1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
  27 
  28 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
  30 #include "gc_implementation/shared/gcTrace.hpp"
  31 #include "memory/binaryTreeDictionary.hpp"
  32 #include "memory/blockOffsetTable.inline.hpp"
  33 #include "memory/freeList.hpp"
  34 #include "memory/space.hpp"
  35 
  36 // Classes in support of keeping track of promotions into a non-Contiguous
  37 // space, in this case a CompactibleFreeListSpace.
  38 
  39 // Forward declarations
  40 class CompactibleFreeListSpace;
  41 class BlkClosure;
  42 class BlkClosureCareful;
  43 class FreeChunk;
  44 class UpwardsObjectClosure;
  45 class ObjectClosureCareful;
  46 class Klass;
  47 
  48 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
  49  public:
  50   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
  51     _allocation_size_limit(0) {}
  52   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
  53     size_t allocation_size_limit) {
  54     _ptr = ptr;
  55     _word_size = word_size;
  56     _refillSize = refill_size;
  57     _allocation_size_limit = allocation_size_limit;
  58   }
  59   HeapWord* _ptr;
  60   size_t    _word_size;
  61   size_t    _refillSize;
  62   size_t    _allocation_size_limit;  // Largest size that will be allocated
  63 
  64   void print_on(outputStream* st) const;
  65 };
  66 
  67 // Concrete subclass of CompactibleSpace that implements
  68 // a free list space, such as used in the concurrent mark sweep
  69 // generation.
  70 
  71 class CompactibleFreeListSpace: public CompactibleSpace {
  72   friend class VMStructs;
  73   friend class ConcurrentMarkSweepGeneration;
  74   friend class CMSCollector;
  75   // Local alloc buffer for promotion into this space.
  76   friend class CFLS_LAB;
  77   // Allow scan_and_* functions to call (private) overrides of the auxiliary functions on this class
  78   template <typename SpaceType>
  79   friend void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space);
  80   template <typename SpaceType>
  81   friend void CompactibleSpace::scan_and_compact(SpaceType* space);
  82   template <typename SpaceType>
  83   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
  84 
  85   // "Size" of chunks of work (executed during parallel remark phases
  86   // of CMS collection); this probably belongs in CMSCollector, although
  87   // it's cached here because it's used in
  88   // initialize_sequential_subtasks_for_rescan() which modifies
  89   // par_seq_tasks which also lives in Space. XXX
  90   const size_t _rescan_task_size;
  91   const size_t _marking_task_size;
  92 
  93   // Yet another sequential tasks done structure. This supports
  94   // CMS GC, where we have threads dynamically
  95   // claiming sub-tasks from a larger parallel task.
  96   SequentialSubTasksDone _conc_par_seq_tasks;
  97 
  98   BlockOffsetArrayNonContigSpace _bt;
  99 
 100   CMSCollector* _collector;
 101   ConcurrentMarkSweepGeneration* _gen;
 102 
 103   // Data structures for free blocks (used during allocation/sweeping)
 104 
 105   // Allocation is done linearly from two different blocks depending on
 106   // whether the request is small or large, in an effort to reduce
 107   // fragmentation. We assume that any locking for allocation is done
 108   // by the containing generation. Thus, none of the methods in this
 109   // space are re-entrant.
 110   enum SomeConstants {
 111     SmallForLinearAlloc = 16,        // size < this then use _sLAB
 112     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
 113     IndexSetSize        = SmallForDictionary  // keep this odd-sized
 114   };
 115   static size_t IndexSetStart;
 116   static size_t IndexSetStride;
 117 
 118  private:
 119   enum FitStrategyOptions {
 120     FreeBlockStrategyNone = 0,
 121     FreeBlockBestFitFirst
 122   };
 123 
 124   PromotionInfo _promoInfo;
 125 
 126   // Helps to impose a global total order on freelistLock ranks;
 127   // assumes that CFLSpace's are allocated in global total order
 128   static int   _lockRank;
 129 
 130   // A lock protecting the free lists and free blocks;
 131   // mutable because of ubiquity of locking even for otherwise const methods
 132   mutable Mutex _freelistLock;
 133   // Locking verifier convenience function
 134   void assert_locked() const PRODUCT_RETURN;
 135   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
 136 
 137   // Linear allocation blocks
 138   LinearAllocBlock _smallLinearAllocBlock;
 139 
 140   FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
 141   AFLBinaryTreeDictionary* _dictionary;    // Pointer to dictionary for large size blocks
 142 
 143   // Indexed array for small size blocks
 144   AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
 145 
 146   // Allocation strategy
 147   bool       _fitStrategy;        // Use best fit strategy
 148   bool       _adaptive_freelists; // Use adaptive freelists
 149 
 150   // This is an address close to the largest free chunk in the heap.
 151   // It is currently assumed to be at the end of the heap.  Free
 152   // chunks with addresses greater than nearLargestChunk are coalesced
 153   // in an effort to maintain a large chunk at the end of the heap.
 154   HeapWord*  _nearLargestChunk;
 155 
 156   // Used to keep track of limit of sweep for the space
 157   HeapWord* _sweep_limit;
 158 
 159   // Support for compacting cms
 160   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 161   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
 162 
 163   // Initialization helpers.
 164   void initializeIndexedFreeListArray();
 165 
 166   // Extra stuff to manage promotion parallelism.
 167 
 168   // A lock protecting the dictionary during par promotion allocation.
 169   mutable Mutex _parDictionaryAllocLock;
 170   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
 171 
 172   // Locks protecting the exact lists during par promotion allocation.
 173   Mutex* _indexedFreeListParLocks[IndexSetSize];
 174 
 175   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
 176   // required to be smaller than "IndexSetSize".)  If successful,
 177   // adds them to "fl", which is required to be an empty free list.
 178   // If the count of "fl" is negative, it's absolute value indicates a
 179   // number of free chunks that had been previously "borrowed" from global
 180   // list of size "word_sz", and must now be decremented.
 181   void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 182 
 183   // Used by par_get_chunk_of_blocks() for the chunks from the
 184   // indexed_free_lists.
 185   bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 186 
 187   // Used by par_get_chunk_of_blocks_dictionary() to get a chunk
 188   // evenly splittable into "n" "word_sz" chunks.  Returns that
 189   // evenly splittable chunk.  May split a larger chunk to get the
 190   // evenly splittable chunk.
 191   FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
 192 
 193   // Used by par_get_chunk_of_blocks() for the chunks from the
 194   // dictionary.
 195   void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 196 
 197   // Allocation helper functions
 198   // Allocate using a strategy that takes from the indexed free lists
 199   // first.  This allocation strategy assumes a companion sweeping
 200   // strategy that attempts to keep the needed number of chunks in each
 201   // indexed free lists.
 202   HeapWord* allocate_adaptive_freelists(size_t size);
 203   // Allocate from the linear allocation buffers first.  This allocation
 204   // strategy assumes maximal coalescing can maintain chunks large enough
 205   // to be used as linear allocation buffers.
 206   HeapWord* allocate_non_adaptive_freelists(size_t size);
 207 
 208   // Gets a chunk from the linear allocation block (LinAB).  If there
 209   // is not enough space in the LinAB, refills it.
 210   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
 211   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
 212   // Get a chunk from the space remaining in the linear allocation block.  Do
 213   // not attempt to refill if the space is not available, return NULL.  Do the
 214   // repairs on the linear allocation block as appropriate.
 215   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
 216   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
 217 
 218   // Helper function for getChunkFromIndexedFreeList.
 219   // Replenish the indexed free list for this "size".  Do not take from an
 220   // underpopulated size.
 221   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
 222 
 223   // Get a chunk from the indexed free list.  If the indexed free list
 224   // does not have a free chunk, try to replenish the indexed free list
 225   // then get the free chunk from the replenished indexed free list.
 226   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
 227 
 228   // The returned chunk may be larger than requested (or null).
 229   FreeChunk* getChunkFromDictionary(size_t size);
 230   // The returned chunk is the exact size requested (or null).
 231   FreeChunk* getChunkFromDictionaryExact(size_t size);
 232 
 233   // Find a chunk in the indexed free list that is the best
 234   // fit for size "numWords".
 235   FreeChunk* bestFitSmall(size_t numWords);
 236   // For free list "fl" of chunks of size > numWords,
 237   // remove a chunk, split off a chunk of size numWords
 238   // and return it.  The split off remainder is returned to
 239   // the free lists.  The old name for getFromListGreater
 240   // was lookInListGreater.
 241   FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
 242   // Get a chunk in the indexed free list or dictionary,
 243   // by considering a larger chunk and splitting it.
 244   FreeChunk* getChunkFromGreater(size_t numWords);
 245   //  Verify that the given chunk is in the indexed free lists.
 246   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
 247   // Remove the specified chunk from the indexed free lists.
 248   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
 249   // Remove the specified chunk from the dictionary.
 250   void       removeChunkFromDictionary(FreeChunk* fc);
 251   // Split a free chunk into a smaller free chunk of size "new_size".
 252   // Return the smaller free chunk and return the remainder to the
 253   // free lists.
 254   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
 255   // Add a chunk to the free lists.
 256   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
 257   // Add a chunk to the free lists, preferring to suffix it
 258   // to the last free chunk at end of space if possible, and
 259   // updating the block census stats as well as block offset table.
 260   // Take any locks as appropriate if we are multithreaded.
 261   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
 262   // Add a free chunk to the indexed free lists.
 263   void       returnChunkToFreeList(FreeChunk* chunk);
 264   // Add a free chunk to the dictionary.
 265   void       returnChunkToDictionary(FreeChunk* chunk);
 266 
 267   // Functions for maintaining the linear allocation buffers (LinAB).
 268   // Repairing a linear allocation block refers to operations
 269   // performed on the remainder of a LinAB after an allocation
 270   // has been made from it.
 271   void       repairLinearAllocationBlocks();
 272   void       repairLinearAllocBlock(LinearAllocBlock* blk);
 273   void       refillLinearAllocBlock(LinearAllocBlock* blk);
 274   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
 275   void       refillLinearAllocBlocksIfNeeded();
 276 
 277   void       verify_objects_initialized() const;
 278 
 279   // Statistics reporting helper functions
 280   void       reportFreeListStatistics() const;
 281   void       reportIndexedFreeListStatistics() const;
 282   size_t     maxChunkSizeInIndexedFreeLists() const;
 283   size_t     numFreeBlocksInIndexedFreeLists() const;
 284   // Accessor
 285   HeapWord* unallocated_block() const {
 286     if (BlockOffsetArrayUseUnallocatedBlock) {
 287       HeapWord* ub = _bt.unallocated_block();
 288       assert(ub >= bottom() &&
 289              ub <= end(), "space invariant");
 290       return ub;
 291     } else {
 292       return end();
 293     }
 294   }
 295   void freed(HeapWord* start, size_t size) {
 296     _bt.freed(start, size);
 297   }
 298 
 299   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 300   // See comments for CompactibleSpace for more information.
 301   inline HeapWord* scan_limit() const {
 302     return end();
 303   }
 304 
 305   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 306     return CompactibleFreeListSpace::block_is_obj(addr); // Avoid virtual call
 307   }
 308 
 309   inline size_t scanned_block_size(const HeapWord* addr) const {
 310     return CompactibleFreeListSpace::block_size(addr); // Avoid virtual call
 311   }
 312 
 313   inline size_t adjust_obj_size(size_t size) const {
 314     return adjustObjectSize(size);
 315   }
 316 
 317   inline size_t obj_size(const HeapWord* addr) const {
 318     return adjustObjectSize(oop(addr)->size());
 319   }
 320 
 321  protected:
 322   // Reset the indexed free list to its initial empty condition.
 323   void resetIndexedFreeListArray();
 324   // Reset to an initial state with a single free block described
 325   // by the MemRegion parameter.
 326   void reset(MemRegion mr);
 327   // Return the total number of words in the indexed free lists.
 328   size_t     totalSizeInIndexedFreeLists() const;
 329 
 330  public:
 331   // Constructor
 332   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
 333                            bool use_adaptive_freelists,
 334                            FreeBlockDictionary<FreeChunk>::DictionaryChoice);
 335   // Accessors
 336   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
 337   FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
 338   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
 339   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
 340 
 341   // Set CMS global values.
 342   static void set_cms_values();
 343 
 344   // Return the free chunk at the end of the space.  If no such
 345   // chunk exists, return NULL.
 346   FreeChunk* find_chunk_at_end();
 347 
 348   bool adaptive_freelists() const { return _adaptive_freelists; }
 349 
 350   void set_collector(CMSCollector* collector) { _collector = collector; }
 351 
 352   // Support for parallelization of rescan and marking.
 353   const size_t rescan_task_size()  const { return _rescan_task_size;  }
 354   const size_t marking_task_size() const { return _marking_task_size; }
 355   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
 356   void initialize_sequential_subtasks_for_rescan(int n_threads);
 357   void initialize_sequential_subtasks_for_marking(int n_threads,
 358          HeapWord* low = NULL);
 359 
 360   // Space enquiries
 361   size_t used() const;
 362   size_t free() const;
 363   size_t max_alloc_in_words() const;
 364   // XXX: should have a less conservative used_region() than that of
 365   // Space; we could consider keeping track of highest allocated
 366   // address and correcting that at each sweep, as the sweeper
 367   // goes through the entire allocated part of the generation. We
 368   // could also use that information to keep the sweeper from
 369   // sweeping more than is necessary. The allocator and sweeper will
 370   // of course need to synchronize on this, since the sweeper will
 371   // try to bump down the address and the allocator will try to bump it up.
 372   // For now, however, we'll just use the default used_region()
 373   // which overestimates the region by returning the entire
 374   // committed region (this is safe, but inefficient).
 375 
 376   // Returns a subregion of the space containing all the objects in
 377   // the space.
 378   MemRegion used_region() const {
 379     return MemRegion(bottom(),
 380                      BlockOffsetArrayUseUnallocatedBlock ?
 381                      unallocated_block() : end());
 382   }
 383 
 384   virtual bool is_free_block(const HeapWord* p) const;
 385 
 386   // Resizing support
 387   void set_end(HeapWord* value);  // override
 388 
 389   // Mutual exclusion support
 390   Mutex* freelistLock() const { return &_freelistLock; }
 391 
 392   // Iteration support
 393   void oop_iterate(ExtendedOopClosure* cl);
 394 
 395   void object_iterate(ObjectClosure* blk);
 396   // Apply the closure to each object in the space whose references
 397   // point to objects in the heap.  The usage of CompactibleFreeListSpace
 398   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
 399   // objects in the space with references to objects that are no longer
 400   // valid.  For example, an object may reference another object
 401   // that has already been sweep up (collected).  This method uses
 402   // obj_is_alive() to determine whether it is safe to iterate of
 403   // an object.
 404   void safe_object_iterate(ObjectClosure* blk);
 405 
 406   // Iterate over all objects that intersect with mr, calling "cl->do_object"
 407   // on each.  There is an exception to this: if this closure has already
 408   // been invoked on an object, it may skip such objects in some cases.  This is
 409   // Most likely to happen in an "upwards" (ascending address) iteration of
 410   // MemRegions.
 411   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 412 
 413   // Requires that "mr" be entirely within the space.
 414   // Apply "cl->do_object" to all objects that intersect with "mr".
 415   // If the iteration encounters an unparseable portion of the region,
 416   // terminate the iteration and return the address of the start of the
 417   // subregion that isn't done.  Return of "NULL" indicates that the
 418   // iteration completed.
 419   HeapWord* object_iterate_careful_m(MemRegion mr,
 420                                      ObjectClosureCareful* cl);
 421 
 422   // Override: provides a DCTO_CL specific to this kind of space.
 423   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 424                                      CardTableModRefBS::PrecisionStyle precision,
 425                                      HeapWord* boundary);
 426 
 427   void blk_iterate(BlkClosure* cl);
 428   void blk_iterate_careful(BlkClosureCareful* cl);
 429   HeapWord* block_start_const(const void* p) const;
 430   HeapWord* block_start_careful(const void* p) const;
 431   size_t block_size(const HeapWord* p) const;
 432   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
 433   bool block_is_obj(const HeapWord* p) const;
 434   bool obj_is_alive(const HeapWord* p) const;
 435   size_t block_size_nopar(const HeapWord* p) const;
 436   bool block_is_obj_nopar(const HeapWord* p) const;
 437 
 438   // Iteration support for promotion
 439   void save_marks();
 440   bool no_allocs_since_save_marks();
 441 
 442   // Iteration support for sweeping
 443   void save_sweep_limit() {
 444     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
 445                    unallocated_block() : end();
 446     if (CMSTraceSweeper) {
 447       gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
 448                              "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
 449                              p2i(_sweep_limit), p2i(bottom()), p2i(end()));
 450     }
 451   }
 452   NOT_PRODUCT(
 453     void clear_sweep_limit() { _sweep_limit = NULL; }
 454   )
 455   HeapWord* sweep_limit() { return _sweep_limit; }
 456 
 457   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 458   // promoted into this generation since the most recent save_marks() call.
 459   // Fields in objects allocated by applications of the closure
 460   // *are* included in the iteration. Thus, when the iteration completes
 461   // there should be no further such objects remaining.
 462   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 463     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 464   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
 465   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
 466 
 467   // Allocation support
 468   HeapWord* allocate(size_t size);
 469   HeapWord* par_allocate(size_t size);
 470 
 471   oop       promote(oop obj, size_t obj_size);
 472   void      gc_prologue();
 473   void      gc_epilogue();
 474 
 475   // This call is used by a containing CMS generation / collector
 476   // to inform the CFLS space that a sweep has been completed
 477   // and that the space can do any related house-keeping functions.
 478   void      sweep_completed();
 479 
 480   // For an object in this space, the mark-word's two
 481   // LSB's having the value [11] indicates that it has been
 482   // promoted since the most recent call to save_marks() on
 483   // this generation and has not subsequently been iterated
 484   // over (using oop_since_save_marks_iterate() above).
 485   // This property holds only for single-threaded collections,
 486   // and is typically used for Cheney scans; for MT scavenges,
 487   // the property holds for all objects promoted during that
 488   // scavenge for the duration of the scavenge and is used
 489   // by card-scanning to avoid scanning objects (being) promoted
 490   // during that scavenge.
 491   bool obj_allocated_since_save_marks(const oop obj) const {
 492     assert(is_in_reserved(obj), "Wrong space?");
 493     return ((PromotedObject*)obj)->hasPromotedMark();
 494   }
 495 
 496   // A worst-case estimate of the space required (in HeapWords) to expand the
 497   // heap when promoting an obj of size obj_size.
 498   size_t expansionSpaceRequired(size_t obj_size) const;
 499 
 500   FreeChunk* allocateScratch(size_t size);
 501 
 502   // Returns true if either the small or large linear allocation buffer is empty.
 503   bool       linearAllocationWouldFail() const;
 504 
 505   // Adjust the chunk for the minimum size.  This version is called in
 506   // most cases in CompactibleFreeListSpace methods.
 507   inline static size_t adjustObjectSize(size_t size) {
 508     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
 509   }
 510   // This is a virtual version of adjustObjectSize() that is called
 511   // only occasionally when the compaction space changes and the type
 512   // of the new compaction space is is only known to be CompactibleSpace.
 513   size_t adjust_object_size_v(size_t size) const {
 514     return adjustObjectSize(size);
 515   }
 516   // Minimum size of a free block.
 517   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
 518   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
 519   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
 520               bool coalesced);
 521 
 522   // Support for decisions regarding concurrent collection policy.
 523   bool should_concurrent_collect() const;
 524 
 525   // Support for compaction.
 526   void prepare_for_compaction(CompactPoint* cp);
 527   void adjust_pointers();
 528   void compact();
 529   // Reset the space to reflect the fact that a compaction of the
 530   // space has been done.
 531   virtual void reset_after_compaction();
 532 
 533   // Debugging support.
 534   void print()                            const;
 535   void print_on(outputStream* st)         const;
 536   void prepare_for_verify();
 537   void verify()                           const;
 538   void verifyFreeLists()                  const PRODUCT_RETURN;
 539   void verifyIndexedFreeLists()           const;
 540   void verifyIndexedFreeList(size_t size) const;
 541   // Verify that the given chunk is in the free lists:
 542   // i.e. either the binary tree dictionary, the indexed free lists
 543   // or the linear allocation block.
 544   bool verify_chunk_in_free_list(FreeChunk* fc) const;
 545   // Verify that the given chunk is the linear allocation block.
 546   bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
 547   // Do some basic checks on the the free lists.
 548   void check_free_list_consistency()      const PRODUCT_RETURN;
 549 
 550   // Printing support
 551   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
 552   void print_indexed_free_lists(outputStream* st) const;
 553   void print_dictionary_free_lists(outputStream* st) const;
 554   void print_promo_info_blocks(outputStream* st) const;
 555 
 556   NOT_PRODUCT (
 557     void initializeIndexedFreeListArrayReturnedBytes();
 558     size_t sumIndexedFreeListArrayReturnedBytes();
 559     // Return the total number of chunks in the indexed free lists.
 560     size_t totalCountInIndexedFreeLists() const;
 561     // Return the total number of chunks in the space.
 562     size_t totalCount();
 563   )
 564 
 565   // The census consists of counts of the quantities such as
 566   // the current count of the free chunks, number of chunks
 567   // created as a result of the split of a larger chunk or
 568   // coalescing of smaller chucks, etc.  The counts in the
 569   // census is used to make decisions on splitting and
 570   // coalescing of chunks during the sweep of garbage.
 571 
 572   // Print the statistics for the free lists.
 573   void printFLCensus(size_t sweep_count) const;
 574 
 575   // Statistics functions
 576   // Initialize census for lists before the sweep.
 577   void beginSweepFLCensus(float inter_sweep_current,
 578                           float inter_sweep_estimate,
 579                           float intra_sweep_estimate);
 580   // Set the surplus for each of the free lists.
 581   void setFLSurplus();
 582   // Set the hint for each of the free lists.
 583   void setFLHints();
 584   // Clear the census for each of the free lists.
 585   void clearFLCensus();
 586   // Perform functions for the census after the end of the sweep.
 587   void endSweepFLCensus(size_t sweep_count);
 588   // Return true if the count of free chunks is greater
 589   // than the desired number of free chunks.
 590   bool coalOverPopulated(size_t size);
 591 
 592 // Record (for each size):
 593 //
 594 //   split-births = #chunks added due to splits in (prev-sweep-end,
 595 //      this-sweep-start)
 596 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
 597 //      this-sweep-start)
 598 //   num-curr     = #chunks at start of this sweep
 599 //   num-prev     = #chunks at end of previous sweep
 600 //
 601 // The above are quantities that are measured. Now define:
 602 //
 603 //   num-desired := num-prev + split-births - split-deaths - num-curr
 604 //
 605 // Roughly, num-prev + split-births is the supply,
 606 // split-deaths is demand due to other sizes
 607 // and num-curr is what we have left.
 608 //
 609 // Thus, num-desired is roughly speaking the "legitimate demand"
 610 // for blocks of this size and what we are striving to reach at the
 611 // end of the current sweep.
 612 //
 613 // For a given list, let num-len be its current population.
 614 // Define, for a free list of a given size:
 615 //
 616 //   coal-overpopulated := num-len >= num-desired * coal-surplus
 617 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
 618 // coalescing -- we do not coalesce unless we think that the current
 619 // supply has exceeded the estimated demand by more than 5%).
 620 //
 621 // For the set of sizes in the binary tree, which is neither dense nor
 622 // closed, it may be the case that for a particular size we have never
 623 // had, or do not now have, or did not have at the previous sweep,
 624 // chunks of that size. We need to extend the definition of
 625 // coal-overpopulated to such sizes as well:
 626 //
 627 //   For a chunk in/not in the binary tree, extend coal-overpopulated
 628 //   defined above to include all sizes as follows:
 629 //
 630 //   . a size that is non-existent is coal-overpopulated
 631 //   . a size that has a num-desired <= 0 as defined above is
 632 //     coal-overpopulated.
 633 //
 634 // Also define, for a chunk heap-offset C and mountain heap-offset M:
 635 //
 636 //   close-to-mountain := C >= 0.99 * M
 637 //
 638 // Now, the coalescing strategy is:
 639 //
 640 //    Coalesce left-hand chunk with right-hand chunk if and
 641 //    only if:
 642 //
 643 //      EITHER
 644 //        . left-hand chunk is of a size that is coal-overpopulated
 645 //      OR
 646 //        . right-hand chunk is close-to-mountain
 647   void smallCoalBirth(size_t size);
 648   void smallCoalDeath(size_t size);
 649   void coalBirth(size_t size);
 650   void coalDeath(size_t size);
 651   void smallSplitBirth(size_t size);
 652   void smallSplitDeath(size_t size);
 653   void split_birth(size_t size);
 654   void splitDeath(size_t size);
 655   void split(size_t from, size_t to1);
 656 
 657   double flsFrag() const;
 658 };
 659 
 660 // A parallel-GC-thread-local allocation buffer for allocation into a
 661 // CompactibleFreeListSpace.
 662 class CFLS_LAB : public CHeapObj<mtGC> {
 663   // The space that this buffer allocates into.
 664   CompactibleFreeListSpace* _cfls;
 665 
 666   // Our local free lists.
 667   AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
 668 
 669   // Initialized from a command-line arg.
 670 
 671   // Allocation statistics in support of dynamic adjustment of
 672   // #blocks to claim per get_from_global_pool() call below.
 673   static AdaptiveWeightedAverage
 674                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
 675   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
 676   static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
 677   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
 678 
 679   // Internal work method
 680   void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
 681 
 682 public:
 683   CFLS_LAB(CompactibleFreeListSpace* cfls);
 684 
 685   // Allocate and return a block of the given size, or else return NULL.
 686   // The oop (old) is used to extract information for promotion trace event
 687   HeapWord* alloc(const ParNewTracer* gc_tracer, size_t word_sz, 
 688                   const oop old, const markOop m);
 689 
 690   // Return any unused portions of the buffer to the global pool.
 691   void retire(int tid);
 692 
 693   // Dynamic OldPLABSize sizing
 694   static void compute_desired_plab_size();
 695   // When the settings are modified from default static initialization
 696   static void modify_initialization(size_t n, unsigned wt);
 697 };
 698 
 699 size_t PromotionInfo::refillSize() const {
 700   const size_t CMSSpoolBlockSize = 256;
 701   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
 702                                    * CMSSpoolBlockSize);
 703   return CompactibleFreeListSpace::adjustObjectSize(sz);
 704 }
 705 
 706 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP