1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import com.sun.tools.javac.util.*;
  29 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  30 import com.sun.tools.javac.util.List;
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.code.Attribute.TypeCompound;
  33 import com.sun.tools.javac.code.Symbol.VarSymbol;
  34 import com.sun.tools.javac.comp.*;
  35 import com.sun.tools.javac.tree.*;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.code.Type.*;
  39 import com.sun.tools.javac.jvm.Code.*;
  40 import com.sun.tools.javac.jvm.Items.*;
  41 import com.sun.tools.javac.tree.EndPosTable;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 
  44 import static com.sun.tools.javac.code.Flags.*;
  45 import static com.sun.tools.javac.code.Kinds.Kind.*;
  46 import static com.sun.tools.javac.code.TypeTag.*;
  47 import static com.sun.tools.javac.jvm.ByteCodes.*;
  48 import static com.sun.tools.javac.jvm.CRTFlags.*;
  49 import static com.sun.tools.javac.main.Option.*;
  50 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  51 
  52 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  53  *
  54  *  <p><b>This is NOT part of any supported API.
  55  *  If you write code that depends on this, you do so at your own risk.
  56  *  This code and its internal interfaces are subject to change or
  57  *  deletion without notice.</b>
  58  */
  59 public class Gen extends JCTree.Visitor {
  60     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  61 
  62     private final Log log;
  63     private final Symtab syms;
  64     private final Check chk;
  65     private final Resolve rs;
  66     private final TreeMaker make;
  67     private final Names names;
  68     private final Target target;
  69     private Name accessDollar;
  70     private final Types types;
  71     private final Lower lower;
  72     private final Flow flow;
  73     private final Annotate annotate;
  74     private final StringConcat concat;
  75 
  76     /** Format of stackmap tables to be generated. */
  77     private final Code.StackMapFormat stackMap;
  78 
  79     /** A type that serves as the expected type for all method expressions.
  80      */
  81     private final Type methodType;
  82 
  83     public static Gen instance(Context context) {
  84         Gen instance = context.get(genKey);
  85         if (instance == null)
  86             instance = new Gen(context);
  87         return instance;
  88     }
  89 
  90     /** Constant pool, reset by genClass.
  91      */
  92     private Pool pool;
  93 
  94     protected Gen(Context context) {
  95         context.put(genKey, this);
  96 
  97         names = Names.instance(context);
  98         log = Log.instance(context);
  99         syms = Symtab.instance(context);
 100         chk = Check.instance(context);
 101         rs = Resolve.instance(context);
 102         make = TreeMaker.instance(context);
 103         target = Target.instance(context);
 104         types = Types.instance(context);
 105         concat = StringConcat.instance(context);
 106 
 107         methodType = new MethodType(null, null, null, syms.methodClass);
 108         accessDollar = names.
 109             fromString("access" + target.syntheticNameChar());
 110         flow = Flow.instance(context);
 111         lower = Lower.instance(context);
 112 
 113         Options options = Options.instance(context);
 114         lineDebugInfo =
 115             options.isUnset(G_CUSTOM) ||
 116             options.isSet(G_CUSTOM, "lines");
 117         varDebugInfo =
 118             options.isUnset(G_CUSTOM)
 119             ? options.isSet(G)
 120             : options.isSet(G_CUSTOM, "vars");
 121         genCrt = options.isSet(XJCOV);
 122         debugCode = options.isSet("debugcode");
 123         allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
 124         allowBetterNullChecks = target.hasObjects();
 125         pool = new Pool(types);
 126 
 127         // ignore cldc because we cannot have both stackmap formats
 128         this.stackMap = StackMapFormat.JSR202;
 129 
 130         // by default, avoid jsr's for simple finalizers
 131         int setjsrlimit = 50;
 132         String jsrlimitString = options.get("jsrlimit");
 133         if (jsrlimitString != null) {
 134             try {
 135                 setjsrlimit = Integer.parseInt(jsrlimitString);
 136             } catch (NumberFormatException ex) {
 137                 // ignore ill-formed numbers for jsrlimit
 138             }
 139         }
 140         this.jsrlimit = setjsrlimit;
 141         this.useJsrLocally = false; // reset in visitTry
 142         annotate = Annotate.instance(context);
 143     }
 144 
 145     /** Switches
 146      */
 147     private final boolean lineDebugInfo;
 148     private final boolean varDebugInfo;
 149     private final boolean genCrt;
 150     private final boolean debugCode;
 151     private final boolean allowInvokedynamic;
 152     private final boolean allowBetterNullChecks;
 153 
 154     /** Default limit of (approximate) size of finalizer to inline.
 155      *  Zero means always use jsr.  100 or greater means never use
 156      *  jsr.
 157      */
 158     private final int jsrlimit;
 159 
 160     /** True if jsr is used.
 161      */
 162     private boolean useJsrLocally;
 163 
 164     /** Code buffer, set by genMethod.
 165      */
 166     private Code code;
 167 
 168     /** Items structure, set by genMethod.
 169      */
 170     private Items items;
 171 
 172     /** Environment for symbol lookup, set by genClass
 173      */
 174     private Env<AttrContext> attrEnv;
 175 
 176     /** The top level tree.
 177      */
 178     private JCCompilationUnit toplevel;
 179 
 180     /** The number of code-gen errors in this class.
 181      */
 182     private int nerrs = 0;
 183 
 184     /** An object containing mappings of syntax trees to their
 185      *  ending source positions.
 186      */
 187     EndPosTable endPosTable;
 188 
 189     /** Generate code to load an integer constant.
 190      *  @param n     The integer to be loaded.
 191      */
 192     void loadIntConst(int n) {
 193         items.makeImmediateItem(syms.intType, n).load();
 194     }
 195 
 196     /** The opcode that loads a zero constant of a given type code.
 197      *  @param tc   The given type code (@see ByteCode).
 198      */
 199     public static int zero(int tc) {
 200         switch(tc) {
 201         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 202             return iconst_0;
 203         case LONGcode:
 204             return lconst_0;
 205         case FLOATcode:
 206             return fconst_0;
 207         case DOUBLEcode:
 208             return dconst_0;
 209         default:
 210             throw new AssertionError("zero");
 211         }
 212     }
 213 
 214     /** The opcode that loads a one constant of a given type code.
 215      *  @param tc   The given type code (@see ByteCode).
 216      */
 217     public static int one(int tc) {
 218         return zero(tc) + 1;
 219     }
 220 
 221     /** Generate code to load -1 of the given type code (either int or long).
 222      *  @param tc   The given type code (@see ByteCode).
 223      */
 224     void emitMinusOne(int tc) {
 225         if (tc == LONGcode) {
 226             items.makeImmediateItem(syms.longType, new Long(-1)).load();
 227         } else {
 228             code.emitop0(iconst_m1);
 229         }
 230     }
 231 
 232     /** Construct a symbol to reflect the qualifying type that should
 233      *  appear in the byte code as per JLS 13.1.
 234      *
 235      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 236      *  for those cases where we need to work around VM bugs).
 237      *
 238      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 239      *  non-accessible class, clone it with the qualifier class as owner.
 240      *
 241      *  @param sym    The accessed symbol
 242      *  @param site   The qualifier's type.
 243      */
 244     Symbol binaryQualifier(Symbol sym, Type site) {
 245 
 246         if (site.hasTag(ARRAY)) {
 247             if (sym == syms.lengthVar ||
 248                 sym.owner != syms.arrayClass)
 249                 return sym;
 250             // array clone can be qualified by the array type in later targets
 251             Symbol qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name,
 252                                                site, syms.noSymbol);
 253             return sym.clone(qualifier);
 254         }
 255 
 256         if (sym.owner == site.tsym ||
 257             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 258             return sym;
 259         }
 260 
 261         // leave alone methods inherited from Object
 262         // JLS 13.1.
 263         if (sym.owner == syms.objectType.tsym)
 264             return sym;
 265 
 266         return sym.clone(site.tsym);
 267     }
 268 
 269     /** Insert a reference to given type in the constant pool,
 270      *  checking for an array with too many dimensions;
 271      *  return the reference's index.
 272      *  @param type   The type for which a reference is inserted.
 273      */
 274     int makeRef(DiagnosticPosition pos, Type type) {
 275         checkDimension(pos, type);
 276         if (type.isAnnotated()) {
 277             return pool.put((Object)type);
 278         } else {
 279             return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
 280         }
 281     }
 282 
 283     /** Check if the given type is an array with too many dimensions.
 284      */
 285     private void checkDimension(DiagnosticPosition pos, Type t) {
 286         switch (t.getTag()) {
 287         case METHOD:
 288             checkDimension(pos, t.getReturnType());
 289             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 290                 checkDimension(pos, args.head);
 291             break;
 292         case ARRAY:
 293             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 294                 log.error(pos, "limit.dimensions");
 295                 nerrs++;
 296             }
 297             break;
 298         default:
 299             break;
 300         }
 301     }
 302 
 303     /** Create a tempory variable.
 304      *  @param type   The variable's type.
 305      */
 306     LocalItem makeTemp(Type type) {
 307         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 308                                     names.empty,
 309                                     type,
 310                                     env.enclMethod.sym);
 311         code.newLocal(v);
 312         return items.makeLocalItem(v);
 313     }
 314 
 315     /** Generate code to call a non-private method or constructor.
 316      *  @param pos         Position to be used for error reporting.
 317      *  @param site        The type of which the method is a member.
 318      *  @param name        The method's name.
 319      *  @param argtypes    The method's argument types.
 320      *  @param isStatic    A flag that indicates whether we call a
 321      *                     static or instance method.
 322      */
 323     void callMethod(DiagnosticPosition pos,
 324                     Type site, Name name, List<Type> argtypes,
 325                     boolean isStatic) {
 326         Symbol msym = rs.
 327             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 328         if (isStatic) items.makeStaticItem(msym).invoke();
 329         else items.makeMemberItem(msym, name == names.init).invoke();
 330     }
 331 
 332     /** Is the given method definition an access method
 333      *  resulting from a qualified super? This is signified by an odd
 334      *  access code.
 335      */
 336     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 337         return
 338             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 339             isOddAccessName(enclMethod.name);
 340     }
 341 
 342     /** Does given name start with "access$" and end in an odd digit?
 343      */
 344     private boolean isOddAccessName(Name name) {
 345         return
 346             name.startsWith(accessDollar) &&
 347             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 348     }
 349 
 350 /* ************************************************************************
 351  * Non-local exits
 352  *************************************************************************/
 353 
 354     /** Generate code to invoke the finalizer associated with given
 355      *  environment.
 356      *  Any calls to finalizers are appended to the environments `cont' chain.
 357      *  Mark beginning of gap in catch all range for finalizer.
 358      */
 359     void genFinalizer(Env<GenContext> env) {
 360         if (code.isAlive() && env.info.finalize != null)
 361             env.info.finalize.gen();
 362     }
 363 
 364     /** Generate code to call all finalizers of structures aborted by
 365      *  a non-local
 366      *  exit.  Return target environment of the non-local exit.
 367      *  @param target      The tree representing the structure that's aborted
 368      *  @param env         The environment current at the non-local exit.
 369      */
 370     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 371         Env<GenContext> env1 = env;
 372         while (true) {
 373             genFinalizer(env1);
 374             if (env1.tree == target) break;
 375             env1 = env1.next;
 376         }
 377         return env1;
 378     }
 379 
 380     /** Mark end of gap in catch-all range for finalizer.
 381      *  @param env   the environment which might contain the finalizer
 382      *               (if it does, env.info.gaps != null).
 383      */
 384     void endFinalizerGap(Env<GenContext> env) {
 385         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 386             env.info.gaps.append(code.curCP());
 387     }
 388 
 389     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 390      *  lying between, and including to two environments.
 391      *  @param from    the most deeply nested environment to mark
 392      *  @param to      the least deeply nested environment to mark
 393      */
 394     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 395         Env<GenContext> last = null;
 396         while (last != to) {
 397             endFinalizerGap(from);
 398             last = from;
 399             from = from.next;
 400         }
 401     }
 402 
 403     /** Do any of the structures aborted by a non-local exit have
 404      *  finalizers that require an empty stack?
 405      *  @param target      The tree representing the structure that's aborted
 406      *  @param env         The environment current at the non-local exit.
 407      */
 408     boolean hasFinally(JCTree target, Env<GenContext> env) {
 409         while (env.tree != target) {
 410             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 411                 return true;
 412             env = env.next;
 413         }
 414         return false;
 415     }
 416 
 417 /* ************************************************************************
 418  * Normalizing class-members.
 419  *************************************************************************/
 420 
 421     /** Distribute member initializer code into constructors and {@code <clinit>}
 422      *  method.
 423      *  @param defs         The list of class member declarations.
 424      *  @param c            The enclosing class.
 425      */
 426     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 427         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 428         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 429         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 430         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 431         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 432         // Sort definitions into three listbuffers:
 433         //  - initCode for instance initializers
 434         //  - clinitCode for class initializers
 435         //  - methodDefs for method definitions
 436         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 437             JCTree def = l.head;
 438             switch (def.getTag()) {
 439             case BLOCK:
 440                 JCBlock block = (JCBlock)def;
 441                 if ((block.flags & STATIC) != 0)
 442                     clinitCode.append(block);
 443                 else if ((block.flags & SYNTHETIC) == 0)
 444                     initCode.append(block);
 445                 break;
 446             case METHODDEF:
 447                 methodDefs.append(def);
 448                 break;
 449             case VARDEF:
 450                 JCVariableDecl vdef = (JCVariableDecl) def;
 451                 VarSymbol sym = vdef.sym;
 452                 checkDimension(vdef.pos(), sym.type);
 453                 if (vdef.init != null) {
 454                     if ((sym.flags() & STATIC) == 0) {
 455                         // Always initialize instance variables.
 456                         JCStatement init = make.at(vdef.pos()).
 457                             Assignment(sym, vdef.init);
 458                         initCode.append(init);
 459                         endPosTable.replaceTree(vdef, init);
 460                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 461                     } else if (sym.getConstValue() == null) {
 462                         // Initialize class (static) variables only if
 463                         // they are not compile-time constants.
 464                         JCStatement init = make.at(vdef.pos).
 465                             Assignment(sym, vdef.init);
 466                         clinitCode.append(init);
 467                         endPosTable.replaceTree(vdef, init);
 468                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 469                     } else {
 470                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 471                         /* if the init contains a reference to an external class, add it to the
 472                          * constant's pool
 473                          */
 474                         vdef.init.accept(classReferenceVisitor);
 475                     }
 476                 }
 477                 break;
 478             default:
 479                 Assert.error();
 480             }
 481         }
 482         // Insert any instance initializers into all constructors.
 483         if (initCode.length() != 0) {
 484             List<JCStatement> inits = initCode.toList();
 485             initTAs.addAll(c.getInitTypeAttributes());
 486             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 487             for (JCTree t : methodDefs) {
 488                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 489             }
 490         }
 491         // If there are class initializers, create a <clinit> method
 492         // that contains them as its body.
 493         if (clinitCode.length() != 0) {
 494             MethodSymbol clinit = new MethodSymbol(
 495                 STATIC | (c.flags() & STRICTFP),
 496                 names.clinit,
 497                 new MethodType(
 498                     List.<Type>nil(), syms.voidType,
 499                     List.<Type>nil(), syms.methodClass),
 500                 c);
 501             c.members().enter(clinit);
 502             List<JCStatement> clinitStats = clinitCode.toList();
 503             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 504             block.endpos = TreeInfo.endPos(clinitStats.last());
 505             methodDefs.append(make.MethodDef(clinit, block));
 506 
 507             if (!clinitTAs.isEmpty())
 508                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 509             if (!c.getClassInitTypeAttributes().isEmpty())
 510                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 511         }
 512         // Return all method definitions.
 513         return methodDefs.toList();
 514     }
 515 
 516     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 517         List<TypeCompound> tas = sym.getRawTypeAttributes();
 518         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 519         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 520         for (TypeCompound ta : tas) {
 521             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 522             if (ta.getPosition().type == TargetType.FIELD) {
 523                 fieldTAs.add(ta);
 524             } else {
 525                 nonfieldTAs.add(ta);
 526             }
 527         }
 528         sym.setTypeAttributes(fieldTAs.toList());
 529         return nonfieldTAs.toList();
 530     }
 531 
 532     /** Check a constant value and report if it is a string that is
 533      *  too large.
 534      */
 535     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 536         if (nerrs != 0 || // only complain about a long string once
 537             constValue == null ||
 538             !(constValue instanceof String) ||
 539             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
 540             return;
 541         log.error(pos, "limit.string");
 542         nerrs++;
 543     }
 544 
 545     /** Insert instance initializer code into initial constructor.
 546      *  @param md        The tree potentially representing a
 547      *                   constructor's definition.
 548      *  @param initCode  The list of instance initializer statements.
 549      *  @param initTAs  Type annotations from the initializer expression.
 550      */
 551     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 552         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
 553             // We are seeing a constructor that does not call another
 554             // constructor of the same class.
 555             List<JCStatement> stats = md.body.stats;
 556             ListBuffer<JCStatement> newstats = new ListBuffer<>();
 557 
 558             if (stats.nonEmpty()) {
 559                 // Copy initializers of synthetic variables generated in
 560                 // the translation of inner classes.
 561                 while (TreeInfo.isSyntheticInit(stats.head)) {
 562                     newstats.append(stats.head);
 563                     stats = stats.tail;
 564                 }
 565                 // Copy superclass constructor call
 566                 newstats.append(stats.head);
 567                 stats = stats.tail;
 568                 // Copy remaining synthetic initializers.
 569                 while (stats.nonEmpty() &&
 570                        TreeInfo.isSyntheticInit(stats.head)) {
 571                     newstats.append(stats.head);
 572                     stats = stats.tail;
 573                 }
 574                 // Now insert the initializer code.
 575                 newstats.appendList(initCode);
 576                 // And copy all remaining statements.
 577                 while (stats.nonEmpty()) {
 578                     newstats.append(stats.head);
 579                     stats = stats.tail;
 580                 }
 581             }
 582             md.body.stats = newstats.toList();
 583             if (md.body.endpos == Position.NOPOS)
 584                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 585 
 586             md.sym.appendUniqueTypeAttributes(initTAs);
 587         }
 588     }
 589 
 590 /* ************************************************************************
 591  * Traversal methods
 592  *************************************************************************/
 593 
 594     /** Visitor argument: The current environment.
 595      */
 596     Env<GenContext> env;
 597 
 598     /** Visitor argument: The expected type (prototype).
 599      */
 600     Type pt;
 601 
 602     /** Visitor result: The item representing the computed value.
 603      */
 604     Item result;
 605 
 606     /** Visitor method: generate code for a definition, catching and reporting
 607      *  any completion failures.
 608      *  @param tree    The definition to be visited.
 609      *  @param env     The environment current at the definition.
 610      */
 611     public void genDef(JCTree tree, Env<GenContext> env) {
 612         Env<GenContext> prevEnv = this.env;
 613         try {
 614             this.env = env;
 615             tree.accept(this);
 616         } catch (CompletionFailure ex) {
 617             chk.completionError(tree.pos(), ex);
 618         } finally {
 619             this.env = prevEnv;
 620         }
 621     }
 622 
 623     /** Derived visitor method: check whether CharacterRangeTable
 624      *  should be emitted, if so, put a new entry into CRTable
 625      *  and call method to generate bytecode.
 626      *  If not, just call method to generate bytecode.
 627      *  @see    #genStat(JCTree, Env)
 628      *
 629      *  @param  tree     The tree to be visited.
 630      *  @param  env      The environment to use.
 631      *  @param  crtFlags The CharacterRangeTable flags
 632      *                   indicating type of the entry.
 633      */
 634     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 635         if (!genCrt) {
 636             genStat(tree, env);
 637             return;
 638         }
 639         int startpc = code.curCP();
 640         genStat(tree, env);
 641         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 642         code.crt.put(tree, crtFlags, startpc, code.curCP());
 643     }
 644 
 645     /** Derived visitor method: generate code for a statement.
 646      */
 647     public void genStat(JCTree tree, Env<GenContext> env) {
 648         if (code.isAlive()) {
 649             code.statBegin(tree.pos);
 650             genDef(tree, env);
 651         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 652             // variables whose declarations are in a switch
 653             // can be used even if the decl is unreachable.
 654             code.newLocal(((JCVariableDecl) tree).sym);
 655         }
 656     }
 657 
 658     /** Derived visitor method: check whether CharacterRangeTable
 659      *  should be emitted, if so, put a new entry into CRTable
 660      *  and call method to generate bytecode.
 661      *  If not, just call method to generate bytecode.
 662      *  @see    #genStats(List, Env)
 663      *
 664      *  @param  trees    The list of trees to be visited.
 665      *  @param  env      The environment to use.
 666      *  @param  crtFlags The CharacterRangeTable flags
 667      *                   indicating type of the entry.
 668      */
 669     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 670         if (!genCrt) {
 671             genStats(trees, env);
 672             return;
 673         }
 674         if (trees.length() == 1) {        // mark one statement with the flags
 675             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 676         } else {
 677             int startpc = code.curCP();
 678             genStats(trees, env);
 679             code.crt.put(trees, crtFlags, startpc, code.curCP());
 680         }
 681     }
 682 
 683     /** Derived visitor method: generate code for a list of statements.
 684      */
 685     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 686         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 687             genStat(l.head, env, CRT_STATEMENT);
 688     }
 689 
 690     /** Derived visitor method: check whether CharacterRangeTable
 691      *  should be emitted, if so, put a new entry into CRTable
 692      *  and call method to generate bytecode.
 693      *  If not, just call method to generate bytecode.
 694      *  @see    #genCond(JCTree,boolean)
 695      *
 696      *  @param  tree     The tree to be visited.
 697      *  @param  crtFlags The CharacterRangeTable flags
 698      *                   indicating type of the entry.
 699      */
 700     public CondItem genCond(JCTree tree, int crtFlags) {
 701         if (!genCrt) return genCond(tree, false);
 702         int startpc = code.curCP();
 703         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 704         code.crt.put(tree, crtFlags, startpc, code.curCP());
 705         return item;
 706     }
 707 
 708     /** Derived visitor method: generate code for a boolean
 709      *  expression in a control-flow context.
 710      *  @param _tree         The expression to be visited.
 711      *  @param markBranches The flag to indicate that the condition is
 712      *                      a flow controller so produced conditions
 713      *                      should contain a proper tree to generate
 714      *                      CharacterRangeTable branches for them.
 715      */
 716     public CondItem genCond(JCTree _tree, boolean markBranches) {
 717         JCTree inner_tree = TreeInfo.skipParens(_tree);
 718         if (inner_tree.hasTag(CONDEXPR)) {
 719             JCConditional tree = (JCConditional)inner_tree;
 720             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 721             if (cond.isTrue()) {
 722                 code.resolve(cond.trueJumps);
 723                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 724                 if (markBranches) result.tree = tree.truepart;
 725                 return result;
 726             }
 727             if (cond.isFalse()) {
 728                 code.resolve(cond.falseJumps);
 729                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 730                 if (markBranches) result.tree = tree.falsepart;
 731                 return result;
 732             }
 733             Chain secondJumps = cond.jumpFalse();
 734             code.resolve(cond.trueJumps);
 735             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 736             if (markBranches) first.tree = tree.truepart;
 737             Chain falseJumps = first.jumpFalse();
 738             code.resolve(first.trueJumps);
 739             Chain trueJumps = code.branch(goto_);
 740             code.resolve(secondJumps);
 741             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 742             CondItem result = items.makeCondItem(second.opcode,
 743                                       Code.mergeChains(trueJumps, second.trueJumps),
 744                                       Code.mergeChains(falseJumps, second.falseJumps));
 745             if (markBranches) result.tree = tree.falsepart;
 746             return result;
 747         } else {
 748             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 749             if (markBranches) result.tree = _tree;
 750             return result;
 751         }
 752     }
 753 
 754     public Code getCode() {
 755         return code;
 756     }
 757 
 758     public Items getItems() {
 759         return items;
 760     }
 761 
 762     public Env<AttrContext> getAttrEnv() {
 763         return attrEnv;
 764     }
 765 
 766     /** Visitor class for expressions which might be constant expressions.
 767      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 768      *  Lower as long as constant expressions looking for references to any
 769      *  ClassSymbol. Any such reference will be added to the constant pool so
 770      *  automated tools can detect class dependencies better.
 771      */
 772     class ClassReferenceVisitor extends JCTree.Visitor {
 773 
 774         @Override
 775         public void visitTree(JCTree tree) {}
 776 
 777         @Override
 778         public void visitBinary(JCBinary tree) {
 779             tree.lhs.accept(this);
 780             tree.rhs.accept(this);
 781         }
 782 
 783         @Override
 784         public void visitSelect(JCFieldAccess tree) {
 785             if (tree.selected.type.hasTag(CLASS)) {
 786                 makeRef(tree.selected.pos(), tree.selected.type);
 787             }
 788         }
 789 
 790         @Override
 791         public void visitIdent(JCIdent tree) {
 792             if (tree.sym.owner instanceof ClassSymbol) {
 793                 pool.put(tree.sym.owner);
 794             }
 795         }
 796 
 797         @Override
 798         public void visitConditional(JCConditional tree) {
 799             tree.cond.accept(this);
 800             tree.truepart.accept(this);
 801             tree.falsepart.accept(this);
 802         }
 803 
 804         @Override
 805         public void visitUnary(JCUnary tree) {
 806             tree.arg.accept(this);
 807         }
 808 
 809         @Override
 810         public void visitParens(JCParens tree) {
 811             tree.expr.accept(this);
 812         }
 813 
 814         @Override
 815         public void visitTypeCast(JCTypeCast tree) {
 816             tree.expr.accept(this);
 817         }
 818     }
 819 
 820     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 821 
 822     /** Visitor method: generate code for an expression, catching and reporting
 823      *  any completion failures.
 824      *  @param tree    The expression to be visited.
 825      *  @param pt      The expression's expected type (proto-type).
 826      */
 827     public Item genExpr(JCTree tree, Type pt) {
 828         Type prevPt = this.pt;
 829         try {
 830             if (tree.type.constValue() != null) {
 831                 // Short circuit any expressions which are constants
 832                 tree.accept(classReferenceVisitor);
 833                 checkStringConstant(tree.pos(), tree.type.constValue());
 834                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
 835             } else {
 836                 this.pt = pt;
 837                 tree.accept(this);
 838             }
 839             return result.coerce(pt);
 840         } catch (CompletionFailure ex) {
 841             chk.completionError(tree.pos(), ex);
 842             code.state.stacksize = 1;
 843             return items.makeStackItem(pt);
 844         } finally {
 845             this.pt = prevPt;
 846         }
 847     }
 848 
 849     /** Derived visitor method: generate code for a list of method arguments.
 850      *  @param trees    The argument expressions to be visited.
 851      *  @param pts      The expression's expected types (i.e. the formal parameter
 852      *                  types of the invoked method).
 853      */
 854     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 855         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 856             genExpr(l.head, pts.head).load();
 857             pts = pts.tail;
 858         }
 859         // require lists be of same length
 860         Assert.check(pts.isEmpty());
 861     }
 862 
 863 /* ************************************************************************
 864  * Visitor methods for statements and definitions
 865  *************************************************************************/
 866 
 867     /** Thrown when the byte code size exceeds limit.
 868      */
 869     public static class CodeSizeOverflow extends RuntimeException {
 870         private static final long serialVersionUID = 0;
 871         public CodeSizeOverflow() {}
 872     }
 873 
 874     public void visitMethodDef(JCMethodDecl tree) {
 875         // Create a new local environment that points pack at method
 876         // definition.
 877         Env<GenContext> localEnv = env.dup(tree);
 878         localEnv.enclMethod = tree;
 879         // The expected type of every return statement in this method
 880         // is the method's return type.
 881         this.pt = tree.sym.erasure(types).getReturnType();
 882 
 883         checkDimension(tree.pos(), tree.sym.erasure(types));
 884         genMethod(tree, localEnv, false);
 885     }
 886 //where
 887         /** Generate code for a method.
 888          *  @param tree     The tree representing the method definition.
 889          *  @param env      The environment current for the method body.
 890          *  @param fatcode  A flag that indicates whether all jumps are
 891          *                  within 32K.  We first invoke this method under
 892          *                  the assumption that fatcode == false, i.e. all
 893          *                  jumps are within 32K.  If this fails, fatcode
 894          *                  is set to true and we try again.
 895          */
 896         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 897             MethodSymbol meth = tree.sym;
 898             int extras = 0;
 899             // Count up extra parameters
 900             if (meth.isConstructor()) {
 901                 extras++;
 902                 if (meth.enclClass().isInner() &&
 903                     !meth.enclClass().isStatic()) {
 904                     extras++;
 905                 }
 906             } else if ((tree.mods.flags & STATIC) == 0) {
 907                 extras++;
 908             }
 909             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 910             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 911                 ClassFile.MAX_PARAMETERS) {
 912                 log.error(tree.pos(), "limit.parameters");
 913                 nerrs++;
 914             }
 915 
 916             else if (tree.body != null) {
 917                 // Create a new code structure and initialize it.
 918                 int startpcCrt = initCode(tree, env, fatcode);
 919 
 920                 try {
 921                     genStat(tree.body, env);
 922                 } catch (CodeSizeOverflow e) {
 923                     // Failed due to code limit, try again with jsr/ret
 924                     startpcCrt = initCode(tree, env, fatcode);
 925                     genStat(tree.body, env);
 926                 }
 927 
 928                 if (code.state.stacksize != 0) {
 929                     log.error(tree.body.pos(), "stack.sim.error", tree);
 930                     throw new AssertionError();
 931                 }
 932 
 933                 // If last statement could complete normally, insert a
 934                 // return at the end.
 935                 if (code.isAlive()) {
 936                     code.statBegin(TreeInfo.endPos(tree.body));
 937                     if (env.enclMethod == null ||
 938                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
 939                         code.emitop0(return_);
 940                     } else {
 941                         // sometime dead code seems alive (4415991);
 942                         // generate a small loop instead
 943                         int startpc = code.entryPoint();
 944                         CondItem c = items.makeCondItem(goto_);
 945                         code.resolve(c.jumpTrue(), startpc);
 946                     }
 947                 }
 948                 if (genCrt)
 949                     code.crt.put(tree.body,
 950                                  CRT_BLOCK,
 951                                  startpcCrt,
 952                                  code.curCP());
 953 
 954                 code.endScopes(0);
 955 
 956                 // If we exceeded limits, panic
 957                 if (code.checkLimits(tree.pos(), log)) {
 958                     nerrs++;
 959                     return;
 960                 }
 961 
 962                 // If we generated short code but got a long jump, do it again
 963                 // with fatCode = true.
 964                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
 965 
 966                 // Clean up
 967                 if(stackMap == StackMapFormat.JSR202) {
 968                     code.lastFrame = null;
 969                     code.frameBeforeLast = null;
 970                 }
 971 
 972                 // Compress exception table
 973                 code.compressCatchTable();
 974 
 975                 // Fill in type annotation positions for exception parameters
 976                 code.fillExceptionParameterPositions();
 977             }
 978         }
 979 
 980         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 981             MethodSymbol meth = tree.sym;
 982 
 983             // Create a new code structure.
 984             meth.code = code = new Code(meth,
 985                                         fatcode,
 986                                         lineDebugInfo ? toplevel.lineMap : null,
 987                                         varDebugInfo,
 988                                         stackMap,
 989                                         debugCode,
 990                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
 991                                                : null,
 992                                         syms,
 993                                         types,
 994                                         pool);
 995             items = new Items(pool, code, syms, types);
 996             if (code.debugCode) {
 997                 System.err.println(meth + " for body " + tree);
 998             }
 999 
1000             // If method is not static, create a new local variable address
1001             // for `this'.
1002             if ((tree.mods.flags & STATIC) == 0) {
1003                 Type selfType = meth.owner.type;
1004                 if (meth.isConstructor() && selfType != syms.objectType)
1005                     selfType = UninitializedType.uninitializedThis(selfType);
1006                 code.setDefined(
1007                         code.newLocal(
1008                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1009             }
1010 
1011             // Mark all parameters as defined from the beginning of
1012             // the method.
1013             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1014                 checkDimension(l.head.pos(), l.head.sym.type);
1015                 code.setDefined(code.newLocal(l.head.sym));
1016             }
1017 
1018             // Get ready to generate code for method body.
1019             int startpcCrt = genCrt ? code.curCP() : 0;
1020             code.entryPoint();
1021 
1022             // Suppress initial stackmap
1023             code.pendingStackMap = false;
1024 
1025             return startpcCrt;
1026         }
1027 
1028     public void visitVarDef(JCVariableDecl tree) {
1029         VarSymbol v = tree.sym;
1030         code.newLocal(v);
1031         if (tree.init != null) {
1032             checkStringConstant(tree.init.pos(), v.getConstValue());
1033             if (v.getConstValue() == null || varDebugInfo) {
1034                 genExpr(tree.init, v.erasure(types)).load();
1035                 items.makeLocalItem(v).store();
1036             }
1037         }
1038         checkDimension(tree.pos(), v.type);
1039     }
1040 
1041     public void visitSkip(JCSkip tree) {
1042     }
1043 
1044     public void visitBlock(JCBlock tree) {
1045         int limit = code.nextreg;
1046         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1047         genStats(tree.stats, localEnv);
1048         // End the scope of all block-local variables in variable info.
1049         if (!env.tree.hasTag(METHODDEF)) {
1050             code.statBegin(tree.endpos);
1051             code.endScopes(limit);
1052             code.pendingStatPos = Position.NOPOS;
1053         }
1054     }
1055 
1056     public void visitDoLoop(JCDoWhileLoop tree) {
1057         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1058     }
1059 
1060     public void visitWhileLoop(JCWhileLoop tree) {
1061         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1062     }
1063 
1064     public void visitForLoop(JCForLoop tree) {
1065         int limit = code.nextreg;
1066         genStats(tree.init, env);
1067         genLoop(tree, tree.body, tree.cond, tree.step, true);
1068         code.endScopes(limit);
1069     }
1070     //where
1071         /** Generate code for a loop.
1072          *  @param loop       The tree representing the loop.
1073          *  @param body       The loop's body.
1074          *  @param cond       The loop's controling condition.
1075          *  @param step       "Step" statements to be inserted at end of
1076          *                    each iteration.
1077          *  @param testFirst  True if the loop test belongs before the body.
1078          */
1079         private void genLoop(JCStatement loop,
1080                              JCStatement body,
1081                              JCExpression cond,
1082                              List<JCExpressionStatement> step,
1083                              boolean testFirst) {
1084             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1085             int startpc = code.entryPoint();
1086             if (testFirst) { //while or for loop
1087                 CondItem c;
1088                 if (cond != null) {
1089                     code.statBegin(cond.pos);
1090                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1091                 } else {
1092                     c = items.makeCondItem(goto_);
1093                 }
1094                 Chain loopDone = c.jumpFalse();
1095                 code.resolve(c.trueJumps);
1096                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1097                 code.resolve(loopEnv.info.cont);
1098                 genStats(step, loopEnv);
1099                 code.resolve(code.branch(goto_), startpc);
1100                 code.resolve(loopDone);
1101             } else {
1102                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1103                 code.resolve(loopEnv.info.cont);
1104                 genStats(step, loopEnv);
1105                 CondItem c;
1106                 if (cond != null) {
1107                     code.statBegin(cond.pos);
1108                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1109                 } else {
1110                     c = items.makeCondItem(goto_);
1111                 }
1112                 code.resolve(c.jumpTrue(), startpc);
1113                 code.resolve(c.falseJumps);
1114             }
1115             Chain exit = loopEnv.info.exit;
1116             if (exit != null) {
1117                 code.resolve(exit);
1118                 exit.state.defined.excludeFrom(code.nextreg);
1119             }
1120         }
1121 
1122     public void visitForeachLoop(JCEnhancedForLoop tree) {
1123         throw new AssertionError(); // should have been removed by Lower.
1124     }
1125 
1126     public void visitLabelled(JCLabeledStatement tree) {
1127         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1128         genStat(tree.body, localEnv, CRT_STATEMENT);
1129         Chain exit = localEnv.info.exit;
1130         if (exit != null) {
1131             code.resolve(exit);
1132             exit.state.defined.excludeFrom(code.nextreg);
1133         }
1134     }
1135 
1136     public void visitSwitch(JCSwitch tree) {
1137         int limit = code.nextreg;
1138         Assert.check(!tree.selector.type.hasTag(CLASS));
1139         int startpcCrt = genCrt ? code.curCP() : 0;
1140         Item sel = genExpr(tree.selector, syms.intType);
1141         List<JCCase> cases = tree.cases;
1142         if (cases.isEmpty()) {
1143             // We are seeing:  switch <sel> {}
1144             sel.load().drop();
1145             if (genCrt)
1146                 code.crt.put(TreeInfo.skipParens(tree.selector),
1147                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1148         } else {
1149             // We are seeing a nonempty switch.
1150             sel.load();
1151             if (genCrt)
1152                 code.crt.put(TreeInfo.skipParens(tree.selector),
1153                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1154             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1155             switchEnv.info.isSwitch = true;
1156 
1157             // Compute number of labels and minimum and maximum label values.
1158             // For each case, store its label in an array.
1159             int lo = Integer.MAX_VALUE;  // minimum label.
1160             int hi = Integer.MIN_VALUE;  // maximum label.
1161             int nlabels = 0;               // number of labels.
1162 
1163             int[] labels = new int[cases.length()];  // the label array.
1164             int defaultIndex = -1;     // the index of the default clause.
1165 
1166             List<JCCase> l = cases;
1167             for (int i = 0; i < labels.length; i++) {
1168                 if (l.head.pat != null) {
1169                     int val = ((Number)l.head.pat.type.constValue()).intValue();
1170                     labels[i] = val;
1171                     if (val < lo) lo = val;
1172                     if (hi < val) hi = val;
1173                     nlabels++;
1174                 } else {
1175                     Assert.check(defaultIndex == -1);
1176                     defaultIndex = i;
1177                 }
1178                 l = l.tail;
1179             }
1180 
1181             // Determine whether to issue a tableswitch or a lookupswitch
1182             // instruction.
1183             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1184             long table_time_cost = 3; // comparisons
1185             long lookup_space_cost = 3 + 2 * (long) nlabels;
1186             long lookup_time_cost = nlabels;
1187             int opcode =
1188                 nlabels > 0 &&
1189                 table_space_cost + 3 * table_time_cost <=
1190                 lookup_space_cost + 3 * lookup_time_cost
1191                 ?
1192                 tableswitch : lookupswitch;
1193 
1194             int startpc = code.curCP();    // the position of the selector operation
1195             code.emitop0(opcode);
1196             code.align(4);
1197             int tableBase = code.curCP();  // the start of the jump table
1198             int[] offsets = null;          // a table of offsets for a lookupswitch
1199             code.emit4(-1);                // leave space for default offset
1200             if (opcode == tableswitch) {
1201                 code.emit4(lo);            // minimum label
1202                 code.emit4(hi);            // maximum label
1203                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1204                     code.emit4(-1);
1205                 }
1206             } else {
1207                 code.emit4(nlabels);    // number of labels
1208                 for (int i = 0; i < nlabels; i++) {
1209                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1210                 }
1211                 offsets = new int[labels.length];
1212             }
1213             Code.State stateSwitch = code.state.dup();
1214             code.markDead();
1215 
1216             // For each case do:
1217             l = cases;
1218             for (int i = 0; i < labels.length; i++) {
1219                 JCCase c = l.head;
1220                 l = l.tail;
1221 
1222                 int pc = code.entryPoint(stateSwitch);
1223                 // Insert offset directly into code or else into the
1224                 // offsets table.
1225                 if (i != defaultIndex) {
1226                     if (opcode == tableswitch) {
1227                         code.put4(
1228                             tableBase + 4 * (labels[i] - lo + 3),
1229                             pc - startpc);
1230                     } else {
1231                         offsets[i] = pc - startpc;
1232                     }
1233                 } else {
1234                     code.put4(tableBase, pc - startpc);
1235                 }
1236 
1237                 // Generate code for the statements in this case.
1238                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1239             }
1240 
1241             // Resolve all breaks.
1242             Chain exit = switchEnv.info.exit;
1243             if  (exit != null) {
1244                 code.resolve(exit);
1245                 exit.state.defined.excludeFrom(code.nextreg);
1246             }
1247 
1248             // If we have not set the default offset, we do so now.
1249             if (code.get4(tableBase) == -1) {
1250                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1251             }
1252 
1253             if (opcode == tableswitch) {
1254                 // Let any unfilled slots point to the default case.
1255                 int defaultOffset = code.get4(tableBase);
1256                 for (long i = lo; i <= hi; i++) {
1257                     int t = (int)(tableBase + 4 * (i - lo + 3));
1258                     if (code.get4(t) == -1)
1259                         code.put4(t, defaultOffset);
1260                 }
1261             } else {
1262                 // Sort non-default offsets and copy into lookup table.
1263                 if (defaultIndex >= 0)
1264                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1265                         labels[i] = labels[i+1];
1266                         offsets[i] = offsets[i+1];
1267                     }
1268                 if (nlabels > 0)
1269                     qsort2(labels, offsets, 0, nlabels - 1);
1270                 for (int i = 0; i < nlabels; i++) {
1271                     int caseidx = tableBase + 8 * (i + 1);
1272                     code.put4(caseidx, labels[i]);
1273                     code.put4(caseidx + 4, offsets[i]);
1274                 }
1275             }
1276         }
1277         code.endScopes(limit);
1278     }
1279 //where
1280         /** Sort (int) arrays of keys and values
1281          */
1282        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1283             int i = lo;
1284             int j = hi;
1285             int pivot = keys[(i+j)/2];
1286             do {
1287                 while (keys[i] < pivot) i++;
1288                 while (pivot < keys[j]) j--;
1289                 if (i <= j) {
1290                     int temp1 = keys[i];
1291                     keys[i] = keys[j];
1292                     keys[j] = temp1;
1293                     int temp2 = values[i];
1294                     values[i] = values[j];
1295                     values[j] = temp2;
1296                     i++;
1297                     j--;
1298                 }
1299             } while (i <= j);
1300             if (lo < j) qsort2(keys, values, lo, j);
1301             if (i < hi) qsort2(keys, values, i, hi);
1302         }
1303 
1304     public void visitSynchronized(JCSynchronized tree) {
1305         int limit = code.nextreg;
1306         // Generate code to evaluate lock and save in temporary variable.
1307         final LocalItem lockVar = makeTemp(syms.objectType);
1308         genExpr(tree.lock, tree.lock.type).load().duplicate();
1309         lockVar.store();
1310 
1311         // Generate code to enter monitor.
1312         code.emitop0(monitorenter);
1313         code.state.lock(lockVar.reg);
1314 
1315         // Generate code for a try statement with given body, no catch clauses
1316         // in a new environment with the "exit-monitor" operation as finalizer.
1317         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1318         syncEnv.info.finalize = new GenFinalizer() {
1319             void gen() {
1320                 genLast();
1321                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1322                 syncEnv.info.gaps.append(code.curCP());
1323             }
1324             void genLast() {
1325                 if (code.isAlive()) {
1326                     lockVar.load();
1327                     code.emitop0(monitorexit);
1328                     code.state.unlock(lockVar.reg);
1329                 }
1330             }
1331         };
1332         syncEnv.info.gaps = new ListBuffer<>();
1333         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1334         code.endScopes(limit);
1335     }
1336 
1337     public void visitTry(final JCTry tree) {
1338         // Generate code for a try statement with given body and catch clauses,
1339         // in a new environment which calls the finally block if there is one.
1340         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1341         final Env<GenContext> oldEnv = env;
1342         if (!useJsrLocally) {
1343             useJsrLocally =
1344                 (stackMap == StackMapFormat.NONE) &&
1345                 (jsrlimit <= 0 ||
1346                 jsrlimit < 100 &&
1347                 estimateCodeComplexity(tree.finalizer)>jsrlimit);
1348         }
1349         tryEnv.info.finalize = new GenFinalizer() {
1350             void gen() {
1351                 if (useJsrLocally) {
1352                     if (tree.finalizer != null) {
1353                         Code.State jsrState = code.state.dup();
1354                         jsrState.push(Code.jsrReturnValue);
1355                         tryEnv.info.cont =
1356                             new Chain(code.emitJump(jsr),
1357                                       tryEnv.info.cont,
1358                                       jsrState);
1359                     }
1360                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1361                     tryEnv.info.gaps.append(code.curCP());
1362                 } else {
1363                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1364                     tryEnv.info.gaps.append(code.curCP());
1365                     genLast();
1366                 }
1367             }
1368             void genLast() {
1369                 if (tree.finalizer != null)
1370                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1371             }
1372             boolean hasFinalizer() {
1373                 return tree.finalizer != null;
1374             }
1375         };
1376         tryEnv.info.gaps = new ListBuffer<>();
1377         genTry(tree.body, tree.catchers, tryEnv);
1378     }
1379     //where
1380         /** Generate code for a try or synchronized statement
1381          *  @param body      The body of the try or synchronized statement.
1382          *  @param catchers  The lis of catch clauses.
1383          *  @param env       the environment current for the body.
1384          */
1385         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1386             int limit = code.nextreg;
1387             int startpc = code.curCP();
1388             Code.State stateTry = code.state.dup();
1389             genStat(body, env, CRT_BLOCK);
1390             int endpc = code.curCP();
1391             boolean hasFinalizer =
1392                 env.info.finalize != null &&
1393                 env.info.finalize.hasFinalizer();
1394             List<Integer> gaps = env.info.gaps.toList();
1395             code.statBegin(TreeInfo.endPos(body));
1396             genFinalizer(env);
1397             code.statBegin(TreeInfo.endPos(env.tree));
1398             Chain exitChain = code.branch(goto_);
1399             endFinalizerGap(env);
1400             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1401                 // start off with exception on stack
1402                 code.entryPoint(stateTry, l.head.param.sym.type);
1403                 genCatch(l.head, env, startpc, endpc, gaps);
1404                 genFinalizer(env);
1405                 if (hasFinalizer || l.tail.nonEmpty()) {
1406                     code.statBegin(TreeInfo.endPos(env.tree));
1407                     exitChain = Code.mergeChains(exitChain,
1408                                                  code.branch(goto_));
1409                 }
1410                 endFinalizerGap(env);
1411             }
1412             if (hasFinalizer) {
1413                 // Create a new register segement to avoid allocating
1414                 // the same variables in finalizers and other statements.
1415                 code.newRegSegment();
1416 
1417                 // Add a catch-all clause.
1418 
1419                 // start off with exception on stack
1420                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1421 
1422                 // Register all exception ranges for catch all clause.
1423                 // The range of the catch all clause is from the beginning
1424                 // of the try or synchronized block until the present
1425                 // code pointer excluding all gaps in the current
1426                 // environment's GenContext.
1427                 int startseg = startpc;
1428                 while (env.info.gaps.nonEmpty()) {
1429                     int endseg = env.info.gaps.next().intValue();
1430                     registerCatch(body.pos(), startseg, endseg,
1431                                   catchallpc, 0);
1432                     startseg = env.info.gaps.next().intValue();
1433                 }
1434                 code.statBegin(TreeInfo.finalizerPos(env.tree));
1435                 code.markStatBegin();
1436 
1437                 Item excVar = makeTemp(syms.throwableType);
1438                 excVar.store();
1439                 genFinalizer(env);
1440                 excVar.load();
1441                 registerCatch(body.pos(), startseg,
1442                               env.info.gaps.next().intValue(),
1443                               catchallpc, 0);
1444                 code.emitop0(athrow);
1445                 code.markDead();
1446 
1447                 // If there are jsr's to this finalizer, ...
1448                 if (env.info.cont != null) {
1449                     // Resolve all jsr's.
1450                     code.resolve(env.info.cont);
1451 
1452                     // Mark statement line number
1453                     code.statBegin(TreeInfo.finalizerPos(env.tree));
1454                     code.markStatBegin();
1455 
1456                     // Save return address.
1457                     LocalItem retVar = makeTemp(syms.throwableType);
1458                     retVar.store();
1459 
1460                     // Generate finalizer code.
1461                     env.info.finalize.genLast();
1462 
1463                     // Return.
1464                     code.emitop1w(ret, retVar.reg);
1465                     code.markDead();
1466                 }
1467             }
1468             // Resolve all breaks.
1469             code.resolve(exitChain);
1470 
1471             code.endScopes(limit);
1472         }
1473 
1474         /** Generate code for a catch clause.
1475          *  @param tree     The catch clause.
1476          *  @param env      The environment current in the enclosing try.
1477          *  @param startpc  Start pc of try-block.
1478          *  @param endpc    End pc of try-block.
1479          */
1480         void genCatch(JCCatch tree,
1481                       Env<GenContext> env,
1482                       int startpc, int endpc,
1483                       List<Integer> gaps) {
1484             if (startpc != endpc) {
1485                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1486                         = catchTypesWithAnnotations(tree);
1487                 while (gaps.nonEmpty()) {
1488                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1489                         JCExpression subCatch = subCatch1.snd;
1490                         int catchType = makeRef(tree.pos(), subCatch.type);
1491                         int end = gaps.head.intValue();
1492                         registerCatch(tree.pos(),
1493                                       startpc,  end, code.curCP(),
1494                                       catchType);
1495                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1496                                 tc.position.setCatchInfo(catchType, startpc);
1497                         }
1498                     }
1499                     gaps = gaps.tail;
1500                     startpc = gaps.head.intValue();
1501                     gaps = gaps.tail;
1502                 }
1503                 if (startpc < endpc) {
1504                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1505                         JCExpression subCatch = subCatch1.snd;
1506                         int catchType = makeRef(tree.pos(), subCatch.type);
1507                         registerCatch(tree.pos(),
1508                                       startpc, endpc, code.curCP(),
1509                                       catchType);
1510                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1511                             tc.position.setCatchInfo(catchType, startpc);
1512                         }
1513                     }
1514                 }
1515                 VarSymbol exparam = tree.param.sym;
1516                 code.statBegin(tree.pos);
1517                 code.markStatBegin();
1518                 int limit = code.nextreg;
1519                 code.newLocal(exparam);
1520                 items.makeLocalItem(exparam).store();
1521                 code.statBegin(TreeInfo.firstStatPos(tree.body));
1522                 genStat(tree.body, env, CRT_BLOCK);
1523                 code.endScopes(limit);
1524                 code.statBegin(TreeInfo.endPos(tree.body));
1525             }
1526         }
1527         // where
1528         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1529             return TreeInfo.isMultiCatch(tree) ?
1530                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1531                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1532         }
1533         // where
1534         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1535             List<JCExpression> alts = tree.alternatives;
1536             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1537             alts = alts.tail;
1538 
1539             while(alts != null && alts.head != null) {
1540                 JCExpression alt = alts.head;
1541                 if (alt instanceof JCAnnotatedType) {
1542                     JCAnnotatedType a = (JCAnnotatedType)alt;
1543                     res = res.prepend(new Pair<>(annotate.fromAnnotations(a.annotations), alt));
1544                 } else {
1545                     res = res.prepend(new Pair<>(List.nil(), alt));
1546                 }
1547                 alts = alts.tail;
1548             }
1549             return res.reverse();
1550         }
1551 
1552         /** Register a catch clause in the "Exceptions" code-attribute.
1553          */
1554         void registerCatch(DiagnosticPosition pos,
1555                            int startpc, int endpc,
1556                            int handler_pc, int catch_type) {
1557             char startpc1 = (char)startpc;
1558             char endpc1 = (char)endpc;
1559             char handler_pc1 = (char)handler_pc;
1560             if (startpc1 == startpc &&
1561                 endpc1 == endpc &&
1562                 handler_pc1 == handler_pc) {
1563                 code.addCatch(startpc1, endpc1, handler_pc1,
1564                               (char)catch_type);
1565             } else {
1566                 log.error(pos, "limit.code.too.large.for.try.stmt");
1567                 nerrs++;
1568             }
1569         }
1570 
1571     /** Very roughly estimate the number of instructions needed for
1572      *  the given tree.
1573      */
1574     int estimateCodeComplexity(JCTree tree) {
1575         if (tree == null) return 0;
1576         class ComplexityScanner extends TreeScanner {
1577             int complexity = 0;
1578             public void scan(JCTree tree) {
1579                 if (complexity > jsrlimit) return;
1580                 super.scan(tree);
1581             }
1582             public void visitClassDef(JCClassDecl tree) {}
1583             public void visitDoLoop(JCDoWhileLoop tree)
1584                 { super.visitDoLoop(tree); complexity++; }
1585             public void visitWhileLoop(JCWhileLoop tree)
1586                 { super.visitWhileLoop(tree); complexity++; }
1587             public void visitForLoop(JCForLoop tree)
1588                 { super.visitForLoop(tree); complexity++; }
1589             public void visitSwitch(JCSwitch tree)
1590                 { super.visitSwitch(tree); complexity+=5; }
1591             public void visitCase(JCCase tree)
1592                 { super.visitCase(tree); complexity++; }
1593             public void visitSynchronized(JCSynchronized tree)
1594                 { super.visitSynchronized(tree); complexity+=6; }
1595             public void visitTry(JCTry tree)
1596                 { super.visitTry(tree);
1597                   if (tree.finalizer != null) complexity+=6; }
1598             public void visitCatch(JCCatch tree)
1599                 { super.visitCatch(tree); complexity+=2; }
1600             public void visitConditional(JCConditional tree)
1601                 { super.visitConditional(tree); complexity+=2; }
1602             public void visitIf(JCIf tree)
1603                 { super.visitIf(tree); complexity+=2; }
1604             // note: for break, continue, and return we don't take unwind() into account.
1605             public void visitBreak(JCBreak tree)
1606                 { super.visitBreak(tree); complexity+=1; }
1607             public void visitContinue(JCContinue tree)
1608                 { super.visitContinue(tree); complexity+=1; }
1609             public void visitReturn(JCReturn tree)
1610                 { super.visitReturn(tree); complexity+=1; }
1611             public void visitThrow(JCThrow tree)
1612                 { super.visitThrow(tree); complexity+=1; }
1613             public void visitAssert(JCAssert tree)
1614                 { super.visitAssert(tree); complexity+=5; }
1615             public void visitApply(JCMethodInvocation tree)
1616                 { super.visitApply(tree); complexity+=2; }
1617             public void visitNewClass(JCNewClass tree)
1618                 { scan(tree.encl); scan(tree.args); complexity+=2; }
1619             public void visitNewArray(JCNewArray tree)
1620                 { super.visitNewArray(tree); complexity+=5; }
1621             public void visitAssign(JCAssign tree)
1622                 { super.visitAssign(tree); complexity+=1; }
1623             public void visitAssignop(JCAssignOp tree)
1624                 { super.visitAssignop(tree); complexity+=2; }
1625             public void visitUnary(JCUnary tree)
1626                 { complexity+=1;
1627                   if (tree.type.constValue() == null) super.visitUnary(tree); }
1628             public void visitBinary(JCBinary tree)
1629                 { complexity+=1;
1630                   if (tree.type.constValue() == null) super.visitBinary(tree); }
1631             public void visitTypeTest(JCInstanceOf tree)
1632                 { super.visitTypeTest(tree); complexity+=1; }
1633             public void visitIndexed(JCArrayAccess tree)
1634                 { super.visitIndexed(tree); complexity+=1; }
1635             public void visitSelect(JCFieldAccess tree)
1636                 { super.visitSelect(tree);
1637                   if (tree.sym.kind == VAR) complexity+=1; }
1638             public void visitIdent(JCIdent tree) {
1639                 if (tree.sym.kind == VAR) {
1640                     complexity+=1;
1641                     if (tree.type.constValue() == null &&
1642                         tree.sym.owner.kind == TYP)
1643                         complexity+=1;
1644                 }
1645             }
1646             public void visitLiteral(JCLiteral tree)
1647                 { complexity+=1; }
1648             public void visitTree(JCTree tree) {}
1649             public void visitWildcard(JCWildcard tree) {
1650                 throw new AssertionError(this.getClass().getName());
1651             }
1652         }
1653         ComplexityScanner scanner = new ComplexityScanner();
1654         tree.accept(scanner);
1655         return scanner.complexity;
1656     }
1657 
1658     public void visitIf(JCIf tree) {
1659         int limit = code.nextreg;
1660         Chain thenExit = null;
1661         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1662                              CRT_FLOW_CONTROLLER);
1663         Chain elseChain = c.jumpFalse();
1664         if (!c.isFalse()) {
1665             code.resolve(c.trueJumps);
1666             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1667             thenExit = code.branch(goto_);
1668         }
1669         if (elseChain != null) {
1670             code.resolve(elseChain);
1671             if (tree.elsepart != null) {
1672                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1673             }
1674         }
1675         code.resolve(thenExit);
1676         code.endScopes(limit);
1677     }
1678 
1679     public void visitExec(JCExpressionStatement tree) {
1680         // Optimize x++ to ++x and x-- to --x.
1681         JCExpression e = tree.expr;
1682         switch (e.getTag()) {
1683             case POSTINC:
1684                 ((JCUnary) e).setTag(PREINC);
1685                 break;
1686             case POSTDEC:
1687                 ((JCUnary) e).setTag(PREDEC);
1688                 break;
1689         }
1690         genExpr(tree.expr, tree.expr.type).drop();
1691     }
1692 
1693     public void visitBreak(JCBreak tree) {
1694         Env<GenContext> targetEnv = unwind(tree.target, env);
1695         Assert.check(code.state.stacksize == 0);
1696         targetEnv.info.addExit(code.branch(goto_));
1697         endFinalizerGaps(env, targetEnv);
1698     }
1699 
1700     public void visitContinue(JCContinue tree) {
1701         Env<GenContext> targetEnv = unwind(tree.target, env);
1702         Assert.check(code.state.stacksize == 0);
1703         targetEnv.info.addCont(code.branch(goto_));
1704         endFinalizerGaps(env, targetEnv);
1705     }
1706 
1707     public void visitReturn(JCReturn tree) {
1708         int limit = code.nextreg;
1709         final Env<GenContext> targetEnv;
1710 
1711         /* Save and then restore the location of the return in case a finally
1712          * is expanded (with unwind()) in the middle of our bytecodes.
1713          */
1714         int tmpPos = code.pendingStatPos;
1715         if (tree.expr != null) {
1716             Item r = genExpr(tree.expr, pt).load();
1717             if (hasFinally(env.enclMethod, env)) {
1718                 r = makeTemp(pt);
1719                 r.store();
1720             }
1721             targetEnv = unwind(env.enclMethod, env);
1722             code.pendingStatPos = tmpPos;
1723             r.load();
1724             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1725         } else {
1726             targetEnv = unwind(env.enclMethod, env);
1727             code.pendingStatPos = tmpPos;
1728             code.emitop0(return_);
1729         }
1730         endFinalizerGaps(env, targetEnv);
1731         code.endScopes(limit);
1732     }
1733 
1734     public void visitThrow(JCThrow tree) {
1735         genExpr(tree.expr, tree.expr.type).load();
1736         code.emitop0(athrow);
1737     }
1738 
1739 /* ************************************************************************
1740  * Visitor methods for expressions
1741  *************************************************************************/
1742 
1743     public void visitApply(JCMethodInvocation tree) {
1744         setTypeAnnotationPositions(tree.pos);
1745         // Generate code for method.
1746         Item m = genExpr(tree.meth, methodType);
1747         // Generate code for all arguments, where the expected types are
1748         // the parameters of the method's external type (that is, any implicit
1749         // outer instance of a super(...) call appears as first parameter).
1750         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1751         genArgs(tree.args,
1752                 msym.externalType(types).getParameterTypes());
1753         if (!msym.isDynamic()) {
1754             code.statBegin(tree.pos);
1755         }
1756         result = m.invoke();
1757     }
1758 
1759     public void visitConditional(JCConditional tree) {
1760         Chain thenExit = null;
1761         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1762         Chain elseChain = c.jumpFalse();
1763         if (!c.isFalse()) {
1764             code.resolve(c.trueJumps);
1765             int startpc = genCrt ? code.curCP() : 0;
1766             code.statBegin(tree.truepart.pos);
1767             genExpr(tree.truepart, pt).load();
1768             code.state.forceStackTop(tree.type);
1769             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1770                                      startpc, code.curCP());
1771             thenExit = code.branch(goto_);
1772         }
1773         if (elseChain != null) {
1774             code.resolve(elseChain);
1775             int startpc = genCrt ? code.curCP() : 0;
1776             code.statBegin(tree.falsepart.pos);
1777             genExpr(tree.falsepart, pt).load();
1778             code.state.forceStackTop(tree.type);
1779             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1780                                      startpc, code.curCP());
1781         }
1782         code.resolve(thenExit);
1783         result = items.makeStackItem(pt);
1784     }
1785 
1786     private void setTypeAnnotationPositions(int treePos) {
1787         MethodSymbol meth = code.meth;
1788         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1789                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1790 
1791         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1792             if (ta.hasUnknownPosition())
1793                 ta.tryFixPosition();
1794 
1795             if (ta.position.matchesPos(treePos))
1796                 ta.position.updatePosOffset(code.cp);
1797         }
1798 
1799         if (!initOrClinit)
1800             return;
1801 
1802         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1803             if (ta.hasUnknownPosition())
1804                 ta.tryFixPosition();
1805 
1806             if (ta.position.matchesPos(treePos))
1807                 ta.position.updatePosOffset(code.cp);
1808         }
1809 
1810         ClassSymbol clazz = meth.enclClass();
1811         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1812             if (!s.getKind().isField())
1813                 continue;
1814 
1815             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1816                 if (ta.hasUnknownPosition())
1817                     ta.tryFixPosition();
1818 
1819                 if (ta.position.matchesPos(treePos))
1820                     ta.position.updatePosOffset(code.cp);
1821             }
1822         }
1823     }
1824 
1825     public void visitNewClass(JCNewClass tree) {
1826         // Enclosing instances or anonymous classes should have been eliminated
1827         // by now.
1828         Assert.check(tree.encl == null && tree.def == null);
1829         setTypeAnnotationPositions(tree.pos);
1830 
1831         code.emitop2(new_, makeRef(tree.pos(), tree.type));
1832         code.emitop0(dup);
1833 
1834         // Generate code for all arguments, where the expected types are
1835         // the parameters of the constructor's external type (that is,
1836         // any implicit outer instance appears as first parameter).
1837         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1838 
1839         items.makeMemberItem(tree.constructor, true).invoke();
1840         result = items.makeStackItem(tree.type);
1841     }
1842 
1843     public void visitNewArray(JCNewArray tree) {
1844         setTypeAnnotationPositions(tree.pos);
1845 
1846         if (tree.elems != null) {
1847             Type elemtype = types.elemtype(tree.type);
1848             loadIntConst(tree.elems.length());
1849             Item arr = makeNewArray(tree.pos(), tree.type, 1);
1850             int i = 0;
1851             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1852                 arr.duplicate();
1853                 loadIntConst(i);
1854                 i++;
1855                 genExpr(l.head, elemtype).load();
1856                 items.makeIndexedItem(elemtype).store();
1857             }
1858             result = arr;
1859         } else {
1860             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1861                 genExpr(l.head, syms.intType).load();
1862             }
1863             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1864         }
1865     }
1866 //where
1867         /** Generate code to create an array with given element type and number
1868          *  of dimensions.
1869          */
1870         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1871             Type elemtype = types.elemtype(type);
1872             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1873                 log.error(pos, "limit.dimensions");
1874                 nerrs++;
1875             }
1876             int elemcode = Code.arraycode(elemtype);
1877             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1878                 code.emitAnewarray(makeRef(pos, elemtype), type);
1879             } else if (elemcode == 1) {
1880                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
1881             } else {
1882                 code.emitNewarray(elemcode, type);
1883             }
1884             return items.makeStackItem(type);
1885         }
1886 
1887     public void visitParens(JCParens tree) {
1888         result = genExpr(tree.expr, tree.expr.type);
1889     }
1890 
1891     public void visitAssign(JCAssign tree) {
1892         Item l = genExpr(tree.lhs, tree.lhs.type);
1893         genExpr(tree.rhs, tree.lhs.type).load();
1894         if (tree.rhs.type.hasTag(BOT)) {
1895             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
1896                for "regarding a reference as having some other type in a manner that can be proved
1897                correct at compile time."
1898             */
1899             code.state.forceStackTop(tree.lhs.type);
1900         }
1901         result = items.makeAssignItem(l);
1902     }
1903 
1904     public void visitAssignop(JCAssignOp tree) {
1905         OperatorSymbol operator = (OperatorSymbol) tree.operator;
1906         Item l;
1907         if (operator.opcode == string_add) {
1908             l = concat.makeConcat(tree);
1909         } else {
1910             // Generate code for first expression
1911             l = genExpr(tree.lhs, tree.lhs.type);
1912 
1913             // If we have an increment of -32768 to +32767 of a local
1914             // int variable we can use an incr instruction instead of
1915             // proceeding further.
1916             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1917                 l instanceof LocalItem &&
1918                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
1919                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
1920                 tree.rhs.type.constValue() != null) {
1921                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
1922                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
1923                 ((LocalItem)l).incr(ival);
1924                 result = l;
1925                 return;
1926             }
1927             // Otherwise, duplicate expression, load one copy
1928             // and complete binary operation.
1929             l.duplicate();
1930             l.coerce(operator.type.getParameterTypes().head).load();
1931             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1932         }
1933         result = items.makeAssignItem(l);
1934     }
1935 
1936     public void visitUnary(JCUnary tree) {
1937         OperatorSymbol operator = (OperatorSymbol)tree.operator;
1938         if (tree.hasTag(NOT)) {
1939             CondItem od = genCond(tree.arg, false);
1940             result = od.negate();
1941         } else {
1942             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1943             switch (tree.getTag()) {
1944             case POS:
1945                 result = od.load();
1946                 break;
1947             case NEG:
1948                 result = od.load();
1949                 code.emitop0(operator.opcode);
1950                 break;
1951             case COMPL:
1952                 result = od.load();
1953                 emitMinusOne(od.typecode);
1954                 code.emitop0(operator.opcode);
1955                 break;
1956             case PREINC: case PREDEC:
1957                 od.duplicate();
1958                 if (od instanceof LocalItem &&
1959                     (operator.opcode == iadd || operator.opcode == isub)) {
1960                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
1961                     result = od;
1962                 } else {
1963                     od.load();
1964                     code.emitop0(one(od.typecode));
1965                     code.emitop0(operator.opcode);
1966                     // Perform narrowing primitive conversion if byte,
1967                     // char, or short.  Fix for 4304655.
1968                     if (od.typecode != INTcode &&
1969                         Code.truncate(od.typecode) == INTcode)
1970                       code.emitop0(int2byte + od.typecode - BYTEcode);
1971                     result = items.makeAssignItem(od);
1972                 }
1973                 break;
1974             case POSTINC: case POSTDEC:
1975                 od.duplicate();
1976                 if (od instanceof LocalItem &&
1977                     (operator.opcode == iadd || operator.opcode == isub)) {
1978                     Item res = od.load();
1979                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
1980                     result = res;
1981                 } else {
1982                     Item res = od.load();
1983                     od.stash(od.typecode);
1984                     code.emitop0(one(od.typecode));
1985                     code.emitop0(operator.opcode);
1986                     // Perform narrowing primitive conversion if byte,
1987                     // char, or short.  Fix for 4304655.
1988                     if (od.typecode != INTcode &&
1989                         Code.truncate(od.typecode) == INTcode)
1990                       code.emitop0(int2byte + od.typecode - BYTEcode);
1991                     od.store();
1992                     result = res;
1993                 }
1994                 break;
1995             case NULLCHK:
1996                 result = od.load();
1997                 code.emitop0(dup);
1998                 genNullCheck(tree.pos());
1999                 break;
2000             default:
2001                 Assert.error();
2002             }
2003         }
2004     }
2005 
2006     /** Generate a null check from the object value at stack top. */
2007     private void genNullCheck(DiagnosticPosition pos) {
2008         if (allowBetterNullChecks) {
2009             callMethod(pos, syms.objectsType, names.requireNonNull,
2010                     List.of(syms.objectType), true);
2011         } else {
2012             callMethod(pos, syms.objectType, names.getClass,
2013                     List.<Type>nil(), false);
2014         }
2015         code.emitop0(pop);
2016     }
2017 
2018     public void visitBinary(JCBinary tree) {
2019         OperatorSymbol operator = (OperatorSymbol)tree.operator;
2020         if (operator.opcode == string_add) {
2021             result = concat.makeConcat(tree);
2022         } else if (tree.hasTag(AND)) {
2023             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2024             if (!lcond.isFalse()) {
2025                 Chain falseJumps = lcond.jumpFalse();
2026                 code.resolve(lcond.trueJumps);
2027                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2028                 result = items.
2029                     makeCondItem(rcond.opcode,
2030                                  rcond.trueJumps,
2031                                  Code.mergeChains(falseJumps,
2032                                                   rcond.falseJumps));
2033             } else {
2034                 result = lcond;
2035             }
2036         } else if (tree.hasTag(OR)) {
2037             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2038             if (!lcond.isTrue()) {
2039                 Chain trueJumps = lcond.jumpTrue();
2040                 code.resolve(lcond.falseJumps);
2041                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2042                 result = items.
2043                     makeCondItem(rcond.opcode,
2044                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2045                                  rcond.falseJumps);
2046             } else {
2047                 result = lcond;
2048             }
2049         } else {
2050             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2051             od.load();
2052             result = completeBinop(tree.lhs, tree.rhs, operator);
2053         }
2054     }
2055 
2056 
2057         /** Complete generating code for operation, with left operand
2058          *  already on stack.
2059          *  @param lhs       The tree representing the left operand.
2060          *  @param rhs       The tree representing the right operand.
2061          *  @param operator  The operator symbol.
2062          */
2063         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2064             MethodType optype = (MethodType)operator.type;
2065             int opcode = operator.opcode;
2066             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2067                 rhs.type.constValue() instanceof Number &&
2068                 ((Number) rhs.type.constValue()).intValue() == 0) {
2069                 opcode = opcode + (ifeq - if_icmpeq);
2070             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2071                        TreeInfo.isNull(rhs)) {
2072                 opcode = opcode + (if_acmp_null - if_acmpeq);
2073             } else {
2074                 // The expected type of the right operand is
2075                 // the second parameter type of the operator, except for
2076                 // shifts with long shiftcount, where we convert the opcode
2077                 // to a short shift and the expected type to int.
2078                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2079                 if (opcode >= ishll && opcode <= lushrl) {
2080                     opcode = opcode + (ishl - ishll);
2081                     rtype = syms.intType;
2082                 }
2083                 // Generate code for right operand and load.
2084                 genExpr(rhs, rtype).load();
2085                 // If there are two consecutive opcode instructions,
2086                 // emit the first now.
2087                 if (opcode >= (1 << preShift)) {
2088                     code.emitop0(opcode >> preShift);
2089                     opcode = opcode & 0xFF;
2090                 }
2091             }
2092             if (opcode >= ifeq && opcode <= if_acmpne ||
2093                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2094                 return items.makeCondItem(opcode);
2095             } else {
2096                 code.emitop0(opcode);
2097                 return items.makeStackItem(optype.restype);
2098             }
2099         }
2100 
2101     public void visitTypeCast(JCTypeCast tree) {
2102         setTypeAnnotationPositions(tree.pos);
2103         result = genExpr(tree.expr, tree.clazz.type).load();
2104         // Additional code is only needed if we cast to a reference type
2105         // which is not statically a supertype of the expression's type.
2106         // For basic types, the coerce(...) in genExpr(...) will do
2107         // the conversion.
2108         if (!tree.clazz.type.isPrimitive() &&
2109            !types.isSameType(tree.expr.type, tree.clazz.type) &&
2110            types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2111             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2112         }
2113     }
2114 
2115     public void visitWildcard(JCWildcard tree) {
2116         throw new AssertionError(this.getClass().getName());
2117     }
2118 
2119     public void visitTypeTest(JCInstanceOf tree) {
2120         setTypeAnnotationPositions(tree.pos);
2121         genExpr(tree.expr, tree.expr.type).load();
2122         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2123         result = items.makeStackItem(syms.booleanType);
2124     }
2125 
2126     public void visitIndexed(JCArrayAccess tree) {
2127         genExpr(tree.indexed, tree.indexed.type).load();
2128         genExpr(tree.index, syms.intType).load();
2129         result = items.makeIndexedItem(tree.type);
2130     }
2131 
2132     public void visitIdent(JCIdent tree) {
2133         Symbol sym = tree.sym;
2134         if (tree.name == names._this || tree.name == names._super) {
2135             Item res = tree.name == names._this
2136                 ? items.makeThisItem()
2137                 : items.makeSuperItem();
2138             if (sym.kind == MTH) {
2139                 // Generate code to address the constructor.
2140                 res.load();
2141                 res = items.makeMemberItem(sym, true);
2142             }
2143             result = res;
2144         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2145             result = items.makeLocalItem((VarSymbol)sym);
2146         } else if (isInvokeDynamic(sym)) {
2147             result = items.makeDynamicItem(sym);
2148         } else if ((sym.flags() & STATIC) != 0) {
2149             if (!isAccessSuper(env.enclMethod))
2150                 sym = binaryQualifier(sym, env.enclClass.type);
2151             result = items.makeStaticItem(sym);
2152         } else {
2153             items.makeThisItem().load();
2154             sym = binaryQualifier(sym, env.enclClass.type);
2155             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2156         }
2157     }
2158 
2159     public void visitSelect(JCFieldAccess tree) {
2160         Symbol sym = tree.sym;
2161 
2162         if (tree.name == names._class) {
2163             code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2164             result = items.makeStackItem(pt);
2165             return;
2166        }
2167 
2168         Symbol ssym = TreeInfo.symbol(tree.selected);
2169 
2170         // Are we selecting via super?
2171         boolean selectSuper =
2172             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2173 
2174         // Are we accessing a member of the superclass in an access method
2175         // resulting from a qualified super?
2176         boolean accessSuper = isAccessSuper(env.enclMethod);
2177 
2178         Item base = (selectSuper)
2179             ? items.makeSuperItem()
2180             : genExpr(tree.selected, tree.selected.type);
2181 
2182         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2183             // We are seeing a variable that is constant but its selecting
2184             // expression is not.
2185             if ((sym.flags() & STATIC) != 0) {
2186                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2187                     base = base.load();
2188                 base.drop();
2189             } else {
2190                 base.load();
2191                 genNullCheck(tree.selected.pos());
2192             }
2193             result = items.
2194                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2195         } else {
2196             if (isInvokeDynamic(sym)) {
2197                 result = items.makeDynamicItem(sym);
2198                 return;
2199             } else {
2200                 sym = binaryQualifier(sym, tree.selected.type);
2201             }
2202             if ((sym.flags() & STATIC) != 0) {
2203                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2204                     base = base.load();
2205                 base.drop();
2206                 result = items.makeStaticItem(sym);
2207             } else {
2208                 base.load();
2209                 if (sym == syms.lengthVar) {
2210                     code.emitop0(arraylength);
2211                     result = items.makeStackItem(syms.intType);
2212                 } else {
2213                     result = items.
2214                         makeMemberItem(sym,
2215                                        (sym.flags() & PRIVATE) != 0 ||
2216                                        selectSuper || accessSuper);
2217                 }
2218             }
2219         }
2220     }
2221 
2222     public boolean isInvokeDynamic(Symbol sym) {
2223         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2224     }
2225 
2226     public void visitLiteral(JCLiteral tree) {
2227         if (tree.type.hasTag(BOT)) {
2228             code.emitop0(aconst_null);
2229             result = items.makeStackItem(tree.type);
2230         }
2231         else
2232             result = items.makeImmediateItem(tree.type, tree.value);
2233     }
2234 
2235     public void visitLetExpr(LetExpr tree) {
2236         int limit = code.nextreg;
2237         genStats(tree.defs, env);
2238         result = genExpr(tree.expr, tree.expr.type).load();
2239         code.endScopes(limit);
2240     }
2241 
2242     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2243         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2244         if (prunedInfo != null) {
2245             for (JCTree prunedTree: prunedInfo) {
2246                 prunedTree.accept(classReferenceVisitor);
2247             }
2248         }
2249     }
2250 
2251 /* ************************************************************************
2252  * main method
2253  *************************************************************************/
2254 
2255     /** Generate code for a class definition.
2256      *  @param env   The attribution environment that belongs to the
2257      *               outermost class containing this class definition.
2258      *               We need this for resolving some additional symbols.
2259      *  @param cdef  The tree representing the class definition.
2260      *  @return      True if code is generated with no errors.
2261      */
2262     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2263         try {
2264             attrEnv = env;
2265             ClassSymbol c = cdef.sym;
2266             this.toplevel = env.toplevel;
2267             this.endPosTable = toplevel.endPositions;
2268             c.pool = pool;
2269             pool.reset();
2270             /* method normalizeDefs() can add references to external classes into the constant pool
2271              */
2272             cdef.defs = normalizeDefs(cdef.defs, c);
2273             generateReferencesToPrunedTree(c, pool);
2274             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2275             localEnv.toplevel = env.toplevel;
2276             localEnv.enclClass = cdef;
2277 
2278             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2279                 genDef(l.head, localEnv);
2280             }
2281             if (pool.numEntries() > Pool.MAX_ENTRIES) {
2282                 log.error(cdef.pos(), "limit.pool");
2283                 nerrs++;
2284             }
2285             if (nerrs != 0) {
2286                 // if errors, discard code
2287                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2288                     if (l.head.hasTag(METHODDEF))
2289                         ((JCMethodDecl) l.head).sym.code = null;
2290                 }
2291             }
2292             cdef.defs = List.nil(); // discard trees
2293             return nerrs == 0;
2294         } finally {
2295             // note: this method does NOT support recursion.
2296             attrEnv = null;
2297             this.env = null;
2298             toplevel = null;
2299             endPosTable = null;
2300             nerrs = 0;
2301         }
2302     }
2303 
2304 /* ************************************************************************
2305  * Auxiliary classes
2306  *************************************************************************/
2307 
2308     /** An abstract class for finalizer generation.
2309      */
2310     abstract class GenFinalizer {
2311         /** Generate code to clean up when unwinding. */
2312         abstract void gen();
2313 
2314         /** Generate code to clean up at last. */
2315         abstract void genLast();
2316 
2317         /** Does this finalizer have some nontrivial cleanup to perform? */
2318         boolean hasFinalizer() { return true; }
2319     }
2320 
2321     /** code generation contexts,
2322      *  to be used as type parameter for environments.
2323      */
2324     static class GenContext {
2325 
2326         /** A chain for all unresolved jumps that exit the current environment.
2327          */
2328         Chain exit = null;
2329 
2330         /** A chain for all unresolved jumps that continue in the
2331          *  current environment.
2332          */
2333         Chain cont = null;
2334 
2335         /** A closure that generates the finalizer of the current environment.
2336          *  Only set for Synchronized and Try contexts.
2337          */
2338         GenFinalizer finalize = null;
2339 
2340         /** Is this a switch statement?  If so, allocate registers
2341          * even when the variable declaration is unreachable.
2342          */
2343         boolean isSwitch = false;
2344 
2345         /** A list buffer containing all gaps in the finalizer range,
2346          *  where a catch all exception should not apply.
2347          */
2348         ListBuffer<Integer> gaps = null;
2349 
2350         /** Add given chain to exit chain.
2351          */
2352         void addExit(Chain c)  {
2353             exit = Code.mergeChains(c, exit);
2354         }
2355 
2356         /** Add given chain to cont chain.
2357          */
2358         void addCont(Chain c) {
2359             cont = Code.mergeChains(c, cont);
2360         }
2361     }
2362 
2363 }