1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
  26 #define SHARE_VM_MEMORY_GENERATION_HPP
  27 
  28 #include "gc_implementation/shared/collectorCounters.hpp"
  29 #include "gc_implementation/shared/gcTrace.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/memRegion.hpp"
  32 #include "memory/referenceProcessor.hpp"
  33 #include "memory/universe.hpp"
  34 #include "memory/watermark.hpp"
  35 #include "runtime/mutex.hpp"
  36 #include "runtime/perfData.hpp"
  37 #include "runtime/virtualspace.hpp"
  38 
  39 // A Generation models a heap area for similarly-aged objects.
  40 // It will contain one ore more spaces holding the actual objects.
  41 //
  42 // The Generation class hierarchy:
  43 //
  44 // Generation                      - abstract base class
  45 // - DefNewGeneration              - allocation area (copy collected)
  46 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  47 //                                   several threads
  48 // - CardGeneration                 - abstract class adding offset array behavior
  49 //   - OneContigSpaceCardGeneration - abstract class holding a single
  50 //                                    contiguous space with card marking
  51 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  52 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  53 //                                       (Detlefs-Printezis refinement of
  54 //                                       Boehm-Demers-Schenker)
  55 //
  56 // The system configurations currently allowed are:
  57 //
  58 //   DefNewGeneration + TenuredGeneration
  59 //   DefNewGeneration + ConcurrentMarkSweepGeneration
  60 //
  61 //   ParNewGeneration + TenuredGeneration
  62 //   ParNewGeneration + ConcurrentMarkSweepGeneration
  63 //
  64 
  65 class DefNewGeneration;
  66 class GenerationSpec;
  67 class CompactibleSpace;
  68 class ContiguousSpace;
  69 class CompactPoint;
  70 class OopsInGenClosure;
  71 class OopClosure;
  72 class ScanClosure;
  73 class FastScanClosure;
  74 class GenCollectedHeap;
  75 class GenRemSet;
  76 class GCStats;
  77 
  78 // A "ScratchBlock" represents a block of memory in one generation usable by
  79 // another.  It represents "num_words" free words, starting at and including
  80 // the address of "this".
  81 struct ScratchBlock {
  82   ScratchBlock* next;
  83   size_t num_words;
  84   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  85                               // first two fields are word-sized.)
  86 };
  87 
  88 
  89 class Generation: public CHeapObj<mtGC> {
  90   friend class VMStructs;
  91  private:
  92   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  93   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  94                                // used region at some specific point during collection.
  95 
  96  protected:
  97   // Minimum and maximum addresses for memory reserved (not necessarily
  98   // committed) for generation.
  99   // Used by card marking code. Must not overlap with address ranges of
 100   // other generations.
 101   MemRegion _reserved;
 102 
 103   // Memory area reserved for generation
 104   VirtualSpace _virtual_space;
 105 
 106   // Level in the generation hierarchy.
 107   int _level;
 108 
 109   // ("Weak") Reference processing support
 110   ReferenceProcessor* _ref_processor;
 111 
 112   // Performance Counters
 113   CollectorCounters* _gc_counters;
 114 
 115   // Statistics for garbage collection
 116   GCStats* _gc_stats;
 117 
 118   // Returns the next generation in the configuration, or else NULL if this
 119   // is the highest generation.
 120   Generation* next_gen() const;
 121 
 122   // Initialize the generation.
 123   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
 124 
 125   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 126   // "sp" that point into younger generations.
 127   // The iteration is only over objects allocated at the start of the
 128   // iterations; objects allocated as a result of applying the closure are
 129   // not included.
 130   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 131 
 132  public:
 133   // The set of possible generation kinds.
 134   enum Name {
 135     DefNew,
 136     ParNew,
 137     MarkSweepCompact,
 138     ConcurrentMarkSweep,
 139     Other
 140   };
 141 
 142   enum SomePublicConstants {
 143     // Generations are GenGrain-aligned and have size that are multiples of
 144     // GenGrain.
 145     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 146     // (we expect its low byte to be zero - see implementation of post_barrier)
 147     LogOfGenGrain = 16 ARM_ONLY(+1),
 148     GenGrain = 1 << LogOfGenGrain
 149   };
 150 
 151   // allocate and initialize ("weak") refs processing support
 152   virtual void ref_processor_init();
 153   void set_ref_processor(ReferenceProcessor* rp) {
 154     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 155     _ref_processor = rp;
 156   }
 157 
 158   virtual Generation::Name kind() { return Generation::Other; }
 159   GenerationSpec* spec();
 160 
 161   // This properly belongs in the collector, but for now this
 162   // will do.
 163   virtual bool refs_discovery_is_atomic() const { return true;  }
 164   virtual bool refs_discovery_is_mt()     const { return false; }
 165 
 166   // Space enquiries (results in bytes)
 167   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 168                                         // generation can currently hold.
 169   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 170   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 171 
 172   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 173   // Returns the total number of bytes  available in a generation
 174   // for the allocation of objects.
 175   virtual size_t max_capacity() const;
 176 
 177   // If this is a young generation, the maximum number of bytes that can be
 178   // allocated in this generation before a GC is triggered.
 179   virtual size_t capacity_before_gc() const { return 0; }
 180 
 181   // The largest number of contiguous free bytes in the generation,
 182   // including expansion  (Assumes called at a safepoint.)
 183   virtual size_t contiguous_available() const = 0;
 184   // The largest number of contiguous free bytes in this or any higher generation.
 185   virtual size_t max_contiguous_available() const;
 186 
 187   // Returns true if promotions of the specified amount are
 188   // likely to succeed without a promotion failure.
 189   // Promotion of the full amount is not guaranteed but
 190   // might be attempted in the worst case.
 191   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 192 
 193   // For a non-young generation, this interface can be used to inform a
 194   // generation that a promotion attempt into that generation failed.
 195   // Typically used to enable diagnostic output for post-mortem analysis,
 196   // but other uses of the interface are not ruled out.
 197   virtual void promotion_failure_occurred() { /* does nothing */ }
 198 
 199   // Return an estimate of the maximum allocation that could be performed
 200   // in the generation without triggering any collection or expansion
 201   // activity.  It is "unsafe" because no locks are taken; the result
 202   // should be treated as an approximation, not a guarantee, for use in
 203   // heuristic resizing decisions.
 204   virtual size_t unsafe_max_alloc_nogc() const = 0;
 205 
 206   // Returns true if this generation cannot be expanded further
 207   // without a GC. Override as appropriate.
 208   virtual bool is_maximal_no_gc() const {
 209     return _virtual_space.uncommitted_size() == 0;
 210   }
 211 
 212   MemRegion reserved() const { return _reserved; }
 213 
 214   // Returns a region guaranteed to contain all the objects in the
 215   // generation.
 216   virtual MemRegion used_region() const { return _reserved; }
 217 
 218   MemRegion prev_used_region() const { return _prev_used_region; }
 219   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 220 
 221   // Returns "TRUE" iff "p" points into the committed areas in the generation.
 222   // For some kinds of generations, this may be an expensive operation.
 223   // To avoid performance problems stemming from its inadvertent use in
 224   // product jvm's, we restrict its use to assertion checking or
 225   // verification only.
 226   virtual bool is_in(const void* p) const;
 227 
 228   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 229   bool is_in_reserved(const void* p) const {
 230     return _reserved.contains(p);
 231   }
 232 
 233   // Check that the generation kind is DefNewGeneration or a sub
 234   // class of DefNewGeneration and return a DefNewGeneration*
 235   DefNewGeneration*  as_DefNewGeneration();
 236 
 237   // If some space in the generation contains the given "addr", return a
 238   // pointer to that space, else return "NULL".
 239   virtual Space* space_containing(const void* addr) const;
 240 
 241   // Iteration - do not use for time critical operations
 242   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 243 
 244   // Returns the first space, if any, in the generation that can participate
 245   // in compaction, or else "NULL".
 246   virtual CompactibleSpace* first_compaction_space() const = 0;
 247 
 248   // Returns "true" iff this generation should be used to allocate an
 249   // object of the given size.  Young generations might
 250   // wish to exclude very large objects, for example, since, if allocated
 251   // often, they would greatly increase the frequency of young-gen
 252   // collection.
 253   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 254     bool result = false;
 255     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 256     if (!is_tlab || supports_tlab_allocation()) {
 257       result = (word_size > 0) && (word_size < overflow_limit);
 258     }
 259     return result;
 260   }
 261 
 262   // Allocate and returns a block of the requested size, or returns "NULL".
 263   // Assumes the caller has done any necessary locking.
 264   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 265 
 266   // Like "allocate", but performs any necessary locking internally.
 267   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 268 
 269   // Some generation may offer a region for shared, contiguous allocation,
 270   // via inlined code (by exporting the address of the top and end fields
 271   // defining the extent of the contiguous allocation region.)
 272 
 273   // This function returns "true" iff the heap supports this kind of
 274   // allocation.  (More precisely, this means the style of allocation that
 275   // increments *top_addr()" with a CAS.) (Default is "no".)
 276   // A generation that supports this allocation style must use lock-free
 277   // allocation for *all* allocation, since there are times when lock free
 278   // allocation will be concurrent with plain "allocate" calls.
 279   virtual bool supports_inline_contig_alloc() const { return false; }
 280 
 281   // These functions return the addresses of the fields that define the
 282   // boundaries of the contiguous allocation area.  (These fields should be
 283   // physically near to one another.)
 284   virtual HeapWord** top_addr() const { return NULL; }
 285   virtual HeapWord** end_addr() const { return NULL; }
 286 
 287   // Thread-local allocation buffers
 288   virtual bool supports_tlab_allocation() const { return false; }
 289   virtual size_t tlab_capacity() const {
 290     guarantee(false, "Generation doesn't support thread local allocation buffers");
 291     return 0;
 292   }
 293   virtual size_t tlab_used() const {
 294     guarantee(false, "Generation doesn't support thread local allocation buffers");
 295     return 0;
 296   }
 297   virtual size_t unsafe_max_tlab_alloc() const {
 298     guarantee(false, "Generation doesn't support thread local allocation buffers");
 299     return 0;
 300   }
 301 
 302   // "obj" is the address of an object in a younger generation.  Allocate space
 303   // for "obj" in the current (or some higher) generation, and copy "obj" into
 304   // the newly allocated space, if possible, returning the result (or NULL if
 305   // the allocation failed).
 306   //
 307   // The "obj_size" argument is just obj->size(), passed along so the caller can
 308   // avoid repeating the virtual call to retrieve it.
 309   virtual oop promote(oop obj, size_t obj_size);
 310 
 311   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 312   // object "obj", whose original mark word was "m", and whose size is
 313   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 314   // (taking care to copy "m" into the mark word when done, since the mark
 315   // word of "obj" may have been overwritten with a forwarding pointer, and
 316   // also taking care to copy the klass pointer *last*.  Returns the new
 317   // object if successful, or else NULL.
 318   virtual oop par_promote(const ParNewTracer* _gc_tracer, int thread_num,
 319                           oop obj, markOop m, size_t word_sz);
 320 
 321   // Undo, if possible, the most recent par_promote_alloc allocation by
 322   // "thread_num" ("obj", of "word_sz").
 323   virtual void par_promote_alloc_undo(int thread_num,
 324                                       HeapWord* obj, size_t word_sz);
 325 
 326   // Informs the current generation that all par_promote_alloc's in the
 327   // collection have been completed; any supporting data structures can be
 328   // reset.  Default is to do nothing.
 329   virtual void par_promote_alloc_done(int thread_num) {}
 330 
 331   // Informs the current generation that all oop_since_save_marks_iterates
 332   // performed by "thread_num" in the current collection, if any, have been
 333   // completed; any supporting data structures can be reset.  Default is to
 334   // do nothing.
 335   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 336 
 337   // This generation will collect all younger generations
 338   // during a full collection.
 339   virtual bool full_collects_younger_generations() const { return false; }
 340 
 341   // This generation does in-place marking, meaning that mark words
 342   // are mutated during the marking phase and presumably reinitialized
 343   // to a canonical value after the GC. This is currently used by the
 344   // biased locking implementation to determine whether additional
 345   // work is required during the GC prologue and epilogue.
 346   virtual bool performs_in_place_marking() const { return true; }
 347 
 348   // Returns "true" iff collect() should subsequently be called on this
 349   // this generation. See comment below.
 350   // This is a generic implementation which can be overridden.
 351   //
 352   // Note: in the current (1.4) implementation, when genCollectedHeap's
 353   // incremental_collection_will_fail flag is set, all allocations are
 354   // slow path (the only fast-path place to allocate is DefNew, which
 355   // will be full if the flag is set).
 356   // Thus, older generations which collect younger generations should
 357   // test this flag and collect if it is set.
 358   virtual bool should_collect(bool   full,
 359                               size_t word_size,
 360                               bool   is_tlab) {
 361     return (full || should_allocate(word_size, is_tlab));
 362   }
 363 
 364   // Returns true if the collection is likely to be safely
 365   // completed. Even if this method returns true, a collection
 366   // may not be guaranteed to succeed, and the system should be
 367   // able to safely unwind and recover from that failure, albeit
 368   // at some additional cost.
 369   virtual bool collection_attempt_is_safe() {
 370     guarantee(false, "Are you sure you want to call this method?");
 371     return true;
 372   }
 373 
 374   // Perform a garbage collection.
 375   // If full is true attempt a full garbage collection of this generation.
 376   // Otherwise, attempting to (at least) free enough space to support an
 377   // allocation of the given "word_size".
 378   virtual void collect(bool   full,
 379                        bool   clear_all_soft_refs,
 380                        size_t word_size,
 381                        bool   is_tlab) = 0;
 382 
 383   // Perform a heap collection, attempting to create (at least) enough
 384   // space to support an allocation of the given "word_size".  If
 385   // successful, perform the allocation and return the resulting
 386   // "oop" (initializing the allocated block). If the allocation is
 387   // still unsuccessful, return "NULL".
 388   virtual HeapWord* expand_and_allocate(size_t word_size,
 389                                         bool is_tlab,
 390                                         bool parallel = false) = 0;
 391 
 392   // Some generations may require some cleanup or preparation actions before
 393   // allowing a collection.  The default is to do nothing.
 394   virtual void gc_prologue(bool full) {};
 395 
 396   // Some generations may require some cleanup actions after a collection.
 397   // The default is to do nothing.
 398   virtual void gc_epilogue(bool full) {};
 399 
 400   // Save the high water marks for the used space in a generation.
 401   virtual void record_spaces_top() {};
 402 
 403   // Some generations may need to be "fixed-up" after some allocation
 404   // activity to make them parsable again. The default is to do nothing.
 405   virtual void ensure_parsability() {};
 406 
 407   // Time (in ms) when we were last collected or now if a collection is
 408   // in progress.
 409   virtual jlong time_of_last_gc(jlong now) {
 410     // Both _time_of_last_gc and now are set using a time source
 411     // that guarantees monotonically non-decreasing values provided
 412     // the underlying platform provides such a source. So we still
 413     // have to guard against non-monotonicity.
 414     NOT_PRODUCT(
 415       if (now < _time_of_last_gc) {
 416         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, (int64_t)_time_of_last_gc, (int64_t)now);
 417       }
 418     )
 419     return _time_of_last_gc;
 420   }
 421 
 422   virtual void update_time_of_last_gc(jlong now)  {
 423     _time_of_last_gc = now;
 424   }
 425 
 426   // Generations may keep statistics about collection.  This
 427   // method updates those statistics.  current_level is
 428   // the level of the collection that has most recently
 429   // occurred.  This allows the generation to decide what
 430   // statistics are valid to collect.  For example, the
 431   // generation can decide to gather the amount of promoted data
 432   // if the collection of the younger generations has completed.
 433   GCStats* gc_stats() const { return _gc_stats; }
 434   virtual void update_gc_stats(int current_level, bool full) {}
 435 
 436   // Mark sweep support phase2
 437   virtual void prepare_for_compaction(CompactPoint* cp);
 438   // Mark sweep support phase3
 439   virtual void adjust_pointers();
 440   // Mark sweep support phase4
 441   virtual void compact();
 442   virtual void post_compact() {ShouldNotReachHere();}
 443 
 444   // Support for CMS's rescan. In this general form we return a pointer
 445   // to an abstract object that can be used, based on specific previously
 446   // decided protocols, to exchange information between generations,
 447   // information that may be useful for speeding up certain types of
 448   // garbage collectors. A NULL value indicates to the client that
 449   // no data recording is expected by the provider. The data-recorder is
 450   // expected to be GC worker thread-local, with the worker index
 451   // indicated by "thr_num".
 452   virtual void* get_data_recorder(int thr_num) { return NULL; }
 453   virtual void sample_eden_chunk() {}
 454 
 455   // Some generations may require some cleanup actions before allowing
 456   // a verification.
 457   virtual void prepare_for_verify() {};
 458 
 459   // Accessing "marks".
 460 
 461   // This function gives a generation a chance to note a point between
 462   // collections.  For example, a contiguous generation might note the
 463   // beginning allocation point post-collection, which might allow some later
 464   // operations to be optimized.
 465   virtual void save_marks() {}
 466 
 467   // This function allows generations to initialize any "saved marks".  That
 468   // is, should only be called when the generation is empty.
 469   virtual void reset_saved_marks() {}
 470 
 471   // This function is "true" iff any no allocations have occurred in the
 472   // generation since the last call to "save_marks".
 473   virtual bool no_allocs_since_save_marks() = 0;
 474 
 475   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 476   // allocated in the current generation since the last call to "save_marks".
 477   // If more objects are allocated in this generation as a result of applying
 478   // the closure, iterates over reference fields in those objects as well.
 479   // Calls "save_marks" at the end of the iteration.
 480   // General signature...
 481   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 482   // ...and specializations for de-virtualization.  (The general
 483   // implementation of the _nv versions call the virtual version.
 484   // Note that the _nv suffix is not really semantically necessary,
 485   // but it avoids some not-so-useful warnings on Solaris.)
 486 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 487   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 488     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 489   }
 490   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 491 
 492 #undef Generation_SINCE_SAVE_MARKS_DECL
 493 
 494   // The "requestor" generation is performing some garbage collection
 495   // action for which it would be useful to have scratch space.  If
 496   // the target is not the requestor, no gc actions will be required
 497   // of the target.  The requestor promises to allocate no more than
 498   // "max_alloc_words" in the target generation (via promotion say,
 499   // if the requestor is a young generation and the target is older).
 500   // If the target generation can provide any scratch space, it adds
 501   // it to "list", leaving "list" pointing to the head of the
 502   // augmented list.  The default is to offer no space.
 503   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 504                                   size_t max_alloc_words) {}
 505 
 506   // Give each generation an opportunity to do clean up for any
 507   // contributed scratch.
 508   virtual void reset_scratch() {};
 509 
 510   // When an older generation has been collected, and perhaps resized,
 511   // this method will be invoked on all younger generations (from older to
 512   // younger), allowing them to resize themselves as appropriate.
 513   virtual void compute_new_size() = 0;
 514 
 515   // Printing
 516   virtual const char* name() const = 0;
 517   virtual const char* short_name() const = 0;
 518 
 519   int level() const { return _level; }
 520 
 521   // Attributes
 522 
 523   // True iff the given generation may only be the youngest generation.
 524   virtual bool must_be_youngest() const = 0;
 525   // True iff the given generation may only be the oldest generation.
 526   virtual bool must_be_oldest() const = 0;
 527 
 528   // Reference Processing accessor
 529   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 530 
 531   // Iteration.
 532 
 533   // Iterate over all the ref-containing fields of all objects in the
 534   // generation, calling "cl.do_oop" on each.
 535   virtual void oop_iterate(ExtendedOopClosure* cl);
 536 
 537   // Iterate over all objects in the generation, calling "cl.do_object" on
 538   // each.
 539   virtual void object_iterate(ObjectClosure* cl);
 540 
 541   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 542   // each.  An object is safe if its references point to other objects in
 543   // the heap.  This defaults to object_iterate() unless overridden.
 544   virtual void safe_object_iterate(ObjectClosure* cl);
 545 
 546   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 547   // in the current generation that contain pointers to objects in younger
 548   // generations. Objects allocated since the last "save_marks" call are
 549   // excluded.
 550   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 551 
 552   // Inform a generation that it longer contains references to objects
 553   // in any younger generation.    [e.g. Because younger gens are empty,
 554   // clear the card table.]
 555   virtual void clear_remembered_set() { }
 556 
 557   // Inform a generation that some of its objects have moved.  [e.g. The
 558   // generation's spaces were compacted, invalidating the card table.]
 559   virtual void invalidate_remembered_set() { }
 560 
 561   // Block abstraction.
 562 
 563   // Returns the address of the start of the "block" that contains the
 564   // address "addr".  We say "blocks" instead of "object" since some heaps
 565   // may not pack objects densely; a chunk may either be an object or a
 566   // non-object.
 567   virtual HeapWord* block_start(const void* addr) const;
 568 
 569   // Requires "addr" to be the start of a chunk, and returns its size.
 570   // "addr + size" is required to be the start of a new chunk, or the end
 571   // of the active area of the heap.
 572   virtual size_t block_size(const HeapWord* addr) const ;
 573 
 574   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 575   // the block is an object.
 576   virtual bool block_is_obj(const HeapWord* addr) const;
 577 
 578 
 579   // PrintGC, PrintGCDetails support
 580   void print_heap_change(size_t prev_used) const;
 581 
 582   // PrintHeapAtGC support
 583   virtual void print() const;
 584   virtual void print_on(outputStream* st) const;
 585 
 586   virtual void verify() = 0;
 587 
 588   struct StatRecord {
 589     int invocations;
 590     elapsedTimer accumulated_time;
 591     StatRecord() :
 592       invocations(0),
 593       accumulated_time(elapsedTimer()) {}
 594   };
 595 private:
 596   StatRecord _stat_record;
 597 public:
 598   StatRecord* stat_record() { return &_stat_record; }
 599 
 600   virtual void print_summary_info();
 601   virtual void print_summary_info_on(outputStream* st);
 602 
 603   // Performance Counter support
 604   virtual void update_counters() = 0;
 605   virtual CollectorCounters* counters() { return _gc_counters; }
 606 };
 607 
 608 // Class CardGeneration is a generation that is covered by a card table,
 609 // and uses a card-size block-offset array to implement block_start.
 610 
 611 // class BlockOffsetArray;
 612 // class BlockOffsetArrayContigSpace;
 613 class BlockOffsetSharedArray;
 614 
 615 class CardGeneration: public Generation {
 616   friend class VMStructs;
 617  protected:
 618   // This is shared with other generations.
 619   GenRemSet* _rs;
 620   // This is local to this generation.
 621   BlockOffsetSharedArray* _bts;
 622 
 623   // current shrinking effect: this damps shrinking when the heap gets empty.
 624   size_t _shrink_factor;
 625 
 626   size_t _min_heap_delta_bytes;   // Minimum amount to expand.
 627 
 628   // Some statistics from before gc started.
 629   // These are gathered in the gc_prologue (and should_collect)
 630   // to control growing/shrinking policy in spite of promotions.
 631   size_t _capacity_at_prologue;
 632   size_t _used_at_prologue;
 633 
 634   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
 635                  GenRemSet* remset);
 636 
 637  public:
 638 
 639   // Attempt to expand the generation by "bytes".  Expand by at a
 640   // minimum "expand_bytes".  Return true if some amount (not
 641   // necessarily the full "bytes") was done.
 642   virtual bool expand(size_t bytes, size_t expand_bytes);
 643 
 644   // Shrink generation with specified size (returns false if unable to shrink)
 645   virtual void shrink(size_t bytes) = 0;
 646 
 647   virtual void compute_new_size();
 648 
 649   virtual void clear_remembered_set();
 650 
 651   virtual void invalidate_remembered_set();
 652 
 653   virtual void prepare_for_verify();
 654 
 655   // Grow generation with specified size (returns false if unable to grow)
 656   virtual bool grow_by(size_t bytes) = 0;
 657   // Grow generation to reserved size.
 658   virtual bool grow_to_reserved() = 0;
 659 };
 660 
 661 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 662 // contiguous space.
 663 //
 664 // Garbage collection is performed using mark-compact.
 665 
 666 class OneContigSpaceCardGeneration: public CardGeneration {
 667   friend class VMStructs;
 668   // Abstractly, this is a subtype that gets access to protected fields.
 669   friend class VM_PopulateDumpSharedSpace;
 670 
 671  protected:
 672   ContiguousSpace*  _the_space;       // actual space holding objects
 673   WaterMark  _last_gc;                // watermark between objects allocated before
 674                                       // and after last GC.
 675 
 676   // Grow generation with specified size (returns false if unable to grow)
 677   virtual bool grow_by(size_t bytes);
 678   // Grow generation to reserved size.
 679   virtual bool grow_to_reserved();
 680   // Shrink generation with specified size (returns false if unable to shrink)
 681   void shrink_by(size_t bytes);
 682 
 683   // Allocation failure
 684   virtual bool expand(size_t bytes, size_t expand_bytes);
 685   void shrink(size_t bytes);
 686 
 687   // Accessing spaces
 688   ContiguousSpace* the_space() const { return _the_space; }
 689 
 690  public:
 691   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 692                                int level, GenRemSet* remset,
 693                                ContiguousSpace* space) :
 694     CardGeneration(rs, initial_byte_size, level, remset),
 695     _the_space(space)
 696   {}
 697 
 698   inline bool is_in(const void* p) const;
 699 
 700   // Space enquiries
 701   size_t capacity() const;
 702   size_t used() const;
 703   size_t free() const;
 704 
 705   MemRegion used_region() const;
 706 
 707   size_t unsafe_max_alloc_nogc() const;
 708   size_t contiguous_available() const;
 709 
 710   // Iteration
 711   void object_iterate(ObjectClosure* blk);
 712   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 713 
 714   void younger_refs_iterate(OopsInGenClosure* blk);
 715 
 716   inline CompactibleSpace* first_compaction_space() const;
 717 
 718   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 719   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 720 
 721   // Accessing marks
 722   inline WaterMark top_mark();
 723   inline WaterMark bottom_mark();
 724 
 725 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 726   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 727   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 728   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 729 
 730   void save_marks();
 731   void reset_saved_marks();
 732   bool no_allocs_since_save_marks();
 733 
 734   inline size_t block_size(const HeapWord* addr) const;
 735 
 736   inline bool block_is_obj(const HeapWord* addr) const;
 737 
 738   virtual void collect(bool full,
 739                        bool clear_all_soft_refs,
 740                        size_t size,
 741                        bool is_tlab);
 742   HeapWord* expand_and_allocate(size_t size,
 743                                 bool is_tlab,
 744                                 bool parallel = false);
 745 
 746   virtual void prepare_for_verify();
 747 
 748   virtual void gc_epilogue(bool full);
 749 
 750   virtual void record_spaces_top();
 751 
 752   virtual void verify();
 753   virtual void print_on(outputStream* st) const;
 754 };
 755 
 756 #endif // SHARE_VM_MEMORY_GENERATION_HPP