1 /*
   2  * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/g1/g1Trace.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/prefetch.inline.hpp"
  39 
  40 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
  41                                            G1RedirtyCardsQueueSet* rdcqs,
  42                                            uint worker_id,
  43                                            size_t young_cset_length,
  44                                            size_t optional_cset_length)
  45   : _g1h(g1h),
  46     _refs(g1h->task_queue(worker_id)),
  47     _rdcq(rdcqs),
  48     _ct(g1h->card_table()),
  49     _closures(NULL),
  50     _plab_allocator(NULL),
  51     _age_table(false),
  52     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
  53     _scanner(g1h, this),
  54     _worker_id(worker_id),
  55     _last_enqueued_card(SIZE_MAX),
  56     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
  57     _stack_trim_lower_threshold(GCDrainStackTargetSize),
  58     _trim_ticks(),
  59     _old_gen_is_full(false),
  60     _num_optional_regions(optional_cset_length),
  61     _numa(g1h->numa()),
  62     _obj_alloc_stat(NULL)
  63 {
  64   // We allocate number of young gen regions in the collection set plus one
  65   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
  66   // We also add a few elements at the beginning and at the end in
  67   // an attempt to eliminate cache contention
  68   size_t real_length = young_cset_length + 1;
  69   size_t array_length = PADDING_ELEM_NUM + real_length + PADDING_ELEM_NUM;
  70   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  71   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  72   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  73 
  74   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
  75 
  76   // The dest for Young is used when the objects are aged enough to
  77   // need to be moved to the next space.
  78   _dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;
  79   _dest[G1HeapRegionAttr::Old]   = G1HeapRegionAttr::Old;
  80 
  81   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  82 
  83   _oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
  84 
  85   initialize_numa_stats();
  86 }
  87 
  88 // Pass locally gathered statistics to global state.
  89 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  90   _rdcq.flush();
  91   // Update allocation statistics.
  92   _plab_allocator->flush_and_retire_stats();
  93   _g1h->policy()->record_age_table(&_age_table);
  94 
  95   uint length = _g1h->collection_set()->young_region_length() + 1;
  96   for (uint i = 0; i < length; i++) {
  97     surviving_young_words[i] += _surviving_young_words[i];
  98   }
  99   flush_numa_stats();
 100 }
 101 
 102 G1ParScanThreadState::~G1ParScanThreadState() {
 103   delete _plab_allocator;
 104   delete _closures;
 105   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
 106   delete[] _oops_into_optional_regions;
 107   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
 108 }
 109 
 110 size_t G1ParScanThreadState::lab_waste_words() const {
 111   return _plab_allocator->waste();
 112 }
 113 
 114 size_t G1ParScanThreadState::lab_undo_waste_words() const {
 115   return _plab_allocator->undo_waste();
 116 }
 117 
 118 #ifdef ASSERT
 119 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 120   assert(ref != NULL, "invariant");
 121   assert(UseCompressedOops, "sanity");
 122   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 123   oop p = RawAccess<>::oop_load(ref);
 124   assert(_g1h->is_in_g1_reserved(p),
 125          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 126   return true;
 127 }
 128 
 129 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 130   assert(ref != NULL, "invariant");
 131   if (has_partial_array_mask(ref)) {
 132     // Must be in the collection set--it's already been copied.
 133     oop p = clear_partial_array_mask(ref);
 134     assert(_g1h->is_in_cset(p),
 135            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 136   } else {
 137     oop p = RawAccess<>::oop_load(ref);
 138     assert(_g1h->is_in_g1_reserved(p),
 139            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 140   }
 141   return true;
 142 }
 143 
 144 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 145   if (ref.is_narrow()) {
 146     return verify_ref((narrowOop*) ref);
 147   } else {
 148     return verify_ref((oop*) ref);
 149   }
 150 }
 151 #endif // ASSERT
 152 
 153 void G1ParScanThreadState::trim_queue() {
 154   StarTask ref;
 155   do {
 156     // Fully drain the queue.
 157     trim_queue_to_threshold(0);
 158   } while (!_refs->is_empty());
 159 }
 160 
 161 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
 162                                                       size_t word_sz,
 163                                                       bool previous_plab_refill_failed,
 164                                                       uint node_index) {
 165 
 166   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
 167 
 168   // Right now we only have two types of regions (young / old) so
 169   // let's keep the logic here simple. We can generalize it when necessary.
 170   if (dest->is_young()) {
 171     bool plab_refill_in_old_failed = false;
 172     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
 173                                                         word_sz,
 174                                                         &plab_refill_in_old_failed,
 175                                                         node_index);
 176     // Make sure that we won't attempt to copy any other objects out
 177     // of a survivor region (given that apparently we cannot allocate
 178     // any new ones) to avoid coming into this slow path again and again.
 179     // Only consider failed PLAB refill here: failed inline allocations are
 180     // typically large, so not indicative of remaining space.
 181     if (previous_plab_refill_failed) {
 182       _tenuring_threshold = 0;
 183     }
 184 
 185     if (obj_ptr != NULL) {
 186       dest->set_old();
 187     } else {
 188       // We just failed to allocate in old gen. The same idea as explained above
 189       // for making survivor gen unavailable for allocation applies for old gen.
 190       _old_gen_is_full = plab_refill_in_old_failed;
 191     }
 192     return obj_ptr;
 193   } else {
 194     _old_gen_is_full = previous_plab_refill_failed;
 195     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
 196     // no other space to try.
 197     return NULL;
 198   }
 199 }
 200 
 201 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
 202   if (region_attr.is_young()) {
 203     age = !m.has_displaced_mark_helper() ? m.age()
 204                                          : m.displaced_mark_helper().age();
 205     if (age < _tenuring_threshold) {
 206       return region_attr;
 207     }
 208   }
 209   return dest(region_attr);
 210 }
 211 
 212 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
 213                                                   oop const old, size_t word_sz, uint age,
 214                                                   HeapWord * const obj_ptr, uint node_index) const {
 215   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
 216   if (alloc_buf->contains(obj_ptr)) {
 217     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
 218                                                              dest_attr.type() == G1HeapRegionAttr::Old,
 219                                                              alloc_buf->word_sz() * HeapWordSize);
 220   } else {
 221     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
 222                                                               dest_attr.type() == G1HeapRegionAttr::Old);
 223   }
 224 }
 225 
 226 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr,
 227                                                  oop const old,
 228                                                  markWord const old_mark) {
 229   const size_t word_sz = old->size();
 230 
 231   uint age = 0;
 232   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
 233   // The second clause is to prevent premature evacuation failure in case there
 234   // is still space in survivor, but old gen is full.
 235   if (_old_gen_is_full && dest_attr.is_old()) {
 236     return handle_evacuation_failure_par(old, old_mark);
 237   }
 238   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 239   uint node_index = from_region->node_index();
 240 
 241   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
 242 
 243   // PLAB allocations should succeed most of the time, so we'll
 244   // normally check against NULL once and that's it.
 245   if (obj_ptr == NULL) {
 246     bool plab_refill_failed = false;
 247     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed, node_index);
 248     if (obj_ptr == NULL) {
 249       assert(region_attr.is_in_cset(), "Unexpected region attr type: %s", region_attr.get_type_str());
 250       obj_ptr = allocate_in_next_plab(&dest_attr, word_sz, plab_refill_failed, node_index);
 251       if (obj_ptr == NULL) {
 252         // This will either forward-to-self, or detect that someone else has
 253         // installed a forwarding pointer.
 254         return handle_evacuation_failure_par(old, old_mark);
 255       }
 256     }
 257     update_numa_stats(node_index);
 258 
 259     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 260       // The events are checked individually as part of the actual commit
 261       report_promotion_event(dest_attr, old, word_sz, age, obj_ptr, node_index);
 262     }
 263   }
 264 
 265   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 266   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 267 
 268 #ifndef PRODUCT
 269   // Should this evacuation fail?
 270   if (_g1h->evacuation_should_fail()) {
 271     // Doing this after all the allocation attempts also tests the
 272     // undo_allocation() method too.
 273     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 274     return handle_evacuation_failure_par(old, old_mark);
 275   }
 276 #endif // !PRODUCT
 277 
 278   // We're going to allocate linearly, so might as well prefetch ahead.
 279   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 280 
 281   const oop obj = oop(obj_ptr);
 282   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
 283   if (forward_ptr == NULL) {
 284     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 285 
 286     const uint young_index = from_region->young_index_in_cset();
 287 
 288     assert((from_region->is_young() && young_index >  0) ||
 289            (!from_region->is_young() && young_index == 0), "invariant" );
 290 
 291     if (dest_attr.is_young()) {
 292       if (age < markWord::max_age) {
 293         age++;
 294       }
 295       if (old_mark.has_displaced_mark_helper()) {
 296         // In this case, we have to install the mark word first,
 297         // otherwise obj looks to be forwarded (the old mark word,
 298         // which contains the forward pointer, was copied)
 299         obj->set_mark_raw(old_mark);
 300         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
 301         old_mark.set_displaced_mark_helper(new_mark);
 302       } else {
 303         obj->set_mark_raw(old_mark.set_age(age));
 304       }
 305       _age_table.add(age, word_sz);
 306     } else {
 307       obj->set_mark_raw(old_mark);
 308     }
 309 
 310     if (G1StringDedup::is_enabled()) {
 311       const bool is_from_young = region_attr.is_young();
 312       const bool is_to_young = dest_attr.is_young();
 313       assert(is_from_young == from_region->is_young(),
 314              "sanity");
 315       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 316              "sanity");
 317       G1StringDedup::enqueue_from_evacuation(is_from_young,
 318                                              is_to_young,
 319                                              _worker_id,
 320                                              obj);
 321     }
 322 
 323     _surviving_young_words[young_index] += word_sz;
 324 
 325     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 326       // We keep track of the next start index in the length field of
 327       // the to-space object. The actual length can be found in the
 328       // length field of the from-space object.
 329       arrayOop(obj)->set_length(0);
 330       oop* old_p = set_partial_array_mask(old);
 331       do_oop_partial_array(old_p);
 332     } else {
 333       G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 334       obj->oop_iterate_backwards(&_scanner);
 335     }
 336     return obj;
 337   } else {
 338     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 339     return forward_ptr;
 340   }
 341 }
 342 
 343 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 344   assert(worker_id < _n_workers, "out of bounds access");
 345   if (_states[worker_id] == NULL) {
 346     _states[worker_id] =
 347       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
 348   }
 349   return _states[worker_id];
 350 }
 351 
 352 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 353   assert(_flushed, "thread local state from the per thread states should have been flushed");
 354   return _surviving_young_words_total;
 355 }
 356 
 357 void G1ParScanThreadStateSet::flush() {
 358   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 359 
 360   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 361     G1ParScanThreadState* pss = _states[worker_index];
 362 
 363     if (pss == NULL) {
 364       continue;
 365     }
 366 
 367     pss->flush(_surviving_young_words_total);
 368     delete pss;
 369     _states[worker_index] = NULL;
 370   }
 371   _flushed = true;
 372 }
 373 
 374 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
 375   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 376     G1ParScanThreadState* pss = _states[worker_index];
 377 
 378     if (pss == NULL) {
 379       continue;
 380     }
 381 
 382     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
 383     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
 384   }
 385 }
 386 
 387 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
 388   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 389 
 390   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
 391   if (forward_ptr == NULL) {
 392     // Forward-to-self succeeded. We are the "owner" of the object.
 393     HeapRegion* r = _g1h->heap_region_containing(old);
 394 
 395     if (!r->evacuation_failed()) {
 396       r->set_evacuation_failed(true);
 397      _g1h->hr_printer()->evac_failure(r);
 398     }
 399 
 400     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 401 
 402     G1ScanInYoungSetter x(&_scanner, r->is_young());
 403     old->oop_iterate_backwards(&_scanner);
 404 
 405     return old;
 406   } else {
 407     // Forward-to-self failed. Either someone else managed to allocate
 408     // space for this object (old != forward_ptr) or they beat us in
 409     // self-forwarding it (old == forward_ptr).
 410     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 411            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 412            "should not be in the CSet",
 413            p2i(old), p2i(forward_ptr));
 414     return forward_ptr;
 415   }
 416 }
 417 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
 418                                                  G1RedirtyCardsQueueSet* rdcqs,
 419                                                  uint n_workers,
 420                                                  size_t young_cset_length,
 421                                                  size_t optional_cset_length) :
 422     _g1h(g1h),
 423     _rdcqs(rdcqs),
 424     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 425     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
 426     _young_cset_length(young_cset_length),
 427     _optional_cset_length(optional_cset_length),
 428     _n_workers(n_workers),
 429     _flushed(false) {
 430   for (uint i = 0; i < n_workers; ++i) {
 431     _states[i] = NULL;
 432   }
 433   memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
 434 }
 435 
 436 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
 437   assert(_flushed, "thread local state from the per thread states should have been flushed");
 438   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
 439   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
 440 }