1 /*
   2  * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/orderAccess.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/threadCritical.hpp"
  47 #include "utilities/exceptions.hpp"
  48 
  49 // no precompiled headers
  50 #ifdef CC_INTERP
  51 
  52 /*
  53  * USELABELS - If using GCC, then use labels for the opcode dispatching
  54  * rather -then a switch statement. This improves performance because it
  55  * gives us the oportunity to have the instructions that calculate the
  56  * next opcode to jump to be intermixed with the rest of the instructions
  57  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  58  */
  59 #undef USELABELS
  60 #ifdef __GNUC__
  61 /*
  62    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  63    don't use the computed goto approach.
  64 */
  65 #ifndef ASSERT
  66 #define USELABELS
  67 #endif
  68 #endif
  69 
  70 #undef CASE
  71 #ifdef USELABELS
  72 #define CASE(opcode) opc ## opcode
  73 #define DEFAULT opc_default
  74 #else
  75 #define CASE(opcode) case Bytecodes:: opcode
  76 #define DEFAULT default
  77 #endif
  78 
  79 /*
  80  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  81  * opcode before going back to the top of the while loop, rather then having
  82  * the top of the while loop handle it. This provides a better opportunity
  83  * for instruction scheduling. Some compilers just do this prefetch
  84  * automatically. Some actually end up with worse performance if you
  85  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  86  */
  87 #undef PREFETCH_OPCCODE
  88 #define PREFETCH_OPCCODE
  89 
  90 /*
  91   Interpreter safepoint: it is expected that the interpreter will have no live
  92   handles of its own creation live at an interpreter safepoint. Therefore we
  93   run a HandleMarkCleaner and trash all handles allocated in the call chain
  94   since the JavaCalls::call_helper invocation that initiated the chain.
  95   There really shouldn't be any handles remaining to trash but this is cheap
  96   in relation to a safepoint.
  97 */
  98 #define SAFEPOINT                                                                 \
  99     if ( SafepointSynchronize::is_synchronizing()) {                              \
 100         {                                                                         \
 101           /* zap freed handles rather than GC'ing them */                         \
 102           HandleMarkCleaner __hmc(THREAD);                                        \
 103         }                                                                         \
 104         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 105     }
 106 
 107 /*
 108  * VM_JAVA_ERROR - Macro for throwing a java exception from
 109  * the interpreter loop. Should really be a CALL_VM but there
 110  * is no entry point to do the transition to vm so we just
 111  * do it by hand here.
 112  */
 113 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 114     DECACHE_STATE();                                                              \
 115     SET_LAST_JAVA_FRAME();                                                        \
 116     {                                                                             \
 117        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 118        ThreadInVMfromJava trans(THREAD);                                          \
 119        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 120     }                                                                             \
 121     RESET_LAST_JAVA_FRAME();                                                      \
 122     CACHE_STATE();
 123 
 124 // Normal throw of a java error.
 125 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 126     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 127     goto handle_exception;
 128 
 129 #ifdef PRODUCT
 130 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 131 #else
 132 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 133 {                                                                                                    \
 134     BytecodeCounter::_counter_value++;                                                               \
 135     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 136     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 137     if (TraceBytecodes) {                                                                            \
 138       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 139                                    topOfStack[Interpreter::expr_index_at(1)],   \
 140                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 141                                    handle_exception);                      \
 142     }                                                                      \
 143 }
 144 #endif
 145 
 146 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 147 #ifdef VM_JVMTI
 148 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 149    incremented. JvmtiExport::at_single_stepping_point() may cause a
 150    breakpoint opcode to get inserted at the current PC to allow the
 151    debugger to coalesce single-step events.
 152 
 153    As a result if we call at_single_stepping_point() we refetch opcode
 154    to get the current opcode. This will override any other prefetching
 155    that might have occurred.
 156 */
 157 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 158 {                                                                                \
 159       if (_jvmti_interp_events) {                                                \
 160         if (JvmtiExport::should_post_single_step()) {                            \
 161           DECACHE_STATE();                                                       \
 162           SET_LAST_JAVA_FRAME();                                                 \
 163           ThreadInVMfromJava trans(THREAD);                                      \
 164           JvmtiExport::at_single_stepping_point(THREAD,                          \
 165                                           istate->method(),                      \
 166                                           pc);                                   \
 167           RESET_LAST_JAVA_FRAME();                                               \
 168           CACHE_STATE();                                                         \
 169           if (THREAD->pop_frame_pending() &&                                     \
 170               !THREAD->pop_frame_in_process()) {                                 \
 171             goto handle_Pop_Frame;                                               \
 172           }                                                                      \
 173           if (THREAD->jvmti_thread_state() &&                                    \
 174               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 175             goto handle_Early_Return;                                            \
 176           }                                                                      \
 177           opcode = *pc;                                                          \
 178         }                                                                        \
 179       }                                                                          \
 180 }
 181 #else
 182 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 183 #endif
 184 
 185 /*
 186  * CONTINUE - Macro for executing the next opcode.
 187  */
 188 #undef CONTINUE
 189 #ifdef USELABELS
 190 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 191 // initialization (which is is the initialization of the table pointer...)
 192 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 193 #define CONTINUE {                              \
 194         opcode = *pc;                           \
 195         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 196         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 197         DISPATCH(opcode);                       \
 198     }
 199 #else
 200 #ifdef PREFETCH_OPCCODE
 201 #define CONTINUE {                              \
 202         opcode = *pc;                           \
 203         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 204         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 205         continue;                               \
 206     }
 207 #else
 208 #define CONTINUE {                              \
 209         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 210         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 211         continue;                               \
 212     }
 213 #endif
 214 #endif
 215 
 216 
 217 #define UPDATE_PC(opsize) {pc += opsize; }
 218 /*
 219  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 220  */
 221 #undef UPDATE_PC_AND_TOS
 222 #define UPDATE_PC_AND_TOS(opsize, stack) \
 223     {pc += opsize; MORE_STACK(stack); }
 224 
 225 /*
 226  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 227  * and executing the next opcode. It's somewhat similar to the combination
 228  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 229  */
 230 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 231 #ifdef USELABELS
 232 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 233         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 234         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 235         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 236         DISPATCH(opcode);                                       \
 237     }
 238 
 239 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 240         pc += opsize; opcode = *pc;                             \
 241         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 242         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 243         DISPATCH(opcode);                                       \
 244     }
 245 #else
 246 #ifdef PREFETCH_OPCCODE
 247 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 248         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 249         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 250         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 251         goto do_continue;                                       \
 252     }
 253 
 254 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 255         pc += opsize; opcode = *pc;                             \
 256         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 257         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 258         goto do_continue;                                       \
 259     }
 260 #else
 261 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 262         pc += opsize; MORE_STACK(stack);                \
 263         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 264         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 265         goto do_continue;                               \
 266     }
 267 
 268 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 269         pc += opsize;                                   \
 270         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 271         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 272         goto do_continue;                               \
 273     }
 274 #endif /* PREFETCH_OPCCODE */
 275 #endif /* USELABELS */
 276 
 277 // About to call a new method, update the save the adjusted pc and return to frame manager
 278 #define UPDATE_PC_AND_RETURN(opsize)  \
 279    DECACHE_TOS();                     \
 280    istate->set_bcp(pc+opsize);        \
 281    return;
 282 
 283 
 284 #define METHOD istate->method()
 285 #define GET_METHOD_COUNTERS(res)    \
 286   res = METHOD->method_counters();  \
 287   if (res == NULL) {                \
 288     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 289   }
 290 
 291 #define OSR_REQUEST(res, branch_pc) \
 292             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 293 /*
 294  * For those opcodes that need to have a GC point on a backwards branch
 295  */
 296 
 297 // Backedge counting is kind of strange. The asm interpreter will increment
 298 // the backedge counter as a separate counter but it does it's comparisons
 299 // to the sum (scaled) of invocation counter and backedge count to make
 300 // a decision. Seems kind of odd to sum them together like that
 301 
 302 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 303 
 304 
 305 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 306     if ((skip) <= 0) {                                                                              \
 307       MethodCounters* mcs;                                                                          \
 308       GET_METHOD_COUNTERS(mcs);                                                                     \
 309       if (UseLoopCounter) {                                                                         \
 310         bool do_OSR = UseOnStackReplacement;                                                        \
 311         mcs->backedge_counter()->increment();                                                       \
 312         if (ProfileInterpreter) {                                                                   \
 313           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 314           /* Check for overflow against MDO count. */                                               \
 315           do_OSR = do_OSR                                                                           \
 316             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 317             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 318             /* from the methodDataOop, which value does not get reset on   */                       \
 319             /* the call to frequency_counter_overflow(). To avoid          */                       \
 320             /* excessive calls to the overflow routine while the method is */                       \
 321             /* being compiled, add a second test to make sure the overflow */                       \
 322             /* function is called only once every overflow_frequency.      */                       \
 323             && (!(mdo_last_branch_taken_count & 1023));                                             \
 324         } else {                                                                                    \
 325           /* check for overflow of backedge counter */                                              \
 326           do_OSR = do_OSR                                                                           \
 327             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 328         }                                                                                           \
 329         if (do_OSR) {                                                                               \
 330           nmethod* osr_nmethod;                                                                     \
 331           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 332           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 333             intptr_t* buf;                                                                          \
 334             /* Call OSR migration with last java frame only, no checks. */                          \
 335             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 336             istate->set_msg(do_osr);                                                                \
 337             istate->set_osr_buf((address)buf);                                                      \
 338             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 339             return;                                                                                 \
 340           }                                                                                         \
 341         }                                                                                           \
 342       }  /* UseCompiler ... */                                                                      \
 343       SAFEPOINT;                                                                                    \
 344     }
 345 
 346 /*
 347  * For those opcodes that need to have a GC point on a backwards branch
 348  */
 349 
 350 /*
 351  * Macros for caching and flushing the interpreter state. Some local
 352  * variables need to be flushed out to the frame before we do certain
 353  * things (like pushing frames or becomming gc safe) and some need to
 354  * be recached later (like after popping a frame). We could use one
 355  * macro to cache or decache everything, but this would be less then
 356  * optimal because we don't always need to cache or decache everything
 357  * because some things we know are already cached or decached.
 358  */
 359 #undef DECACHE_TOS
 360 #undef CACHE_TOS
 361 #undef CACHE_PREV_TOS
 362 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 363 
 364 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 365 
 366 #undef DECACHE_PC
 367 #undef CACHE_PC
 368 #define DECACHE_PC()    istate->set_bcp(pc);
 369 #define CACHE_PC()      pc = istate->bcp();
 370 #define CACHE_CP()      cp = istate->constants();
 371 #define CACHE_LOCALS()  locals = istate->locals();
 372 #undef CACHE_FRAME
 373 #define CACHE_FRAME()
 374 
 375 // BCI() returns the current bytecode-index.
 376 #undef  BCI
 377 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 378 
 379 /*
 380  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 381  * passed is a null ref.
 382  * On some architectures/platforms it should be possible to do this implicitly
 383  */
 384 #undef CHECK_NULL
 385 #define CHECK_NULL(obj_)                                                                         \
 386         if ((obj_) == NULL) {                                                                    \
 387           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 388         }                                                                                        \
 389         VERIFY_OOP(obj_)
 390 
 391 #define VMdoubleConstZero() 0.0
 392 #define VMdoubleConstOne() 1.0
 393 #define VMlongConstZero() (max_jlong-max_jlong)
 394 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 395 
 396 /*
 397  * Alignment
 398  */
 399 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 400 
 401 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 402 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 403 
 404 // Reload interpreter state after calling the VM or a possible GC
 405 #define CACHE_STATE()   \
 406         CACHE_TOS();    \
 407         CACHE_PC();     \
 408         CACHE_CP();     \
 409         CACHE_LOCALS();
 410 
 411 // Call the VM with last java frame only.
 412 #define CALL_VM_NAKED_LJF(func)                                    \
 413         DECACHE_STATE();                                           \
 414         SET_LAST_JAVA_FRAME();                                     \
 415         func;                                                      \
 416         RESET_LAST_JAVA_FRAME();                                   \
 417         CACHE_STATE();
 418 
 419 // Call the VM. Don't check for pending exceptions.
 420 #define CALL_VM_NOCHECK(func)                                      \
 421         CALL_VM_NAKED_LJF(func)                                    \
 422         if (THREAD->pop_frame_pending() &&                         \
 423             !THREAD->pop_frame_in_process()) {                     \
 424           goto handle_Pop_Frame;                                   \
 425         }                                                          \
 426         if (THREAD->jvmti_thread_state() &&                        \
 427             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 428           goto handle_Early_Return;                                \
 429         }
 430 
 431 // Call the VM and check for pending exceptions
 432 #define CALL_VM(func, label) {                                     \
 433           CALL_VM_NOCHECK(func);                                   \
 434           if (THREAD->has_pending_exception()) goto label;         \
 435         }
 436 
 437 /*
 438  * BytecodeInterpreter::run(interpreterState istate)
 439  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 440  *
 441  * The real deal. This is where byte codes actually get interpreted.
 442  * Basically it's a big while loop that iterates until we return from
 443  * the method passed in.
 444  *
 445  * The runWithChecks is used if JVMTI is enabled.
 446  *
 447  */
 448 #if defined(VM_JVMTI)
 449 void
 450 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 451 #else
 452 void
 453 BytecodeInterpreter::run(interpreterState istate) {
 454 #endif
 455 
 456   // In order to simplify some tests based on switches set at runtime
 457   // we invoke the interpreter a single time after switches are enabled
 458   // and set simpler to to test variables rather than method calls or complex
 459   // boolean expressions.
 460 
 461   static int initialized = 0;
 462   static int checkit = 0;
 463   static intptr_t* c_addr = NULL;
 464   static intptr_t  c_value;
 465 
 466   if (checkit && *c_addr != c_value) {
 467     os::breakpoint();
 468   }
 469 #ifdef VM_JVMTI
 470   static bool _jvmti_interp_events = 0;
 471 #endif
 472 
 473   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 474 
 475 #ifdef ASSERT
 476   if (istate->_msg != initialize) {
 477     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
 478     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
 479     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
 480     // for the old JSR292 implementation.
 481     // This leads to a situation where 'istate->_stack_limit' always accounts for
 482     // methodOopDesc::extra_stack_entries() because it is computed in
 483     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
 484     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
 485     // account for extra_stack_entries() anymore because at the time when it is called
 486     // EnableInvokeDynamic was already set to false.
 487     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
 488     // switched off because of the wrong classes.
 489     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
 490       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 491     } else {
 492       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
 493       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
 494                                                                                                + 1), "bad stack limit");
 495     }
 496 #ifndef SHARK
 497     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 498 #endif // !SHARK
 499   }
 500   // Verify linkages.
 501   interpreterState l = istate;
 502   do {
 503     assert(l == l->_self_link, "bad link");
 504     l = l->_prev_link;
 505   } while (l != NULL);
 506   // Screwups with stack management usually cause us to overwrite istate
 507   // save a copy so we can verify it.
 508   interpreterState orig = istate;
 509 #endif
 510 
 511   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 512   register address          pc = istate->bcp();
 513   register jubyte opcode;
 514   register intptr_t*        locals = istate->locals();
 515   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 516 #ifdef LOTS_OF_REGS
 517   register JavaThread*      THREAD = istate->thread();
 518 #else
 519 #undef THREAD
 520 #define THREAD istate->thread()
 521 #endif
 522 
 523 #ifdef USELABELS
 524   const static void* const opclabels_data[256] = {
 525 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 526 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 527 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 528 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 529 
 530 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 531 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 532 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 533 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 534 
 535 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 536 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 537 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 538 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 539 
 540 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 541 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 542 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 543 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 544 
 545 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 546 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 547 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 548 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 549 
 550 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 551 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 552 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 553 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 554 
 555 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 556 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 557 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 558 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 559 
 560 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 561 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 562 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 563 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 564 
 565 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 566 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 567 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 568 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 569 
 570 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 571 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 572 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 573 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 574 
 575 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 576 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 577 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 578 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 579 
 580 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 581 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 582 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 583 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 584 
 585 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 586 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 587 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 588 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 589 
 590 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 591 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 592 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 593 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 594 
 595 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 596 /* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
 597 /* 0xE8 */ &&opc_return_register_finalizer,
 598                               &&opc_invokehandle,   &&opc_default,      &&opc_default,
 599 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 600 
 601 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 602 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 603 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 604 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 605   };
 606   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 607 #endif /* USELABELS */
 608 
 609 #ifdef ASSERT
 610   // this will trigger a VERIFY_OOP on entry
 611   if (istate->msg() != initialize && ! METHOD->is_static()) {
 612     oop rcvr = LOCALS_OBJECT(0);
 613     VERIFY_OOP(rcvr);
 614   }
 615 #endif
 616 // #define HACK
 617 #ifdef HACK
 618   bool interesting = false;
 619 #endif // HACK
 620 
 621   /* QQQ this should be a stack method so we don't know actual direction */
 622   guarantee(istate->msg() == initialize ||
 623          topOfStack >= istate->stack_limit() &&
 624          topOfStack < istate->stack_base(),
 625          "Stack top out of range");
 626 
 627 #ifdef CC_INTERP_PROFILE
 628   // MethodData's last branch taken count.
 629   uint mdo_last_branch_taken_count = 0;
 630 #else
 631   const uint mdo_last_branch_taken_count = 0;
 632 #endif
 633 
 634   switch (istate->msg()) {
 635     case initialize: {
 636       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 637       _compiling = (UseCompiler || CountCompiledCalls);
 638 #ifdef VM_JVMTI
 639       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 640 #endif
 641       return;
 642     }
 643     break;
 644     case method_entry: {
 645       THREAD->set_do_not_unlock();
 646       // count invocations
 647       assert(initialized, "Interpreter not initialized");
 648       if (_compiling) {
 649         MethodCounters* mcs;
 650         GET_METHOD_COUNTERS(mcs);
 651         if (ProfileInterpreter) {
 652           METHOD->increment_interpreter_invocation_count(THREAD);
 653         }
 654         mcs->invocation_counter()->increment();
 655         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 656           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 657           // We no longer retry on a counter overflow.
 658         }
 659         // Get or create profile data. Check for pending (async) exceptions.
 660         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 661         SAFEPOINT;
 662       }
 663 
 664       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 665         // initialize
 666         os::breakpoint();
 667       }
 668 
 669 #ifdef HACK
 670       {
 671         ResourceMark rm;
 672         char *method_name = istate->method()->name_and_sig_as_C_string();
 673         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 674           tty->print_cr("entering: depth %d bci: %d",
 675                          (istate->_stack_base - istate->_stack),
 676                          istate->_bcp - istate->_method->code_base());
 677           interesting = true;
 678         }
 679       }
 680 #endif // HACK
 681 
 682       // Lock method if synchronized.
 683       if (METHOD->is_synchronized()) {
 684         // oop rcvr = locals[0].j.r;
 685         oop rcvr;
 686         if (METHOD->is_static()) {
 687           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 688         } else {
 689           rcvr = LOCALS_OBJECT(0);
 690           VERIFY_OOP(rcvr);
 691         }
 692         // The initial monitor is ours for the taking.
 693         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 694         BasicObjectLock* mon = &istate->monitor_base()[-1];
 695         mon->set_obj(rcvr);
 696         bool success = false;
 697         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 698         markOop mark = rcvr->mark();
 699         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 700         // Implies UseBiasedLocking.
 701         if (mark->has_bias_pattern()) {
 702           uintptr_t thread_ident;
 703           uintptr_t anticipated_bias_locking_value;
 704           thread_ident = (uintptr_t)istate->thread();
 705           anticipated_bias_locking_value =
 706             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 707             ~((uintptr_t) markOopDesc::age_mask_in_place);
 708 
 709           if (anticipated_bias_locking_value == 0) {
 710             // Already biased towards this thread, nothing to do.
 711             if (PrintBiasedLockingStatistics) {
 712               (* BiasedLocking::biased_lock_entry_count_addr())++;
 713             }
 714             success = true;
 715           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 716             // Try to revoke bias.
 717             markOop header = rcvr->klass()->prototype_header();
 718             if (hash != markOopDesc::no_hash) {
 719               header = header->copy_set_hash(hash);
 720             }
 721             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 722               if (PrintBiasedLockingStatistics)
 723                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 724             }
 725           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 726             // Try to rebias.
 727             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 728             if (hash != markOopDesc::no_hash) {
 729               new_header = new_header->copy_set_hash(hash);
 730             }
 731             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 732               if (PrintBiasedLockingStatistics) {
 733                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 734               }
 735             } else {
 736               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 737             }
 738             success = true;
 739           } else {
 740             // Try to bias towards thread in case object is anonymously biased.
 741             markOop header = (markOop) ((uintptr_t) mark &
 742                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 743                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 744             if (hash != markOopDesc::no_hash) {
 745               header = header->copy_set_hash(hash);
 746             }
 747             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 748             // Debugging hint.
 749             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 750             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 751               if (PrintBiasedLockingStatistics) {
 752                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 753               }
 754             } else {
 755               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 756             }
 757             success = true;
 758           }
 759         }
 760 
 761         // Traditional lightweight locking.
 762         if (!success) {
 763           markOop displaced = rcvr->mark()->set_unlocked();
 764           mon->lock()->set_displaced_header(displaced);
 765           bool call_vm = UseHeavyMonitors;
 766           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 767             // Is it simple recursive case?
 768             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 769               mon->lock()->set_displaced_header(NULL);
 770             } else {
 771               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 772             }
 773           }
 774         }
 775       }
 776       THREAD->clr_do_not_unlock();
 777 
 778       // Notify jvmti
 779 #ifdef VM_JVMTI
 780       if (_jvmti_interp_events) {
 781         // Whenever JVMTI puts a thread in interp_only_mode, method
 782         // entry/exit events are sent for that thread to track stack depth.
 783         if (THREAD->is_interp_only_mode()) {
 784           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 785                   handle_exception);
 786         }
 787       }
 788 #endif /* VM_JVMTI */
 789 
 790       goto run;
 791     }
 792 
 793     case popping_frame: {
 794       // returned from a java call to pop the frame, restart the call
 795       // clear the message so we don't confuse ourselves later
 796       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 797       istate->set_msg(no_request);
 798       if (_compiling) {
 799         // Set MDX back to the ProfileData of the invoke bytecode that will be
 800         // restarted.
 801         SET_MDX(NULL);
 802         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 803       }
 804       THREAD->clr_pop_frame_in_process();
 805       goto run;
 806     }
 807 
 808     case method_resume: {
 809       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 810         // resume
 811         os::breakpoint();
 812       }
 813 #ifdef HACK
 814       {
 815         ResourceMark rm;
 816         char *method_name = istate->method()->name_and_sig_as_C_string();
 817         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 818           tty->print_cr("resume: depth %d bci: %d",
 819                          (istate->_stack_base - istate->_stack) ,
 820                          istate->_bcp - istate->_method->code_base());
 821           interesting = true;
 822         }
 823       }
 824 #endif // HACK
 825       // returned from a java call, continue executing.
 826       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 827         goto handle_Pop_Frame;
 828       }
 829       if (THREAD->jvmti_thread_state() &&
 830           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 831         goto handle_Early_Return;
 832       }
 833 
 834       if (THREAD->has_pending_exception()) goto handle_exception;
 835       // Update the pc by the saved amount of the invoke bytecode size
 836       UPDATE_PC(istate->bcp_advance());
 837 
 838       if (_compiling) {
 839         // Get or create profile data. Check for pending (async) exceptions.
 840         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 841       }
 842       goto run;
 843     }
 844 
 845     case deopt_resume2: {
 846       // Returned from an opcode that will reexecute. Deopt was
 847       // a result of a PopFrame request.
 848       //
 849 
 850       if (_compiling) {
 851         // Get or create profile data. Check for pending (async) exceptions.
 852         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 853       }
 854       goto run;
 855     }
 856 
 857     case deopt_resume: {
 858       // Returned from an opcode that has completed. The stack has
 859       // the result all we need to do is skip across the bytecode
 860       // and continue (assuming there is no exception pending)
 861       //
 862       // compute continuation length
 863       //
 864       // Note: it is possible to deopt at a return_register_finalizer opcode
 865       // because this requires entering the vm to do the registering. While the
 866       // opcode is complete we can't advance because there are no more opcodes
 867       // much like trying to deopt at a poll return. In that has we simply
 868       // get out of here
 869       //
 870       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 871         // this will do the right thing even if an exception is pending.
 872         goto handle_return;
 873       }
 874       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 875       if (THREAD->has_pending_exception()) goto handle_exception;
 876 
 877       if (_compiling) {
 878         // Get or create profile data. Check for pending (async) exceptions.
 879         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 880       }
 881       goto run;
 882     }
 883     case got_monitors: {
 884       // continue locking now that we have a monitor to use
 885       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 886       oop lockee = STACK_OBJECT(-1);
 887       VERIFY_OOP(lockee);
 888       // derefing's lockee ought to provoke implicit null check
 889       // find a free monitor
 890       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 891       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 892       entry->set_obj(lockee);
 893       bool success = false;
 894       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 895 
 896       markOop mark = lockee->mark();
 897       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 898       // implies UseBiasedLocking
 899       if (mark->has_bias_pattern()) {
 900         uintptr_t thread_ident;
 901         uintptr_t anticipated_bias_locking_value;
 902         thread_ident = (uintptr_t)istate->thread();
 903         anticipated_bias_locking_value =
 904           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 905           ~((uintptr_t) markOopDesc::age_mask_in_place);
 906 
 907         if  (anticipated_bias_locking_value == 0) {
 908           // already biased towards this thread, nothing to do
 909           if (PrintBiasedLockingStatistics) {
 910             (* BiasedLocking::biased_lock_entry_count_addr())++;
 911           }
 912           success = true;
 913         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 914           // try revoke bias
 915           markOop header = lockee->klass()->prototype_header();
 916           if (hash != markOopDesc::no_hash) {
 917             header = header->copy_set_hash(hash);
 918           }
 919           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 920             if (PrintBiasedLockingStatistics) {
 921               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 922             }
 923           }
 924         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 925           // try rebias
 926           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 927           if (hash != markOopDesc::no_hash) {
 928                 new_header = new_header->copy_set_hash(hash);
 929           }
 930           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 931             if (PrintBiasedLockingStatistics) {
 932               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 933             }
 934           } else {
 935             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 936           }
 937           success = true;
 938         } else {
 939           // try to bias towards thread in case object is anonymously biased
 940           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 941                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 942           if (hash != markOopDesc::no_hash) {
 943             header = header->copy_set_hash(hash);
 944           }
 945           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 946           // debugging hint
 947           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 948           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 949             if (PrintBiasedLockingStatistics) {
 950               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 951             }
 952           } else {
 953             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 954           }
 955           success = true;
 956         }
 957       }
 958 
 959       // traditional lightweight locking
 960       if (!success) {
 961         markOop displaced = lockee->mark()->set_unlocked();
 962         entry->lock()->set_displaced_header(displaced);
 963         bool call_vm = UseHeavyMonitors;
 964         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 965           // Is it simple recursive case?
 966           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 967             entry->lock()->set_displaced_header(NULL);
 968           } else {
 969             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 970           }
 971         }
 972       }
 973       UPDATE_PC_AND_TOS(1, -1);
 974       goto run;
 975     }
 976     default: {
 977       fatal("Unexpected message from frame manager");
 978     }
 979   }
 980 
 981 run:
 982 
 983   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 984   DEBUGGER_SINGLE_STEP_NOTIFY();
 985 #ifdef PREFETCH_OPCCODE
 986   opcode = *pc;  /* prefetch first opcode */
 987 #endif
 988 
 989 #ifndef USELABELS
 990   while (1)
 991 #endif
 992   {
 993 #ifndef PREFETCH_OPCCODE
 994       opcode = *pc;
 995 #endif
 996       // Seems like this happens twice per opcode. At worst this is only
 997       // need at entry to the loop.
 998       // DEBUGGER_SINGLE_STEP_NOTIFY();
 999       /* Using this labels avoids double breakpoints when quickening and
1000        * when returing from transition frames.
1001        */
1002   opcode_switch:
1003       assert(istate == orig, "Corrupted istate");
1004       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
1005       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
1006       assert(topOfStack < istate->stack_base(), "Stack underrun");
1007 
1008 #ifdef USELABELS
1009       DISPATCH(opcode);
1010 #else
1011       switch (opcode)
1012 #endif
1013       {
1014       CASE(_nop):
1015           UPDATE_PC_AND_CONTINUE(1);
1016 
1017           /* Push miscellaneous constants onto the stack. */
1018 
1019       CASE(_aconst_null):
1020           SET_STACK_OBJECT(NULL, 0);
1021           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1022 
1023 #undef  OPC_CONST_n
1024 #define OPC_CONST_n(opcode, const_type, value)                          \
1025       CASE(opcode):                                                     \
1026           SET_STACK_ ## const_type(value, 0);                           \
1027           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1028 
1029           OPC_CONST_n(_iconst_m1,   INT,       -1);
1030           OPC_CONST_n(_iconst_0,    INT,        0);
1031           OPC_CONST_n(_iconst_1,    INT,        1);
1032           OPC_CONST_n(_iconst_2,    INT,        2);
1033           OPC_CONST_n(_iconst_3,    INT,        3);
1034           OPC_CONST_n(_iconst_4,    INT,        4);
1035           OPC_CONST_n(_iconst_5,    INT,        5);
1036           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1037           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1038           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1039 
1040 #undef  OPC_CONST2_n
1041 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1042       CASE(_##opcname):                                                 \
1043       {                                                                 \
1044           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1045           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1046       }
1047          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1048          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1049          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1050          OPC_CONST2_n(lconst_1, One,  long, LONG);
1051 
1052          /* Load constant from constant pool: */
1053 
1054           /* Push a 1-byte signed integer value onto the stack. */
1055       CASE(_bipush):
1056           SET_STACK_INT((jbyte)(pc[1]), 0);
1057           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1058 
1059           /* Push a 2-byte signed integer constant onto the stack. */
1060       CASE(_sipush):
1061           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1062           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1063 
1064           /* load from local variable */
1065 
1066       CASE(_aload):
1067           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1068           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1069           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1070 
1071       CASE(_iload):
1072       CASE(_fload):
1073           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1074           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1075 
1076       CASE(_lload):
1077           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1078           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1079 
1080       CASE(_dload):
1081           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1082           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1083 
1084 #undef  OPC_LOAD_n
1085 #define OPC_LOAD_n(num)                                                 \
1086       CASE(_aload_##num):                                               \
1087           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1088           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1089           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1090                                                                         \
1091       CASE(_iload_##num):                                               \
1092       CASE(_fload_##num):                                               \
1093           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1094           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1095                                                                         \
1096       CASE(_lload_##num):                                               \
1097           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1098           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1099       CASE(_dload_##num):                                               \
1100           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1101           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1102 
1103           OPC_LOAD_n(0);
1104           OPC_LOAD_n(1);
1105           OPC_LOAD_n(2);
1106           OPC_LOAD_n(3);
1107 
1108           /* store to a local variable */
1109 
1110       CASE(_astore):
1111           astore(topOfStack, -1, locals, pc[1]);
1112           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1113 
1114       CASE(_istore):
1115       CASE(_fstore):
1116           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1117           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1118 
1119       CASE(_lstore):
1120           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1121           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1122 
1123       CASE(_dstore):
1124           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1125           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1126 
1127       CASE(_wide): {
1128           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1129 
1130           opcode = pc[1];
1131 
1132           // Wide and it's sub-bytecode are counted as separate instructions. If we
1133           // don't account for this here, the bytecode trace skips the next bytecode.
1134           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1135 
1136           switch(opcode) {
1137               case Bytecodes::_aload:
1138                   VERIFY_OOP(LOCALS_OBJECT(reg));
1139                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1140                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1141 
1142               case Bytecodes::_iload:
1143               case Bytecodes::_fload:
1144                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1145                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1146 
1147               case Bytecodes::_lload:
1148                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1149                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1150 
1151               case Bytecodes::_dload:
1152                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1153                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1154 
1155               case Bytecodes::_astore:
1156                   astore(topOfStack, -1, locals, reg);
1157                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1158 
1159               case Bytecodes::_istore:
1160               case Bytecodes::_fstore:
1161                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1162                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1163 
1164               case Bytecodes::_lstore:
1165                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1166                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1167 
1168               case Bytecodes::_dstore:
1169                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1170                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1171 
1172               case Bytecodes::_iinc: {
1173                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1174                   // Be nice to see what this generates.... QQQ
1175                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1176                   UPDATE_PC_AND_CONTINUE(6);
1177               }
1178               case Bytecodes::_ret:
1179                   // Profile ret.
1180                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1181                   // Now, update the pc.
1182                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1183                   UPDATE_PC_AND_CONTINUE(0);
1184               default:
1185                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1186           }
1187       }
1188 
1189 
1190 #undef  OPC_STORE_n
1191 #define OPC_STORE_n(num)                                                \
1192       CASE(_astore_##num):                                              \
1193           astore(topOfStack, -1, locals, num);                          \
1194           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1195       CASE(_istore_##num):                                              \
1196       CASE(_fstore_##num):                                              \
1197           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1198           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1199 
1200           OPC_STORE_n(0);
1201           OPC_STORE_n(1);
1202           OPC_STORE_n(2);
1203           OPC_STORE_n(3);
1204 
1205 #undef  OPC_DSTORE_n
1206 #define OPC_DSTORE_n(num)                                               \
1207       CASE(_dstore_##num):                                              \
1208           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1209           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1210       CASE(_lstore_##num):                                              \
1211           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1212           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1213 
1214           OPC_DSTORE_n(0);
1215           OPC_DSTORE_n(1);
1216           OPC_DSTORE_n(2);
1217           OPC_DSTORE_n(3);
1218 
1219           /* stack pop, dup, and insert opcodes */
1220 
1221 
1222       CASE(_pop):                /* Discard the top item on the stack */
1223           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1224 
1225 
1226       CASE(_pop2):               /* Discard the top 2 items on the stack */
1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1228 
1229 
1230       CASE(_dup):               /* Duplicate the top item on the stack */
1231           dup(topOfStack);
1232           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1233 
1234       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1235           dup2(topOfStack);
1236           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1237 
1238       CASE(_dup_x1):    /* insert top word two down */
1239           dup_x1(topOfStack);
1240           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1241 
1242       CASE(_dup_x2):    /* insert top word three down  */
1243           dup_x2(topOfStack);
1244           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1245 
1246       CASE(_dup2_x1):   /* insert top 2 slots three down */
1247           dup2_x1(topOfStack);
1248           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1249 
1250       CASE(_dup2_x2):   /* insert top 2 slots four down */
1251           dup2_x2(topOfStack);
1252           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1253 
1254       CASE(_swap): {        /* swap top two elements on the stack */
1255           swap(topOfStack);
1256           UPDATE_PC_AND_CONTINUE(1);
1257       }
1258 
1259           /* Perform various binary integer operations */
1260 
1261 #undef  OPC_INT_BINARY
1262 #define OPC_INT_BINARY(opcname, opname, test)                           \
1263       CASE(_i##opcname):                                                \
1264           if (test && (STACK_INT(-1) == 0)) {                           \
1265               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1266                             "/ by zero", note_div0Check_trap);          \
1267           }                                                             \
1268           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1269                                       STACK_INT(-1)),                   \
1270                                       -2);                              \
1271           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1272       CASE(_l##opcname):                                                \
1273       {                                                                 \
1274           if (test) {                                                   \
1275             jlong l1 = STACK_LONG(-1);                                  \
1276             if (VMlongEqz(l1)) {                                        \
1277               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1278                             "/ by long zero", note_div0Check_trap);     \
1279             }                                                           \
1280           }                                                             \
1281           /* First long at (-1,-2) next long at (-3,-4) */              \
1282           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1283                                         STACK_LONG(-1)),                \
1284                                         -3);                            \
1285           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1286       }
1287 
1288       OPC_INT_BINARY(add, Add, 0);
1289       OPC_INT_BINARY(sub, Sub, 0);
1290       OPC_INT_BINARY(mul, Mul, 0);
1291       OPC_INT_BINARY(and, And, 0);
1292       OPC_INT_BINARY(or,  Or,  0);
1293       OPC_INT_BINARY(xor, Xor, 0);
1294       OPC_INT_BINARY(div, Div, 1);
1295       OPC_INT_BINARY(rem, Rem, 1);
1296 
1297 
1298       /* Perform various binary floating number operations */
1299       /* On some machine/platforms/compilers div zero check can be implicit */
1300 
1301 #undef  OPC_FLOAT_BINARY
1302 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1303       CASE(_d##opcname): {                                                 \
1304           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1305                                             STACK_DOUBLE(-1)),             \
1306                                             -3);                           \
1307           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1308       }                                                                    \
1309       CASE(_f##opcname):                                                   \
1310           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1311                                           STACK_FLOAT(-1)),                \
1312                                           -2);                             \
1313           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1314 
1315 
1316      OPC_FLOAT_BINARY(add, Add);
1317      OPC_FLOAT_BINARY(sub, Sub);
1318      OPC_FLOAT_BINARY(mul, Mul);
1319      OPC_FLOAT_BINARY(div, Div);
1320      OPC_FLOAT_BINARY(rem, Rem);
1321 
1322       /* Shift operations
1323        * Shift left int and long: ishl, lshl
1324        * Logical shift right int and long w/zero extension: iushr, lushr
1325        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1326        */
1327 
1328 #undef  OPC_SHIFT_BINARY
1329 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1330       CASE(_i##opcname):                                                \
1331          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1332                                      STACK_INT(-1)),                    \
1333                                      -2);                               \
1334          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1335       CASE(_l##opcname):                                                \
1336       {                                                                 \
1337          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1338                                        STACK_INT(-1)),                  \
1339                                        -2);                             \
1340          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1341       }
1342 
1343       OPC_SHIFT_BINARY(shl, Shl);
1344       OPC_SHIFT_BINARY(shr, Shr);
1345       OPC_SHIFT_BINARY(ushr, Ushr);
1346 
1347      /* Increment local variable by constant */
1348       CASE(_iinc):
1349       {
1350           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1351           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1352           UPDATE_PC_AND_CONTINUE(3);
1353       }
1354 
1355      /* negate the value on the top of the stack */
1356 
1357       CASE(_ineg):
1358          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1359          UPDATE_PC_AND_CONTINUE(1);
1360 
1361       CASE(_fneg):
1362          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1363          UPDATE_PC_AND_CONTINUE(1);
1364 
1365       CASE(_lneg):
1366       {
1367          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1368          UPDATE_PC_AND_CONTINUE(1);
1369       }
1370 
1371       CASE(_dneg):
1372       {
1373          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1374          UPDATE_PC_AND_CONTINUE(1);
1375       }
1376 
1377       /* Conversion operations */
1378 
1379       CASE(_i2f):       /* convert top of stack int to float */
1380          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1381          UPDATE_PC_AND_CONTINUE(1);
1382 
1383       CASE(_i2l):       /* convert top of stack int to long */
1384       {
1385           // this is ugly QQQ
1386           jlong r = VMint2Long(STACK_INT(-1));
1387           MORE_STACK(-1); // Pop
1388           SET_STACK_LONG(r, 1);
1389 
1390           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1391       }
1392 
1393       CASE(_i2d):       /* convert top of stack int to double */
1394       {
1395           // this is ugly QQQ (why cast to jlong?? )
1396           jdouble r = (jlong)STACK_INT(-1);
1397           MORE_STACK(-1); // Pop
1398           SET_STACK_DOUBLE(r, 1);
1399 
1400           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1401       }
1402 
1403       CASE(_l2i):       /* convert top of stack long to int */
1404       {
1405           jint r = VMlong2Int(STACK_LONG(-1));
1406           MORE_STACK(-2); // Pop
1407           SET_STACK_INT(r, 0);
1408           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1409       }
1410 
1411       CASE(_l2f):   /* convert top of stack long to float */
1412       {
1413           jlong r = STACK_LONG(-1);
1414           MORE_STACK(-2); // Pop
1415           SET_STACK_FLOAT(VMlong2Float(r), 0);
1416           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1417       }
1418 
1419       CASE(_l2d):       /* convert top of stack long to double */
1420       {
1421           jlong r = STACK_LONG(-1);
1422           MORE_STACK(-2); // Pop
1423           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1424           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1425       }
1426 
1427       CASE(_f2i):  /* Convert top of stack float to int */
1428           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1429           UPDATE_PC_AND_CONTINUE(1);
1430 
1431       CASE(_f2l):  /* convert top of stack float to long */
1432       {
1433           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1434           MORE_STACK(-1); // POP
1435           SET_STACK_LONG(r, 1);
1436           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1437       }
1438 
1439       CASE(_f2d):  /* convert top of stack float to double */
1440       {
1441           jfloat f;
1442           jdouble r;
1443           f = STACK_FLOAT(-1);
1444           r = (jdouble) f;
1445           MORE_STACK(-1); // POP
1446           SET_STACK_DOUBLE(r, 1);
1447           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1448       }
1449 
1450       CASE(_d2i): /* convert top of stack double to int */
1451       {
1452           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1453           MORE_STACK(-2);
1454           SET_STACK_INT(r1, 0);
1455           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1456       }
1457 
1458       CASE(_d2f): /* convert top of stack double to float */
1459       {
1460           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1461           MORE_STACK(-2);
1462           SET_STACK_FLOAT(r1, 0);
1463           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1464       }
1465 
1466       CASE(_d2l): /* convert top of stack double to long */
1467       {
1468           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1469           MORE_STACK(-2);
1470           SET_STACK_LONG(r1, 1);
1471           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1472       }
1473 
1474       CASE(_i2b):
1475           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1476           UPDATE_PC_AND_CONTINUE(1);
1477 
1478       CASE(_i2c):
1479           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1480           UPDATE_PC_AND_CONTINUE(1);
1481 
1482       CASE(_i2s):
1483           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1484           UPDATE_PC_AND_CONTINUE(1);
1485 
1486       /* comparison operators */
1487 
1488 
1489 #define COMPARISON_OP(name, comparison)                                      \
1490       CASE(_if_icmp##name): {                                                \
1491           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1492           int skip = cmp                                                     \
1493                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1494           address branch_pc = pc;                                            \
1495           /* Profile branch. */                                              \
1496           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1497           UPDATE_PC_AND_TOS(skip, -2);                                       \
1498           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1499           CONTINUE;                                                          \
1500       }                                                                      \
1501       CASE(_if##name): {                                                     \
1502           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1503           int skip = cmp                                                     \
1504                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1505           address branch_pc = pc;                                            \
1506           /* Profile branch. */                                              \
1507           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1508           UPDATE_PC_AND_TOS(skip, -1);                                       \
1509           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1510           CONTINUE;                                                          \
1511       }
1512 
1513 #define COMPARISON_OP2(name, comparison)                                     \
1514       COMPARISON_OP(name, comparison)                                        \
1515       CASE(_if_acmp##name): {                                                \
1516           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1517           int skip = cmp                                                     \
1518                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1519           address branch_pc = pc;                                            \
1520           /* Profile branch. */                                              \
1521           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1522           UPDATE_PC_AND_TOS(skip, -2);                                       \
1523           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1524           CONTINUE;                                                          \
1525       }
1526 
1527 #define NULL_COMPARISON_NOT_OP(name)                                         \
1528       CASE(_if##name): {                                                     \
1529           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1530           int skip = cmp                                                     \
1531                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1532           address branch_pc = pc;                                            \
1533           /* Profile branch. */                                              \
1534           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1535           UPDATE_PC_AND_TOS(skip, -1);                                       \
1536           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1537           CONTINUE;                                                          \
1538       }
1539 
1540 #define NULL_COMPARISON_OP(name)                                             \
1541       CASE(_if##name): {                                                     \
1542           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1543           int skip = cmp                                                     \
1544                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1545           address branch_pc = pc;                                            \
1546           /* Profile branch. */                                              \
1547           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1548           UPDATE_PC_AND_TOS(skip, -1);                                       \
1549           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1550           CONTINUE;                                                          \
1551       }
1552       COMPARISON_OP(lt, <);
1553       COMPARISON_OP(gt, >);
1554       COMPARISON_OP(le, <=);
1555       COMPARISON_OP(ge, >=);
1556       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1557       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1558       NULL_COMPARISON_OP(null);
1559       NULL_COMPARISON_NOT_OP(nonnull);
1560 
1561       /* Goto pc at specified offset in switch table. */
1562 
1563       CASE(_tableswitch): {
1564           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1565           int32_t  key  = STACK_INT(-1);
1566           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1567           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1568           int32_t  skip;
1569           key -= low;
1570           if (((uint32_t) key > (uint32_t)(high - low))) {
1571             key = -1;
1572             skip = Bytes::get_Java_u4((address)&lpc[0]);
1573           } else {
1574             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1575           }
1576           // Profile switch.
1577           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1578           // Does this really need a full backedge check (osr)?
1579           address branch_pc = pc;
1580           UPDATE_PC_AND_TOS(skip, -1);
1581           DO_BACKEDGE_CHECKS(skip, branch_pc);
1582           CONTINUE;
1583       }
1584 
1585       /* Goto pc whose table entry matches specified key. */
1586 
1587       CASE(_lookupswitch): {
1588           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1589           int32_t  key  = STACK_INT(-1);
1590           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1591           // Remember index.
1592           int      index = -1;
1593           int      newindex = 0;
1594           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1595           while (--npairs >= 0) {
1596             lpc += 2;
1597             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1598               skip = Bytes::get_Java_u4((address)&lpc[1]);
1599               index = newindex;
1600               break;
1601             }
1602             newindex += 1;
1603           }
1604           // Profile switch.
1605           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1606           address branch_pc = pc;
1607           UPDATE_PC_AND_TOS(skip, -1);
1608           DO_BACKEDGE_CHECKS(skip, branch_pc);
1609           CONTINUE;
1610       }
1611 
1612       CASE(_fcmpl):
1613       CASE(_fcmpg):
1614       {
1615           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1616                                         STACK_FLOAT(-1),
1617                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1618                         -2);
1619           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1620       }
1621 
1622       CASE(_dcmpl):
1623       CASE(_dcmpg):
1624       {
1625           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1626                                   STACK_DOUBLE(-1),
1627                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1628           MORE_STACK(-4); // Pop
1629           SET_STACK_INT(r, 0);
1630           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1631       }
1632 
1633       CASE(_lcmp):
1634       {
1635           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1636           MORE_STACK(-4);
1637           SET_STACK_INT(r, 0);
1638           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1639       }
1640 
1641 
1642       /* Return from a method */
1643 
1644       CASE(_areturn):
1645       CASE(_ireturn):
1646       CASE(_freturn):
1647       {
1648           // Allow a safepoint before returning to frame manager.
1649           SAFEPOINT;
1650 
1651           goto handle_return;
1652       }
1653 
1654       CASE(_lreturn):
1655       CASE(_dreturn):
1656       {
1657           // Allow a safepoint before returning to frame manager.
1658           SAFEPOINT;
1659           goto handle_return;
1660       }
1661 
1662       CASE(_return_register_finalizer): {
1663 
1664           oop rcvr = LOCALS_OBJECT(0);
1665           VERIFY_OOP(rcvr);
1666           if (rcvr->klass()->has_finalizer()) {
1667             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1668           }
1669           goto handle_return;
1670       }
1671       CASE(_return): {
1672 
1673           // Allow a safepoint before returning to frame manager.
1674           SAFEPOINT;
1675           goto handle_return;
1676       }
1677 
1678       /* Array access byte-codes */
1679 
1680       /* Every array access byte-code starts out like this */
1681 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1682 #define ARRAY_INTRO(arrayOff)                                                  \
1683       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1684       jint     index  = STACK_INT(arrayOff + 1);                               \
1685       char message[jintAsStringSize];                                          \
1686       CHECK_NULL(arrObj);                                                      \
1687       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1688           sprintf(message, "%d", index);                                       \
1689           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1690                         message, note_rangeCheck_trap);                        \
1691       }
1692 
1693       /* 32-bit loads. These handle conversion from < 32-bit types */
1694 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1695       {                                                                               \
1696           ARRAY_INTRO(-2);                                                            \
1697           (void)extra;                                                                \
1698           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1699                            -2);                                                       \
1700           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1701       }
1702 
1703       /* 64-bit loads */
1704 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1705       {                                                                                    \
1706           ARRAY_INTRO(-2);                                                                 \
1707           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1708           (void)extra;                                                                     \
1709           UPDATE_PC_AND_CONTINUE(1);                                                       \
1710       }
1711 
1712       CASE(_iaload):
1713           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1714       CASE(_faload):
1715           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1716       CASE(_aaload): {
1717           ARRAY_INTRO(-2);
1718           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1719           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1720       }
1721       CASE(_baload):
1722           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1723       CASE(_caload):
1724           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1725       CASE(_saload):
1726           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1727       CASE(_laload):
1728           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1729       CASE(_daload):
1730           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1731 
1732       /* 32-bit stores. These handle conversion to < 32-bit types */
1733 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1734       {                                                                              \
1735           ARRAY_INTRO(-3);                                                           \
1736           (void)extra;                                                               \
1737           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1738           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1739       }
1740 
1741       /* 64-bit stores */
1742 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1743       {                                                                              \
1744           ARRAY_INTRO(-4);                                                           \
1745           (void)extra;                                                               \
1746           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1747           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1748       }
1749 
1750       CASE(_iastore):
1751           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1752       CASE(_fastore):
1753           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1754       /*
1755        * This one looks different because of the assignability check
1756        */
1757       CASE(_aastore): {
1758           oop rhsObject = STACK_OBJECT(-1);
1759           VERIFY_OOP(rhsObject);
1760           ARRAY_INTRO( -3);
1761           // arrObj, index are set
1762           if (rhsObject != NULL) {
1763             /* Check assignability of rhsObject into arrObj */
1764             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1765             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1766             //
1767             // Check for compatibilty. This check must not GC!!
1768             // Seems way more expensive now that we must dispatch
1769             //
1770             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1771               // Decrement counter if subtype check failed.
1772               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1773               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1774             }
1775             // Profile checkcast with null_seen and receiver.
1776             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1777           } else {
1778             // Profile checkcast with null_seen and receiver.
1779             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1780           }
1781           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1782           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1783       }
1784       CASE(_bastore): {
1785           ARRAY_INTRO(-3);
1786           int item = STACK_INT(-1);
1787           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1788           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1789             item &= 1;
1790           } else {
1791             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1792                    "should be byte array otherwise");
1793           }
1794           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1795           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1796       }
1797       CASE(_castore):
1798           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1799       CASE(_sastore):
1800           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1801       CASE(_lastore):
1802           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1803       CASE(_dastore):
1804           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1805 
1806       CASE(_arraylength):
1807       {
1808           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1809           CHECK_NULL(ary);
1810           SET_STACK_INT(ary->length(), -1);
1811           UPDATE_PC_AND_CONTINUE(1);
1812       }
1813 
1814       /* monitorenter and monitorexit for locking/unlocking an object */
1815 
1816       CASE(_monitorenter): {
1817         oop lockee = STACK_OBJECT(-1);
1818         // derefing's lockee ought to provoke implicit null check
1819         CHECK_NULL(lockee);
1820         // find a free monitor or one already allocated for this object
1821         // if we find a matching object then we need a new monitor
1822         // since this is recursive enter
1823         BasicObjectLock* limit = istate->monitor_base();
1824         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1825         BasicObjectLock* entry = NULL;
1826         while (most_recent != limit ) {
1827           if (most_recent->obj() == NULL) entry = most_recent;
1828           else if (most_recent->obj() == lockee) break;
1829           most_recent++;
1830         }
1831         if (entry != NULL) {
1832           entry->set_obj(lockee);
1833           int success = false;
1834           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1835 
1836           markOop mark = lockee->mark();
1837           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1838           // implies UseBiasedLocking
1839           if (mark->has_bias_pattern()) {
1840             uintptr_t thread_ident;
1841             uintptr_t anticipated_bias_locking_value;
1842             thread_ident = (uintptr_t)istate->thread();
1843             anticipated_bias_locking_value =
1844               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1845               ~((uintptr_t) markOopDesc::age_mask_in_place);
1846 
1847             if  (anticipated_bias_locking_value == 0) {
1848               // already biased towards this thread, nothing to do
1849               if (PrintBiasedLockingStatistics) {
1850                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1851               }
1852               success = true;
1853             }
1854             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1855               // try revoke bias
1856               markOop header = lockee->klass()->prototype_header();
1857               if (hash != markOopDesc::no_hash) {
1858                 header = header->copy_set_hash(hash);
1859               }
1860               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1861                 if (PrintBiasedLockingStatistics)
1862                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1863               }
1864             }
1865             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1866               // try rebias
1867               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1868               if (hash != markOopDesc::no_hash) {
1869                 new_header = new_header->copy_set_hash(hash);
1870               }
1871               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1872                 if (PrintBiasedLockingStatistics)
1873                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1874               }
1875               else {
1876                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1877               }
1878               success = true;
1879             }
1880             else {
1881               // try to bias towards thread in case object is anonymously biased
1882               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1883                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1884                                                               epoch_mask_in_place));
1885               if (hash != markOopDesc::no_hash) {
1886                 header = header->copy_set_hash(hash);
1887               }
1888               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1889               // debugging hint
1890               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1891               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1892                 if (PrintBiasedLockingStatistics)
1893                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1894               }
1895               else {
1896                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1897               }
1898               success = true;
1899             }
1900           }
1901 
1902           // traditional lightweight locking
1903           if (!success) {
1904             markOop displaced = lockee->mark()->set_unlocked();
1905             entry->lock()->set_displaced_header(displaced);
1906             bool call_vm = UseHeavyMonitors;
1907             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1908               // Is it simple recursive case?
1909               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1910                 entry->lock()->set_displaced_header(NULL);
1911               } else {
1912                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1913               }
1914             }
1915           }
1916           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1917         } else {
1918           istate->set_msg(more_monitors);
1919           UPDATE_PC_AND_RETURN(0); // Re-execute
1920         }
1921       }
1922 
1923       CASE(_monitorexit): {
1924         oop lockee = STACK_OBJECT(-1);
1925         CHECK_NULL(lockee);
1926         // derefing's lockee ought to provoke implicit null check
1927         // find our monitor slot
1928         BasicObjectLock* limit = istate->monitor_base();
1929         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1930         while (most_recent != limit ) {
1931           if ((most_recent)->obj() == lockee) {
1932             BasicLock* lock = most_recent->lock();
1933             markOop header = lock->displaced_header();
1934             most_recent->set_obj(NULL);
1935             if (!lockee->mark()->has_bias_pattern()) {
1936               bool call_vm = UseHeavyMonitors;
1937               // If it isn't recursive we either must swap old header or call the runtime
1938               if (header != NULL || call_vm) {
1939                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1940                   // restore object for the slow case
1941                   most_recent->set_obj(lockee);
1942                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1943                 }
1944               }
1945             }
1946             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1947           }
1948           most_recent++;
1949         }
1950         // Need to throw illegal monitor state exception
1951         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1952         ShouldNotReachHere();
1953       }
1954 
1955       /* All of the non-quick opcodes. */
1956 
1957       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1958        *  constant pool index in the instruction.
1959        */
1960       CASE(_getfield):
1961       CASE(_getstatic):
1962         {
1963           u2 index;
1964           ConstantPoolCacheEntry* cache;
1965           index = Bytes::get_native_u2(pc+1);
1966 
1967           // QQQ Need to make this as inlined as possible. Probably need to
1968           // split all the bytecode cases out so c++ compiler has a chance
1969           // for constant prop to fold everything possible away.
1970 
1971           cache = cp->entry_at(index);
1972           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1973             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1974                     handle_exception);
1975             cache = cp->entry_at(index);
1976           }
1977 
1978 #ifdef VM_JVMTI
1979           if (_jvmti_interp_events) {
1980             int *count_addr;
1981             oop obj;
1982             // Check to see if a field modification watch has been set
1983             // before we take the time to call into the VM.
1984             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1985             if ( *count_addr > 0 ) {
1986               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1987                 obj = (oop)NULL;
1988               } else {
1989                 obj = (oop) STACK_OBJECT(-1);
1990                 VERIFY_OOP(obj);
1991               }
1992               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1993                                           obj,
1994                                           cache),
1995                                           handle_exception);
1996             }
1997           }
1998 #endif /* VM_JVMTI */
1999 
2000           oop obj;
2001           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
2002             Klass* k = cache->f1_as_klass();
2003             obj = k->java_mirror();
2004             MORE_STACK(1);  // Assume single slot push
2005           } else {
2006             obj = (oop) STACK_OBJECT(-1);
2007             CHECK_NULL(obj);
2008           }
2009 
2010           //
2011           // Now store the result on the stack
2012           //
2013           TosState tos_type = cache->flag_state();
2014           int field_offset = cache->f2_as_index();
2015           if (cache->is_volatile()) {
2016             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2017               OrderAccess::fence();
2018             }
2019             if (tos_type == atos) {
2020               VERIFY_OOP(obj->obj_field_acquire(field_offset));
2021               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2022             } else if (tos_type == itos) {
2023               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2024             } else if (tos_type == ltos) {
2025               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2026               MORE_STACK(1);
2027             } else if (tos_type == btos || tos_type == ztos) {
2028               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2029             } else if (tos_type == ctos) {
2030               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2031             } else if (tos_type == stos) {
2032               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2033             } else if (tos_type == ftos) {
2034               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2035             } else {
2036               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2037               MORE_STACK(1);
2038             }
2039           } else {
2040             if (tos_type == atos) {
2041               VERIFY_OOP(obj->obj_field(field_offset));
2042               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2043             } else if (tos_type == itos) {
2044               SET_STACK_INT(obj->int_field(field_offset), -1);
2045             } else if (tos_type == ltos) {
2046               SET_STACK_LONG(obj->long_field(field_offset), 0);
2047               MORE_STACK(1);
2048             } else if (tos_type == btos || tos_type == ztos) {
2049               SET_STACK_INT(obj->byte_field(field_offset), -1);
2050             } else if (tos_type == ctos) {
2051               SET_STACK_INT(obj->char_field(field_offset), -1);
2052             } else if (tos_type == stos) {
2053               SET_STACK_INT(obj->short_field(field_offset), -1);
2054             } else if (tos_type == ftos) {
2055               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2056             } else {
2057               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2058               MORE_STACK(1);
2059             }
2060           }
2061 
2062           UPDATE_PC_AND_CONTINUE(3);
2063          }
2064 
2065       CASE(_putfield):
2066       CASE(_putstatic):
2067         {
2068           u2 index = Bytes::get_native_u2(pc+1);
2069           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2070           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2071             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
2072                     handle_exception);
2073             cache = cp->entry_at(index);
2074           }
2075 
2076 #ifdef VM_JVMTI
2077           if (_jvmti_interp_events) {
2078             int *count_addr;
2079             oop obj;
2080             // Check to see if a field modification watch has been set
2081             // before we take the time to call into the VM.
2082             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2083             if ( *count_addr > 0 ) {
2084               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2085                 obj = (oop)NULL;
2086               }
2087               else {
2088                 if (cache->is_long() || cache->is_double()) {
2089                   obj = (oop) STACK_OBJECT(-3);
2090                 } else {
2091                   obj = (oop) STACK_OBJECT(-2);
2092                 }
2093                 VERIFY_OOP(obj);
2094               }
2095 
2096               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2097                                           obj,
2098                                           cache,
2099                                           (jvalue *)STACK_SLOT(-1)),
2100                                           handle_exception);
2101             }
2102           }
2103 #endif /* VM_JVMTI */
2104 
2105           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2106           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2107 
2108           oop obj;
2109           int count;
2110           TosState tos_type = cache->flag_state();
2111 
2112           count = -1;
2113           if (tos_type == ltos || tos_type == dtos) {
2114             --count;
2115           }
2116           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2117             Klass* k = cache->f1_as_klass();
2118             obj = k->java_mirror();
2119           } else {
2120             --count;
2121             obj = (oop) STACK_OBJECT(count);
2122             CHECK_NULL(obj);
2123           }
2124 
2125           //
2126           // Now store the result
2127           //
2128           int field_offset = cache->f2_as_index();
2129           if (cache->is_volatile()) {
2130             if (tos_type == itos) {
2131               obj->release_int_field_put(field_offset, STACK_INT(-1));
2132             } else if (tos_type == atos) {
2133               VERIFY_OOP(STACK_OBJECT(-1));
2134               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2135             } else if (tos_type == btos) {
2136               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2137             } else if (tos_type == ztos) {
2138               int bool_field = STACK_INT(-1);  // only store LSB
2139               obj->release_byte_field_put(field_offset, (bool_field & 1));
2140             } else if (tos_type == ltos) {
2141               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2142             } else if (tos_type == ctos) {
2143               obj->release_char_field_put(field_offset, STACK_INT(-1));
2144             } else if (tos_type == stos) {
2145               obj->release_short_field_put(field_offset, STACK_INT(-1));
2146             } else if (tos_type == ftos) {
2147               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2148             } else {
2149               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2150             }
2151             OrderAccess::storeload();
2152           } else {
2153             if (tos_type == itos) {
2154               obj->int_field_put(field_offset, STACK_INT(-1));
2155             } else if (tos_type == atos) {
2156               VERIFY_OOP(STACK_OBJECT(-1));
2157               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2158             } else if (tos_type == btos) {
2159               obj->byte_field_put(field_offset, STACK_INT(-1));
2160             } else if (tos_type == ztos) {
2161               int bool_field = STACK_INT(-1);  // only store LSB
2162               obj->byte_field_put(field_offset, (bool_field & 1));
2163             } else if (tos_type == ltos) {
2164               obj->long_field_put(field_offset, STACK_LONG(-1));
2165             } else if (tos_type == ctos) {
2166               obj->char_field_put(field_offset, STACK_INT(-1));
2167             } else if (tos_type == stos) {
2168               obj->short_field_put(field_offset, STACK_INT(-1));
2169             } else if (tos_type == ftos) {
2170               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2171             } else {
2172               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2173             }
2174           }
2175 
2176           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2177         }
2178 
2179       CASE(_new): {
2180         u2 index = Bytes::get_Java_u2(pc+1);
2181         ConstantPool* constants = istate->method()->constants();
2182         if (!constants->tag_at(index).is_unresolved_klass()) {
2183           // Make sure klass is initialized and doesn't have a finalizer
2184           Klass* entry = constants->slot_at(index).get_klass();
2185           assert(entry->is_klass(), "Should be resolved klass");
2186           Klass* k_entry = (Klass*) entry;
2187           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2188           InstanceKlass* ik = (InstanceKlass*) k_entry;
2189           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2190             size_t obj_size = ik->size_helper();
2191             oop result = NULL;
2192             // If the TLAB isn't pre-zeroed then we'll have to do it
2193             bool need_zero = !ZeroTLAB;
2194             if (UseTLAB) {
2195               result = (oop) THREAD->tlab().allocate(obj_size);
2196             }
2197             // Disable non-TLAB-based fast-path, because profiling requires that all
2198             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2199             // returns NULL.
2200 #ifndef CC_INTERP_PROFILE
2201             if (result == NULL) {
2202               need_zero = true;
2203               // Try allocate in shared eden
2204             retry:
2205               HeapWord* compare_to = *Universe::heap()->top_addr();
2206               HeapWord* new_top = compare_to + obj_size;
2207               if (new_top <= *Universe::heap()->end_addr()) {
2208                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2209                   goto retry;
2210                 }
2211                 result = (oop) compare_to;
2212               }
2213             }
2214 #endif
2215             if (result != NULL) {
2216               // Initialize object (if nonzero size and need) and then the header
2217               if (need_zero ) {
2218                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2219                 obj_size -= sizeof(oopDesc) / oopSize;
2220                 if (obj_size > 0 ) {
2221                   memset(to_zero, 0, obj_size * HeapWordSize);
2222                 }
2223               }
2224               if (UseBiasedLocking) {
2225                 result->set_mark(ik->prototype_header());
2226               } else {
2227                 result->set_mark(markOopDesc::prototype());
2228               }
2229               result->set_klass_gap(0);
2230               result->set_klass(k_entry);
2231               // Must prevent reordering of stores for object initialization
2232               // with stores that publish the new object.
2233               OrderAccess::storestore();
2234               SET_STACK_OBJECT(result, 0);
2235               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2236             }
2237           }
2238         }
2239         // Slow case allocation
2240         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2241                 handle_exception);
2242         // Must prevent reordering of stores for object initialization
2243         // with stores that publish the new object.
2244         OrderAccess::storestore();
2245         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2246         THREAD->set_vm_result(NULL);
2247         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2248       }
2249       CASE(_anewarray): {
2250         u2 index = Bytes::get_Java_u2(pc+1);
2251         jint size = STACK_INT(-1);
2252         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2253                 handle_exception);
2254         // Must prevent reordering of stores for object initialization
2255         // with stores that publish the new object.
2256         OrderAccess::storestore();
2257         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2258         THREAD->set_vm_result(NULL);
2259         UPDATE_PC_AND_CONTINUE(3);
2260       }
2261       CASE(_multianewarray): {
2262         jint dims = *(pc+3);
2263         jint size = STACK_INT(-1);
2264         // stack grows down, dimensions are up!
2265         jint *dimarray =
2266                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2267                                       Interpreter::stackElementWords-1];
2268         //adjust pointer to start of stack element
2269         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2270                 handle_exception);
2271         // Must prevent reordering of stores for object initialization
2272         // with stores that publish the new object.
2273         OrderAccess::storestore();
2274         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2275         THREAD->set_vm_result(NULL);
2276         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2277       }
2278       CASE(_checkcast):
2279           if (STACK_OBJECT(-1) != NULL) {
2280             VERIFY_OOP(STACK_OBJECT(-1));
2281             u2 index = Bytes::get_Java_u2(pc+1);
2282             // Constant pool may have actual klass or unresolved klass. If it is
2283             // unresolved we must resolve it.
2284             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2285               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2286             }
2287             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2288             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2289             //
2290             // Check for compatibilty. This check must not GC!!
2291             // Seems way more expensive now that we must dispatch.
2292             //
2293             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2294               // Decrement counter at checkcast.
2295               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2296               ResourceMark rm(THREAD);
2297               const char* objName = objKlass->external_name();
2298               const char* klassName = klassOf->external_name();
2299               char* message = SharedRuntime::generate_class_cast_message(
2300                 objName, klassName);
2301               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2302             }
2303             // Profile checkcast with null_seen and receiver.
2304             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2305           } else {
2306             // Profile checkcast with null_seen and receiver.
2307             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2308           }
2309           UPDATE_PC_AND_CONTINUE(3);
2310 
2311       CASE(_instanceof):
2312           if (STACK_OBJECT(-1) == NULL) {
2313             SET_STACK_INT(0, -1);
2314             // Profile instanceof with null_seen and receiver.
2315             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2316           } else {
2317             VERIFY_OOP(STACK_OBJECT(-1));
2318             u2 index = Bytes::get_Java_u2(pc+1);
2319             // Constant pool may have actual klass or unresolved klass. If it is
2320             // unresolved we must resolve it.
2321             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2322               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2323             }
2324             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2325             Klass* objKlass = STACK_OBJECT(-1)->klass();
2326             //
2327             // Check for compatibilty. This check must not GC!!
2328             // Seems way more expensive now that we must dispatch.
2329             //
2330             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2331               SET_STACK_INT(1, -1);
2332             } else {
2333               SET_STACK_INT(0, -1);
2334               // Decrement counter at checkcast.
2335               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2336             }
2337             // Profile instanceof with null_seen and receiver.
2338             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2339           }
2340           UPDATE_PC_AND_CONTINUE(3);
2341 
2342       CASE(_ldc_w):
2343       CASE(_ldc):
2344         {
2345           u2 index;
2346           bool wide = false;
2347           int incr = 2; // frequent case
2348           if (opcode == Bytecodes::_ldc) {
2349             index = pc[1];
2350           } else {
2351             index = Bytes::get_Java_u2(pc+1);
2352             incr = 3;
2353             wide = true;
2354           }
2355 
2356           ConstantPool* constants = METHOD->constants();
2357           switch (constants->tag_at(index).value()) {
2358           case JVM_CONSTANT_Integer:
2359             SET_STACK_INT(constants->int_at(index), 0);
2360             break;
2361 
2362           case JVM_CONSTANT_Float:
2363             SET_STACK_FLOAT(constants->float_at(index), 0);
2364             break;
2365 
2366           case JVM_CONSTANT_String:
2367             {
2368               oop result = constants->resolved_references()->obj_at(index);
2369               if (result == NULL) {
2370                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2371                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2372                 THREAD->set_vm_result(NULL);
2373               } else {
2374                 VERIFY_OOP(result);
2375                 SET_STACK_OBJECT(result, 0);
2376               }
2377             break;
2378             }
2379 
2380           case JVM_CONSTANT_Class:
2381             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2382             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2383             break;
2384 
2385           case JVM_CONSTANT_UnresolvedClass:
2386           case JVM_CONSTANT_UnresolvedClassInError:
2387             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2388             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2389             THREAD->set_vm_result(NULL);
2390             break;
2391 
2392           default:  ShouldNotReachHere();
2393           }
2394           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2395         }
2396 
2397       CASE(_ldc2_w):
2398         {
2399           u2 index = Bytes::get_Java_u2(pc+1);
2400 
2401           ConstantPool* constants = METHOD->constants();
2402           switch (constants->tag_at(index).value()) {
2403 
2404           case JVM_CONSTANT_Long:
2405              SET_STACK_LONG(constants->long_at(index), 1);
2406             break;
2407 
2408           case JVM_CONSTANT_Double:
2409              SET_STACK_DOUBLE(constants->double_at(index), 1);
2410             break;
2411           default:  ShouldNotReachHere();
2412           }
2413           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2414         }
2415 
2416       CASE(_fast_aldc_w):
2417       CASE(_fast_aldc): {
2418         u2 index;
2419         int incr;
2420         if (opcode == Bytecodes::_fast_aldc) {
2421           index = pc[1];
2422           incr = 2;
2423         } else {
2424           index = Bytes::get_native_u2(pc+1);
2425           incr = 3;
2426         }
2427 
2428         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2429         // This kind of CP cache entry does not need to match the flags byte, because
2430         // there is a 1-1 relation between bytecode type and CP entry type.
2431         ConstantPool* constants = METHOD->constants();
2432         oop result = constants->resolved_references()->obj_at(index);
2433         if (result == NULL) {
2434           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2435                   handle_exception);
2436           result = THREAD->vm_result();
2437         }
2438 
2439         VERIFY_OOP(result);
2440         SET_STACK_OBJECT(result, 0);
2441         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2442       }
2443 
2444       CASE(_invokedynamic): {
2445 
2446         if (!EnableInvokeDynamic) {
2447           // We should not encounter this bytecode if !EnableInvokeDynamic.
2448           // The verifier will stop it.  However, if we get past the verifier,
2449           // this will stop the thread in a reasonable way, without crashing the JVM.
2450           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2451                   handle_exception);
2452           ShouldNotReachHere();
2453         }
2454 
2455         u4 index = Bytes::get_native_u4(pc+1);
2456         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2457 
2458         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2459         // This kind of CP cache entry does not need to match the flags byte, because
2460         // there is a 1-1 relation between bytecode type and CP entry type.
2461         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2462           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2463                   handle_exception);
2464           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2465         }
2466 
2467         Method* method = cache->f1_as_method();
2468         if (VerifyOops) method->verify();
2469 
2470         if (cache->has_appendix()) {
2471           ConstantPool* constants = METHOD->constants();
2472           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2473           MORE_STACK(1);
2474         }
2475 
2476         istate->set_msg(call_method);
2477         istate->set_callee(method);
2478         istate->set_callee_entry_point(method->from_interpreted_entry());
2479         istate->set_bcp_advance(5);
2480 
2481         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2482         BI_PROFILE_UPDATE_CALL();
2483 
2484         UPDATE_PC_AND_RETURN(0); // I'll be back...
2485       }
2486 
2487       CASE(_invokehandle): {
2488 
2489         if (!EnableInvokeDynamic) {
2490           ShouldNotReachHere();
2491         }
2492 
2493         u2 index = Bytes::get_native_u2(pc+1);
2494         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2495 
2496         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2497           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2498                   handle_exception);
2499           cache = cp->entry_at(index);
2500         }
2501 
2502         Method* method = cache->f1_as_method();
2503         if (VerifyOops) method->verify();
2504 
2505         if (cache->has_appendix()) {
2506           ConstantPool* constants = METHOD->constants();
2507           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2508           MORE_STACK(1);
2509         }
2510 
2511         istate->set_msg(call_method);
2512         istate->set_callee(method);
2513         istate->set_callee_entry_point(method->from_interpreted_entry());
2514         istate->set_bcp_advance(3);
2515 
2516         // Invokehandle has got a call counter, just like a final call -> increment!
2517         BI_PROFILE_UPDATE_FINALCALL();
2518 
2519         UPDATE_PC_AND_RETURN(0); // I'll be back...
2520       }
2521 
2522       CASE(_invokeinterface): {
2523         u2 index = Bytes::get_native_u2(pc+1);
2524 
2525         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2526         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2527 
2528         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2529         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2530           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2531                   handle_exception);
2532           cache = cp->entry_at(index);
2533         }
2534 
2535         istate->set_msg(call_method);
2536 
2537         // Special case of invokeinterface called for virtual method of
2538         // java.lang.Object.  See cpCacheOop.cpp for details.
2539         // This code isn't produced by javac, but could be produced by
2540         // another compliant java compiler.
2541         if (cache->is_forced_virtual()) {
2542           Method* callee;
2543           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2544           if (cache->is_vfinal()) {
2545             callee = cache->f2_as_vfinal_method();
2546             // Profile 'special case of invokeinterface' final call.
2547             BI_PROFILE_UPDATE_FINALCALL();
2548           } else {
2549             // Get receiver.
2550             int parms = cache->parameter_size();
2551             // Same comments as invokevirtual apply here.
2552             oop rcvr = STACK_OBJECT(-parms);
2553             VERIFY_OOP(rcvr);
2554             InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2555             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2556             // Profile 'special case of invokeinterface' virtual call.
2557             BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2558           }
2559           istate->set_callee(callee);
2560           istate->set_callee_entry_point(callee->from_interpreted_entry());
2561 #ifdef VM_JVMTI
2562           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2563             istate->set_callee_entry_point(callee->interpreter_entry());
2564           }
2565 #endif /* VM_JVMTI */
2566           istate->set_bcp_advance(5);
2567           UPDATE_PC_AND_RETURN(0); // I'll be back...
2568         }
2569 
2570         // this could definitely be cleaned up QQQ
2571         Method* callee;
2572         Klass* iclass = cache->f1_as_klass();
2573         // InstanceKlass* interface = (InstanceKlass*) iclass;
2574         // get receiver
2575         int parms = cache->parameter_size();
2576         oop rcvr = STACK_OBJECT(-parms);
2577         CHECK_NULL(rcvr);
2578         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2579         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2580         int i;
2581         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2582           if (ki->interface_klass() == iclass) break;
2583         }
2584         // If the interface isn't found, this class doesn't implement this
2585         // interface.  The link resolver checks this but only for the first
2586         // time this interface is called.
2587         if (i == int2->itable_length()) {
2588           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2589         }
2590         int mindex = cache->f2_as_index();
2591         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2592         callee = im[mindex].method();
2593         if (callee == NULL) {
2594           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2595         }
2596 
2597         // Profile virtual call.
2598         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2599 
2600         istate->set_callee(callee);
2601         istate->set_callee_entry_point(callee->from_interpreted_entry());
2602 #ifdef VM_JVMTI
2603         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2604           istate->set_callee_entry_point(callee->interpreter_entry());
2605         }
2606 #endif /* VM_JVMTI */
2607         istate->set_bcp_advance(5);
2608         UPDATE_PC_AND_RETURN(0); // I'll be back...
2609       }
2610 
2611       CASE(_invokevirtual):
2612       CASE(_invokespecial):
2613       CASE(_invokestatic): {
2614         u2 index = Bytes::get_native_u2(pc+1);
2615 
2616         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2617         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2618         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2619 
2620         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2621           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2622                   handle_exception);
2623           cache = cp->entry_at(index);
2624         }
2625 
2626         istate->set_msg(call_method);
2627         {
2628           Method* callee;
2629           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2630             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2631             if (cache->is_vfinal()) {
2632               callee = cache->f2_as_vfinal_method();
2633               // Profile final call.
2634               BI_PROFILE_UPDATE_FINALCALL();
2635             } else {
2636               // get receiver
2637               int parms = cache->parameter_size();
2638               // this works but needs a resourcemark and seems to create a vtable on every call:
2639               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2640               //
2641               // this fails with an assert
2642               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2643               // but this works
2644               oop rcvr = STACK_OBJECT(-parms);
2645               VERIFY_OOP(rcvr);
2646               InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2647               /*
2648                 Executing this code in java.lang.String:
2649                     public String(char value[]) {
2650                           this.count = value.length;
2651                           this.value = (char[])value.clone();
2652                      }
2653 
2654                  a find on rcvr->klass() reports:
2655                  {type array char}{type array class}
2656                   - klass: {other class}
2657 
2658                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2659                   because rcvr->klass()->oop_is_instance() == 0
2660                   However it seems to have a vtable in the right location. Huh?
2661 
2662               */
2663               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2664               // Profile virtual call.
2665               BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2666             }
2667           } else {
2668             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2669               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2670             }
2671             callee = cache->f1_as_method();
2672 
2673             // Profile call.
2674             BI_PROFILE_UPDATE_CALL();
2675           }
2676 
2677           istate->set_callee(callee);
2678           istate->set_callee_entry_point(callee->from_interpreted_entry());
2679 #ifdef VM_JVMTI
2680           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2681             istate->set_callee_entry_point(callee->interpreter_entry());
2682           }
2683 #endif /* VM_JVMTI */
2684           istate->set_bcp_advance(3);
2685           UPDATE_PC_AND_RETURN(0); // I'll be back...
2686         }
2687       }
2688 
2689       /* Allocate memory for a new java object. */
2690 
2691       CASE(_newarray): {
2692         BasicType atype = (BasicType) *(pc+1);
2693         jint size = STACK_INT(-1);
2694         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2695                 handle_exception);
2696         // Must prevent reordering of stores for object initialization
2697         // with stores that publish the new object.
2698         OrderAccess::storestore();
2699         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2700         THREAD->set_vm_result(NULL);
2701 
2702         UPDATE_PC_AND_CONTINUE(2);
2703       }
2704 
2705       /* Throw an exception. */
2706 
2707       CASE(_athrow): {
2708           oop except_oop = STACK_OBJECT(-1);
2709           CHECK_NULL(except_oop);
2710           // set pending_exception so we use common code
2711           THREAD->set_pending_exception(except_oop, NULL, 0);
2712           goto handle_exception;
2713       }
2714 
2715       /* goto and jsr. They are exactly the same except jsr pushes
2716        * the address of the next instruction first.
2717        */
2718 
2719       CASE(_jsr): {
2720           /* push bytecode index on stack */
2721           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2722           MORE_STACK(1);
2723           /* FALL THROUGH */
2724       }
2725 
2726       CASE(_goto):
2727       {
2728           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2729           // Profile jump.
2730           BI_PROFILE_UPDATE_JUMP();
2731           address branch_pc = pc;
2732           UPDATE_PC(offset);
2733           DO_BACKEDGE_CHECKS(offset, branch_pc);
2734           CONTINUE;
2735       }
2736 
2737       CASE(_jsr_w): {
2738           /* push return address on the stack */
2739           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2740           MORE_STACK(1);
2741           /* FALL THROUGH */
2742       }
2743 
2744       CASE(_goto_w):
2745       {
2746           int32_t offset = Bytes::get_Java_u4(pc + 1);
2747           // Profile jump.
2748           BI_PROFILE_UPDATE_JUMP();
2749           address branch_pc = pc;
2750           UPDATE_PC(offset);
2751           DO_BACKEDGE_CHECKS(offset, branch_pc);
2752           CONTINUE;
2753       }
2754 
2755       /* return from a jsr or jsr_w */
2756 
2757       CASE(_ret): {
2758           // Profile ret.
2759           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2760           // Now, update the pc.
2761           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2762           UPDATE_PC_AND_CONTINUE(0);
2763       }
2764 
2765       /* debugger breakpoint */
2766 
2767       CASE(_breakpoint): {
2768           Bytecodes::Code original_bytecode;
2769           DECACHE_STATE();
2770           SET_LAST_JAVA_FRAME();
2771           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2772                               METHOD, pc);
2773           RESET_LAST_JAVA_FRAME();
2774           CACHE_STATE();
2775           if (THREAD->has_pending_exception()) goto handle_exception;
2776             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2777                                                     handle_exception);
2778 
2779           opcode = (jubyte)original_bytecode;
2780           goto opcode_switch;
2781       }
2782 
2783       DEFAULT:
2784           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2785                         Bytecodes::name((Bytecodes::Code)opcode)));
2786           goto finish;
2787 
2788       } /* switch(opc) */
2789 
2790 
2791 #ifdef USELABELS
2792     check_for_exception:
2793 #endif
2794     {
2795       if (!THREAD->has_pending_exception()) {
2796         CONTINUE;
2797       }
2798       /* We will be gcsafe soon, so flush our state. */
2799       DECACHE_PC();
2800       goto handle_exception;
2801     }
2802   do_continue: ;
2803 
2804   } /* while (1) interpreter loop */
2805 
2806 
2807   // An exception exists in the thread state see whether this activation can handle it
2808   handle_exception: {
2809 
2810     HandleMarkCleaner __hmc(THREAD);
2811     Handle except_oop(THREAD, THREAD->pending_exception());
2812     // Prevent any subsequent HandleMarkCleaner in the VM
2813     // from freeing the except_oop handle.
2814     HandleMark __hm(THREAD);
2815 
2816     THREAD->clear_pending_exception();
2817     assert(except_oop(), "No exception to process");
2818     intptr_t continuation_bci;
2819     // expression stack is emptied
2820     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2821     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2822             handle_exception);
2823 
2824     except_oop = THREAD->vm_result();
2825     THREAD->set_vm_result(NULL);
2826     if (continuation_bci >= 0) {
2827       // Place exception on top of stack
2828       SET_STACK_OBJECT(except_oop(), 0);
2829       MORE_STACK(1);
2830       pc = METHOD->code_base() + continuation_bci;
2831       if (TraceExceptions) {
2832         ttyLocker ttyl;
2833         ResourceMark rm;
2834         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), p2i(except_oop()));
2835         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2836         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2837                       (int)(istate->bcp() - METHOD->code_base()),
2838                       (int)continuation_bci, p2i(THREAD));
2839       }
2840       // for AbortVMOnException flag
2841       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2842 
2843       // Update profiling data.
2844       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2845       goto run;
2846     }
2847     if (TraceExceptions) {
2848       ttyLocker ttyl;
2849       ResourceMark rm;
2850       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), p2i(except_oop()));
2851       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2852       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2853                     (int)(istate->bcp() - METHOD->code_base()),
2854                     p2i(THREAD));
2855     }
2856     // for AbortVMOnException flag
2857     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2858     // No handler in this activation, unwind and try again
2859     THREAD->set_pending_exception(except_oop(), NULL, 0);
2860     goto handle_return;
2861   }  // handle_exception:
2862 
2863   // Return from an interpreter invocation with the result of the interpretation
2864   // on the top of the Java Stack (or a pending exception)
2865 
2866   handle_Pop_Frame: {
2867 
2868     // We don't really do anything special here except we must be aware
2869     // that we can get here without ever locking the method (if sync).
2870     // Also we skip the notification of the exit.
2871 
2872     istate->set_msg(popping_frame);
2873     // Clear pending so while the pop is in process
2874     // we don't start another one if a call_vm is done.
2875     THREAD->clr_pop_frame_pending();
2876     // Let interpreter (only) see the we're in the process of popping a frame
2877     THREAD->set_pop_frame_in_process();
2878 
2879     goto handle_return;
2880 
2881   } // handle_Pop_Frame
2882 
2883   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2884   // given by the invoker of the early return.
2885   handle_Early_Return: {
2886 
2887     istate->set_msg(early_return);
2888 
2889     // Clear expression stack.
2890     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2891 
2892     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2893 
2894     // Push the value to be returned.
2895     switch (istate->method()->result_type()) {
2896       case T_BOOLEAN:
2897       case T_SHORT:
2898       case T_BYTE:
2899       case T_CHAR:
2900       case T_INT:
2901         SET_STACK_INT(ts->earlyret_value().i, 0);
2902         MORE_STACK(1);
2903         break;
2904       case T_LONG:
2905         SET_STACK_LONG(ts->earlyret_value().j, 1);
2906         MORE_STACK(2);
2907         break;
2908       case T_FLOAT:
2909         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2910         MORE_STACK(1);
2911         break;
2912       case T_DOUBLE:
2913         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2914         MORE_STACK(2);
2915         break;
2916       case T_ARRAY:
2917       case T_OBJECT:
2918         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2919         MORE_STACK(1);
2920         break;
2921     }
2922 
2923     ts->clr_earlyret_value();
2924     ts->set_earlyret_oop(NULL);
2925     ts->clr_earlyret_pending();
2926 
2927     // Fall through to handle_return.
2928 
2929   } // handle_Early_Return
2930 
2931   handle_return: {
2932     // A storestore barrier is required to order initialization of
2933     // final fields with publishing the reference to the object that
2934     // holds the field. Without the barrier the value of final fields
2935     // can be observed to change.
2936     OrderAccess::storestore();
2937 
2938     DECACHE_STATE();
2939 
2940     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2941     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2942     Handle original_exception(THREAD, THREAD->pending_exception());
2943     Handle illegal_state_oop(THREAD, NULL);
2944 
2945     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2946     // in any following VM entries from freeing our live handles, but illegal_state_oop
2947     // isn't really allocated yet and so doesn't become live until later and
2948     // in unpredicatable places. Instead we must protect the places where we enter the
2949     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2950     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2951     // unfortunately isn't possible.
2952 
2953     THREAD->clear_pending_exception();
2954 
2955     //
2956     // As far as we are concerned we have returned. If we have a pending exception
2957     // that will be returned as this invocation's result. However if we get any
2958     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2959     // will be our final result (i.e. monitor exception trumps a pending exception).
2960     //
2961 
2962     // If we never locked the method (or really passed the point where we would have),
2963     // there is no need to unlock it (or look for other monitors), since that
2964     // could not have happened.
2965 
2966     if (THREAD->do_not_unlock()) {
2967 
2968       // Never locked, reset the flag now because obviously any caller must
2969       // have passed their point of locking for us to have gotten here.
2970 
2971       THREAD->clr_do_not_unlock();
2972     } else {
2973       // At this point we consider that we have returned. We now check that the
2974       // locks were properly block structured. If we find that they were not
2975       // used properly we will return with an illegal monitor exception.
2976       // The exception is checked by the caller not the callee since this
2977       // checking is considered to be part of the invocation and therefore
2978       // in the callers scope (JVM spec 8.13).
2979       //
2980       // Another weird thing to watch for is if the method was locked
2981       // recursively and then not exited properly. This means we must
2982       // examine all the entries in reverse time(and stack) order and
2983       // unlock as we find them. If we find the method monitor before
2984       // we are at the initial entry then we should throw an exception.
2985       // It is not clear the template based interpreter does this
2986       // correctly
2987 
2988       BasicObjectLock* base = istate->monitor_base();
2989       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2990       bool method_unlock_needed = METHOD->is_synchronized();
2991       // We know the initial monitor was used for the method don't check that
2992       // slot in the loop
2993       if (method_unlock_needed) base--;
2994 
2995       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2996       while (end < base) {
2997         oop lockee = end->obj();
2998         if (lockee != NULL) {
2999           BasicLock* lock = end->lock();
3000           markOop header = lock->displaced_header();
3001           end->set_obj(NULL);
3002 
3003           if (!lockee->mark()->has_bias_pattern()) {
3004             // If it isn't recursive we either must swap old header or call the runtime
3005             if (header != NULL) {
3006               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
3007                 // restore object for the slow case
3008                 end->set_obj(lockee);
3009                 {
3010                   // Prevent any HandleMarkCleaner from freeing our live handles
3011                   HandleMark __hm(THREAD);
3012                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
3013                 }
3014               }
3015             }
3016           }
3017           // One error is plenty
3018           if (illegal_state_oop() == NULL && !suppress_error) {
3019             {
3020               // Prevent any HandleMarkCleaner from freeing our live handles
3021               HandleMark __hm(THREAD);
3022               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3023             }
3024             assert(THREAD->has_pending_exception(), "Lost our exception!");
3025             illegal_state_oop = THREAD->pending_exception();
3026             THREAD->clear_pending_exception();
3027           }
3028         }
3029         end++;
3030       }
3031       // Unlock the method if needed
3032       if (method_unlock_needed) {
3033         if (base->obj() == NULL) {
3034           // The method is already unlocked this is not good.
3035           if (illegal_state_oop() == NULL && !suppress_error) {
3036             {
3037               // Prevent any HandleMarkCleaner from freeing our live handles
3038               HandleMark __hm(THREAD);
3039               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3040             }
3041             assert(THREAD->has_pending_exception(), "Lost our exception!");
3042             illegal_state_oop = THREAD->pending_exception();
3043             THREAD->clear_pending_exception();
3044           }
3045         } else {
3046           //
3047           // The initial monitor is always used for the method
3048           // However if that slot is no longer the oop for the method it was unlocked
3049           // and reused by something that wasn't unlocked!
3050           //
3051           // deopt can come in with rcvr dead because c2 knows
3052           // its value is preserved in the monitor. So we can't use locals[0] at all
3053           // and must use first monitor slot.
3054           //
3055           oop rcvr = base->obj();
3056           if (rcvr == NULL) {
3057             if (!suppress_error) {
3058               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3059               illegal_state_oop = THREAD->pending_exception();
3060               THREAD->clear_pending_exception();
3061             }
3062           } else if (UseHeavyMonitors) {
3063             {
3064               // Prevent any HandleMarkCleaner from freeing our live handles.
3065               HandleMark __hm(THREAD);
3066               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3067             }
3068             if (THREAD->has_pending_exception()) {
3069               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3070               THREAD->clear_pending_exception();
3071             }
3072           } else {
3073             BasicLock* lock = base->lock();
3074             markOop header = lock->displaced_header();
3075             base->set_obj(NULL);
3076 
3077             if (!rcvr->mark()->has_bias_pattern()) {
3078               base->set_obj(NULL);
3079               // If it isn't recursive we either must swap old header or call the runtime
3080               if (header != NULL) {
3081                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3082                   // restore object for the slow case
3083                   base->set_obj(rcvr);
3084                   {
3085                     // Prevent any HandleMarkCleaner from freeing our live handles
3086                     HandleMark __hm(THREAD);
3087                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3088                   }
3089                   if (THREAD->has_pending_exception()) {
3090                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3091                     THREAD->clear_pending_exception();
3092                   }
3093                 }
3094               }
3095             }
3096           }
3097         }
3098       }
3099     }
3100     // Clear the do_not_unlock flag now.
3101     THREAD->clr_do_not_unlock();
3102 
3103     //
3104     // Notify jvmti/jvmdi
3105     //
3106     // NOTE: we do not notify a method_exit if we have a pending exception,
3107     // including an exception we generate for unlocking checks.  In the former
3108     // case, JVMDI has already been notified by our call for the exception handler
3109     // and in both cases as far as JVMDI is concerned we have already returned.
3110     // If we notify it again JVMDI will be all confused about how many frames
3111     // are still on the stack (4340444).
3112     //
3113     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3114     // method_exit events whenever we leave an activation unless it was done
3115     // for popframe. This is nothing like jvmdi. However we are passing the
3116     // tests at the moment (apparently because they are jvmdi based) so rather
3117     // than change this code and possibly fail tests we will leave it alone
3118     // (with this note) in anticipation of changing the vm and the tests
3119     // simultaneously.
3120 
3121 
3122     //
3123     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3124 
3125 
3126 
3127 #ifdef VM_JVMTI
3128       if (_jvmti_interp_events) {
3129         // Whenever JVMTI puts a thread in interp_only_mode, method
3130         // entry/exit events are sent for that thread to track stack depth.
3131         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3132           {
3133             // Prevent any HandleMarkCleaner from freeing our live handles
3134             HandleMark __hm(THREAD);
3135             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3136           }
3137         }
3138       }
3139 #endif /* VM_JVMTI */
3140 
3141     //
3142     // See if we are returning any exception
3143     // A pending exception that was pending prior to a possible popping frame
3144     // overrides the popping frame.
3145     //
3146     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3147     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3148       // Inform the frame manager we have no result.
3149       istate->set_msg(throwing_exception);
3150       if (illegal_state_oop() != NULL)
3151         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3152       else
3153         THREAD->set_pending_exception(original_exception(), NULL, 0);
3154       UPDATE_PC_AND_RETURN(0);
3155     }
3156 
3157     if (istate->msg() == popping_frame) {
3158       // Make it simpler on the assembly code and set the message for the frame pop.
3159       // returns
3160       if (istate->prev() == NULL) {
3161         // We must be returning to a deoptimized frame (because popframe only happens between
3162         // two interpreted frames). We need to save the current arguments in C heap so that
3163         // the deoptimized frame when it restarts can copy the arguments to its expression
3164         // stack and re-execute the call. We also have to notify deoptimization that this
3165         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3166         // java expression stack. Yuck.
3167         //
3168         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3169                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3170         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3171       }
3172     } else {
3173       istate->set_msg(return_from_method);
3174     }
3175 
3176     // Normal return
3177     // Advance the pc and return to frame manager
3178     UPDATE_PC_AND_RETURN(1);
3179   } /* handle_return: */
3180 
3181 // This is really a fatal error return
3182 
3183 finish:
3184   DECACHE_TOS();
3185   DECACHE_PC();
3186 
3187   return;
3188 }
3189 
3190 /*
3191  * All the code following this point is only produced once and is not present
3192  * in the JVMTI version of the interpreter
3193 */
3194 
3195 #ifndef VM_JVMTI
3196 
3197 // This constructor should only be used to contruct the object to signal
3198 // interpreter initialization. All other instances should be created by
3199 // the frame manager.
3200 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3201   if (msg != initialize) ShouldNotReachHere();
3202   _msg = msg;
3203   _self_link = this;
3204   _prev_link = NULL;
3205 }
3206 
3207 // Inline static functions for Java Stack and Local manipulation
3208 
3209 // The implementations are platform dependent. We have to worry about alignment
3210 // issues on some machines which can change on the same platform depending on
3211 // whether it is an LP64 machine also.
3212 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3213   return (address) tos[Interpreter::expr_index_at(-offset)];
3214 }
3215 
3216 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3217   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3218 }
3219 
3220 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3221   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3222 }
3223 
3224 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3225   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3226 }
3227 
3228 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3229   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3230 }
3231 
3232 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3233   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3234 }
3235 
3236 // only used for value types
3237 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3238                                                         int offset) {
3239   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3240 }
3241 
3242 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3243                                                        int offset) {
3244   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3245 }
3246 
3247 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3248                                                          int offset) {
3249   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3250 }
3251 
3252 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3253                                                           int offset) {
3254   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3255 }
3256 
3257 // needs to be platform dep for the 32 bit platforms.
3258 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3259                                                           int offset) {
3260   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3261 }
3262 
3263 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3264                                               address addr, int offset) {
3265   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3266                         ((VMJavaVal64*)addr)->d);
3267 }
3268 
3269 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3270                                                         int offset) {
3271   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3272   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3273 }
3274 
3275 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3276                                             address addr, int offset) {
3277   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3278   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3279                         ((VMJavaVal64*)addr)->l;
3280 }
3281 
3282 // Locals
3283 
3284 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3285   return (address)locals[Interpreter::local_index_at(-offset)];
3286 }
3287 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3288   return (jint)locals[Interpreter::local_index_at(-offset)];
3289 }
3290 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3291   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3292 }
3293 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3294   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3295 }
3296 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3297   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3298 }
3299 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3300   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3301 }
3302 
3303 // Returns the address of locals value.
3304 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3305   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3306 }
3307 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3308   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3309 }
3310 
3311 // Used for local value or returnAddress
3312 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3313                                    address value, int offset) {
3314   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3315 }
3316 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3317                                    jint value, int offset) {
3318   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3319 }
3320 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3321                                    jfloat value, int offset) {
3322   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3323 }
3324 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3325                                    oop value, int offset) {
3326   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3327 }
3328 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3329                                    jdouble value, int offset) {
3330   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3331 }
3332 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3333                                    jlong value, int offset) {
3334   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3335 }
3336 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3337                                    address addr, int offset) {
3338   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3339 }
3340 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3341                                    address addr, int offset) {
3342   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3343 }
3344 
3345 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3346                           intptr_t* locals, int locals_offset) {
3347   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3348   locals[Interpreter::local_index_at(-locals_offset)] = value;
3349 }
3350 
3351 
3352 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3353                                    int to_offset) {
3354   tos[Interpreter::expr_index_at(-to_offset)] =
3355                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3356 }
3357 
3358 void BytecodeInterpreter::dup(intptr_t *tos) {
3359   copy_stack_slot(tos, -1, 0);
3360 }
3361 void BytecodeInterpreter::dup2(intptr_t *tos) {
3362   copy_stack_slot(tos, -2, 0);
3363   copy_stack_slot(tos, -1, 1);
3364 }
3365 
3366 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3367   /* insert top word two down */
3368   copy_stack_slot(tos, -1, 0);
3369   copy_stack_slot(tos, -2, -1);
3370   copy_stack_slot(tos, 0, -2);
3371 }
3372 
3373 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3374   /* insert top word three down  */
3375   copy_stack_slot(tos, -1, 0);
3376   copy_stack_slot(tos, -2, -1);
3377   copy_stack_slot(tos, -3, -2);
3378   copy_stack_slot(tos, 0, -3);
3379 }
3380 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3381   /* insert top 2 slots three down */
3382   copy_stack_slot(tos, -1, 1);
3383   copy_stack_slot(tos, -2, 0);
3384   copy_stack_slot(tos, -3, -1);
3385   copy_stack_slot(tos, 1, -2);
3386   copy_stack_slot(tos, 0, -3);
3387 }
3388 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3389   /* insert top 2 slots four down */
3390   copy_stack_slot(tos, -1, 1);
3391   copy_stack_slot(tos, -2, 0);
3392   copy_stack_slot(tos, -3, -1);
3393   copy_stack_slot(tos, -4, -2);
3394   copy_stack_slot(tos, 1, -3);
3395   copy_stack_slot(tos, 0, -4);
3396 }
3397 
3398 
3399 void BytecodeInterpreter::swap(intptr_t *tos) {
3400   // swap top two elements
3401   intptr_t val = tos[Interpreter::expr_index_at(1)];
3402   // Copy -2 entry to -1
3403   copy_stack_slot(tos, -2, -1);
3404   // Store saved -1 entry into -2
3405   tos[Interpreter::expr_index_at(2)] = val;
3406 }
3407 // --------------------------------------------------------------------------------
3408 // Non-product code
3409 #ifndef PRODUCT
3410 
3411 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3412   switch (msg) {
3413      case BytecodeInterpreter::no_request:  return("no_request");
3414      case BytecodeInterpreter::initialize:  return("initialize");
3415      // status message to C++ interpreter
3416      case BytecodeInterpreter::method_entry:  return("method_entry");
3417      case BytecodeInterpreter::method_resume:  return("method_resume");
3418      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3419      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3420      // requests to frame manager from C++ interpreter
3421      case BytecodeInterpreter::call_method:  return("call_method");
3422      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3423      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3424      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3425      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3426      case BytecodeInterpreter::do_osr:  return("do_osr");
3427      // deopt
3428      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3429      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3430      default: return("BAD MSG");
3431   }
3432 }
3433 void
3434 BytecodeInterpreter::print() {
3435   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3436   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3437   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3438   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3439   {
3440     ResourceMark rm;
3441     char *method_name = _method->name_and_sig_as_C_string();
3442     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3443   }
3444   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3445   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3446   tty->print_cr("msg: %s", C_msg(this->_msg));
3447   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3448   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3449   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3450   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3451   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3452   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3453   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3454   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3455   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3456   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3457 #ifdef SPARC
3458   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3459   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3460   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3461   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3462 #endif
3463 #if !defined(ZERO)
3464   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3465 #endif // !ZERO
3466   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3467 }
3468 
3469 extern "C" {
3470   void PI(uintptr_t arg) {
3471     ((BytecodeInterpreter*)arg)->print();
3472   }
3473 }
3474 #endif // PRODUCT
3475 
3476 #endif // JVMTI
3477 #endif // CC_INTERP