1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
  26 #define SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
  27 
  28 #include "runtime/atomic.inline.hpp"
  29 #include "utilities/bitMap.hpp"
  30 
  31 #ifdef ASSERT
  32 inline void BitMap::verify_index(idx_t index) const {
  33   assert(index < _size, "BitMap index out of bounds");
  34 }
  35 
  36 inline void BitMap::verify_range(idx_t beg_index, idx_t end_index) const {
  37   assert(beg_index <= end_index, "BitMap range error");
  38   // Note that [0,0) and [size,size) are both valid ranges.
  39   if (end_index != _size) verify_index(end_index);
  40 }
  41 #endif // #ifdef ASSERT
  42 
  43 inline void BitMap::set_bit(idx_t bit) {
  44   verify_index(bit);
  45   *word_addr(bit) |= bit_mask(bit);
  46 }
  47 
  48 inline void BitMap::clear_bit(idx_t bit) {
  49   verify_index(bit);
  50   *word_addr(bit) &= ~bit_mask(bit);
  51 }
  52 
  53 inline bool BitMap::set_bit_with_result(idx_t bit) {
  54   verify_index(bit);
  55   bm_word_t old_val = *word_addr(bit);
  56   bm_word_t new_val = old_val | bit_mask(bit);
  57   *word_addr(bit) = new_val;
  58   return (old_val != new_val);
  59 }
  60 
  61 inline bool BitMap::clear_bit_with_result(idx_t bit) {
  62   verify_index(bit);
  63   bm_word_t old_val = *word_addr(bit);
  64   bm_word_t new_val = old_val & ~bit_mask(bit);
  65   *word_addr(bit) = new_val;
  66   return (old_val != new_val);
  67 }
  68 
  69 inline bool BitMap::par_set_bit(idx_t bit) {
  70   verify_index(bit);
  71   volatile bm_word_t* const addr = word_addr(bit);
  72   const bm_word_t mask = bit_mask(bit);
  73   bm_word_t old_val = *addr;
  74 
  75   do {
  76     const bm_word_t new_val = old_val | mask;
  77     if (new_val == old_val) {
  78       return false;     // Someone else beat us to it.
  79     }
  80     const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val,
  81                                                       (volatile void*) addr,
  82                                                       (void*) old_val);
  83     if (cur_val == old_val) {
  84       return true;      // Success.
  85     }
  86     old_val = cur_val;  // The value changed, try again.
  87   } while (true);
  88 }
  89 
  90 inline bool BitMap::par_clear_bit(idx_t bit) {
  91   verify_index(bit);
  92   volatile bm_word_t* const addr = word_addr(bit);
  93   const bm_word_t mask = ~bit_mask(bit);
  94   bm_word_t old_val = *addr;
  95 
  96   do {
  97     const bm_word_t new_val = old_val & mask;
  98     if (new_val == old_val) {
  99       return false;     // Someone else beat us to it.
 100     }
 101     const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val,
 102                                                       (volatile void*) addr,
 103                                                       (void*) old_val);
 104     if (cur_val == old_val) {
 105       return true;      // Success.
 106     }
 107     old_val = cur_val;  // The value changed, try again.
 108   } while (true);
 109 }
 110 
 111 inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
 112   if (hint == small_range && end - beg == 1) {
 113     set_bit(beg);
 114   } else {
 115     if (hint == large_range) {
 116       set_large_range(beg, end);
 117     } else {
 118       set_range(beg, end);
 119     }
 120   }
 121 }
 122 
 123 inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
 124   if (hint == small_range && end - beg == 1) {
 125     clear_bit(beg);
 126   } else {
 127     if (hint == large_range) {
 128       clear_large_range(beg, end);
 129     } else {
 130       clear_range(beg, end);
 131     }
 132   }
 133 }
 134 
 135 inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
 136   if (hint == small_range && end - beg == 1) {
 137     par_at_put(beg, true);
 138   } else {
 139     if (hint == large_range) {
 140       par_at_put_large_range(beg, end, true);
 141     } else {
 142       par_at_put_range(beg, end, true);
 143     }
 144   }
 145 }
 146 
 147 inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
 148   bm_word_t* map = _map;
 149   for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0;
 150 }
 151 
 152 
 153 inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
 154   bm_word_t* map = _map;
 155   for (idx_t i = beg; i < end; ++i) map[i] = 0;
 156 }
 157 
 158 
 159 inline void BitMap::clear() {
 160   clear_range_of_words(0, size_in_words());
 161 }
 162 
 163 
 164 inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
 165   if (hint == small_range && end - beg == 1) {
 166     par_at_put(beg, false);
 167   } else {
 168     if (hint == large_range) {
 169       par_at_put_large_range(beg, end, false);
 170     } else {
 171       par_at_put_range(beg, end, false);
 172     }
 173   }
 174 }
 175 
 176 inline BitMap::idx_t
 177 BitMap::get_next_one_offset_inline(idx_t l_offset, idx_t r_offset) const {
 178   assert(l_offset <= size(), "BitMap index out of bounds");
 179   assert(r_offset <= size(), "BitMap index out of bounds");
 180   assert(l_offset <= r_offset, "l_offset > r_offset ?");
 181 
 182   if (l_offset == r_offset) {
 183     return l_offset;
 184   }
 185   idx_t   index = word_index(l_offset);
 186   idx_t r_index = word_index(r_offset-1) + 1;
 187   idx_t res_offset = l_offset;
 188 
 189   // check bits including and to the _left_ of offset's position
 190   idx_t pos = bit_in_word(res_offset);
 191   bm_word_t res = map(index) >> pos;
 192   if (res != 0) {
 193     // find the position of the 1-bit
 194     for (; !(res & 1); res_offset++) {
 195       res = res >> 1;
 196     }
 197 
 198 #ifdef ASSERT
 199     // In the following assert, if r_offset is not bitamp word aligned,
 200     // checking that res_offset is strictly less than r_offset is too
 201     // strong and will trip the assert.
 202     //
 203     // Consider the case where l_offset is bit 15 and r_offset is bit 17
 204     // of the same map word, and where bits [15:16:17:18] == [00:00:00:01].
 205     // All the bits in the range [l_offset:r_offset) are 0.
 206     // The loop that calculates res_offset, above, would yield the offset
 207     // of bit 18 because it's in the same map word as l_offset and there
 208     // is a set bit in that map word above l_offset (i.e. res != NoBits).
 209     //
 210     // In this case, however, we can assert is that res_offset is strictly
 211     // less than size() since we know that there is at least one set bit
 212     // at an offset above, but in the same map word as, r_offset.
 213     // Otherwise, if r_offset is word aligned then it will not be in the
 214     // same map word as l_offset (unless it equals l_offset). So either
 215     // there won't be a set bit between l_offset and the end of it's map
 216     // word (i.e. res == NoBits), or res_offset will be less than r_offset.
 217 
 218     idx_t limit = is_word_aligned(r_offset) ? r_offset : size();
 219     assert(res_offset >= l_offset && res_offset < limit, "just checking");
 220 #endif // ASSERT
 221     return MIN2(res_offset, r_offset);
 222   }
 223   // skip over all word length 0-bit runs
 224   for (index++; index < r_index; index++) {
 225     res = map(index);
 226     if (res != 0) {
 227       // found a 1, return the offset
 228       for (res_offset = bit_index(index); !(res & 1); res_offset++) {
 229         res = res >> 1;
 230       }
 231       assert(res & 1, "tautology; see loop condition");
 232       assert(res_offset >= l_offset, "just checking");
 233       return MIN2(res_offset, r_offset);
 234     }
 235   }
 236   return r_offset;
 237 }
 238 
 239 inline BitMap::idx_t
 240 BitMap::get_next_zero_offset_inline(idx_t l_offset, idx_t r_offset) const {
 241   assert(l_offset <= size(), "BitMap index out of bounds");
 242   assert(r_offset <= size(), "BitMap index out of bounds");
 243   assert(l_offset <= r_offset, "l_offset > r_offset ?");
 244 
 245   if (l_offset == r_offset) {
 246     return l_offset;
 247   }
 248   idx_t   index = word_index(l_offset);
 249   idx_t r_index = word_index(r_offset-1) + 1;
 250   idx_t res_offset = l_offset;
 251 
 252   // check bits including and to the _left_ of offset's position
 253   idx_t pos = res_offset & (BitsPerWord - 1);
 254   bm_word_t res = (map(index) >> pos) | left_n_bits((int)pos);
 255 
 256   if (res != ~(bm_word_t)0) {
 257     // find the position of the 0-bit
 258     for (; res & 1; res_offset++) {
 259       res = res >> 1;
 260     }
 261     assert(res_offset >= l_offset, "just checking");
 262     return MIN2(res_offset, r_offset);
 263   }
 264   // skip over all word length 1-bit runs
 265   for (index++; index < r_index; index++) {
 266     res = map(index);
 267     if (res != ~(bm_word_t)0) {
 268       // found a 0, return the offset
 269       for (res_offset = index << LogBitsPerWord; res & 1;
 270            res_offset++) {
 271         res = res >> 1;
 272       }
 273       assert(!(res & 1), "tautology; see loop condition");
 274       assert(res_offset >= l_offset, "just checking");
 275       return MIN2(res_offset, r_offset);
 276     }
 277   }
 278   return r_offset;
 279 }
 280 
 281 inline BitMap::idx_t
 282 BitMap::get_next_one_offset_inline_aligned_right(idx_t l_offset,
 283                                                  idx_t r_offset) const
 284 {
 285   verify_range(l_offset, r_offset);
 286   assert(bit_in_word(r_offset) == 0, "r_offset not word-aligned");
 287 
 288   if (l_offset == r_offset) {
 289     return l_offset;
 290   }
 291   idx_t   index = word_index(l_offset);
 292   idx_t r_index = word_index(r_offset);
 293   idx_t res_offset = l_offset;
 294 
 295   // check bits including and to the _left_ of offset's position
 296   bm_word_t res = map(index) >> bit_in_word(res_offset);
 297   if (res != 0) {
 298     // find the position of the 1-bit
 299     for (; !(res & 1); res_offset++) {
 300       res = res >> 1;
 301     }
 302     assert(res_offset >= l_offset &&
 303            res_offset < r_offset, "just checking");
 304     return res_offset;
 305   }
 306   // skip over all word length 0-bit runs
 307   for (index++; index < r_index; index++) {
 308     res = map(index);
 309     if (res != 0) {
 310       // found a 1, return the offset
 311       for (res_offset = bit_index(index); !(res & 1); res_offset++) {
 312         res = res >> 1;
 313       }
 314       assert(res & 1, "tautology; see loop condition");
 315       assert(res_offset >= l_offset && res_offset < r_offset, "just checking");
 316       return res_offset;
 317     }
 318   }
 319   return r_offset;
 320 }
 321 
 322 
 323 // Returns a bit mask for a range of bits [beg, end) within a single word.  Each
 324 // bit in the mask is 0 if the bit is in the range, 1 if not in the range.  The
 325 // returned mask can be used directly to clear the range, or inverted to set the
 326 // range.  Note:  end must not be 0.
 327 inline BitMap::bm_word_t
 328 BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
 329   assert(end != 0, "does not work when end == 0");
 330   assert(beg == end || word_index(beg) == word_index(end - 1),
 331          "must be a single-word range");
 332   bm_word_t mask = bit_mask(beg) - 1;   // low (right) bits
 333   if (bit_in_word(end) != 0) {
 334     mask |= ~(bit_mask(end) - 1);       // high (left) bits
 335   }
 336   return mask;
 337 }
 338 
 339 inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
 340   memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t));
 341 }
 342 
 343 inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
 344   memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t));
 345 }
 346 
 347 inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const {
 348   idx_t bit_rounded_up = bit + (BitsPerWord - 1);
 349   // Check for integer arithmetic overflow.
 350   return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words();
 351 }
 352 
 353 inline BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset,
 354                                           idx_t r_offset) const {
 355   return get_next_one_offset_inline(l_offset, r_offset);
 356 }
 357 
 358 inline BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset,
 359                                            idx_t r_offset) const {
 360   return get_next_zero_offset_inline(l_offset, r_offset);
 361 }
 362 
 363 inline void BitMap2D::clear() {
 364   _map.clear();
 365 }
 366 
 367 #endif // SHARE_VM_UTILITIES_BITMAP_INLINE_HPP