #ifdef ASSERT
1105   // Returns whether p is in one of the available areas of the heap. Slow but
1106   // extensive version.
1107   bool is_in_exact(const void* p) const;
1108 #endif
1109 
1110   // Return "TRUE" iff the given object address is within the collection
1111   // set. Assumes that the reference points into the heap.
1112   inline bool is_in_cset(const HeapRegion *hr);
1113   inline bool is_in_cset(oop obj);
1114   inline bool is_in_cset(HeapWord* addr);
1115 
1116   inline bool is_in_cset_or_humongous(const oop obj);
1117 
1118  private:
1119   // This array is used for a quick test on whether a reference points into
1120   // the collection set or not. Each of the array's elements denotes whether the
1121   // corresponding region is in the collection set or not.
1122   G1HeapRegionAttrBiasedMappedArray _region_attr;
1123 
1124  public:
1125 
1126   inline G1HeapRegionAttr region_attr(const void* obj) const;
1127   inline G1HeapRegionAttr region_attr(uint idx) const;
1128 
1129   // Return "TRUE" iff the given object address is in the reserved
1130   // region of g1.
1131   bool is_in_g1_reserved(const void* p) const {
1132     return _hrm->reserved().contains(p);
1133   }
1134 
1135   // Returns a MemRegion that corresponds to the space that has been
1136   // reserved for the heap
1137   MemRegion g1_reserved() const {
1138     return _hrm->reserved();
1139   }
1140 
1141   MemRegion reserved_region() const {
1142     return _reserved;
1143   }
1144 
1145   HeapWord* base() const {
1146     return _reserved.start();
1147   }
1148 
1149   bool is_in_reserved(const void* addr) const {
1150     return _reserved.contains(addr);
1151   }
1152 
1153   G1HotCardCache* hot_card_cache() const { return _hot_card_cache; }
1154 
1155   G1CardTable* card_table() const {
1156     return _card_table;
1157   }
1158 
1159   // Iteration functions.
1160 
1161   // Iterate over all objects, calling "cl.do_object" on each.
1162   virtual void object_iterate(ObjectClosure* cl);
1163 
1164   virtual void safe_object_iterate(ObjectClosure* cl) {
1165     object_iterate(cl);
1166   }
1167 
1168   // Iterate over heap regions, in address order, terminating the
1169   // iteration early if the "do_heap_region" method returns "true".
1170   void heap_region_iterate(HeapRegionClosure* blk) const;
1171 
1172   // Return the region with the given index. It assumes the index is valid.
1173   inline HeapRegion* region_at(uint index) const;
1174   inline HeapRegion* region_at_or_null(uint index) const;
1175 
1176   // Return the next region (by index) that is part of the same
1177   // humongous object that hr is part of.
1178   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1179 
1180   // Calculate the region index of the given address. Given address must be
1181   // within the heap.
1182   inline uint addr_to_region(HeapWord* addr) const;
1183 
1184   inline HeapWord* bottom_addr_for_region(uint index) const;
1185 
1186   // Two functions to iterate over the heap regions in parallel. Threads
1187   // compete using the HeapRegionClaimer to claim the regions before
1188   // applying the closure on them.
1189   // The _from_worker_offset version uses the HeapRegionClaimer and
1190   // the worker id to calculate a start offset to prevent all workers to
1191   // start from the point.
1192   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1193                                                   HeapRegionClaimer* hrclaimer,
1194                                                   uint worker_id) const;
1195 
1196   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1197                                           HeapRegionClaimer* hrclaimer) const;
1198 
1199   // Iterate over all regions currently in the current collection set.
1200   void collection_set_iterate_all(HeapRegionClosure* blk);
1201 
1202   // Iterate over the regions in the current increment of the collection set.
1203   // Starts the iteration so that the start regions of a given worker id over the
1204   // set active_workers are evenly spread across the set of collection set regions
1205   // to be iterated.
1206   // The variant with the HeapRegionClaimer guarantees that the closure will be
1207   // applied to a particular region exactly once.
1208   void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) {
1209     collection_set_iterate_increment_from(blk, NULL, worker_id);
1210   }
1211   void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id);
1212 
1213   // Returns the HeapRegion that contains addr. addr must not be NULL.
1214   template <class T>
1215   inline HeapRegion* heap_region_containing(const T addr) const;
1216 
1217   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1218   // region. addr must not be NULL.
1219   template <class T>
1220   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1221 
1222   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1223   // each address in the (reserved) heap is a member of exactly
1224   // one block.  The defining characteristic of a block is that it is
1225   // possible to find its size, and thus to progress forward to the next
1226   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1227   // represent Java objects, or they might be free blocks in a
1228   // free-list-based heap (or subheap), as long as the two kinds are
1229   // distinguishable and the size of each is determinable.
1230 
1231   // Returns the address of the start of the "block" that contains the
1232   // address "addr".  We say "blocks" instead of "object" since some heaps
1233   // may not pack objects densely; a chunk may either be an object or a
1234   // non-object.
1235   HeapWord* block_start(const void* addr) const;
1236 
1237   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1238   // the block is an object.
1239   bool block_is_obj(const HeapWord* addr) const;
1240 
1241   // Section on thread-local allocation buffers (TLABs)
1242   // See CollectedHeap for semantics.
1243 
1244   bool supports_tlab_allocation() const;
1245   size_t tlab_capacity(Thread* ignored) const;
1246   size_t tlab_used(Thread* ignored) const;
1247   size_t max_tlab_size() const;
1248   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1249 
1250   inline bool is_in_young(const oop obj);
1251 
1252   // Returns "true" iff the given word_size is "very large".
1253   static bool is_humongous(size_t word_size) {
1254     // Note this has to be strictly greater-than as the TLABs
1255     // are capped at the humongous threshold and we want to
1256     // ensure that we don't try to allocate a TLAB as
1257     // humongous and that we don't allocate a humongous
1258     // object in a TLAB.
1259     return word_size > _humongous_object_threshold_in_words;
1260   }
1261 
1262   // Returns the humongous threshold for a specific region size
1263   static size_t humongous_threshold_for(size_t region_size) {
1264     return (region_size / 2);
1265   }
1266 
1267   // Returns the number of regions the humongous object of the given word size
1268   // requires.
1269   static size_t humongous_obj_size_in_regions(size_t word_size);
1270 
1271   // Print the maximum heap capacity.
1272   virtual size_t max_capacity() const;
1273 
1274   // Return the size of reserved memory. Returns different value than max_capacity() when AllocateOldGenAt is used.
1275   virtual size_t max_reserved_capacity() const;
1276 
1277   virtual jlong millis_since_last_gc();
1278 
1279 
1280   // Convenience function to be used in situations where the heap type can be
1281   // asserted to be this type.
1282   static G1CollectedHeap* heap();
1283 
1284   void set_region_short_lived_locked(HeapRegion* hr);
1285   // add appropriate methods for any other surv rate groups
1286 
1287   const G1SurvivorRegions* survivor() const { return &_survivor; }
1288 
1289   uint eden_regions_count() const { return _eden.length(); }
1290   uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); }
1291   uint survivor_regions_count() const { return _survivor.length(); }
1292   uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); }
1293   size_t eden_regions_used_bytes() const { return _eden.used_bytes(); }
1294   size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); }
1295   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1296   uint old_regions_count() const { return _old_set.length(); }
1297   uint archive_regions_count() const { return _archive_set.length(); }
1298   uint humongous_regions_count() const { return _humongous_set.length(); }
1299 
1300 #ifdef ASSERT
1301   bool check_young_list_empty();
1302 #endif
1303 
1304   // *** Stuff related to concurrent marking.  It's not clear to me that so
1305   // many of these need to be public.
1306 
1307   // The functions below are helper functions that a subclass of
1308   // "CollectedHeap" can use in the implementation of its virtual
1309   // functions.
1310   // This performs a concurrent marking of the live objects in a
1311   // bitmap off to the side.
1312   void do_concurrent_mark();
1313 
1314   bool is_marked_next(oop obj) const;
1315 
1316   // Determine if an object is dead, given the object and also
1317   // the region to which the object belongs. An object is dead
1318   // iff a) it was not allocated since the last mark, b) it
1319   // is not marked, and c) it is not in an archive region.
1320   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1321     return
1322       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1323       !hr->is_archive();
1324   }
1325 
1326   // This function returns true when an object has been
1327   // around since the previous marking and hasn't yet
1328   // been marked during this marking, and is not in an archive region.
1329   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1330     return
1331       !hr->obj_allocated_since_next_marking(obj) &&
1332       !is_marked_next(obj) &&
1333       !hr->is_archive();
1334   }
1335 
1336   // Determine if an object is dead, given only the object itself.
1337   // This will find the region to which the object belongs and
1338   // then call the region version of the same function.
1339 
1340   // Added if it is NULL it isn't dead.
1341 
1342   inline bool is_obj_dead(const oop obj) const;
1343 
1344   inline bool is_obj_ill(const oop obj) const;
1345 
1346   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1347   inline bool is_obj_dead_full(const oop obj) const;
1348 
1349   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1350 
1351   // Refinement
1352 
1353   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1354 
1355   // Optimized nmethod scanning support routines
1356 
1357   // Register the given nmethod with the G1 heap.
1358   virtual void register_nmethod(nmethod* nm);
1359 
1360   // Unregister the given nmethod from the G1 heap.
1361   virtual void unregister_nmethod(nmethod* nm);
1362 
1363   // No nmethod flushing needed.
1364   virtual void flush_nmethod(nmethod* nm) {}
1365 
1366   // No nmethod verification implemented.
1367   virtual void verify_nmethod(nmethod* nm) {}
1368 
1369   // Free up superfluous code root memory.
1370   void purge_code_root_memory();
1371 
1372   // Rebuild the strong code root lists for each region
1373   // after a full GC.
1374   void rebuild_strong_code_roots();
1375 
1376   // Partial cleaning of VM internal data structures.
1377   void string_dedup_cleaning(BoolObjectClosure* is_alive,
1378                              OopClosure* keep_alive,
1379                              G1GCPhaseTimes* phase_times = NULL);
1380 
1381   // Performs cleaning of data structures after class unloading.
1382   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1383 
1384   // Redirty logged cards in the refinement queue.
1385   void redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs);
1386 
1387   // Verification
1388 
1389   // Deduplicate the string
1390   virtual void deduplicate_string(oop str);
1391 
1392   // Perform any cleanup actions necessary before allowing a verification.
1393   virtual void prepare_for_verify();
1394 
1395   // Perform verification.
1396 
1397   // vo == UsePrevMarking -> use "prev" marking information,
1398   // vo == UseNextMarking -> use "next" marking information
1399   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1400   //
1401   // NOTE: Only the "prev" marking information is guaranteed to be
1402   // consistent most of the time, so most calls to this should use
1403   // vo == UsePrevMarking.
1404   // Currently, there is only one case where this is called with
1405   // vo == UseNextMarking, which is to verify the "next" marking
1406   // information at the end of remark.
1407   // Currently there is only one place where this is called with
1408   // vo == UseFullMarking, which is to verify the marking during a
1409   // full GC.
1410   void verify(VerifyOption vo);
1411 
1412   // WhiteBox testing support.
1413   virtual bool supports_concurrent_phase_control() const;
1414   virtual bool request_concurrent_phase(const char* phase);
1415   bool is_heterogeneous_heap() const;
1416 
1417   virtual WorkGang* get_safepoint_workers() { return _workers; }
1418 
1419   // The methods below are here for convenience and dispatch the
1420   // appropriate method depending on value of the given VerifyOption
1421   // parameter. The values for that parameter, and their meanings,
1422   // are the same as those above.
1423 
1424   bool is_obj_dead_cond(const oop obj,
1425                         const HeapRegion* hr,
1426                         const VerifyOption vo) const;
1427 
1428   bool is_obj_dead_cond(const oop obj,
1429                         const VerifyOption vo) const;
1430 
1431   G1HeapSummary create_g1_heap_summary();
1432   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1433 
1434   // Printing
1435 private:
1436   void print_heap_regions() const;
1437   void print_regions_on(outputStream* st) const;
1438 
1439 public:
1440   virtual void print_on(outputStream* st) const;
1441   virtual void print_extended_on(outputStream* st) const;
1442   virtual void print_on_error(outputStream* st) const;
1443 
1444   virtual void print_gc_threads_on(outputStream* st) const;
1445   virtual void gc_threads_do(ThreadClosure* tc) const;
1446 
1447   // Override
1448   void print_tracing_info() const;
1449 
1450   // The following two methods are helpful for debugging RSet issues.
1451   void print_cset_rsets() PRODUCT_RETURN;
1452   void print_all_rsets() PRODUCT_RETURN;
1453 
1454   // Used to print information about locations in the hs_err file.
1455   virtual bool print_location(outputStream* st, void* addr) const;
1456 
1457   size_t pending_card_num();
1458 };
1459 
1460 class G1ParEvacuateFollowersClosure : public VoidClosure {
1461 private:
1462   double _start_term;
1463   double _term_time;
1464   size_t _term_attempts;
1465 
1466   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1467   void end_term_time() { _term_time += (os::elapsedTime() - _start_term); }
1468 protected:
1469   G1CollectedHeap*              _g1h;
1470   G1ParScanThreadState*         _par_scan_state;
1471   RefToScanQueueSet*            _queues;
1472   ParallelTaskTerminator*       _terminator;
1473   G1GCPhaseTimes::GCParPhases   _phase;
1474 
1475   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1476   RefToScanQueueSet*      queues()         { return _queues; }
1477   ParallelTaskTerminator* terminator()     { return _terminator; }
1478 
1479 public:
1480   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1481                                 G1ParScanThreadState* par_scan_state,
1482                                 RefToScanQueueSet* queues,
1483                                 ParallelTaskTerminator* terminator,
1484                                 G1GCPhaseTimes::GCParPhases phase)
1485     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1486       _g1h(g1h), _par_scan_state(par_scan_state),
1487       _queues(queues), _terminator(terminator), _phase(phase) {}
1488 
1489   void do_void();
1490 
1491   double term_time() const { return _term_time; }
1492   size_t term_attempts() const { return _term_attempts; }
1493 
1494 private:
1495   inline bool offer_termination();
1496 };
1497 
1498 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP