/* * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.zip; import java.nio.ByteBuffer; import java.nio.ByteOrder; import sun.misc.Unsafe; import sun.nio.ch.DirectBuffer; /** *

* A class that can be used to compute the CRC-32C of a data stream.

* *

* CRC-32C is defined in IETF RFC * 3720: Internet Small Computer Systems Interface (iSCSI).

* *

* Passing a {@code null} argument to a method in this class will cause a * {@link NullPointerException} to be thrown.

* * @see Checksum * @since 1.9 */ public class CRC32C implements Checksum { /** * Calculated CRC-32C value */ private int crc = 0xFFFFFFFF; // CRC-32C Polynom private final static int CRC32C_POLY = 0x1EDC6F41; /** * This CRC-32C implementation uses the 'slicing-by-8' algorithm described * in the paper "A Systematic Approach to Building High Performance * Software-Based CRC Generators" by Michael E. Kounavis and Frank L. Berry, * Intel Research and Development */ private transient final static Unsafe UNSAFE = Unsafe.getUnsafe(); private transient final static ByteOrder ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN) ? ByteOrder.BIG_ENDIAN : ByteOrder.LITTLE_ENDIAN; // Lookup tables private transient final static int[][] byteTables = new int[8][256]; private transient final static int[] byteTable; private transient final static int[] byteTable0 = byteTables[0]; private transient final static int[] byteTable1 = byteTables[1]; private transient final static int[] byteTable2 = byteTables[2]; private transient final static int[] byteTable3 = byteTables[3]; private transient final static int[] byteTable4 = byteTables[4]; private transient final static int[] byteTable5 = byteTables[5]; private transient final static int[] byteTable6 = byteTables[6]; private transient final static int[] byteTable7 = byteTables[7]; static { // Generate lookup tables for (int index = 0; index < byteTables[0].length; index++) { int r = reflect(index); for (int i = 0; i < Byte.SIZE; i++) { if ((r & 0x080000000) != 0) { r = (r << 1) ^ CRC32C_POLY; } else { r <<= 1; } } byteTables[0][index] = reflect(r); } for (int index = 0; index < byteTables[0].length; index++) { int r = byteTables[0][index]; for (int k = 1; k < byteTables.length; k++) { r = byteTables[0][r & 0xFF] ^ (r >>> 8); byteTables[k][index] = r; } } if (ENDIAN == ByteOrder.LITTLE_ENDIAN) { byteTable = byteTables[0]; } else { // ByteOrder.BIG_ENDIAN byteTable = new int[byteTable0.length]; System.arraycopy(byteTable0, 0, byteTable, 0, byteTable0.length); for (int[] table : byteTables) { for (int index = 0; index < table.length; index++) { table[index] = swap32(table[index]); } } } } /** * Creates a new CRC32C object. */ public CRC32C() { } /** * Updates the CRC-32C checksum with the specified byte (the low eight bits * of the argument b). * * @param b the byte to update the checksum with */ @Override public void update(int b) { crc = (crc >>> 8) ^ byteTable[(crc ^ (b & 0xFF)) & 0xFF]; } /** * Updates the CRC-32C checksum with the specified array of bytes. * * @throws ArrayIndexOutOfBoundsException if {@code off} is negative, or * {@code len} is negative, or {@code off+len} is greater than the length of * the array {@code b} * * @param b the byte array to update the checksum with * @param off the start offset of the data * @param len the number of bytes to use for the update */ @Override public void update(byte[] b, int off, int len) { if (b == null) { throw new NullPointerException(); } if (off < 0 || len < 0 || (off + len) > b.length) { throw new ArrayIndexOutOfBoundsException(); } crc = updateBytes(crc, b, off, (off + len)); } /** * Updates the CRC-32C checksum with the bytes from the specified buffer. * * The checksum is updated using * buffer.{@link java.nio.Buffer#remaining() remaining()} bytes starting at * buffer.{@link java.nio.Buffer#position() position()} Upon return, the * buffer's position will be updated to its limit; its limit will not have * been changed. * * @param buffer the ByteBuffer to update the checksum with */ @Override public void update(ByteBuffer buffer) { int pos = buffer.position(); int limit = buffer.limit(); assert (pos <= limit); int rem = limit - pos; if (rem <= 0) { return; } if (buffer instanceof DirectBuffer) { crc = updateDirectByteBuffer(crc, ((DirectBuffer) buffer).address(), pos, limit); } else if (buffer.hasArray()) { crc = updateBytes(crc, buffer.array(), pos + buffer.arrayOffset(), limit + buffer.arrayOffset()); } else { byte[] b = new byte[rem]; buffer.get(b); crc = updateBytes(crc, b, 0, b.length); } buffer.position(limit); } /** * Resets CRC-32C to initial value. */ @Override public void reset() { crc = 0xFFFFFFFF; } /** * Returns CRC-32C value. */ @Override public long getValue() { return (~crc) & 0xFFFFFFFFL; } /** * Updates the CRC-32C checksum with the specified array of bytes. */ private static int updateBytes(int crc, byte[] b, int off, int end) { if (end - off >= 8) { // align on 8 bytes int alignLength = (8 - ((Unsafe.ARRAY_BYTE_BASE_OFFSET + off) & 0x7)) & 0x7; for (int alignEnd = off + alignLength; off < alignEnd; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ b[off]) & 0xFF]; } if (ENDIAN == ByteOrder.BIG_ENDIAN) { crc = swap32(crc); } // slicing-by-8 for (; off < (end - Unsafe.ARRAY_LONG_INDEX_SCALE); off += Unsafe.ARRAY_LONG_INDEX_SCALE) { int firstHalf; int secondHalf; if (Unsafe.ADDRESS_SIZE == 4) { // On 32 bit platforms read two ints instead of a single 64bit long firstHalf = UNSAFE.getInt(b, Unsafe.ARRAY_BYTE_BASE_OFFSET + off); secondHalf = UNSAFE.getInt(b, Unsafe.ARRAY_BYTE_BASE_OFFSET + off + Unsafe.ARRAY_INT_INDEX_SCALE); } else { long value = UNSAFE.getLong(b, Unsafe.ARRAY_BYTE_BASE_OFFSET + off); if (ENDIAN == ByteOrder.LITTLE_ENDIAN) { firstHalf = (int) (value & 0xFFFFFFFF); secondHalf = (int) (value >>> 32); } else { // ByteOrder.BIG_ENDIAN firstHalf = (int) (value >>> 32); secondHalf = (int) (value & 0xFFFFFFFF); } } crc ^= firstHalf; if (ENDIAN == ByteOrder.LITTLE_ENDIAN) { crc = byteTable7[crc & 0xFF] ^ byteTable6[(crc >>> 8) & 0xFF] ^ byteTable5[(crc >>> 16) & 0xFF] ^ byteTable4[crc >>> 24] ^ byteTable3[secondHalf & 0xFF] ^ byteTable2[(secondHalf >>> 8) & 0xFF] ^ byteTable1[(secondHalf >>> 16) & 0xFF] ^ byteTable0[secondHalf >>> 24]; } else { // ByteOrder.BIG_ENDIAN crc = byteTable0[secondHalf & 0xFF] ^ byteTable1[(secondHalf >>> 8) & 0xFF] ^ byteTable2[(secondHalf >>> 16) & 0xFF] ^ byteTable3[secondHalf >>> 24] ^ byteTable4[crc & 0xFF] ^ byteTable5[(crc >>> 8) & 0xFF] ^ byteTable6[(crc >>> 16) & 0xFF] ^ byteTable7[crc >>> 24]; } } if (ENDIAN == ByteOrder.BIG_ENDIAN) { crc = swap32(crc); } } // Tail for (; off < end; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ b[off]) & 0xFF]; } return crc; } /** * Updates the CRC-32C checksum reading from the specified address. */ private static int updateDirectByteBuffer(int crc, long address, int off, int end) { if (end - off >= 8) { // align on 8 bytes int alignLength = (8 - (int) ((address + off) & 0x7)) & 0x7; for (int alignEnd = off + alignLength; off < alignEnd; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ UNSAFE.getByte(address + off)) & 0xFF]; } if (ENDIAN == ByteOrder.BIG_ENDIAN) { crc = swap32(crc); } // slicing-by-8 for (; off < (end - Unsafe.ARRAY_LONG_INDEX_SCALE); off += Unsafe.ARRAY_LONG_INDEX_SCALE) { int firstHalf = UNSAFE.getInt(address + off); int secondHalf = UNSAFE.getInt(address + off + Unsafe.ARRAY_INT_INDEX_SCALE); crc ^= firstHalf; if (ENDIAN == ByteOrder.LITTLE_ENDIAN) { crc = byteTable7[crc & 0xFF] ^ byteTable6[(crc >>> 8) & 0xFF] ^ byteTable5[(crc >>> 16) & 0xFF] ^ byteTable4[crc >>> 24] ^ byteTable3[secondHalf & 0xFF] ^ byteTable2[(secondHalf >>> 8) & 0xFF] ^ byteTable1[(secondHalf >>> 16) & 0xFF] ^ byteTable0[secondHalf >>> 24]; } else { // ByteOrder.BIG_ENDIAN crc = byteTable0[secondHalf & 0xFF] ^ byteTable1[(secondHalf >>> 8) & 0xFF] ^ byteTable2[(secondHalf >>> 16) & 0xFF] ^ byteTable3[secondHalf >>> 24] ^ byteTable4[crc & 0xFF] ^ byteTable5[(crc >>> 8) & 0xFF] ^ byteTable6[(crc >>> 16) & 0xFF] ^ byteTable7[crc >>> 24]; } } if (ENDIAN == ByteOrder.BIG_ENDIAN) { crc = swap32(crc); } } // Tail for (; off < end; off++) { crc = (crc >>> 8) ^ byteTable[(crc ^ UNSAFE.getByte(address + off)) & 0xFF]; } return crc; } /** * Swap the bytes in a 32 bit quantity. */ private static int swap32(int value) { return ((value >>> 24) + ((value >>> 8) & 0xFF00) + ((value & 0xFF00) << 8) + (value << 24)); } /** * Reflect a 32 bit quantity. */ private static int reflect(int b) { return (((b >>> 31) & 0x000000001) | ((b >>> 29) & 0x000000002) | ((b >>> 27) & 0x000000004) | ((b >>> 25) & 0x000000008) | ((b >>> 23) & 0x000000010) | ((b >>> 21) & 0x000000020) | ((b >>> 19) & 0x000000040) | ((b >>> 17) & 0x000000080) | ((b >>> 15) & 0x000000100) | ((b >>> 13) & 0x000000200) | ((b >>> 11) & 0x000000400) | ((b >>> 9) & 0x000000800) | ((b >>> 7) & 0x000001000) | ((b >>> 5) & 0x000002000) | ((b >>> 3) & 0x000004000) | ((b >>> 1) & 0x000008000) | ((b << 1) & 0x000010000) | ((b << 3) & 0x000020000) | ((b << 5) & 0x000040000) | ((b << 7) & 0x000080000) | ((b << 9) & 0x000100000) | ((b << 11) & 0x000200000) | ((b << 13) & 0x000400000) | ((b << 15) & 0x000800000) | ((b << 17) & 0x001000000) | ((b << 19) & 0x002000000) | ((b << 21) & 0x004000000) | ((b << 23) & 0x008000000) | ((b << 25) & 0x010000000) | ((b << 27) & 0x020000000) | ((b << 29) & 0x040000000) | ((b << 31) & 0x080000000)); } }