1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 // Static array so we can figure out which bytecodes stop us from compiling
  42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  44 
  45 int nodes_created              = 0;
  46 int methods_parsed             = 0;
  47 int methods_seen               = 0;
  48 int blocks_parsed              = 0;
  49 int blocks_seen                = 0;
  50 
  51 int explicit_null_checks_inserted = 0;
  52 int explicit_null_checks_elided   = 0;
  53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  54 int implicit_null_throws          = 0;
  55 
  56 int reclaim_idx  = 0;
  57 int reclaim_in   = 0;
  58 int reclaim_node = 0;
  59 
  60 #ifndef PRODUCT
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 #endif
  67 
  68 //------------------------------print_statistics-------------------------------
  69 #ifndef PRODUCT
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed)
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if( explicit_null_checks_inserted )
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  81   if( all_null_checks_found )
  82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  83                   (100*implicit_null_checks)/all_null_checks_found);
  84   if( implicit_null_throws )
  85     tty->print_cr("%d implicit null exceptions at runtime",
  86                   implicit_null_throws);
  87 
  88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  89     BytecodeParseHistogram::print();
  90   }
  91 }
  92 #endif
  93 
  94 //------------------------------ON STACK REPLACEMENT---------------------------
  95 
  96 // Construct a node which can be used to get incoming state for
  97 // on stack replacement.
  98 Node *Parse::fetch_interpreter_state(int index,
  99                                      BasicType bt,
 100                                      Node *local_addrs,
 101                                      Node *local_addrs_base) {
 102   Node *mem = memory(Compile::AliasIdxRaw);
 103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 104   Node *ctl = control();
 105 
 106   // Very similar to LoadNode::make, except we handle un-aligned longs and
 107   // doubles on Sparc.  Intel can handle them just fine directly.
 108   Node *l;
 109   switch (bt) {                // Signature is flattened
 110   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 111   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 112   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 113   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 114   case T_LONG:
 115   case T_DOUBLE: {
 116     // Since arguments are in reverse order, the argument address 'adr'
 117     // refers to the back half of the long/double.  Recompute adr.
 118     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 119     if (Matcher::misaligned_doubles_ok) {
 120       l = (bt == T_DOUBLE)
 121         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 122         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 123     } else {
 124       l = (bt == T_DOUBLE)
 125         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 126         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 127     }
 128     break;
 129   }
 130   default: ShouldNotReachHere();
 131   }
 132   return _gvn.transform(l);
 133 }
 134 
 135 // Helper routine to prevent the interpreter from handing
 136 // unexpected typestate to an OSR method.
 137 // The Node l is a value newly dug out of the interpreter frame.
 138 // The type is the type predicted by ciTypeFlow.  Note that it is
 139 // not a general type, but can only come from Type::get_typeflow_type.
 140 // The safepoint is a map which will feed an uncommon trap.
 141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 142                                     SafePointNode* &bad_type_exit) {
 143 
 144   const TypeOopPtr* tp = type->isa_oopptr();
 145 
 146   // TypeFlow may assert null-ness if a type appears unloaded.
 147   if (type == TypePtr::NULL_PTR ||
 148       (tp != NULL && !tp->klass()->is_loaded())) {
 149     // Value must be null, not a real oop.
 150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 155     bad_type_exit->control()->add_req(bad_type);
 156     l = null();
 157   }
 158 
 159   // Typeflow can also cut off paths from the CFG, based on
 160   // types which appear unloaded, or call sites which appear unlinked.
 161   // When paths are cut off, values at later merge points can rise
 162   // toward more specific classes.  Make sure these specific classes
 163   // are still in effect.
 164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 165     // TypeFlow asserted a specific object type.  Value must have that type.
 166     Node* bad_type_ctrl = NULL;
 167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 168     bad_type_exit->control()->add_req(bad_type_ctrl);
 169   }
 170 
 171   BasicType bt_l = _gvn.type(l)->basic_type();
 172   BasicType bt_t = type->basic_type();
 173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 174   return l;
 175 }
 176 
 177 // Helper routine which sets up elements of the initial parser map when
 178 // performing a parse for on stack replacement.  Add values into map.
 179 // The only parameter contains the address of a interpreter arguments.
 180 void Parse::load_interpreter_state(Node* osr_buf) {
 181   int index;
 182   int max_locals = jvms()->loc_size();
 183   int max_stack  = jvms()->stk_size();
 184 
 185 
 186   // Mismatch between method and jvms can occur since map briefly held
 187   // an OSR entry state (which takes up one RawPtr word).
 188   assert(max_locals == method()->max_locals(), "sanity");
 189   assert(max_stack  >= method()->max_stack(),  "sanity");
 190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 192 
 193   // Find the start block.
 194   Block* osr_block = start_block();
 195   assert(osr_block->start() == osr_bci(), "sanity");
 196 
 197   // Set initial BCI.
 198   set_parse_bci(osr_block->start());
 199 
 200   // Set initial stack depth.
 201   set_sp(osr_block->start_sp());
 202 
 203   // Check bailouts.  We currently do not perform on stack replacement
 204   // of loops in catch blocks or loops which branch with a non-empty stack.
 205   if (sp() != 0) {
 206     C->record_method_not_compilable("OSR starts with non-empty stack");
 207     return;
 208   }
 209   // Do not OSR inside finally clauses:
 210   if (osr_block->has_trap_at(osr_block->start())) {
 211     C->record_method_not_compilable("OSR starts with an immediate trap");
 212     return;
 213   }
 214 
 215   // Commute monitors from interpreter frame to compiler frame.
 216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 217   int mcnt = osr_block->flow()->monitor_count();
 218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 219   for (index = 0; index < mcnt; index++) {
 220     // Make a BoxLockNode for the monitor.
 221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 222 
 223 
 224     // Displaced headers and locked objects are interleaved in the
 225     // temp OSR buffer.  We only copy the locked objects out here.
 226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 228     // Try and copy the displaced header to the BoxNode
 229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 230 
 231 
 232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 233 
 234     // Build a bogus FastLockNode (no code will be generated) and push the
 235     // monitor into our debug info.
 236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 237     map()->push_monitor(flock);
 238 
 239     // If the lock is our method synchronization lock, tuck it away in
 240     // _sync_lock for return and rethrow exit paths.
 241     if (index == 0 && method()->is_synchronized()) {
 242       _synch_lock = flock;
 243     }
 244   }
 245 
 246   // Use the raw liveness computation to make sure that unexpected
 247   // values don't propagate into the OSR frame.
 248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 249   if (!live_locals.is_valid()) {
 250     // Degenerate or breakpointed method.
 251     C->record_method_not_compilable("OSR in empty or breakpointed method");
 252     return;
 253   }
 254 
 255   // Extract the needed locals from the interpreter frame.
 256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 257 
 258   // find all the locals that the interpreter thinks contain live oops
 259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 260   for (index = 0; index < max_locals; index++) {
 261 
 262     if (!live_locals.at(index)) {
 263       continue;
 264     }
 265 
 266     const Type *type = osr_block->local_type_at(index);
 267 
 268     if (type->isa_oopptr() != NULL) {
 269 
 270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 271       // else we might load a stale oop if the MethodLiveness disagrees with the
 272       // result of the interpreter. If the interpreter says it is dead we agree
 273       // by making the value go to top.
 274       //
 275 
 276       if (!live_oops.at(index)) {
 277         if (C->log() != NULL) {
 278           C->log()->elem("OSR_mismatch local_index='%d'",index);
 279         }
 280         set_local(index, null());
 281         // and ignore it for the loads
 282         continue;
 283       }
 284     }
 285 
 286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 287     if (type == Type::TOP || type == Type::HALF) {
 288       continue;
 289     }
 290     // If the type falls to bottom, then this must be a local that
 291     // is mixing ints and oops or some such.  Forcing it to top
 292     // makes it go dead.
 293     if (type == Type::BOTTOM) {
 294       continue;
 295     }
 296     // Construct code to access the appropriate local.
 297     BasicType bt = type->basic_type();
 298     if (type == TypePtr::NULL_PTR) {
 299       // Ptr types are mixed together with T_ADDRESS but NULL is
 300       // really for T_OBJECT types so correct it.
 301       bt = T_OBJECT;
 302     }
 303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 304     set_local(index, value);
 305   }
 306 
 307   // Extract the needed stack entries from the interpreter frame.
 308   for (index = 0; index < sp(); index++) {
 309     const Type *type = osr_block->stack_type_at(index);
 310     if (type != Type::TOP) {
 311       // Currently the compiler bails out when attempting to on stack replace
 312       // at a bci with a non-empty stack.  We should not reach here.
 313       ShouldNotReachHere();
 314     }
 315   }
 316 
 317   // End the OSR migration
 318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 321                     osr_buf);
 322 
 323   // Now that the interpreter state is loaded, make sure it will match
 324   // at execution time what the compiler is expecting now:
 325   SafePointNode* bad_type_exit = clone_map();
 326   bad_type_exit->set_control(new (C) RegionNode(1));
 327 
 328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 329   for (index = 0; index < max_locals; index++) {
 330     if (stopped())  break;
 331     Node* l = local(index);
 332     if (l->is_top())  continue;  // nothing here
 333     const Type *type = osr_block->local_type_at(index);
 334     if (type->isa_oopptr() != NULL) {
 335       if (!live_oops.at(index)) {
 336         // skip type check for dead oops
 337         continue;
 338       }
 339     }
 340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 341       // In our current system it's illegal for jsr addresses to be
 342       // live into an OSR entry point because the compiler performs
 343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 344       // case and aborts the compile if addresses are live into an OSR
 345       // entry point.  Because of that we can assume that any address
 346       // locals at the OSR entry point are dead.  Method liveness
 347       // isn't precise enought to figure out that they are dead in all
 348       // cases so simply skip checking address locals all
 349       // together. Any type check is guaranteed to fail since the
 350       // interpreter type is the result of a load which might have any
 351       // value and the expected type is a constant.
 352       continue;
 353     }
 354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 355   }
 356 
 357   for (index = 0; index < sp(); index++) {
 358     if (stopped())  break;
 359     Node* l = stack(index);
 360     if (l->is_top())  continue;  // nothing here
 361     const Type *type = osr_block->stack_type_at(index);
 362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 363   }
 364 
 365   if (bad_type_exit->control()->req() > 1) {
 366     // Build an uncommon trap here, if any inputs can be unexpected.
 367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 368     record_for_igvn(bad_type_exit->control());
 369     SafePointNode* types_are_good = map();
 370     set_map(bad_type_exit);
 371     // The unexpected type happens because a new edge is active
 372     // in the CFG, which typeflow had previously ignored.
 373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 374     // This x will be typed as Integer if notReached is not yet linked.
 375     // It could also happen due to a problem in ciTypeFlow analysis.
 376     uncommon_trap(Deoptimization::Reason_constraint,
 377                   Deoptimization::Action_reinterpret);
 378     set_map(types_are_good);
 379   }
 380 }
 381 
 382 //------------------------------Parse------------------------------------------
 383 // Main parser constructor.
 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent)
 385   : _exits(caller), _parent(parent)
 386 {
 387   // Init some variables
 388   _caller = caller;
 389   _method = parse_method;
 390   _expected_uses = expected_uses;
 391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 392   _wrote_final = false;
 393   _wrote_volatile = false;
 394   _wrote_stable = false;
 395   _wrote_fields = false;
 396   _alloc_with_final = NULL;
 397   _entry_bci = InvocationEntryBci;
 398   _tf = NULL;
 399   _block = NULL;
 400   debug_only(_block_count = -1);
 401   debug_only(_blocks = (Block*)-1);
 402 #ifndef PRODUCT
 403   if (PrintCompilation || PrintOpto) {
 404     // Make sure I have an inline tree, so I can print messages about it.
 405     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 406     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 407   }
 408   _max_switch_depth = 0;
 409   _est_switch_depth = 0;
 410 #endif
 411 
 412   _tf = TypeFunc::make(method());
 413   _iter.reset_to_method(method());
 414   _flow = method()->get_flow_analysis();
 415   if (_flow->failing()) {
 416     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 417   }
 418 
 419 #ifndef PRODUCT
 420   if (_flow->has_irreducible_entry()) {
 421     C->set_parsed_irreducible_loop(true);
 422   }
 423 #endif
 424 
 425   if (_expected_uses <= 0) {
 426     _prof_factor = 1;
 427   } else {
 428     float prof_total = parse_method->interpreter_invocation_count();
 429     if (prof_total <= _expected_uses) {
 430       _prof_factor = 1;
 431     } else {
 432       _prof_factor = _expected_uses / prof_total;
 433     }
 434   }
 435 
 436   CompileLog* log = C->log();
 437   if (log != NULL) {
 438     log->begin_head("parse method='%d' uses='%g'",
 439                     log->identify(parse_method), expected_uses);
 440     if (depth() == 1 && C->is_osr_compilation()) {
 441       log->print(" osr_bci='%d'", C->entry_bci());
 442     }
 443     log->stamp();
 444     log->end_head();
 445   }
 446 
 447   // Accumulate deoptimization counts.
 448   // (The range_check and store_check counts are checked elsewhere.)
 449   ciMethodData* md = method()->method_data();
 450   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 451     uint md_count = md->trap_count(reason);
 452     if (md_count != 0) {
 453       if (md_count == md->trap_count_limit())
 454         md_count += md->overflow_trap_count();
 455       uint total_count = C->trap_count(reason);
 456       uint old_count   = total_count;
 457       total_count += md_count;
 458       // Saturate the add if it overflows.
 459       if (total_count < old_count || total_count < md_count)
 460         total_count = (uint)-1;
 461       C->set_trap_count(reason, total_count);
 462       if (log != NULL)
 463         log->elem("observe trap='%s' count='%d' total='%d'",
 464                   Deoptimization::trap_reason_name(reason),
 465                   md_count, total_count);
 466     }
 467   }
 468   // Accumulate total sum of decompilations, also.
 469   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 470 
 471   _count_invocations = C->do_count_invocations();
 472   _method_data_update = C->do_method_data_update();
 473 
 474   if (log != NULL && method()->has_exception_handlers()) {
 475     log->elem("observe that='has_exception_handlers'");
 476   }
 477 
 478   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 479   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 480 
 481   // Always register dependence if JVMTI is enabled, because
 482   // either breakpoint setting or hotswapping of methods may
 483   // cause deoptimization.
 484   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 485     C->dependencies()->assert_evol_method(method());
 486   }
 487 
 488   methods_seen++;
 489 
 490   // Do some special top-level things.
 491   if (depth() == 1 && C->is_osr_compilation()) {
 492     _entry_bci = C->entry_bci();
 493     _flow = method()->get_osr_flow_analysis(osr_bci());
 494     if (_flow->failing()) {
 495       C->record_method_not_compilable(_flow->failure_reason());
 496 #ifndef PRODUCT
 497       if (PrintOpto && (Verbose || WizardMode)) {
 498         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 499         if (Verbose) {
 500           method()->print();
 501           method()->print_codes();
 502           _flow->print();
 503         }
 504       }
 505 #endif
 506     }
 507     _tf = C->tf();     // the OSR entry type is different
 508   }
 509 
 510 #ifdef ASSERT
 511   if (depth() == 1) {
 512     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 513     if (C->tf() != tf()) {
 514       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 515       assert(C->env()->system_dictionary_modification_counter_changed(),
 516              "Must invalidate if TypeFuncs differ");
 517     }
 518   } else {
 519     assert(!this->is_osr_parse(), "no recursive OSR");
 520   }
 521 #endif
 522 
 523   methods_parsed++;
 524 #ifndef PRODUCT
 525   // add method size here to guarantee that inlined methods are added too
 526   if (TimeCompiler)
 527     _total_bytes_compiled += method()->code_size();
 528 
 529   show_parse_info();
 530 #endif
 531 
 532   if (failing()) {
 533     if (log)  log->done("parse");
 534     return;
 535   }
 536 
 537   gvn().set_type(root(), root()->bottom_type());
 538   gvn().transform(top());
 539 
 540   // Import the results of the ciTypeFlow.
 541   init_blocks();
 542 
 543   // Merge point for all normal exits
 544   build_exits();
 545 
 546   // Setup the initial JVM state map.
 547   SafePointNode* entry_map = create_entry_map();
 548 
 549   // Check for bailouts during map initialization
 550   if (failing() || entry_map == NULL) {
 551     if (log)  log->done("parse");
 552     return;
 553   }
 554 
 555   Node_Notes* caller_nn = C->default_node_notes();
 556   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 557   if (DebugInlinedCalls || depth() == 1) {
 558     C->set_default_node_notes(make_node_notes(caller_nn));
 559   }
 560 
 561   if (is_osr_parse()) {
 562     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 563     entry_map->set_req(TypeFunc::Parms+0, top());
 564     set_map(entry_map);
 565     load_interpreter_state(osr_buf);
 566   } else {
 567     set_map(entry_map);
 568     do_method_entry();
 569   }
 570 
 571   // Check for bailouts during method entry.
 572   if (failing()) {
 573     if (log)  log->done("parse");
 574     C->set_default_node_notes(caller_nn);
 575     return;
 576   }
 577 
 578   entry_map = map();  // capture any changes performed by method setup code
 579   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 580 
 581   // We begin parsing as if we have just encountered a jump to the
 582   // method entry.
 583   Block* entry_block = start_block();
 584   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 585   set_map_clone(entry_map);
 586   merge_common(entry_block, entry_block->next_path_num());
 587 
 588 #ifndef PRODUCT
 589   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 590   set_parse_histogram( parse_histogram_obj );
 591 #endif
 592 
 593   // Parse all the basic blocks.
 594   do_all_blocks();
 595 
 596   C->set_default_node_notes(caller_nn);
 597 
 598   // Check for bailouts during conversion to graph
 599   if (failing()) {
 600     if (log)  log->done("parse");
 601     return;
 602   }
 603 
 604   // Fix up all exiting control flow.
 605   set_map(entry_map);
 606   do_exits();
 607 
 608   if (log)  log->done("parse nodes='%d' live='%d' memory='%d'",
 609                       C->unique(), C->live_nodes(), C->node_arena()->used());
 610 }
 611 
 612 //---------------------------do_all_blocks-------------------------------------
 613 void Parse::do_all_blocks() {
 614   bool has_irreducible = flow()->has_irreducible_entry();
 615 
 616   // Walk over all blocks in Reverse Post-Order.
 617   while (true) {
 618     bool progress = false;
 619     for (int rpo = 0; rpo < block_count(); rpo++) {
 620       Block* block = rpo_at(rpo);
 621 
 622       if (block->is_parsed()) continue;
 623 
 624       if (!block->is_merged()) {
 625         // Dead block, no state reaches this block
 626         continue;
 627       }
 628 
 629       // Prepare to parse this block.
 630       load_state_from(block);
 631 
 632       if (stopped()) {
 633         // Block is dead.
 634         continue;
 635       }
 636 
 637       blocks_parsed++;
 638 
 639       progress = true;
 640       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 641         // Not all preds have been parsed.  We must build phis everywhere.
 642         // (Note that dead locals do not get phis built, ever.)
 643         ensure_phis_everywhere();
 644 
 645         if (block->is_SEL_head() &&
 646             (UseLoopPredicate || LoopLimitCheck)) {
 647           // Add predicate to single entry (not irreducible) loop head.
 648           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 649           // Need correct bci for predicate.
 650           // It is fine to set it here since do_one_block() will set it anyway.
 651           set_parse_bci(block->start());
 652           add_predicate();
 653           // Add new region for back branches.
 654           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 655           RegionNode *r = new (C) RegionNode(edges+1);
 656           _gvn.set_type(r, Type::CONTROL);
 657           record_for_igvn(r);
 658           r->init_req(edges, control());
 659           set_control(r);
 660           // Add new phis.
 661           ensure_phis_everywhere();
 662         }
 663 
 664         // Leave behind an undisturbed copy of the map, for future merges.
 665         set_map(clone_map());
 666       }
 667 
 668       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 669         // In the absence of irreducible loops, the Region and Phis
 670         // associated with a merge that doesn't involve a backedge can
 671         // be simplified now since the RPO parsing order guarantees
 672         // that any path which was supposed to reach here has already
 673         // been parsed or must be dead.
 674         Node* c = control();
 675         Node* result = _gvn.transform_no_reclaim(control());
 676         if (c != result && TraceOptoParse) {
 677           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 678         }
 679         if (result != top()) {
 680           record_for_igvn(result);
 681         }
 682       }
 683 
 684       // Parse the block.
 685       do_one_block();
 686 
 687       // Check for bailouts.
 688       if (failing())  return;
 689     }
 690 
 691     // with irreducible loops multiple passes might be necessary to parse everything
 692     if (!has_irreducible || !progress) {
 693       break;
 694     }
 695   }
 696 
 697   blocks_seen += block_count();
 698 
 699 #ifndef PRODUCT
 700   // Make sure there are no half-processed blocks remaining.
 701   // Every remaining unprocessed block is dead and may be ignored now.
 702   for (int rpo = 0; rpo < block_count(); rpo++) {
 703     Block* block = rpo_at(rpo);
 704     if (!block->is_parsed()) {
 705       if (TraceOptoParse) {
 706         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 707       }
 708       assert(!block->is_merged(), "no half-processed blocks");
 709     }
 710   }
 711 #endif
 712 }
 713 
 714 //-------------------------------build_exits----------------------------------
 715 // Build normal and exceptional exit merge points.
 716 void Parse::build_exits() {
 717   // make a clone of caller to prevent sharing of side-effects
 718   _exits.set_map(_exits.clone_map());
 719   _exits.clean_stack(_exits.sp());
 720   _exits.sync_jvms();
 721 
 722   RegionNode* region = new (C) RegionNode(1);
 723   record_for_igvn(region);
 724   gvn().set_type_bottom(region);
 725   _exits.set_control(region);
 726 
 727   // Note:  iophi and memphi are not transformed until do_exits.
 728   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 729   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 730   gvn().set_type_bottom(iophi);
 731   gvn().set_type_bottom(memphi);
 732   _exits.set_i_o(iophi);
 733   _exits.set_all_memory(memphi);
 734 
 735   // Add a return value to the exit state.  (Do not push it yet.)
 736   if (tf()->range()->cnt() > TypeFunc::Parms) {
 737     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 738     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 739     // becomes loaded during the subsequent parsing, the loaded and unloaded
 740     // types will not join when we transform and push in do_exits().
 741     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 742     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 743       ret_type = TypeOopPtr::BOTTOM;
 744     }
 745     int         ret_size = type2size[ret_type->basic_type()];
 746     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 747     gvn().set_type_bottom(ret_phi);
 748     _exits.ensure_stack(ret_size);
 749     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 750     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 751     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 752     // Note:  ret_phi is not yet pushed, until do_exits.
 753   }
 754 }
 755 
 756 
 757 //----------------------------build_start_state-------------------------------
 758 // Construct a state which contains only the incoming arguments from an
 759 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 760 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 761   int        arg_size = tf->domain()->cnt();
 762   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 763   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 764   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 765   record_for_igvn(map);
 766   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 767   Node_Notes* old_nn = default_node_notes();
 768   if (old_nn != NULL && has_method()) {
 769     Node_Notes* entry_nn = old_nn->clone(this);
 770     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 771     entry_jvms->set_offsets(0);
 772     entry_jvms->set_bci(entry_bci());
 773     entry_nn->set_jvms(entry_jvms);
 774     set_default_node_notes(entry_nn);
 775   }
 776   uint i;
 777   for (i = 0; i < (uint)arg_size; i++) {
 778     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 779     map->init_req(i, parm);
 780     // Record all these guys for later GVN.
 781     record_for_igvn(parm);
 782   }
 783   for (; i < map->req(); i++) {
 784     map->init_req(i, top());
 785   }
 786   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 787   set_default_node_notes(old_nn);
 788   map->set_jvms(jvms);
 789   jvms->set_map(map);
 790   return jvms;
 791 }
 792 
 793 //-----------------------------make_node_notes---------------------------------
 794 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 795   if (caller_nn == NULL)  return NULL;
 796   Node_Notes* nn = caller_nn->clone(C);
 797   JVMState* caller_jvms = nn->jvms();
 798   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 799   jvms->set_offsets(0);
 800   jvms->set_bci(_entry_bci);
 801   nn->set_jvms(jvms);
 802   return nn;
 803 }
 804 
 805 
 806 //--------------------------return_values--------------------------------------
 807 void Compile::return_values(JVMState* jvms) {
 808   GraphKit kit(jvms);
 809   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 810                              kit.control(),
 811                              kit.i_o(),
 812                              kit.reset_memory(),
 813                              kit.frameptr(),
 814                              kit.returnadr());
 815   // Add zero or 1 return values
 816   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 817   if (ret_size > 0) {
 818     kit.inc_sp(-ret_size);  // pop the return value(s)
 819     kit.sync_jvms();
 820     ret->add_req(kit.argument(0));
 821     // Note:  The second dummy edge is not needed by a ReturnNode.
 822   }
 823   // bind it to root
 824   root()->add_req(ret);
 825   record_for_igvn(ret);
 826   initial_gvn()->transform_no_reclaim(ret);
 827 }
 828 
 829 //------------------------rethrow_exceptions-----------------------------------
 830 // Bind all exception states in the list into a single RethrowNode.
 831 void Compile::rethrow_exceptions(JVMState* jvms) {
 832   GraphKit kit(jvms);
 833   if (!kit.has_exceptions())  return;  // nothing to generate
 834   // Load my combined exception state into the kit, with all phis transformed:
 835   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 836   Node* ex_oop = kit.use_exception_state(ex_map);
 837   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 838                                       kit.i_o(), kit.reset_memory(),
 839                                       kit.frameptr(), kit.returnadr(),
 840                                       // like a return but with exception input
 841                                       ex_oop);
 842   // bind to root
 843   root()->add_req(exit);
 844   record_for_igvn(exit);
 845   initial_gvn()->transform_no_reclaim(exit);
 846 }
 847 
 848 //---------------------------do_exceptions-------------------------------------
 849 // Process exceptions arising from the current bytecode.
 850 // Send caught exceptions to the proper handler within this method.
 851 // Unhandled exceptions feed into _exit.
 852 void Parse::do_exceptions() {
 853   if (!has_exceptions())  return;
 854 
 855   if (failing()) {
 856     // Pop them all off and throw them away.
 857     while (pop_exception_state() != NULL) ;
 858     return;
 859   }
 860 
 861   PreserveJVMState pjvms(this, false);
 862 
 863   SafePointNode* ex_map;
 864   while ((ex_map = pop_exception_state()) != NULL) {
 865     if (!method()->has_exception_handlers()) {
 866       // Common case:  Transfer control outward.
 867       // Doing it this early allows the exceptions to common up
 868       // even between adjacent method calls.
 869       throw_to_exit(ex_map);
 870     } else {
 871       // Have to look at the exception first.
 872       assert(stopped(), "catch_inline_exceptions trashes the map");
 873       catch_inline_exceptions(ex_map);
 874       stop_and_kill_map();      // we used up this exception state; kill it
 875     }
 876   }
 877 
 878   // We now return to our regularly scheduled program:
 879 }
 880 
 881 //---------------------------throw_to_exit-------------------------------------
 882 // Merge the given map into an exception exit from this method.
 883 // The exception exit will handle any unlocking of receiver.
 884 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 885 void Parse::throw_to_exit(SafePointNode* ex_map) {
 886   // Pop the JVMS to (a copy of) the caller.
 887   GraphKit caller;
 888   caller.set_map_clone(_caller->map());
 889   caller.set_bci(_caller->bci());
 890   caller.set_sp(_caller->sp());
 891   // Copy out the standard machine state:
 892   for (uint i = 0; i < TypeFunc::Parms; i++) {
 893     caller.map()->set_req(i, ex_map->in(i));
 894   }
 895   // ...and the exception:
 896   Node*          ex_oop        = saved_ex_oop(ex_map);
 897   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 898   // Finally, collect the new exception state in my exits:
 899   _exits.add_exception_state(caller_ex_map);
 900 }
 901 
 902 //------------------------------do_exits---------------------------------------
 903 void Parse::do_exits() {
 904   set_parse_bci(InvocationEntryBci);
 905 
 906   // Now peephole on the return bits
 907   Node* region = _exits.control();
 908   _exits.set_control(gvn().transform(region));
 909 
 910   Node* iophi = _exits.i_o();
 911   _exits.set_i_o(gvn().transform(iophi));
 912 
 913   // Figure out if we need to emit the trailing barrier. The barrier is only
 914   // needed in the constructors, and only in three cases:
 915   //
 916   // 1. The constructor wrote a final. The effects of all initializations
 917   //    must be committed to memory before any code after the constructor
 918   //    publishes the reference to the newly constructed object. Rather
 919   //    than wait for the publication, we simply block the writes here.
 920   //    Rather than put a barrier on only those writes which are required
 921   //    to complete, we force all writes to complete.
 922   //
 923   // 2. On PPC64, also add MemBarRelease for constructors which write
 924   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 925   //    is set on PPC64, no sync instruction is issued after volatile
 926   //    stores. We want to guarantee the same behavior as on platforms
 927   //    with total store order, although this is not required by the Java
 928   //    memory model. So as with finals, we add a barrier here.
 929   //
 930   // 3. Experimental VM option is used to force the barrier if any field
 931   //    was written out in the constructor.
 932   //
 933   // "All bets are off" unless the first publication occurs after a
 934   // normal return from the constructor.  We do not attempt to detect
 935   // such unusual early publications.  But no barrier is needed on
 936   // exceptional returns, since they cannot publish normally.
 937   //
 938   if (method()->is_initializer() &&
 939         (wrote_final() ||
 940            PPC64_ONLY(wrote_volatile() ||)
 941            (AlwaysSafeConstructors && wrote_fields()))) {
 942     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 943 #ifndef PRODUCT
 944     if (PrintOpto && (Verbose || WizardMode)) {
 945       method()->print_name();
 946       tty->print_cr(" writes finals and needs a memory barrier");
 947     }
 948 #endif
 949   }
 950 
 951   // Any method can write a @Stable field; insert memory barriers after
 952   // those also. If there is a predecessor allocation node, bind the
 953   // barrier there.
 954   if (wrote_stable()) {
 955     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 956 #ifndef PRODUCT
 957     if (PrintOpto && (Verbose || WizardMode)) {
 958       method()->print_name();
 959       tty->print_cr(" writes @Stable and needs a memory barrier");
 960     }
 961 #endif
 962   }
 963 
 964   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 965     // transform each slice of the original memphi:
 966     mms.set_memory(_gvn.transform(mms.memory()));
 967   }
 968 
 969   if (tf()->range()->cnt() > TypeFunc::Parms) {
 970     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 971     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 972     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 973     _exits.push_node(ret_type->basic_type(), ret_phi);
 974   }
 975 
 976   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 977 
 978   // Unlock along the exceptional paths.
 979   // This is done late so that we can common up equivalent exceptions
 980   // (e.g., null checks) arising from multiple points within this method.
 981   // See GraphKit::add_exception_state, which performs the commoning.
 982   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 983 
 984   // record exit from a method if compiled while Dtrace is turned on.
 985   if (do_synch || C->env()->dtrace_method_probes()) {
 986     // First move the exception list out of _exits:
 987     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 988     SafePointNode* normal_map = kit.map();  // keep this guy safe
 989     // Now re-collect the exceptions into _exits:
 990     SafePointNode* ex_map;
 991     while ((ex_map = kit.pop_exception_state()) != NULL) {
 992       Node* ex_oop = kit.use_exception_state(ex_map);
 993       // Force the exiting JVM state to have this method at InvocationEntryBci.
 994       // The exiting JVM state is otherwise a copy of the calling JVMS.
 995       JVMState* caller = kit.jvms();
 996       JVMState* ex_jvms = caller->clone_shallow(C);
 997       ex_jvms->set_map(kit.clone_map());
 998       ex_jvms->map()->set_jvms(ex_jvms);
 999       ex_jvms->set_bci(   InvocationEntryBci);
1000       kit.set_jvms(ex_jvms);
1001       if (do_synch) {
1002         // Add on the synchronized-method box/object combo
1003         kit.map()->push_monitor(_synch_lock);
1004         // Unlock!
1005         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1006       }
1007       if (C->env()->dtrace_method_probes()) {
1008         kit.make_dtrace_method_exit(method());
1009       }
1010       // Done with exception-path processing.
1011       ex_map = kit.make_exception_state(ex_oop);
1012       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1013       // Pop the last vestige of this method:
1014       ex_map->set_jvms(caller->clone_shallow(C));
1015       ex_map->jvms()->set_map(ex_map);
1016       _exits.push_exception_state(ex_map);
1017     }
1018     assert(_exits.map() == normal_map, "keep the same return state");
1019   }
1020 
1021   {
1022     // Capture very early exceptions (receiver null checks) from caller JVMS
1023     GraphKit caller(_caller);
1024     SafePointNode* ex_map;
1025     while ((ex_map = caller.pop_exception_state()) != NULL) {
1026       _exits.add_exception_state(ex_map);
1027     }
1028   }
1029 }
1030 
1031 //-----------------------------create_entry_map-------------------------------
1032 // Initialize our parser map to contain the types at method entry.
1033 // For OSR, the map contains a single RawPtr parameter.
1034 // Initial monitor locking for sync. methods is performed by do_method_entry.
1035 SafePointNode* Parse::create_entry_map() {
1036   // Check for really stupid bail-out cases.
1037   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1038   if (len >= 32760) {
1039     C->record_method_not_compilable_all_tiers("too many local variables");
1040     return NULL;
1041   }
1042 
1043   // If this is an inlined method, we may have to do a receiver null check.
1044   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1045     GraphKit kit(_caller);
1046     kit.null_check_receiver_before_call(method());
1047     _caller = kit.transfer_exceptions_into_jvms();
1048     if (kit.stopped()) {
1049       _exits.add_exception_states_from(_caller);
1050       _exits.set_jvms(_caller);
1051       return NULL;
1052     }
1053   }
1054 
1055   assert(method() != NULL, "parser must have a method");
1056 
1057   // Create an initial safepoint to hold JVM state during parsing
1058   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1059   set_map(new (C) SafePointNode(len, jvms));
1060   jvms->set_map(map());
1061   record_for_igvn(map());
1062   assert(jvms->endoff() == len, "correct jvms sizing");
1063 
1064   SafePointNode* inmap = _caller->map();
1065   assert(inmap != NULL, "must have inmap");
1066 
1067   uint i;
1068 
1069   // Pass thru the predefined input parameters.
1070   for (i = 0; i < TypeFunc::Parms; i++) {
1071     map()->init_req(i, inmap->in(i));
1072   }
1073 
1074   if (depth() == 1) {
1075     assert(map()->memory()->Opcode() == Op_Parm, "");
1076     // Insert the memory aliasing node
1077     set_all_memory(reset_memory());
1078   }
1079   assert(merged_memory(), "");
1080 
1081   // Now add the locals which are initially bound to arguments:
1082   uint arg_size = tf()->domain()->cnt();
1083   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1084   for (i = TypeFunc::Parms; i < arg_size; i++) {
1085     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1086   }
1087 
1088   // Clear out the rest of the map (locals and stack)
1089   for (i = arg_size; i < len; i++) {
1090     map()->init_req(i, top());
1091   }
1092 
1093   SafePointNode* entry_map = stop();
1094   return entry_map;
1095 }
1096 
1097 //-----------------------------do_method_entry--------------------------------
1098 // Emit any code needed in the pseudo-block before BCI zero.
1099 // The main thing to do is lock the receiver of a synchronized method.
1100 void Parse::do_method_entry() {
1101   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1102   set_sp(0);                      // Java Stack Pointer
1103 
1104   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1105 
1106   if (C->env()->dtrace_method_probes()) {
1107     make_dtrace_method_entry(method());
1108   }
1109 
1110   // If the method is synchronized, we need to construct a lock node, attach
1111   // it to the Start node, and pin it there.
1112   if (method()->is_synchronized()) {
1113     // Insert a FastLockNode right after the Start which takes as arguments
1114     // the current thread pointer, the "this" pointer & the address of the
1115     // stack slot pair used for the lock.  The "this" pointer is a projection
1116     // off the start node, but the locking spot has to be constructed by
1117     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1118     // becomes the second argument to the FastLockNode call.  The
1119     // FastLockNode becomes the new control parent to pin it to the start.
1120 
1121     // Setup Object Pointer
1122     Node *lock_obj = NULL;
1123     if(method()->is_static()) {
1124       ciInstance* mirror = _method->holder()->java_mirror();
1125       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1126       lock_obj = makecon(t_lock);
1127     } else {                  // Else pass the "this" pointer,
1128       lock_obj = local(0);    // which is Parm0 from StartNode
1129     }
1130     // Clear out dead values from the debug info.
1131     kill_dead_locals();
1132     // Build the FastLockNode
1133     _synch_lock = shared_lock(lock_obj);
1134   }
1135 
1136   // Feed profiling data for parameters to the type system so it can
1137   // propagate it as speculative types
1138   record_profiled_parameters_for_speculation();
1139 
1140   if (depth() == 1) {
1141     increment_and_test_invocation_counter(Tier2CompileThreshold);
1142   }
1143 }
1144 
1145 //------------------------------init_blocks------------------------------------
1146 // Initialize our parser map to contain the types/monitors at method entry.
1147 void Parse::init_blocks() {
1148   // Create the blocks.
1149   _block_count = flow()->block_count();
1150   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1151   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1152 
1153   int rpo;
1154 
1155   // Initialize the structs.
1156   for (rpo = 0; rpo < block_count(); rpo++) {
1157     Block* block = rpo_at(rpo);
1158     block->init_node(this, rpo);
1159   }
1160 
1161   // Collect predecessor and successor information.
1162   for (rpo = 0; rpo < block_count(); rpo++) {
1163     Block* block = rpo_at(rpo);
1164     block->init_graph(this);
1165   }
1166 }
1167 
1168 //-------------------------------init_node-------------------------------------
1169 void Parse::Block::init_node(Parse* outer, int rpo) {
1170   _flow = outer->flow()->rpo_at(rpo);
1171   _pred_count = 0;
1172   _preds_parsed = 0;
1173   _count = 0;
1174   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1175   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1176   assert(_live_locals.size() == 0, "sanity");
1177 
1178   // entry point has additional predecessor
1179   if (flow()->is_start())  _pred_count++;
1180   assert(flow()->is_start() == (this == outer->start_block()), "");
1181 }
1182 
1183 //-------------------------------init_graph------------------------------------
1184 void Parse::Block::init_graph(Parse* outer) {
1185   // Create the successor list for this parser block.
1186   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1187   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1188   int ns = tfs->length();
1189   int ne = tfe->length();
1190   _num_successors = ns;
1191   _all_successors = ns+ne;
1192   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1193   int p = 0;
1194   for (int i = 0; i < ns+ne; i++) {
1195     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1196     Block* block2 = outer->rpo_at(tf2->rpo());
1197     _successors[i] = block2;
1198 
1199     // Accumulate pred info for the other block, too.
1200     if (i < ns) {
1201       block2->_pred_count++;
1202     } else {
1203       block2->_is_handler = true;
1204     }
1205 
1206     #ifdef ASSERT
1207     // A block's successors must be distinguishable by BCI.
1208     // That is, no bytecode is allowed to branch to two different
1209     // clones of the same code location.
1210     for (int j = 0; j < i; j++) {
1211       Block* block1 = _successors[j];
1212       if (block1 == block2)  continue;  // duplicates are OK
1213       assert(block1->start() != block2->start(), "successors have unique bcis");
1214     }
1215     #endif
1216   }
1217 
1218   // Note: We never call next_path_num along exception paths, so they
1219   // never get processed as "ready".  Also, the input phis of exception
1220   // handlers get specially processed, so that
1221 }
1222 
1223 //---------------------------successor_for_bci---------------------------------
1224 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1225   for (int i = 0; i < all_successors(); i++) {
1226     Block* block2 = successor_at(i);
1227     if (block2->start() == bci)  return block2;
1228   }
1229   // We can actually reach here if ciTypeFlow traps out a block
1230   // due to an unloaded class, and concurrently with compilation the
1231   // class is then loaded, so that a later phase of the parser is
1232   // able to see more of the bytecode CFG.  Or, the flow pass and
1233   // the parser can have a minor difference of opinion about executability
1234   // of bytecodes.  For example, "obj.field = null" is executable even
1235   // if the field's type is an unloaded class; the flow pass used to
1236   // make a trap for such code.
1237   return NULL;
1238 }
1239 
1240 
1241 //-----------------------------stack_type_at-----------------------------------
1242 const Type* Parse::Block::stack_type_at(int i) const {
1243   return get_type(flow()->stack_type_at(i));
1244 }
1245 
1246 
1247 //-----------------------------local_type_at-----------------------------------
1248 const Type* Parse::Block::local_type_at(int i) const {
1249   // Make dead locals fall to bottom.
1250   if (_live_locals.size() == 0) {
1251     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1252     // This bitmap can be zero length if we saw a breakpoint.
1253     // In such cases, pretend they are all live.
1254     ((Block*)this)->_live_locals = live_locals;
1255   }
1256   if (_live_locals.size() > 0 && !_live_locals.at(i))
1257     return Type::BOTTOM;
1258 
1259   return get_type(flow()->local_type_at(i));
1260 }
1261 
1262 
1263 #ifndef PRODUCT
1264 
1265 //----------------------------name_for_bc--------------------------------------
1266 // helper method for BytecodeParseHistogram
1267 static const char* name_for_bc(int i) {
1268   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1269 }
1270 
1271 //----------------------------BytecodeParseHistogram------------------------------------
1272 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1273   _parser   = p;
1274   _compiler = c;
1275   if( ! _initialized ) { _initialized = true; reset(); }
1276 }
1277 
1278 //----------------------------current_count------------------------------------
1279 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1280   switch( bph_type ) {
1281   case BPH_transforms: { return _parser->gvn().made_progress(); }
1282   case BPH_values:     { return _parser->gvn().made_new_values(); }
1283   default: { ShouldNotReachHere(); return 0; }
1284   }
1285 }
1286 
1287 //----------------------------initialized--------------------------------------
1288 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1289 
1290 //----------------------------reset--------------------------------------------
1291 void Parse::BytecodeParseHistogram::reset() {
1292   int i = Bytecodes::number_of_codes;
1293   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1294 }
1295 
1296 //----------------------------set_initial_state--------------------------------
1297 // Record info when starting to parse one bytecode
1298 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1299   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1300     _initial_bytecode    = bc;
1301     _initial_node_count  = _compiler->unique();
1302     _initial_transforms  = current_count(BPH_transforms);
1303     _initial_values      = current_count(BPH_values);
1304   }
1305 }
1306 
1307 //----------------------------record_change--------------------------------
1308 // Record results of parsing one bytecode
1309 void Parse::BytecodeParseHistogram::record_change() {
1310   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1311     ++_bytecodes_parsed[_initial_bytecode];
1312     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1313     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1314     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1315   }
1316 }
1317 
1318 
1319 //----------------------------print--------------------------------------------
1320 void Parse::BytecodeParseHistogram::print(float cutoff) {
1321   ResourceMark rm;
1322   // print profile
1323   int total  = 0;
1324   int i      = 0;
1325   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1326   int abs_sum = 0;
1327   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1328   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1329   if( total == 0 ) { return; }
1330   tty->cr();
1331   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1332   tty->print_cr("relative:  percentage contribution to compiled nodes");
1333   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1334   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1335   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1336   tty->print_cr("values  :  Average number of node values improved per bytecode");
1337   tty->print_cr("name    :  Bytecode name");
1338   tty->cr();
1339   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1340   tty->print_cr("----------------------------------------------------------------------");
1341   while (--i > 0) {
1342     int       abs = _bytecodes_parsed[i];
1343     float     rel = abs * 100.0F / total;
1344     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1345     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1346     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1347     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1348     if (cutoff <= rel) {
1349       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1350       abs_sum += abs;
1351     }
1352   }
1353   tty->print_cr("----------------------------------------------------------------------");
1354   float rel_sum = abs_sum * 100.0F / total;
1355   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1356   tty->print_cr("----------------------------------------------------------------------");
1357   tty->cr();
1358 }
1359 #endif
1360 
1361 //----------------------------load_state_from----------------------------------
1362 // Load block/map/sp.  But not do not touch iter/bci.
1363 void Parse::load_state_from(Block* block) {
1364   set_block(block);
1365   // load the block's JVM state:
1366   set_map(block->start_map());
1367   set_sp( block->start_sp());
1368 }
1369 
1370 
1371 //-----------------------------record_state------------------------------------
1372 void Parse::Block::record_state(Parse* p) {
1373   assert(!is_merged(), "can only record state once, on 1st inflow");
1374   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1375   set_start_map(p->stop());
1376 }
1377 
1378 
1379 //------------------------------do_one_block-----------------------------------
1380 void Parse::do_one_block() {
1381   if (TraceOptoParse) {
1382     Block *b = block();
1383     int ns = b->num_successors();
1384     int nt = b->all_successors();
1385 
1386     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1387                   block()->rpo(), block()->start(), block()->limit());
1388     for (int i = 0; i < nt; i++) {
1389       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1390     }
1391     if (b->is_loop_head()) tty->print("  lphd");
1392     tty->print_cr("");
1393   }
1394 
1395   assert(block()->is_merged(), "must be merged before being parsed");
1396   block()->mark_parsed();
1397   ++_blocks_parsed;
1398 
1399   // Set iterator to start of block.
1400   iter().reset_to_bci(block()->start());
1401 
1402   CompileLog* log = C->log();
1403 
1404   // Parse bytecodes
1405   while (!stopped() && !failing()) {
1406     iter().next();
1407 
1408     // Learn the current bci from the iterator:
1409     set_parse_bci(iter().cur_bci());
1410 
1411     if (bci() == block()->limit()) {
1412       // Do not walk into the next block until directed by do_all_blocks.
1413       merge(bci());
1414       break;
1415     }
1416     assert(bci() < block()->limit(), "bci still in block");
1417 
1418     if (log != NULL) {
1419       // Output an optional context marker, to help place actions
1420       // that occur during parsing of this BC.  If there is no log
1421       // output until the next context string, this context string
1422       // will be silently ignored.
1423       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1424     }
1425 
1426     if (block()->has_trap_at(bci())) {
1427       // We must respect the flow pass's traps, because it will refuse
1428       // to produce successors for trapping blocks.
1429       int trap_index = block()->flow()->trap_index();
1430       assert(trap_index != 0, "trap index must be valid");
1431       uncommon_trap(trap_index);
1432       break;
1433     }
1434 
1435     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1436 
1437 #ifdef ASSERT
1438     int pre_bc_sp = sp();
1439     int inputs, depth;
1440     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1441     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1442 #endif //ASSERT
1443 
1444     do_one_bytecode();
1445 
1446     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1447            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1448 
1449     do_exceptions();
1450 
1451     NOT_PRODUCT( parse_histogram()->record_change(); );
1452 
1453     if (log != NULL)
1454       log->clear_context();  // skip marker if nothing was printed
1455 
1456     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1457     // successor which is typically made ready by visiting this bytecode.
1458     // If the successor has several predecessors, then it is a merge
1459     // point, starts a new basic block, and is handled like other basic blocks.
1460   }
1461 }
1462 
1463 
1464 //------------------------------merge------------------------------------------
1465 void Parse::set_parse_bci(int bci) {
1466   set_bci(bci);
1467   Node_Notes* nn = C->default_node_notes();
1468   if (nn == NULL)  return;
1469 
1470   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1471   if (!DebugInlinedCalls && depth() > 1) {
1472     return;
1473   }
1474 
1475   // Update the JVMS annotation, if present.
1476   JVMState* jvms = nn->jvms();
1477   if (jvms != NULL && jvms->bci() != bci) {
1478     // Update the JVMS.
1479     jvms = jvms->clone_shallow(C);
1480     jvms->set_bci(bci);
1481     nn->set_jvms(jvms);
1482   }
1483 }
1484 
1485 //------------------------------merge------------------------------------------
1486 // Merge the current mapping into the basic block starting at bci
1487 void Parse::merge(int target_bci) {
1488   Block* target = successor_for_bci(target_bci);
1489   if (target == NULL) { handle_missing_successor(target_bci); return; }
1490   assert(!target->is_ready(), "our arrival must be expected");
1491   int pnum = target->next_path_num();
1492   merge_common(target, pnum);
1493 }
1494 
1495 //-------------------------merge_new_path--------------------------------------
1496 // Merge the current mapping into the basic block, using a new path
1497 void Parse::merge_new_path(int target_bci) {
1498   Block* target = successor_for_bci(target_bci);
1499   if (target == NULL) { handle_missing_successor(target_bci); return; }
1500   assert(!target->is_ready(), "new path into frozen graph");
1501   int pnum = target->add_new_path();
1502   merge_common(target, pnum);
1503 }
1504 
1505 //-------------------------merge_exception-------------------------------------
1506 // Merge the current mapping into the basic block starting at bci
1507 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1508 void Parse::merge_exception(int target_bci) {
1509   assert(sp() == 1, "must have only the throw exception on the stack");
1510   Block* target = successor_for_bci(target_bci);
1511   if (target == NULL) { handle_missing_successor(target_bci); return; }
1512   assert(target->is_handler(), "exceptions are handled by special blocks");
1513   int pnum = target->add_new_path();
1514   merge_common(target, pnum);
1515 }
1516 
1517 //--------------------handle_missing_successor---------------------------------
1518 void Parse::handle_missing_successor(int target_bci) {
1519 #ifndef PRODUCT
1520   Block* b = block();
1521   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1522   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1523 #endif
1524   ShouldNotReachHere();
1525 }
1526 
1527 //--------------------------merge_common---------------------------------------
1528 void Parse::merge_common(Parse::Block* target, int pnum) {
1529   if (TraceOptoParse) {
1530     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1531   }
1532 
1533   // Zap extra stack slots to top
1534   assert(sp() == target->start_sp(), "");
1535   clean_stack(sp());
1536 
1537   if (!target->is_merged()) {   // No prior mapping at this bci
1538     if (TraceOptoParse) { tty->print(" with empty state");  }
1539 
1540     // If this path is dead, do not bother capturing it as a merge.
1541     // It is "as if" we had 1 fewer predecessors from the beginning.
1542     if (stopped()) {
1543       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1544       return;
1545     }
1546 
1547     // Record that a new block has been merged.
1548     ++_blocks_merged;
1549 
1550     // Make a region if we know there are multiple or unpredictable inputs.
1551     // (Also, if this is a plain fall-through, we might see another region,
1552     // which must not be allowed into this block's map.)
1553     if (pnum > PhiNode::Input         // Known multiple inputs.
1554         || target->is_handler()       // These have unpredictable inputs.
1555         || target->is_loop_head()     // Known multiple inputs
1556         || control()->is_Region()) {  // We must hide this guy.
1557 
1558       int current_bci = bci();
1559       set_parse_bci(target->start()); // Set target bci
1560       if (target->is_SEL_head()) {
1561         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1562         if (target->start() == 0) {
1563           // Add loop predicate for the special case when
1564           // there are backbranches to the method entry.
1565           add_predicate();
1566         }
1567       }
1568       // Add a Region to start the new basic block.  Phis will be added
1569       // later lazily.
1570       int edges = target->pred_count();
1571       if (edges < pnum)  edges = pnum;  // might be a new path!
1572       RegionNode *r = new (C) RegionNode(edges+1);
1573       gvn().set_type(r, Type::CONTROL);
1574       record_for_igvn(r);
1575       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1576       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1577       r->init_req(pnum, control());
1578       set_control(r);
1579       set_parse_bci(current_bci); // Restore bci
1580     }
1581 
1582     // Convert the existing Parser mapping into a mapping at this bci.
1583     store_state_to(target);
1584     assert(target->is_merged(), "do not come here twice");
1585 
1586   } else {                      // Prior mapping at this bci
1587     if (TraceOptoParse) {  tty->print(" with previous state"); }
1588 #ifdef ASSERT
1589     if (target->is_SEL_head()) {
1590       target->mark_merged_backedge(block());
1591     }
1592 #endif
1593     // We must not manufacture more phis if the target is already parsed.
1594     bool nophi = target->is_parsed();
1595 
1596     SafePointNode* newin = map();// Hang on to incoming mapping
1597     Block* save_block = block(); // Hang on to incoming block;
1598     load_state_from(target);    // Get prior mapping
1599 
1600     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1601     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1602     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1603     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1604 
1605     // Iterate over my current mapping and the old mapping.
1606     // Where different, insert Phi functions.
1607     // Use any existing Phi functions.
1608     assert(control()->is_Region(), "must be merging to a region");
1609     RegionNode* r = control()->as_Region();
1610 
1611     // Compute where to merge into
1612     // Merge incoming control path
1613     r->init_req(pnum, newin->control());
1614 
1615     if (pnum == 1) {            // Last merge for this Region?
1616       if (!block()->flow()->is_irreducible_entry()) {
1617         Node* result = _gvn.transform_no_reclaim(r);
1618         if (r != result && TraceOptoParse) {
1619           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1620         }
1621       }
1622       record_for_igvn(r);
1623     }
1624 
1625     // Update all the non-control inputs to map:
1626     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1627     bool check_elide_phi = target->is_SEL_backedge(save_block);
1628     for (uint j = 1; j < newin->req(); j++) {
1629       Node* m = map()->in(j);   // Current state of target.
1630       Node* n = newin->in(j);   // Incoming change to target state.
1631       PhiNode* phi;
1632       if (m->is_Phi() && m->as_Phi()->region() == r)
1633         phi = m->as_Phi();
1634       else
1635         phi = NULL;
1636       if (m != n) {             // Different; must merge
1637         switch (j) {
1638         // Frame pointer and Return Address never changes
1639         case TypeFunc::FramePtr:// Drop m, use the original value
1640         case TypeFunc::ReturnAdr:
1641           break;
1642         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1643           assert(phi == NULL, "the merge contains phis, not vice versa");
1644           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1645           continue;
1646         default:                // All normal stuff
1647           if (phi == NULL) {
1648             const JVMState* jvms = map()->jvms();
1649             if (EliminateNestedLocks &&
1650                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1651               // BoxLock nodes are not commoning.
1652               // Use old BoxLock node as merged box.
1653               assert(newin->jvms()->is_monitor_box(j), "sanity");
1654               // This assert also tests that nodes are BoxLock.
1655               assert(BoxLockNode::same_slot(n, m), "sanity");
1656               C->gvn_replace_by(n, m);
1657             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1658               phi = ensure_phi(j, nophi);
1659             }
1660           }
1661           break;
1662         }
1663       }
1664       // At this point, n might be top if:
1665       //  - there is no phi (because TypeFlow detected a conflict), or
1666       //  - the corresponding control edges is top (a dead incoming path)
1667       // It is a bug if we create a phi which sees a garbage value on a live path.
1668 
1669       if (phi != NULL) {
1670         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1671         assert(phi->region() == r, "");
1672         phi->set_req(pnum, n);  // Then add 'n' to the merge
1673         if (pnum == PhiNode::Input) {
1674           // Last merge for this Phi.
1675           // So far, Phis have had a reasonable type from ciTypeFlow.
1676           // Now _gvn will join that with the meet of current inputs.
1677           // BOTTOM is never permissible here, 'cause pessimistically
1678           // Phis of pointers cannot lose the basic pointer type.
1679           debug_only(const Type* bt1 = phi->bottom_type());
1680           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1681           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1682           debug_only(const Type* bt2 = phi->bottom_type());
1683           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1684           record_for_igvn(phi);
1685         }
1686       }
1687     } // End of for all values to be merged
1688 
1689     if (pnum == PhiNode::Input &&
1690         !r->in(0)) {         // The occasional useless Region
1691       assert(control() == r, "");
1692       set_control(r->nonnull_req());
1693     }
1694 
1695     // newin has been subsumed into the lazy merge, and is now dead.
1696     set_block(save_block);
1697 
1698     stop();                     // done with this guy, for now
1699   }
1700 
1701   if (TraceOptoParse) {
1702     tty->print_cr(" on path %d", pnum);
1703   }
1704 
1705   // Done with this parser state.
1706   assert(stopped(), "");
1707 }
1708 
1709 
1710 //--------------------------merge_memory_edges---------------------------------
1711 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1712   // (nophi means we must not create phis, because we already parsed here)
1713   assert(n != NULL, "");
1714   // Merge the inputs to the MergeMems
1715   MergeMemNode* m = merged_memory();
1716 
1717   assert(control()->is_Region(), "must be merging to a region");
1718   RegionNode* r = control()->as_Region();
1719 
1720   PhiNode* base = NULL;
1721   MergeMemNode* remerge = NULL;
1722   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1723     Node *p = mms.force_memory();
1724     Node *q = mms.memory2();
1725     if (mms.is_empty() && nophi) {
1726       // Trouble:  No new splits allowed after a loop body is parsed.
1727       // Instead, wire the new split into a MergeMem on the backedge.
1728       // The optimizer will sort it out, slicing the phi.
1729       if (remerge == NULL) {
1730         assert(base != NULL, "");
1731         assert(base->in(0) != NULL, "should not be xformed away");
1732         remerge = MergeMemNode::make(C, base->in(pnum));
1733         gvn().set_type(remerge, Type::MEMORY);
1734         base->set_req(pnum, remerge);
1735       }
1736       remerge->set_memory_at(mms.alias_idx(), q);
1737       continue;
1738     }
1739     assert(!q->is_MergeMem(), "");
1740     PhiNode* phi;
1741     if (p != q) {
1742       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1743     } else {
1744       if (p->is_Phi() && p->as_Phi()->region() == r)
1745         phi = p->as_Phi();
1746       else
1747         phi = NULL;
1748     }
1749     // Insert q into local phi
1750     if (phi != NULL) {
1751       assert(phi->region() == r, "");
1752       p = phi;
1753       phi->set_req(pnum, q);
1754       if (mms.at_base_memory()) {
1755         base = phi;  // delay transforming it
1756       } else if (pnum == 1) {
1757         record_for_igvn(phi);
1758         p = _gvn.transform_no_reclaim(phi);
1759       }
1760       mms.set_memory(p);// store back through the iterator
1761     }
1762   }
1763   // Transform base last, in case we must fiddle with remerging.
1764   if (base != NULL && pnum == 1) {
1765     record_for_igvn(base);
1766     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1767   }
1768 }
1769 
1770 
1771 //------------------------ensure_phis_everywhere-------------------------------
1772 void Parse::ensure_phis_everywhere() {
1773   ensure_phi(TypeFunc::I_O);
1774 
1775   // Ensure a phi on all currently known memories.
1776   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1777     ensure_memory_phi(mms.alias_idx());
1778     debug_only(mms.set_memory());  // keep the iterator happy
1779   }
1780 
1781   // Note:  This is our only chance to create phis for memory slices.
1782   // If we miss a slice that crops up later, it will have to be
1783   // merged into the base-memory phi that we are building here.
1784   // Later, the optimizer will comb out the knot, and build separate
1785   // phi-loops for each memory slice that matters.
1786 
1787   // Monitors must nest nicely and not get confused amongst themselves.
1788   // Phi-ify everything up to the monitors, though.
1789   uint monoff = map()->jvms()->monoff();
1790   uint nof_monitors = map()->jvms()->nof_monitors();
1791 
1792   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1793   bool check_elide_phi = block()->is_SEL_head();
1794   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1795     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1796       ensure_phi(i);
1797     }
1798   }
1799 
1800   // Even monitors need Phis, though they are well-structured.
1801   // This is true for OSR methods, and also for the rare cases where
1802   // a monitor object is the subject of a replace_in_map operation.
1803   // See bugs 4426707 and 5043395.
1804   for (uint m = 0; m < nof_monitors; m++) {
1805     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1806   }
1807 }
1808 
1809 
1810 //-----------------------------add_new_path------------------------------------
1811 // Add a previously unaccounted predecessor to this block.
1812 int Parse::Block::add_new_path() {
1813   // If there is no map, return the lowest unused path number.
1814   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1815 
1816   SafePointNode* map = start_map();
1817   if (!map->control()->is_Region())
1818     return pred_count()+1;  // there may be a region some day
1819   RegionNode* r = map->control()->as_Region();
1820 
1821   // Add new path to the region.
1822   uint pnum = r->req();
1823   r->add_req(NULL);
1824 
1825   for (uint i = 1; i < map->req(); i++) {
1826     Node* n = map->in(i);
1827     if (i == TypeFunc::Memory) {
1828       // Ensure a phi on all currently known memories.
1829       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1830         Node* phi = mms.memory();
1831         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1832           assert(phi->req() == pnum, "must be same size as region");
1833           phi->add_req(NULL);
1834         }
1835       }
1836     } else {
1837       if (n->is_Phi() && n->as_Phi()->region() == r) {
1838         assert(n->req() == pnum, "must be same size as region");
1839         n->add_req(NULL);
1840       }
1841     }
1842   }
1843 
1844   return pnum;
1845 }
1846 
1847 //------------------------------ensure_phi-------------------------------------
1848 // Turn the idx'th entry of the current map into a Phi
1849 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1850   SafePointNode* map = this->map();
1851   Node* region = map->control();
1852   assert(region->is_Region(), "");
1853 
1854   Node* o = map->in(idx);
1855   assert(o != NULL, "");
1856 
1857   if (o == top())  return NULL; // TOP always merges into TOP
1858 
1859   if (o->is_Phi() && o->as_Phi()->region() == region) {
1860     return o->as_Phi();
1861   }
1862 
1863   // Now use a Phi here for merging
1864   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1865   const JVMState* jvms = map->jvms();
1866   const Type* t;
1867   if (jvms->is_loc(idx)) {
1868     t = block()->local_type_at(idx - jvms->locoff());
1869   } else if (jvms->is_stk(idx)) {
1870     t = block()->stack_type_at(idx - jvms->stkoff());
1871   } else if (jvms->is_mon(idx)) {
1872     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1873     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1874   } else if ((uint)idx < TypeFunc::Parms) {
1875     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1876   } else {
1877     assert(false, "no type information for this phi");
1878   }
1879 
1880   // If the type falls to bottom, then this must be a local that
1881   // is mixing ints and oops or some such.  Forcing it to top
1882   // makes it go dead.
1883   if (t == Type::BOTTOM) {
1884     map->set_req(idx, top());
1885     return NULL;
1886   }
1887 
1888   // Do not create phis for top either.
1889   // A top on a non-null control flow must be an unused even after the.phi.
1890   if (t == Type::TOP || t == Type::HALF) {
1891     map->set_req(idx, top());
1892     return NULL;
1893   }
1894 
1895   PhiNode* phi = PhiNode::make(region, o, t);
1896   gvn().set_type(phi, t);
1897   if (C->do_escape_analysis()) record_for_igvn(phi);
1898   map->set_req(idx, phi);
1899   return phi;
1900 }
1901 
1902 //--------------------------ensure_memory_phi----------------------------------
1903 // Turn the idx'th slice of the current memory into a Phi
1904 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1905   MergeMemNode* mem = merged_memory();
1906   Node* region = control();
1907   assert(region->is_Region(), "");
1908 
1909   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1910   assert(o != NULL && o != top(), "");
1911 
1912   PhiNode* phi;
1913   if (o->is_Phi() && o->as_Phi()->region() == region) {
1914     phi = o->as_Phi();
1915     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1916       // clone the shared base memory phi to make a new memory split
1917       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1918       const Type* t = phi->bottom_type();
1919       const TypePtr* adr_type = C->get_adr_type(idx);
1920       phi = phi->slice_memory(adr_type);
1921       gvn().set_type(phi, t);
1922     }
1923     return phi;
1924   }
1925 
1926   // Now use a Phi here for merging
1927   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1928   const Type* t = o->bottom_type();
1929   const TypePtr* adr_type = C->get_adr_type(idx);
1930   phi = PhiNode::make(region, o, t, adr_type);
1931   gvn().set_type(phi, t);
1932   if (idx == Compile::AliasIdxBot)
1933     mem->set_base_memory(phi);
1934   else
1935     mem->set_memory_at(idx, phi);
1936   return phi;
1937 }
1938 
1939 //------------------------------call_register_finalizer-----------------------
1940 // Check the klass of the receiver and call register_finalizer if the
1941 // class need finalization.
1942 void Parse::call_register_finalizer() {
1943   Node* receiver = local(0);
1944   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1945          "must have non-null instance type");
1946 
1947   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1948   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1949     // The type isn't known exactly so see if CHA tells us anything.
1950     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1951     if (!Dependencies::has_finalizable_subclass(ik)) {
1952       // No finalizable subclasses so skip the dynamic check.
1953       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1954       return;
1955     }
1956   }
1957 
1958   // Insert a dynamic test for whether the instance needs
1959   // finalization.  In general this will fold up since the concrete
1960   // class is often visible so the access flags are constant.
1961   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1962   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1963 
1964   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1965   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
1966 
1967   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1968   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1969   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1970 
1971   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1972 
1973   RegionNode* result_rgn = new (C) RegionNode(3);
1974   record_for_igvn(result_rgn);
1975 
1976   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1977   result_rgn->init_req(1, skip_register);
1978 
1979   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1980   set_control(needs_register);
1981   if (stopped()) {
1982     // There is no slow path.
1983     result_rgn->init_req(2, top());
1984   } else {
1985     Node *call = make_runtime_call(RC_NO_LEAF,
1986                                    OptoRuntime::register_finalizer_Type(),
1987                                    OptoRuntime::register_finalizer_Java(),
1988                                    NULL, TypePtr::BOTTOM,
1989                                    receiver);
1990     make_slow_call_ex(call, env()->Throwable_klass(), true);
1991 
1992     Node* fast_io  = call->in(TypeFunc::I_O);
1993     Node* fast_mem = call->in(TypeFunc::Memory);
1994     // These two phis are pre-filled with copies of of the fast IO and Memory
1995     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1996     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1997 
1998     result_rgn->init_req(2, control());
1999     io_phi    ->init_req(2, i_o());
2000     mem_phi   ->init_req(2, reset_memory());
2001 
2002     set_all_memory( _gvn.transform(mem_phi) );
2003     set_i_o(        _gvn.transform(io_phi) );
2004   }
2005 
2006   set_control( _gvn.transform(result_rgn) );
2007 }
2008 
2009 //------------------------------return_current---------------------------------
2010 // Append current _map to _exit_return
2011 void Parse::return_current(Node* value) {
2012   if (RegisterFinalizersAtInit &&
2013       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2014     call_register_finalizer();
2015   }
2016 
2017   // Do not set_parse_bci, so that return goo is credited to the return insn.
2018   set_bci(InvocationEntryBci);
2019   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2020     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2021   }
2022   if (C->env()->dtrace_method_probes()) {
2023     make_dtrace_method_exit(method());
2024   }
2025   SafePointNode* exit_return = _exits.map();
2026   exit_return->in( TypeFunc::Control  )->add_req( control() );
2027   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2028   Node *mem = exit_return->in( TypeFunc::Memory   );
2029   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2030     if (mms.is_empty()) {
2031       // get a copy of the base memory, and patch just this one input
2032       const TypePtr* adr_type = mms.adr_type(C);
2033       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2034       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2035       gvn().set_type_bottom(phi);
2036       phi->del_req(phi->req()-1);  // prepare to re-patch
2037       mms.set_memory(phi);
2038     }
2039     mms.memory()->add_req(mms.memory2());
2040   }
2041 
2042   // frame pointer is always same, already captured
2043   if (value != NULL) {
2044     // If returning oops to an interface-return, there is a silent free
2045     // cast from oop to interface allowed by the Verifier.  Make it explicit
2046     // here.
2047     Node* phi = _exits.argument(0);
2048     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2049     if( tr && tr->klass()->is_loaded() &&
2050         tr->klass()->is_interface() ) {
2051       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2052       if (tp && tp->klass()->is_loaded() &&
2053           !tp->klass()->is_interface()) {
2054         // sharpen the type eagerly; this eases certain assert checking
2055         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2056           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2057         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2058       }
2059     }
2060     phi->add_req(value);
2061   }
2062 
2063   stop_and_kill_map();          // This CFG path dies here
2064 }
2065 
2066 
2067 //------------------------------add_safepoint----------------------------------
2068 void Parse::add_safepoint() {
2069   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2070   // after a Call (except Leaf Call) or another SafePoint.
2071   Node *proj = control();
2072   bool add_poll_param = SafePointNode::needs_polling_address_input();
2073   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2074   if( proj->is_Proj() ) {
2075     Node *n0 = proj->in(0);
2076     if( n0->is_Catch() ) {
2077       n0 = n0->in(0)->in(0);
2078       assert( n0->is_Call(), "expect a call here" );
2079     }
2080     if( n0->is_Call() ) {
2081       if( n0->as_Call()->guaranteed_safepoint() )
2082         return;
2083     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2084       return;
2085     }
2086   }
2087 
2088   // Clear out dead values from the debug info.
2089   kill_dead_locals();
2090 
2091   // Clone the JVM State
2092   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2093 
2094   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2095   // SafePoint we need our GC state to be safe; i.e. we need all our current
2096   // write barriers (card marks) to not float down after the SafePoint so we
2097   // must read raw memory.  Likewise we need all oop stores to match the card
2098   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2099   // state on a deopt).
2100 
2101   // We do not need to WRITE the memory state after a SafePoint.  The control
2102   // edge will keep card-marks and oop-stores from floating up from below a
2103   // SafePoint and our true dependency added here will keep them from floating
2104   // down below a SafePoint.
2105 
2106   // Clone the current memory state
2107   Node* mem = MergeMemNode::make(C, map()->memory());
2108 
2109   mem = _gvn.transform(mem);
2110 
2111   // Pass control through the safepoint
2112   sfpnt->init_req(TypeFunc::Control  , control());
2113   // Fix edges normally used by a call
2114   sfpnt->init_req(TypeFunc::I_O      , top() );
2115   sfpnt->init_req(TypeFunc::Memory   , mem   );
2116   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2117   sfpnt->init_req(TypeFunc::FramePtr , top() );
2118 
2119   // Create a node for the polling address
2120   if( add_poll_param ) {
2121     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2122     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2123   }
2124 
2125   // Fix up the JVM State edges
2126   add_safepoint_edges(sfpnt);
2127   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2128   set_control(transformed_sfpnt);
2129 
2130   // Provide an edge from root to safepoint.  This makes the safepoint
2131   // appear useful until the parse has completed.
2132   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2133     assert(C->root() != NULL, "Expect parse is still valid");
2134     C->root()->add_prec(transformed_sfpnt);
2135   }
2136 }
2137 
2138 #ifndef PRODUCT
2139 //------------------------show_parse_info--------------------------------------
2140 void Parse::show_parse_info() {
2141   InlineTree* ilt = NULL;
2142   if (C->ilt() != NULL) {
2143     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2144     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2145   }
2146   if (PrintCompilation && Verbose) {
2147     if (depth() == 1) {
2148       if( ilt->count_inlines() ) {
2149         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2150                      ilt->count_inline_bcs());
2151         tty->cr();
2152       }
2153     } else {
2154       if (method()->is_synchronized())         tty->print("s");
2155       if (method()->has_exception_handlers())  tty->print("!");
2156       // Check this is not the final compiled version
2157       if (C->trap_can_recompile()) {
2158         tty->print("-");
2159       } else {
2160         tty->print(" ");
2161       }
2162       method()->print_short_name();
2163       if (is_osr_parse()) {
2164         tty->print(" @ %d", osr_bci());
2165       }
2166       tty->print(" (%d bytes)",method()->code_size());
2167       if (ilt->count_inlines()) {
2168         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2169                    ilt->count_inline_bcs());
2170       }
2171       tty->cr();
2172     }
2173   }
2174   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2175     // Print that we succeeded; suppress this message on the first osr parse.
2176 
2177     if (method()->is_synchronized())         tty->print("s");
2178     if (method()->has_exception_handlers())  tty->print("!");
2179     // Check this is not the final compiled version
2180     if (C->trap_can_recompile() && depth() == 1) {
2181       tty->print("-");
2182     } else {
2183       tty->print(" ");
2184     }
2185     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2186     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2187     method()->print_short_name();
2188     if (is_osr_parse()) {
2189       tty->print(" @ %d", osr_bci());
2190     }
2191     if (ilt->caller_bci() != -1) {
2192       tty->print(" @ %d", ilt->caller_bci());
2193     }
2194     tty->print(" (%d bytes)",method()->code_size());
2195     if (ilt->count_inlines()) {
2196       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2197                  ilt->count_inline_bcs());
2198     }
2199     tty->cr();
2200   }
2201 }
2202 
2203 
2204 //------------------------------dump-------------------------------------------
2205 // Dump information associated with the bytecodes of current _method
2206 void Parse::dump() {
2207   if( method() != NULL ) {
2208     // Iterate over bytecodes
2209     ciBytecodeStream iter(method());
2210     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2211       dump_bci( iter.cur_bci() );
2212       tty->cr();
2213     }
2214   }
2215 }
2216 
2217 // Dump information associated with a byte code index, 'bci'
2218 void Parse::dump_bci(int bci) {
2219   // Output info on merge-points, cloning, and within _jsr..._ret
2220   // NYI
2221   tty->print(" bci:%d", bci);
2222 }
2223 
2224 #endif