1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc_interface/collectedHeap.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/constantPool.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/methodData.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/symbol.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/fieldDescriptor.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/jfieldIDWorkaround.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/synchronizer.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "utilities/events.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "vm_version_x86.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_sparc
  63 # include "vm_version_sparc.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_zero
  66 # include "vm_version_zero.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_arm
  69 # include "vm_version_arm.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_ppc
  72 # include "vm_version_ppc.hpp"
  73 #endif
  74 #ifdef COMPILER2
  75 #include "opto/runtime.hpp"
  76 #endif
  77 
  78 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  79 
  80 class UnlockFlagSaver {
  81   private:
  82     JavaThread* _thread;
  83     bool _do_not_unlock;
  84   public:
  85     UnlockFlagSaver(JavaThread* t) {
  86       _thread = t;
  87       _do_not_unlock = t->do_not_unlock_if_synchronized();
  88       t->set_do_not_unlock_if_synchronized(false);
  89     }
  90     ~UnlockFlagSaver() {
  91       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  92     }
  93 };
  94 
  95 //------------------------------------------------------------------------------------------------------------------------
  96 // State accessors
  97 
  98 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  99   last_frame(thread).interpreter_frame_set_bcp(bcp);
 100   if (ProfileInterpreter) {
 101     // ProfileTraps uses MDOs independently of ProfileInterpreter.
 102     // That is why we must check both ProfileInterpreter and mdo != NULL.
 103     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
 104     if (mdo != NULL) {
 105       NEEDS_CLEANUP;
 106       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
 107     }
 108   }
 109 }
 110 
 111 //------------------------------------------------------------------------------------------------------------------------
 112 // Constants
 113 
 114 
 115 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 116   // access constant pool
 117   ConstantPool* pool = method(thread)->constants();
 118   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 119   constantTag tag = pool->tag_at(index);
 120 
 121   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 122   Klass* klass = pool->klass_at(index, CHECK);
 123     oop java_class = klass->java_mirror();
 124     thread->set_vm_result(java_class);
 125 IRT_END
 126 
 127 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 128   assert(bytecode == Bytecodes::_fast_aldc ||
 129          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 130   ResourceMark rm(thread);
 131   methodHandle m (thread, method(thread));
 132   Bytecode_loadconstant ldc(m, bci(thread));
 133   oop result = ldc.resolve_constant(CHECK);
 134 #ifdef ASSERT
 135   {
 136     // The bytecode wrappers aren't GC-safe so construct a new one
 137     Bytecode_loadconstant ldc2(m, bci(thread));
 138     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 139     assert(result == coop, "expected result for assembly code");
 140   }
 141 #endif
 142   thread->set_vm_result(result);
 143 }
 144 IRT_END
 145 
 146 
 147 //------------------------------------------------------------------------------------------------------------------------
 148 // Allocation
 149 
 150 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 151   Klass* k_oop = pool->klass_at(index, CHECK);
 152   instanceKlassHandle klass (THREAD, k_oop);
 153 
 154   // Make sure we are not instantiating an abstract klass
 155   klass->check_valid_for_instantiation(true, CHECK);
 156 
 157   // Make sure klass is initialized
 158   klass->initialize(CHECK);
 159 
 160   // At this point the class may not be fully initialized
 161   // because of recursive initialization. If it is fully
 162   // initialized & has_finalized is not set, we rewrite
 163   // it into its fast version (Note: no locking is needed
 164   // here since this is an atomic byte write and can be
 165   // done more than once).
 166   //
 167   // Note: In case of classes with has_finalized we don't
 168   //       rewrite since that saves us an extra check in
 169   //       the fast version which then would call the
 170   //       slow version anyway (and do a call back into
 171   //       Java).
 172   //       If we have a breakpoint, then we don't rewrite
 173   //       because the _breakpoint bytecode would be lost.
 174   oop obj = klass->allocate_instance(CHECK);
 175   thread->set_vm_result(obj);
 176 IRT_END
 177 
 178 
 179 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 180   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 181   thread->set_vm_result(obj);
 182 IRT_END
 183 
 184 
 185 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 186   // Note: no oopHandle for pool & klass needed since they are not used
 187   //       anymore after new_objArray() and no GC can happen before.
 188   //       (This may have to change if this code changes!)
 189   Klass*    klass = pool->klass_at(index, CHECK);
 190   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 191   thread->set_vm_result(obj);
 192 IRT_END
 193 
 194 
 195 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 196   // We may want to pass in more arguments - could make this slightly faster
 197   ConstantPool* constants = method(thread)->constants();
 198   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 199   Klass* klass = constants->klass_at(i, CHECK);
 200   int   nof_dims = number_of_dimensions(thread);
 201   assert(klass->is_klass(), "not a class");
 202   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 203 
 204   // We must create an array of jints to pass to multi_allocate.
 205   ResourceMark rm(thread);
 206   const int small_dims = 10;
 207   jint dim_array[small_dims];
 208   jint *dims = &dim_array[0];
 209   if (nof_dims > small_dims) {
 210     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 211   }
 212   for (int index = 0; index < nof_dims; index++) {
 213     // offset from first_size_address is addressed as local[index]
 214     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 215     dims[index] = first_size_address[n];
 216   }
 217   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 218   thread->set_vm_result(obj);
 219 IRT_END
 220 
 221 
 222 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 223   assert(obj->is_oop(), "must be a valid oop");
 224   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 225   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 226 IRT_END
 227 
 228 
 229 // Quicken instance-of and check-cast bytecodes
 230 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 231   // Force resolving; quicken the bytecode
 232   int which = get_index_u2(thread, Bytecodes::_checkcast);
 233   ConstantPool* cpool = method(thread)->constants();
 234   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 235   // program we might have seen an unquick'd bytecode in the interpreter but have another
 236   // thread quicken the bytecode before we get here.
 237   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 238   Klass* klass = cpool->klass_at(which, CHECK);
 239   thread->set_vm_result_2(klass);
 240 IRT_END
 241 
 242 
 243 //------------------------------------------------------------------------------------------------------------------------
 244 // Exceptions
 245 
 246 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 247                                          methodHandle trap_method, int trap_bci, TRAPS) {
 248   if (trap_method.not_null()) {
 249     MethodData* trap_mdo = trap_method->method_data();
 250     if (trap_mdo == NULL) {
 251       Method::build_interpreter_method_data(trap_method, THREAD);
 252       if (HAS_PENDING_EXCEPTION) {
 253         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 254                "we expect only an OOM error here");
 255         CLEAR_PENDING_EXCEPTION;
 256       }
 257       trap_mdo = trap_method->method_data();
 258       // and fall through...
 259     }
 260     if (trap_mdo != NULL) {
 261       // Update per-method count of trap events.  The interpreter
 262       // is updating the MDO to simulate the effect of compiler traps.
 263       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 264     }
 265   }
 266 }
 267 
 268 // Assume the compiler is (or will be) interested in this event.
 269 // If necessary, create an MDO to hold the information, and record it.
 270 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 271   assert(ProfileTraps, "call me only if profiling");
 272   methodHandle trap_method(thread, method(thread));
 273   int trap_bci = trap_method->bci_from(bcp(thread));
 274   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 275 }
 276 
 277 #ifdef CC_INTERP
 278 // As legacy note_trap, but we have more arguments.
 279 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 280   methodHandle trap_method(method);
 281   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 282 IRT_END
 283 
 284 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 285 // for each exception.
 286 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 287   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 288 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 289   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 290 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 291   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 292 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 293   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 294 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 295   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 296 #endif // CC_INTERP
 297 
 298 
 299 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 300   // get klass
 301   InstanceKlass* klass = InstanceKlass::cast(k);
 302   assert(klass->is_initialized(),
 303          "this klass should have been initialized during VM initialization");
 304   // create instance - do not call constructor since we may have no
 305   // (java) stack space left (should assert constructor is empty)
 306   Handle exception;
 307   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 308   exception = Handle(THREAD, exception_oop);
 309   if (StackTraceInThrowable) {
 310     java_lang_Throwable::fill_in_stack_trace(exception);
 311   }
 312   return exception;
 313 }
 314 
 315 // Special handling for stack overflow: since we don't have any (java) stack
 316 // space left we use the pre-allocated & pre-initialized StackOverflowError
 317 // klass to create an stack overflow error instance.  We do not call its
 318 // constructor for the same reason (it is empty, anyway).
 319 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 320   Handle exception = get_preinitialized_exception(
 321                                  SystemDictionary::StackOverflowError_klass(),
 322                                  CHECK);
 323   THROW_HANDLE(exception);
 324 IRT_END
 325 
 326 
 327 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 328   // lookup exception klass
 329   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 330   if (ProfileTraps) {
 331     if (s == vmSymbols::java_lang_ArithmeticException()) {
 332       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 333     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 334       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 335     }
 336   }
 337   // create exception
 338   Handle exception = Exceptions::new_exception(thread, s, message);
 339   thread->set_vm_result(exception());
 340 IRT_END
 341 
 342 
 343 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 344   ResourceMark rm(thread);
 345   const char* klass_name = obj->klass()->external_name();
 346   // lookup exception klass
 347   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 348   if (ProfileTraps) {
 349     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 350   }
 351   // create exception, with klass name as detail message
 352   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 353   thread->set_vm_result(exception());
 354 IRT_END
 355 
 356 
 357 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 358   char message[jintAsStringSize];
 359   // lookup exception klass
 360   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 361   if (ProfileTraps) {
 362     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 363   }
 364   // create exception
 365   sprintf(message, "%d", index);
 366   THROW_MSG(s, message);
 367 IRT_END
 368 
 369 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 370   JavaThread* thread, oopDesc* obj))
 371 
 372   ResourceMark rm(thread);
 373   char* message = SharedRuntime::generate_class_cast_message(
 374     thread, obj->klass()->external_name());
 375 
 376   if (ProfileTraps) {
 377     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 378   }
 379 
 380   // create exception
 381   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 382 IRT_END
 383 
 384 // exception_handler_for_exception(...) returns the continuation address,
 385 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 386 // The exception oop is returned to make sure it is preserved over GC (it
 387 // is only on the stack if the exception was thrown explicitly via athrow).
 388 // During this operation, the expression stack contains the values for the
 389 // bci where the exception happened. If the exception was propagated back
 390 // from a call, the expression stack contains the values for the bci at the
 391 // invoke w/o arguments (i.e., as if one were inside the call).
 392 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 393 
 394   Handle             h_exception(thread, exception);
 395   methodHandle       h_method   (thread, method(thread));
 396   constantPoolHandle h_constants(thread, h_method->constants());
 397   bool               should_repeat;
 398   int                handler_bci;
 399   int                current_bci = bci(thread);
 400 
 401   if (thread->frames_to_pop_failed_realloc() > 0) {
 402     // Allocation of scalar replaced object used in this frame
 403     // failed. Unconditionally pop the frame.
 404     thread->dec_frames_to_pop_failed_realloc();
 405     thread->set_vm_result(h_exception());
 406     // If the method is synchronized we already unlocked the monitor
 407     // during deoptimization so the interpreter needs to skip it when
 408     // the frame is popped.
 409     thread->set_do_not_unlock_if_synchronized(true);
 410     return Interpreter::remove_activation_entry();
 411   }
 412 
 413   // Need to do this check first since when _do_not_unlock_if_synchronized
 414   // is set, we don't want to trigger any classloading which may make calls
 415   // into java, or surprisingly find a matching exception handler for bci 0
 416   // since at this moment the method hasn't been "officially" entered yet.
 417   if (thread->do_not_unlock_if_synchronized()) {
 418     ResourceMark rm;
 419     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 420     thread->set_vm_result(exception);
 421 #ifdef CC_INTERP
 422     return (address) -1;
 423 #else
 424     return Interpreter::remove_activation_entry();
 425 #endif
 426   }
 427 
 428   do {
 429     should_repeat = false;
 430 
 431     // assertions
 432 #ifdef ASSERT
 433     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 434     assert(h_exception->is_oop(), "just checking");
 435     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 436     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 437       if (ExitVMOnVerifyError) vm_exit(-1);
 438       ShouldNotReachHere();
 439     }
 440 #endif
 441 
 442     // tracing
 443     if (TraceExceptions) {
 444       ttyLocker ttyl;
 445       ResourceMark rm(thread);
 446       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception());
 447       tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
 448       tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
 449     }
 450 // Don't go paging in something which won't be used.
 451 //     else if (extable->length() == 0) {
 452 //       // disabled for now - interpreter is not using shortcut yet
 453 //       // (shortcut is not to call runtime if we have no exception handlers)
 454 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 455 //     }
 456     // for AbortVMOnException flag
 457     NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
 458 
 459     // exception handler lookup
 460     KlassHandle h_klass(THREAD, h_exception->klass());
 461     handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD);
 462     if (HAS_PENDING_EXCEPTION) {
 463       // We threw an exception while trying to find the exception handler.
 464       // Transfer the new exception to the exception handle which will
 465       // be set into thread local storage, and do another lookup for an
 466       // exception handler for this exception, this time starting at the
 467       // BCI of the exception handler which caused the exception to be
 468       // thrown (bug 4307310).
 469       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 470       CLEAR_PENDING_EXCEPTION;
 471       if (handler_bci >= 0) {
 472         current_bci = handler_bci;
 473         should_repeat = true;
 474       }
 475     }
 476   } while (should_repeat == true);
 477 
 478   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 479   // time throw or a stack unwinding throw and accordingly notify the debugger
 480   if (JvmtiExport::can_post_on_exceptions()) {
 481     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 482   }
 483 
 484 #ifdef CC_INTERP
 485   address continuation = (address)(intptr_t) handler_bci;
 486 #else
 487   address continuation = NULL;
 488 #endif
 489   address handler_pc = NULL;
 490   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 491     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 492     // handler in this method, or (b) after a stack overflow there is not yet
 493     // enough stack space available to reprotect the stack.
 494 #ifndef CC_INTERP
 495     continuation = Interpreter::remove_activation_entry();
 496 #endif
 497     // Count this for compilation purposes
 498     h_method->interpreter_throwout_increment(THREAD);
 499   } else {
 500     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 501     handler_pc = h_method->code_base() + handler_bci;
 502 #ifndef CC_INTERP
 503     set_bcp_and_mdp(handler_pc, thread);
 504     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 505 #endif
 506   }
 507   // notify debugger of an exception catch
 508   // (this is good for exceptions caught in native methods as well)
 509   if (JvmtiExport::can_post_on_exceptions()) {
 510     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 511   }
 512 
 513   thread->set_vm_result(h_exception());
 514   return continuation;
 515 IRT_END
 516 
 517 
 518 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 519   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 520   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 521 IRT_END
 522 
 523 
 524 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 525   THROW(vmSymbols::java_lang_AbstractMethodError());
 526 IRT_END
 527 
 528 
 529 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 530   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 531 IRT_END
 532 
 533 
 534 //------------------------------------------------------------------------------------------------------------------------
 535 // Fields
 536 //
 537 
 538 IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
 539   // resolve field
 540   fieldDescriptor info;
 541   constantPoolHandle pool(thread, method(thread)->constants());
 542   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_putstatic);
 543   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 544 
 545   {
 546     JvmtiHideSingleStepping jhss(thread);
 547     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 548                                        bytecode, CHECK);
 549   } // end JvmtiHideSingleStepping
 550 
 551   // check if link resolution caused cpCache to be updated
 552   if (already_resolved(thread)) return;
 553 
 554   // compute auxiliary field attributes
 555   TosState state  = as_TosState(info.field_type());
 556 
 557   // We need to delay resolving put instructions on final fields
 558   // until we actually invoke one. This is required so we throw
 559   // exceptions at the correct place. If we do not resolve completely
 560   // in the current pass, leaving the put_code set to zero will
 561   // cause the next put instruction to reresolve.
 562   Bytecodes::Code put_code = (Bytecodes::Code)0;
 563 
 564   // We also need to delay resolving getstatic instructions until the
 565   // class is intitialized.  This is required so that access to the static
 566   // field will call the initialization function every time until the class
 567   // is completely initialized ala. in 2.17.5 in JVM Specification.
 568   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 569   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 570                                !klass->is_initialized());
 571   Bytecodes::Code get_code = (Bytecodes::Code)0;
 572 
 573   if (!uninitialized_static) {
 574     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 575     if (is_put || !info.access_flags().is_final()) {
 576       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 577     }
 578   }
 579 
 580   cache_entry(thread)->set_field(
 581     get_code,
 582     put_code,
 583     info.field_holder(),
 584     info.index(),
 585     info.offset(),
 586     state,
 587     info.access_flags().is_final(),
 588     info.access_flags().is_volatile(),
 589     pool->pool_holder()
 590   );
 591 IRT_END
 592 
 593 
 594 //------------------------------------------------------------------------------------------------------------------------
 595 // Synchronization
 596 //
 597 // The interpreter's synchronization code is factored out so that it can
 598 // be shared by method invocation and synchronized blocks.
 599 //%note synchronization_3
 600 
 601 //%note monitor_1
 602 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 603 #ifdef ASSERT
 604   thread->last_frame().interpreter_frame_verify_monitor(elem);
 605 #endif
 606   if (PrintBiasedLockingStatistics) {
 607     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 608   }
 609   Handle h_obj(thread, elem->obj());
 610   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 611          "must be NULL or an object");
 612   if (UseBiasedLocking) {
 613     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 614     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 615   } else {
 616     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 617   }
 618   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 619          "must be NULL or an object");
 620 #ifdef ASSERT
 621   thread->last_frame().interpreter_frame_verify_monitor(elem);
 622 #endif
 623 IRT_END
 624 
 625 
 626 //%note monitor_1
 627 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 628 #ifdef ASSERT
 629   thread->last_frame().interpreter_frame_verify_monitor(elem);
 630 #endif
 631   Handle h_obj(thread, elem->obj());
 632   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 633          "must be NULL or an object");
 634   if (elem == NULL || h_obj()->is_unlocked()) {
 635     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 636   }
 637   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 638   // Free entry. This must be done here, since a pending exception might be installed on
 639   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 640   elem->set_obj(NULL);
 641 #ifdef ASSERT
 642   thread->last_frame().interpreter_frame_verify_monitor(elem);
 643 #endif
 644 IRT_END
 645 
 646 
 647 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 648   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 649 IRT_END
 650 
 651 
 652 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 653   // Returns an illegal exception to install into the current thread. The
 654   // pending_exception flag is cleared so normal exception handling does not
 655   // trigger. Any current installed exception will be overwritten. This
 656   // method will be called during an exception unwind.
 657 
 658   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 659   Handle exception(thread, thread->vm_result());
 660   assert(exception() != NULL, "vm result should be set");
 661   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 662   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 663     exception = get_preinitialized_exception(
 664                        SystemDictionary::IllegalMonitorStateException_klass(),
 665                        CATCH);
 666   }
 667   thread->set_vm_result(exception());
 668 IRT_END
 669 
 670 
 671 //------------------------------------------------------------------------------------------------------------------------
 672 // Invokes
 673 
 674 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 675   return method->orig_bytecode_at(method->bci_from(bcp));
 676 IRT_END
 677 
 678 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 679   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 680 IRT_END
 681 
 682 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 683   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 684 IRT_END
 685 
 686 IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode)) {
 687   // extract receiver from the outgoing argument list if necessary
 688   Handle receiver(thread, NULL);
 689   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 690     ResourceMark rm(thread);
 691     methodHandle m (thread, method(thread));
 692     Bytecode_invoke call(m, bci(thread));
 693     Symbol* signature = call.signature();
 694     receiver = Handle(thread,
 695                   thread->last_frame().interpreter_callee_receiver(signature));
 696     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 697            "sanity check");
 698     assert(receiver.is_null() ||
 699            !Universe::heap()->is_in_reserved(receiver->klass()),
 700            "sanity check");
 701   }
 702 
 703   // resolve method
 704   CallInfo info;
 705   constantPoolHandle pool(thread, method(thread)->constants());
 706 
 707   {
 708     JvmtiHideSingleStepping jhss(thread);
 709     LinkResolver::resolve_invoke(info, receiver, pool,
 710                                  get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 711     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 712       int retry_count = 0;
 713       while (info.resolved_method()->is_old()) {
 714         // It is very unlikely that method is redefined more than 100 times
 715         // in the middle of resolve. If it is looping here more than 100 times
 716         // means then there could be a bug here.
 717         guarantee((retry_count++ < 100),
 718                   "Could not resolve to latest version of redefined method");
 719         // method is redefined in the middle of resolve so re-try.
 720         LinkResolver::resolve_invoke(info, receiver, pool,
 721                                      get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 722       }
 723     }
 724   } // end JvmtiHideSingleStepping
 725 
 726   // check if link resolution caused cpCache to be updated
 727   if (already_resolved(thread)) return;
 728 
 729   if (bytecode == Bytecodes::_invokeinterface) {
 730     if (TraceItables && Verbose) {
 731       ResourceMark rm(thread);
 732       tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
 733     }
 734   }
 735 #ifdef ASSERT
 736   if (bytecode == Bytecodes::_invokeinterface) {
 737     if (info.resolved_method()->method_holder() ==
 738                                             SystemDictionary::Object_klass()) {
 739       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 740       // (see also CallInfo::set_interface for details)
 741       assert(info.call_kind() == CallInfo::vtable_call ||
 742              info.call_kind() == CallInfo::direct_call, "");
 743       methodHandle rm = info.resolved_method();
 744       assert(rm->is_final() || info.has_vtable_index(),
 745              "should have been set already");
 746     } else if (!info.resolved_method()->has_itable_index()) {
 747       // Resolved something like CharSequence.toString.  Use vtable not itable.
 748       assert(info.call_kind() != CallInfo::itable_call, "");
 749     } else {
 750       // Setup itable entry
 751       assert(info.call_kind() == CallInfo::itable_call, "");
 752       int index = info.resolved_method()->itable_index();
 753       assert(info.itable_index() == index, "");
 754     }
 755   } else {
 756     assert(info.call_kind() == CallInfo::direct_call ||
 757            info.call_kind() == CallInfo::vtable_call, "");
 758   }
 759 #endif
 760   switch (info.call_kind()) {
 761   case CallInfo::direct_call:
 762     cache_entry(thread)->set_direct_call(
 763       bytecode,
 764       info.resolved_method());
 765     break;
 766   case CallInfo::vtable_call:
 767     cache_entry(thread)->set_vtable_call(
 768       bytecode,
 769       info.resolved_method(),
 770       info.vtable_index());
 771     break;
 772   case CallInfo::itable_call:
 773     cache_entry(thread)->set_itable_call(
 774       bytecode,
 775       info.resolved_method(),
 776       info.itable_index());
 777     break;
 778   default:  ShouldNotReachHere();
 779   }
 780 }
 781 IRT_END
 782 
 783 
 784 // First time execution:  Resolve symbols, create a permanent MethodType object.
 785 IRT_ENTRY(void, InterpreterRuntime::resolve_invokehandle(JavaThread* thread)) {
 786   assert(EnableInvokeDynamic, "");
 787   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 788 
 789   // resolve method
 790   CallInfo info;
 791   constantPoolHandle pool(thread, method(thread)->constants());
 792 
 793   {
 794     JvmtiHideSingleStepping jhss(thread);
 795     LinkResolver::resolve_invoke(info, Handle(), pool,
 796                                  get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 797   } // end JvmtiHideSingleStepping
 798 
 799   cache_entry(thread)->set_method_handle(pool, info);
 800 }
 801 IRT_END
 802 
 803 
 804 // First time execution:  Resolve symbols, create a permanent CallSite object.
 805 IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) {
 806   assert(EnableInvokeDynamic, "");
 807   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 808 
 809   //TO DO: consider passing BCI to Java.
 810   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 811 
 812   // resolve method
 813   CallInfo info;
 814   constantPoolHandle pool(thread, method(thread)->constants());
 815   int index = get_index_u4(thread, bytecode);
 816   {
 817     JvmtiHideSingleStepping jhss(thread);
 818     LinkResolver::resolve_invoke(info, Handle(), pool,
 819                                  index, bytecode, CHECK);
 820   } // end JvmtiHideSingleStepping
 821 
 822   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 823   cp_cache_entry->set_dynamic_call(pool, info);
 824 }
 825 IRT_END
 826 
 827 
 828 //------------------------------------------------------------------------------------------------------------------------
 829 // Miscellaneous
 830 
 831 
 832 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 833   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 834   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 835   if (branch_bcp != NULL && nm != NULL) {
 836     // This was a successful request for an OSR nmethod.  Because
 837     // frequency_counter_overflow_inner ends with a safepoint check,
 838     // nm could have been unloaded so look it up again.  It's unsafe
 839     // to examine nm directly since it might have been freed and used
 840     // for something else.
 841     frame fr = thread->last_frame();
 842     Method* method =  fr.interpreter_frame_method();
 843     int bci = method->bci_from(fr.interpreter_frame_bcp());
 844     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 845   }
 846 #ifndef PRODUCT
 847   if (TraceOnStackReplacement) {
 848     if (nm != NULL) {
 849       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", nm->osr_entry());
 850       nm->print();
 851     }
 852   }
 853 #endif
 854   return nm;
 855 }
 856 
 857 IRT_ENTRY(nmethod*,
 858           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 859   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 860   // flag, in case this method triggers classloading which will call into Java.
 861   UnlockFlagSaver fs(thread);
 862 
 863   frame fr = thread->last_frame();
 864   assert(fr.is_interpreted_frame(), "must come from interpreter");
 865   methodHandle method(thread, fr.interpreter_frame_method());
 866   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 867   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 868 
 869   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 870   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 871   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 872 
 873   if (osr_nm != NULL) {
 874     // We may need to do on-stack replacement which requires that no
 875     // monitors in the activation are biased because their
 876     // BasicObjectLocks will need to migrate during OSR. Force
 877     // unbiasing of all monitors in the activation now (even though
 878     // the OSR nmethod might be invalidated) because we don't have a
 879     // safepoint opportunity later once the migration begins.
 880     if (UseBiasedLocking) {
 881       ResourceMark rm;
 882       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 883       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 884            kptr < fr.interpreter_frame_monitor_begin();
 885            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 886         if( kptr->obj() != NULL ) {
 887           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 888         }
 889       }
 890       BiasedLocking::revoke(objects_to_revoke);
 891     }
 892   }
 893   return osr_nm;
 894 IRT_END
 895 
 896 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 897   assert(ProfileInterpreter, "must be profiling interpreter");
 898   int bci = method->bci_from(cur_bcp);
 899   MethodData* mdo = method->method_data();
 900   if (mdo == NULL)  return 0;
 901   return mdo->bci_to_di(bci);
 902 IRT_END
 903 
 904 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 905   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 906   // flag, in case this method triggers classloading which will call into Java.
 907   UnlockFlagSaver fs(thread);
 908 
 909   assert(ProfileInterpreter, "must be profiling interpreter");
 910   frame fr = thread->last_frame();
 911   assert(fr.is_interpreted_frame(), "must come from interpreter");
 912   methodHandle method(thread, fr.interpreter_frame_method());
 913   Method::build_interpreter_method_data(method, THREAD);
 914   if (HAS_PENDING_EXCEPTION) {
 915     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 916     CLEAR_PENDING_EXCEPTION;
 917     // and fall through...
 918   }
 919 IRT_END
 920 
 921 
 922 #ifdef ASSERT
 923 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 924   assert(ProfileInterpreter, "must be profiling interpreter");
 925 
 926   MethodData* mdo = method->method_data();
 927   assert(mdo != NULL, "must not be null");
 928 
 929   int bci = method->bci_from(bcp);
 930 
 931   address mdp2 = mdo->bci_to_dp(bci);
 932   if (mdp != mdp2) {
 933     ResourceMark rm;
 934     ResetNoHandleMark rnm; // In a LEAF entry.
 935     HandleMark hm;
 936     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 937     int current_di = mdo->dp_to_di(mdp);
 938     int expected_di  = mdo->dp_to_di(mdp2);
 939     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 940     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 941     int approx_bci = -1;
 942     if (current_di >= 0) {
 943       approx_bci = mdo->data_at(current_di)->bci();
 944     }
 945     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
 946     mdo->print_on(tty);
 947     method->print_codes();
 948   }
 949   assert(mdp == mdp2, "wrong mdp");
 950 IRT_END
 951 #endif // ASSERT
 952 
 953 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
 954   assert(ProfileInterpreter, "must be profiling interpreter");
 955   ResourceMark rm(thread);
 956   HandleMark hm(thread);
 957   frame fr = thread->last_frame();
 958   assert(fr.is_interpreted_frame(), "must come from interpreter");
 959   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
 960 
 961   // Grab a lock to ensure atomic access to setting the return bci and
 962   // the displacement.  This can block and GC, invalidating all naked oops.
 963   MutexLocker ml(RetData_lock);
 964 
 965   // ProfileData is essentially a wrapper around a derived oop, so we
 966   // need to take the lock before making any ProfileData structures.
 967   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
 968   RetData* rdata = data->as_RetData();
 969   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
 970   fr.interpreter_frame_set_mdp(new_mdp);
 971 IRT_END
 972 
 973 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
 974   MethodCounters* mcs = Method::build_method_counters(m, thread);
 975   if (HAS_PENDING_EXCEPTION) {
 976     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 977     CLEAR_PENDING_EXCEPTION;
 978   }
 979   return mcs;
 980 IRT_END
 981 
 982 
 983 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
 984   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
 985   // stack traversal automatically takes care of preserving arguments for invoke, so
 986   // this is no longer needed.
 987 
 988   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
 989   // if this is called during a safepoint
 990 
 991   if (JvmtiExport::should_post_single_step()) {
 992     // We are called during regular safepoints and when the VM is
 993     // single stepping. If any thread is marked for single stepping,
 994     // then we may have JVMTI work to do.
 995     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
 996   }
 997 IRT_END
 998 
 999 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1000 ConstantPoolCacheEntry *cp_entry))
1001 
1002   // check the access_flags for the field in the klass
1003 
1004   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1005   int index = cp_entry->field_index();
1006   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1007 
1008   switch(cp_entry->flag_state()) {
1009     case btos:    // fall through
1010     case ctos:    // fall through
1011     case stos:    // fall through
1012     case itos:    // fall through
1013     case ftos:    // fall through
1014     case ltos:    // fall through
1015     case dtos:    // fall through
1016     case atos: break;
1017     default: ShouldNotReachHere(); return;
1018   }
1019   bool is_static = (obj == NULL);
1020   HandleMark hm(thread);
1021 
1022   Handle h_obj;
1023   if (!is_static) {
1024     // non-static field accessors have an object, but we need a handle
1025     h_obj = Handle(thread, obj);
1026   }
1027   instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass());
1028   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static);
1029   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1030 IRT_END
1031 
1032 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1033   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1034 
1035   Klass* k = (Klass*)cp_entry->f1_as_klass();
1036 
1037   // check the access_flags for the field in the klass
1038   InstanceKlass* ik = InstanceKlass::cast(k);
1039   int index = cp_entry->field_index();
1040   // bail out if field modifications are not watched
1041   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1042 
1043   char sig_type = '\0';
1044 
1045   switch(cp_entry->flag_state()) {
1046     case btos: sig_type = 'Z'; break;
1047     case ctos: sig_type = 'C'; break;
1048     case stos: sig_type = 'S'; break;
1049     case itos: sig_type = 'I'; break;
1050     case ftos: sig_type = 'F'; break;
1051     case atos: sig_type = 'L'; break;
1052     case ltos: sig_type = 'J'; break;
1053     case dtos: sig_type = 'D'; break;
1054     default:  ShouldNotReachHere(); return;
1055   }
1056   bool is_static = (obj == NULL);
1057 
1058   HandleMark hm(thread);
1059   instanceKlassHandle h_klass(thread, k);
1060   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static);
1061   jvalue fvalue;
1062 #ifdef _LP64
1063   fvalue = *value;
1064 #else
1065   // Long/double values are stored unaligned and also noncontiguously with
1066   // tagged stacks.  We can't just do a simple assignment even in the non-
1067   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1068   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1069   // We assume that the two halves of longs/doubles are stored in interpreter
1070   // stack slots in platform-endian order.
1071   jlong_accessor u;
1072   jint* newval = (jint*)value;
1073   u.words[0] = newval[0];
1074   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1075   fvalue.j = u.long_value;
1076 #endif // _LP64
1077 
1078   Handle h_obj;
1079   if (!is_static) {
1080     // non-static field accessors have an object, but we need a handle
1081     h_obj = Handle(thread, obj);
1082   }
1083 
1084   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1085                                            fid, sig_type, &fvalue);
1086 IRT_END
1087 
1088 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1089   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1090 IRT_END
1091 
1092 
1093 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1094   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1095 IRT_END
1096 
1097 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1098 {
1099   return (Interpreter::contains(pc) ? 1 : 0);
1100 }
1101 IRT_END
1102 
1103 
1104 // Implementation of SignatureHandlerLibrary
1105 
1106 address SignatureHandlerLibrary::set_handler_blob() {
1107   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1108   if (handler_blob == NULL) {
1109     return NULL;
1110   }
1111   address handler = handler_blob->code_begin();
1112   _handler_blob = handler_blob;
1113   _handler = handler;
1114   return handler;
1115 }
1116 
1117 void SignatureHandlerLibrary::initialize() {
1118   if (_fingerprints != NULL) {
1119     return;
1120   }
1121   if (set_handler_blob() == NULL) {
1122     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1123   }
1124 
1125   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1126                                       SignatureHandlerLibrary::buffer_size);
1127   _buffer = bb->code_begin();
1128 
1129   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1130   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1131 }
1132 
1133 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1134   address handler   = _handler;
1135   int     insts_size = buffer->pure_insts_size();
1136   if (handler + insts_size > _handler_blob->code_end()) {
1137     // get a new handler blob
1138     handler = set_handler_blob();
1139   }
1140   if (handler != NULL) {
1141     memcpy(handler, buffer->insts_begin(), insts_size);
1142     pd_set_handler(handler);
1143     ICache::invalidate_range(handler, insts_size);
1144     _handler = handler + insts_size;
1145   }
1146   return handler;
1147 }
1148 
1149 void SignatureHandlerLibrary::add(methodHandle method) {
1150   if (method->signature_handler() == NULL) {
1151     // use slow signature handler if we can't do better
1152     int handler_index = -1;
1153     // check if we can use customized (fast) signature handler
1154     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1155       // use customized signature handler
1156       MutexLocker mu(SignatureHandlerLibrary_lock);
1157       // make sure data structure is initialized
1158       initialize();
1159       // lookup method signature's fingerprint
1160       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1161       handler_index = _fingerprints->find(fingerprint);
1162       // create handler if necessary
1163       if (handler_index < 0) {
1164         ResourceMark rm;
1165         ptrdiff_t align_offset = (address)
1166           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1167         CodeBuffer buffer((address)(_buffer + align_offset),
1168                           SignatureHandlerLibrary::buffer_size - align_offset);
1169         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1170         // copy into code heap
1171         address handler = set_handler(&buffer);
1172         if (handler == NULL) {
1173           // use slow signature handler
1174         } else {
1175           // debugging suppport
1176           if (PrintSignatureHandlers) {
1177             tty->cr();
1178             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1179                           _handlers->length(),
1180                           (method->is_static() ? "static" : "receiver"),
1181                           method->name_and_sig_as_C_string(),
1182                           fingerprint,
1183                           buffer.insts_size());
1184             Disassembler::decode(handler, handler + buffer.insts_size());
1185 #ifndef PRODUCT
1186             tty->print_cr(" --- associated result handler ---");
1187             address rh_begin = Interpreter::result_handler(method()->result_type());
1188             address rh_end = rh_begin;
1189             while (*(int*)rh_end != 0) {
1190               rh_end += sizeof(int);
1191             }
1192             Disassembler::decode(rh_begin, rh_end);
1193 #endif
1194           }
1195           // add handler to library
1196           _fingerprints->append(fingerprint);
1197           _handlers->append(handler);
1198           // set handler index
1199           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1200           handler_index = _fingerprints->length() - 1;
1201         }
1202       }
1203       // Set handler under SignatureHandlerLibrary_lock
1204     if (handler_index < 0) {
1205       // use generic signature handler
1206       method->set_signature_handler(Interpreter::slow_signature_handler());
1207     } else {
1208       // set handler
1209       method->set_signature_handler(_handlers->at(handler_index));
1210     }
1211     } else {
1212       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1213       // use generic signature handler
1214       method->set_signature_handler(Interpreter::slow_signature_handler());
1215     }
1216   }
1217 #ifdef ASSERT
1218   int handler_index = -1;
1219   int fingerprint_index = -2;
1220   {
1221     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1222     // in any way if accessed from multiple threads. To avoid races with another
1223     // thread which may change the arrays in the above, mutex protected block, we
1224     // have to protect this read access here with the same mutex as well!
1225     MutexLocker mu(SignatureHandlerLibrary_lock);
1226     if (_handlers != NULL) {
1227     handler_index = _handlers->find(method->signature_handler());
1228     fingerprint_index = _fingerprints->find(Fingerprinter(method).fingerprint());
1229   }
1230   }
1231   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1232          handler_index == fingerprint_index, "sanity check");
1233 #endif // ASSERT
1234 }
1235 
1236 
1237 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1238 address                  SignatureHandlerLibrary::_handler      = NULL;
1239 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1240 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1241 address                  SignatureHandlerLibrary::_buffer       = NULL;
1242 
1243 
1244 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1245   methodHandle m(thread, method);
1246   assert(m->is_native(), "sanity check");
1247   // lookup native function entry point if it doesn't exist
1248   bool in_base_library;
1249   if (!m->has_native_function()) {
1250     NativeLookup::lookup(m, in_base_library, CHECK);
1251   }
1252   // make sure signature handler is installed
1253   SignatureHandlerLibrary::add(m);
1254   // The interpreter entry point checks the signature handler first,
1255   // before trying to fetch the native entry point and klass mirror.
1256   // We must set the signature handler last, so that multiple processors
1257   // preparing the same method will be sure to see non-null entry & mirror.
1258 IRT_END
1259 
1260 #if defined(IA32) || defined(AMD64) || defined(ARM)
1261 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1262   if (src_address == dest_address) {
1263     return;
1264   }
1265   ResetNoHandleMark rnm; // In a LEAF entry.
1266   HandleMark hm;
1267   ResourceMark rm;
1268   frame fr = thread->last_frame();
1269   assert(fr.is_interpreted_frame(), "");
1270   jint bci = fr.interpreter_frame_bci();
1271   methodHandle mh(thread, fr.interpreter_frame_method());
1272   Bytecode_invoke invoke(mh, bci);
1273   ArgumentSizeComputer asc(invoke.signature());
1274   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1275   Copy::conjoint_jbytes(src_address, dest_address,
1276                        size_of_arguments * Interpreter::stackElementSize);
1277 IRT_END
1278 #endif
1279 
1280 #if INCLUDE_JVMTI
1281 // This is a support of the JVMTI PopFrame interface.
1282 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1283 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1284 // The member_name argument is a saved reference (in local#0) to the member_name.
1285 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1286 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1287 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1288                                                             Method* method, address bcp))
1289   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1290   if (code != Bytecodes::_invokestatic) {
1291     return;
1292   }
1293   ConstantPool* cpool = method->constants();
1294   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1295   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1296   Symbol* mname = cpool->name_ref_at(cp_index);
1297 
1298   if (MethodHandles::has_member_arg(cname, mname)) {
1299     oop member_name_oop = (oop) member_name;
1300     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1301       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1302       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1303     }
1304     thread->set_vm_result(member_name_oop);
1305   }
1306 IRT_END
1307 #endif // INCLUDE_JVMTI