1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument VALUE_OBJ_CLASS_SPEC {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch,      r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 // TODO : x86 uses rbp to save SP in method handle code
 143 // we may need to do the same with fp
 144 // JSR 292 fixed register usages:
 145 //REGISTER_DECLARATION(Register, r_mh_SP_save, r29);
 146 
 147 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 148 
 149 namespace asm_util {
 150   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 151 };
 152 
 153 using namespace asm_util;
 154 
 155 
 156 class Assembler;
 157 
 158 class Instruction_aarch64 {
 159   unsigned insn;
 160 #ifdef ASSERT
 161   unsigned bits;
 162 #endif
 163   Assembler *assem;
 164 
 165 public:
 166 
 167   Instruction_aarch64(class Assembler *as) {
 168 #ifdef ASSERT
 169     bits = 0;
 170 #endif
 171     insn = 0;
 172     assem = as;
 173   }
 174 
 175   inline ~Instruction_aarch64();
 176 
 177   unsigned &get_insn() { return insn; }
 178 #ifdef ASSERT
 179   unsigned &get_bits() { return bits; }
 180 #endif
 181 
 182   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 183     union {
 184       unsigned u;
 185       int n;
 186     };
 187 
 188     u = val << (31 - hi);
 189     n = n >> (31 - hi + lo);
 190     return n;
 191   }
 192 
 193   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 194     int nbits = msb - lsb + 1;
 195     assert_cond(msb >= lsb);
 196     uint32_t mask = (1U << nbits) - 1;
 197     uint32_t result = val >> lsb;
 198     result &= mask;
 199     return result;
 200   }
 201 
 202   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 203     uint32_t uval = extract(val, msb, lsb);
 204     return extend(uval, msb - lsb);
 205   }
 206 
 207   static void patch(address a, int msb, int lsb, unsigned long val) {
 208     int nbits = msb - lsb + 1;
 209     guarantee(val < (1U << nbits), "Field too big for insn");
 210     assert_cond(msb >= lsb);
 211     unsigned mask = (1U << nbits) - 1;
 212     val <<= lsb;
 213     mask <<= lsb;
 214     unsigned target = *(unsigned *)a;
 215     target &= ~mask;
 216     target |= val;
 217     *(unsigned *)a = target;
 218   }
 219 
 220   static void spatch(address a, int msb, int lsb, long val) {
 221     int nbits = msb - lsb + 1;
 222     long chk = val >> (nbits - 1);
 223     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 224     unsigned uval = val;
 225     unsigned mask = (1U << nbits) - 1;
 226     uval &= mask;
 227     uval <<= lsb;
 228     mask <<= lsb;
 229     unsigned target = *(unsigned *)a;
 230     target &= ~mask;
 231     target |= uval;
 232     *(unsigned *)a = target;
 233   }
 234 
 235   void f(unsigned val, int msb, int lsb) {
 236     int nbits = msb - lsb + 1;
 237     guarantee(val < (1U << nbits), "Field too big for insn");
 238     assert_cond(msb >= lsb);
 239     unsigned mask = (1U << nbits) - 1;
 240     val <<= lsb;
 241     mask <<= lsb;
 242     insn |= val;
 243     assert_cond((bits & mask) == 0);
 244 #ifdef ASSERT
 245     bits |= mask;
 246 #endif
 247   }
 248 
 249   void f(unsigned val, int bit) {
 250     f(val, bit, bit);
 251   }
 252 
 253   void sf(long val, int msb, int lsb) {
 254     int nbits = msb - lsb + 1;
 255     long chk = val >> (nbits - 1);
 256     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 257     unsigned uval = val;
 258     unsigned mask = (1U << nbits) - 1;
 259     uval &= mask;
 260     f(uval, lsb + nbits - 1, lsb);
 261   }
 262 
 263   void rf(Register r, int lsb) {
 264     f(r->encoding_nocheck(), lsb + 4, lsb);
 265   }
 266 
 267   // reg|ZR
 268   void zrf(Register r, int lsb) {
 269     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 270   }
 271 
 272   // reg|SP
 273   void srf(Register r, int lsb) {
 274     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 275   }
 276 
 277   void rf(FloatRegister r, int lsb) {
 278     f(r->encoding_nocheck(), lsb + 4, lsb);
 279   }
 280 
 281   unsigned get(int msb = 31, int lsb = 0) {
 282     int nbits = msb - lsb + 1;
 283     unsigned mask = ((1U << nbits) - 1) << lsb;
 284     assert_cond(bits & mask == mask);
 285     return (insn & mask) >> lsb;
 286   }
 287 
 288   void fixed(unsigned value, unsigned mask) {
 289     assert_cond ((mask & bits) == 0);
 290 #ifdef ASSERT
 291     bits |= mask;
 292 #endif
 293     insn |= value;
 294   }
 295 };
 296 
 297 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 298 
 299 class PrePost {
 300   int _offset;
 301   Register _r;
 302 public:
 303   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 304   int offset() { return _offset; }
 305   Register reg() { return _r; }
 306 };
 307 
 308 class Pre : public PrePost {
 309 public:
 310   Pre(Register reg, int o) : PrePost(reg, o) { }
 311 };
 312 class Post : public PrePost {
 313 public:
 314   Post(Register reg, int o) : PrePost(reg, o) { }
 315 };
 316 
 317 namespace ext
 318 {
 319   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 320 };
 321 
 322 // abs methods which cannot overflow and so are well-defined across
 323 // the entire domain of integer types.
 324 static inline unsigned int uabs(unsigned int n) {
 325   union {
 326     unsigned int result;
 327     int value;
 328   };
 329   result = n;
 330   if (value < 0) result = -result;
 331   return result;
 332 }
 333 static inline unsigned long uabs(unsigned long n) {
 334   union {
 335     unsigned long result;
 336     long value;
 337   };
 338   result = n;
 339   if (value < 0) result = -result;
 340   return result;
 341 }
 342 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 343 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 344 
 345 // Addressing modes
 346 class Address VALUE_OBJ_CLASS_SPEC {
 347  public:
 348 
 349   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 350               base_plus_offset_reg, literal };
 351 
 352   // Shift and extend for base reg + reg offset addressing
 353   class extend {
 354     int _option, _shift;
 355     ext::operation _op;
 356   public:
 357     extend() { }
 358     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 359     int option() const{ return _option; }
 360     int shift() const { return _shift; }
 361     ext::operation op() const { return _op; }
 362   };
 363   class uxtw : public extend {
 364   public:
 365     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 366   };
 367   class lsl : public extend {
 368   public:
 369     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 370   };
 371   class sxtw : public extend {
 372   public:
 373     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 374   };
 375   class sxtx : public extend {
 376   public:
 377     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 378   };
 379 
 380  private:
 381   Register _base;
 382   Register _index;
 383   long _offset;
 384   enum mode _mode;
 385   extend _ext;
 386 
 387   RelocationHolder _rspec;
 388 
 389   // Typically we use AddressLiterals we want to use their rval
 390   // However in some situations we want the lval (effect address) of
 391   // the item.  We provide a special factory for making those lvals.
 392   bool _is_lval;
 393 
 394   // If the target is far we'll need to load the ea of this to a
 395   // register to reach it. Otherwise if near we can do PC-relative
 396   // addressing.
 397   address          _target;
 398 
 399  public:
 400   Address()
 401     : _mode(no_mode) { }
 402   Address(Register r)
 403     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 404   Address(Register r, int o)
 405     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 406   Address(Register r, long o)
 407     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 408   Address(Register r, unsigned long o)
 409     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 410 #ifdef ASSERT
 411   Address(Register r, ByteSize disp)
 412     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 413       _index(noreg), _target(0) { }
 414 #endif
 415   Address(Register r, Register r1, extend ext = lsl())
 416     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 417     _ext(ext), _offset(0), _target(0) { }
 418   Address(Pre p)
 419     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 420   Address(Post p)
 421     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 422   Address(address target, RelocationHolder const& rspec)
 423     : _mode(literal),
 424       _rspec(rspec),
 425       _is_lval(false),
 426       _target(target)  { }
 427   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 428   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 429     : _base (base),
 430       _ext(ext), _offset(0), _target(0) {
 431     if (index.is_register()) {
 432       _mode = base_plus_offset_reg;
 433       _index = index.as_register();
 434     } else {
 435       guarantee(ext.option() == ext::uxtx, "should be");
 436       assert(index.is_constant(), "should be");
 437       _mode = base_plus_offset;
 438       _offset = index.as_constant() << ext.shift();
 439     }
 440   }
 441 
 442   Register base() const {
 443     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 444                | _mode == post),
 445               "wrong mode");
 446     return _base;
 447   }
 448   long offset() const {
 449     return _offset;
 450   }
 451   Register index() const {
 452     return _index;
 453   }
 454   mode getMode() const {
 455     return _mode;
 456   }
 457   bool uses(Register reg) const { return _base == reg || _index == reg; }
 458   address target() const { return _target; }
 459   const RelocationHolder& rspec() const { return _rspec; }
 460 
 461   void encode(Instruction_aarch64 *i) const {
 462     i->f(0b111, 29, 27);
 463     i->srf(_base, 5);
 464 
 465     switch(_mode) {
 466     case base_plus_offset:
 467       {
 468         unsigned size = i->get(31, 30);
 469         if (i->get(26, 26) && i->get(23, 23)) {
 470           // SIMD Q Type - Size = 128 bits
 471           assert(size == 0, "bad size");
 472           size = 0b100;
 473         }
 474         unsigned mask = (1 << size) - 1;
 475         if (_offset < 0 || _offset & mask)
 476           {
 477             i->f(0b00, 25, 24);
 478             i->f(0, 21), i->f(0b00, 11, 10);
 479             i->sf(_offset, 20, 12);
 480           } else {
 481             i->f(0b01, 25, 24);
 482             i->f(_offset >> size, 21, 10);
 483           }
 484       }
 485       break;
 486 
 487     case base_plus_offset_reg:
 488       {
 489         i->f(0b00, 25, 24);
 490         i->f(1, 21);
 491         i->rf(_index, 16);
 492         i->f(_ext.option(), 15, 13);
 493         unsigned size = i->get(31, 30);
 494         if (i->get(26, 26) && i->get(23, 23)) {
 495           // SIMD Q Type - Size = 128 bits
 496           assert(size == 0, "bad size");
 497           size = 0b100;
 498         }
 499         if (size == 0) // It's a byte
 500           i->f(_ext.shift() >= 0, 12);
 501         else {
 502           if (_ext.shift() > 0)
 503             assert(_ext.shift() == (int)size, "bad shift");
 504           i->f(_ext.shift() > 0, 12);
 505         }
 506         i->f(0b10, 11, 10);
 507       }
 508       break;
 509 
 510     case pre:
 511       i->f(0b00, 25, 24);
 512       i->f(0, 21), i->f(0b11, 11, 10);
 513       i->sf(_offset, 20, 12);
 514       break;
 515 
 516     case post:
 517       i->f(0b00, 25, 24);
 518       i->f(0, 21), i->f(0b01, 11, 10);
 519       i->sf(_offset, 20, 12);
 520       break;
 521 
 522     default:
 523       ShouldNotReachHere();
 524     }
 525   }
 526 
 527   void encode_pair(Instruction_aarch64 *i) const {
 528     switch(_mode) {
 529     case base_plus_offset:
 530       i->f(0b010, 25, 23);
 531       break;
 532     case pre:
 533       i->f(0b011, 25, 23);
 534       break;
 535     case post:
 536       i->f(0b001, 25, 23);
 537       break;
 538     default:
 539       ShouldNotReachHere();
 540     }
 541 
 542     unsigned size; // Operand shift in 32-bit words
 543 
 544     if (i->get(26, 26)) { // float
 545       switch(i->get(31, 30)) {
 546       case 0b10:
 547         size = 2; break;
 548       case 0b01:
 549         size = 1; break;
 550       case 0b00:
 551         size = 0; break;
 552       default:
 553         ShouldNotReachHere();
 554       }
 555     } else {
 556       size = i->get(31, 31);
 557     }
 558 
 559     size = 4 << size;
 560     guarantee(_offset % size == 0, "bad offset");
 561     i->sf(_offset / size, 21, 15);
 562     i->srf(_base, 5);
 563   }
 564 
 565   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 566     // Only base + offset is allowed
 567     i->f(0b000, 25, 23);
 568     unsigned size = i->get(31, 31);
 569     size = 4 << size;
 570     guarantee(_offset % size == 0, "bad offset");
 571     i->sf(_offset / size, 21, 15);
 572     i->srf(_base, 5);
 573     guarantee(_mode == Address::base_plus_offset,
 574               "Bad addressing mode for non-temporal op");
 575   }
 576 
 577   void lea(MacroAssembler *, Register) const;
 578 
 579   static bool offset_ok_for_immed(long offset, int shift = 0) {
 580     unsigned mask = (1 << shift) - 1;
 581     if (offset < 0 || offset & mask) {
 582       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 583     } else {
 584       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 585     }
 586   }
 587 };
 588 
 589 // Convience classes
 590 class RuntimeAddress: public Address {
 591 
 592   public:
 593 
 594   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 595 
 596 };
 597 
 598 class OopAddress: public Address {
 599 
 600   public:
 601 
 602   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 603 
 604 };
 605 
 606 class ExternalAddress: public Address {
 607  private:
 608   static relocInfo::relocType reloc_for_target(address target) {
 609     // Sometimes ExternalAddress is used for values which aren't
 610     // exactly addresses, like the card table base.
 611     // external_word_type can't be used for values in the first page
 612     // so just skip the reloc in that case.
 613     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 614   }
 615 
 616  public:
 617 
 618   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 619 
 620 };
 621 
 622 class InternalAddress: public Address {
 623 
 624   public:
 625 
 626   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 627 };
 628 
 629 const int FPUStateSizeInWords = 32 * 2;
 630 typedef enum {
 631   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 632   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 633   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 634 } prfop;
 635 
 636 class Assembler : public AbstractAssembler {
 637 
 638 #ifndef PRODUCT
 639   static const unsigned long asm_bp;
 640 
 641   void emit_long(jint x) {
 642     if ((unsigned long)pc() == asm_bp)
 643       asm volatile ("nop");
 644     AbstractAssembler::emit_int32(x);
 645   }
 646 #else
 647   void emit_long(jint x) {
 648     AbstractAssembler::emit_int32(x);
 649   }
 650 #endif
 651 
 652 public:
 653 
 654   enum { instruction_size = 4 };
 655 
 656   Address adjust(Register base, int offset, bool preIncrement) {
 657     if (preIncrement)
 658       return Address(Pre(base, offset));
 659     else
 660       return Address(Post(base, offset));
 661   }
 662 
 663   Address pre(Register base, int offset) {
 664     return adjust(base, offset, true);
 665   }
 666 
 667   Address post (Register base, int offset) {
 668     return adjust(base, offset, false);
 669   }
 670 
 671   Instruction_aarch64* current;
 672 
 673   void set_current(Instruction_aarch64* i) { current = i; }
 674 
 675   void f(unsigned val, int msb, int lsb) {
 676     current->f(val, msb, lsb);
 677   }
 678   void f(unsigned val, int msb) {
 679     current->f(val, msb, msb);
 680   }
 681   void sf(long val, int msb, int lsb) {
 682     current->sf(val, msb, lsb);
 683   }
 684   void rf(Register reg, int lsb) {
 685     current->rf(reg, lsb);
 686   }
 687   void srf(Register reg, int lsb) {
 688     current->srf(reg, lsb);
 689   }
 690   void zrf(Register reg, int lsb) {
 691     current->zrf(reg, lsb);
 692   }
 693   void rf(FloatRegister reg, int lsb) {
 694     current->rf(reg, lsb);
 695   }
 696   void fixed(unsigned value, unsigned mask) {
 697     current->fixed(value, mask);
 698   }
 699 
 700   void emit() {
 701     emit_long(current->get_insn());
 702     assert_cond(current->get_bits() == 0xffffffff);
 703     current = NULL;
 704   }
 705 
 706   typedef void (Assembler::* uncond_branch_insn)(address dest);
 707   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 708   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 709   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 710 
 711   void wrap_label(Label &L, uncond_branch_insn insn);
 712   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 713   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 714   void wrap_label(Label &L, prfop, prefetch_insn insn);
 715 
 716   // PC-rel. addressing
 717 
 718   void adr(Register Rd, address dest);
 719   void _adrp(Register Rd, address dest);
 720 
 721   void adr(Register Rd, const Address &dest);
 722   void _adrp(Register Rd, const Address &dest);
 723 
 724   void adr(Register Rd, Label &L) {
 725     wrap_label(Rd, L, &Assembler::Assembler::adr);
 726   }
 727   void _adrp(Register Rd, Label &L) {
 728     wrap_label(Rd, L, &Assembler::_adrp);
 729   }
 730 
 731   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 732 
 733 #undef INSN
 734 
 735   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 736                          int negated_op);
 737 
 738   // Add/subtract (immediate)
 739 #define INSN(NAME, decode, negated)                                     \
 740   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 741     starti;                                                             \
 742     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 743     zrf(Rd, 0), srf(Rn, 5);                                             \
 744   }                                                                     \
 745                                                                         \
 746   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 747     starti;                                                             \
 748     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 749   }
 750 
 751   INSN(addsw, 0b001, 0b011);
 752   INSN(subsw, 0b011, 0b001);
 753   INSN(adds,  0b101, 0b111);
 754   INSN(subs,  0b111, 0b101);
 755 
 756 #undef INSN
 757 
 758 #define INSN(NAME, decode, negated)                     \
 759   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 760     starti;                                             \
 761     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 762   }
 763 
 764   INSN(addw, 0b000, 0b010);
 765   INSN(subw, 0b010, 0b000);
 766   INSN(add,  0b100, 0b110);
 767   INSN(sub,  0b110, 0b100);
 768 
 769 #undef INSN
 770 
 771  // Logical (immediate)
 772 #define INSN(NAME, decode, is32)                                \
 773   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 774     starti;                                                     \
 775     uint32_t val = encode_logical_immediate(is32, imm);         \
 776     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 777     srf(Rd, 0), zrf(Rn, 5);                                     \
 778   }
 779 
 780   INSN(andw, 0b000, true);
 781   INSN(orrw, 0b001, true);
 782   INSN(eorw, 0b010, true);
 783   INSN(andr,  0b100, false);
 784   INSN(orr,  0b101, false);
 785   INSN(eor,  0b110, false);
 786 
 787 #undef INSN
 788 
 789 #define INSN(NAME, decode, is32)                                \
 790   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 791     starti;                                                     \
 792     uint32_t val = encode_logical_immediate(is32, imm);         \
 793     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 794     zrf(Rd, 0), zrf(Rn, 5);                                     \
 795   }
 796 
 797   INSN(ands, 0b111, false);
 798   INSN(andsw, 0b011, true);
 799 
 800 #undef INSN
 801 
 802   // Move wide (immediate)
 803 #define INSN(NAME, opcode)                                              \
 804   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 805     assert_cond((shift/16)*16 == shift);                                \
 806     starti;                                                             \
 807     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 808       f(imm, 20, 5);                                                    \
 809     rf(Rd, 0);                                                          \
 810   }
 811 
 812   INSN(movnw, 0b000);
 813   INSN(movzw, 0b010);
 814   INSN(movkw, 0b011);
 815   INSN(movn, 0b100);
 816   INSN(movz, 0b110);
 817   INSN(movk, 0b111);
 818 
 819 #undef INSN
 820 
 821   // Bitfield
 822 #define INSN(NAME, opcode)                                              \
 823   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 824     starti;                                                             \
 825     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 826     rf(Rn, 5), rf(Rd, 0);                                               \
 827   }
 828 
 829   INSN(sbfmw, 0b0001001100);
 830   INSN(bfmw,  0b0011001100);
 831   INSN(ubfmw, 0b0101001100);
 832   INSN(sbfm,  0b1001001101);
 833   INSN(bfm,   0b1011001101);
 834   INSN(ubfm,  0b1101001101);
 835 
 836 #undef INSN
 837 
 838   // Extract
 839 #define INSN(NAME, opcode)                                              \
 840   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 841     starti;                                                             \
 842     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 843     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 844   }
 845 
 846   INSN(extrw, 0b00010011100);
 847   INSN(extr,  0b10010011110);
 848 
 849 #undef INSN
 850 
 851   // The maximum range of a branch is fixed for the AArch64
 852   // architecture.  In debug mode we shrink it in order to test
 853   // trampolines, but not so small that branches in the interpreter
 854   // are out of range.
 855   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 856 
 857   static bool reachable_from_branch_at(address branch, address target) {
 858     return uabs(target - branch) < branch_range;
 859   }
 860 
 861   // Unconditional branch (immediate)
 862 #define INSN(NAME, opcode)                                              \
 863   void NAME(address dest) {                                             \
 864     starti;                                                             \
 865     long offset = (dest - pc()) >> 2;                                   \
 866     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 867     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 868   }                                                                     \
 869   void NAME(Label &L) {                                                 \
 870     wrap_label(L, &Assembler::NAME);                                    \
 871   }                                                                     \
 872   void NAME(const Address &dest);
 873 
 874   INSN(b, 0);
 875   INSN(bl, 1);
 876 
 877 #undef INSN
 878 
 879   // Compare & branch (immediate)
 880 #define INSN(NAME, opcode)                              \
 881   void NAME(Register Rt, address dest) {                \
 882     long offset = (dest - pc()) >> 2;                   \
 883     starti;                                             \
 884     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 885   }                                                     \
 886   void NAME(Register Rt, Label &L) {                    \
 887     wrap_label(Rt, L, &Assembler::NAME);                \
 888   }
 889 
 890   INSN(cbzw,  0b00110100);
 891   INSN(cbnzw, 0b00110101);
 892   INSN(cbz,   0b10110100);
 893   INSN(cbnz,  0b10110101);
 894 
 895 #undef INSN
 896 
 897   // Test & branch (immediate)
 898 #define INSN(NAME, opcode)                                              \
 899   void NAME(Register Rt, int bitpos, address dest) {                    \
 900     long offset = (dest - pc()) >> 2;                                   \
 901     int b5 = bitpos >> 5;                                               \
 902     bitpos &= 0x1f;                                                     \
 903     starti;                                                             \
 904     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 905     rf(Rt, 0);                                                          \
 906   }                                                                     \
 907   void NAME(Register Rt, int bitpos, Label &L) {                        \
 908     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 909   }
 910 
 911   INSN(tbz,  0b0110110);
 912   INSN(tbnz, 0b0110111);
 913 
 914 #undef INSN
 915 
 916   // Conditional branch (immediate)
 917   enum Condition
 918     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 919 
 920   void br(Condition  cond, address dest) {
 921     long offset = (dest - pc()) >> 2;
 922     starti;
 923     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 924   }
 925 
 926 #define INSN(NAME, cond)                        \
 927   void NAME(address dest) {                     \
 928     br(cond, dest);                             \
 929   }
 930 
 931   INSN(beq, EQ);
 932   INSN(bne, NE);
 933   INSN(bhs, HS);
 934   INSN(bcs, CS);
 935   INSN(blo, LO);
 936   INSN(bcc, CC);
 937   INSN(bmi, MI);
 938   INSN(bpl, PL);
 939   INSN(bvs, VS);
 940   INSN(bvc, VC);
 941   INSN(bhi, HI);
 942   INSN(bls, LS);
 943   INSN(bge, GE);
 944   INSN(blt, LT);
 945   INSN(bgt, GT);
 946   INSN(ble, LE);
 947   INSN(bal, AL);
 948   INSN(bnv, NV);
 949 
 950   void br(Condition cc, Label &L);
 951 
 952 #undef INSN
 953 
 954   // Exception generation
 955   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 956     starti;
 957     f(0b11010100, 31, 24);
 958     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 959   }
 960 
 961 #define INSN(NAME, opc, op2, LL)                \
 962   void NAME(unsigned imm) {                     \
 963     generate_exception(opc, op2, LL, imm);      \
 964   }
 965 
 966   INSN(svc, 0b000, 0, 0b01);
 967   INSN(hvc, 0b000, 0, 0b10);
 968   INSN(smc, 0b000, 0, 0b11);
 969   INSN(brk, 0b001, 0, 0b00);
 970   INSN(hlt, 0b010, 0, 0b00);
 971   INSN(dpcs1, 0b101, 0, 0b01);
 972   INSN(dpcs2, 0b101, 0, 0b10);
 973   INSN(dpcs3, 0b101, 0, 0b11);
 974 
 975 #undef INSN
 976 
 977   // System
 978   void system(int op0, int op1, int CRn, int CRm, int op2,
 979               Register rt = (Register)0b11111)
 980   {
 981     starti;
 982     f(0b11010101000, 31, 21);
 983     f(op0, 20, 19);
 984     f(op1, 18, 16);
 985     f(CRn, 15, 12);
 986     f(CRm, 11, 8);
 987     f(op2, 7, 5);
 988     rf(rt, 0);
 989   }
 990 
 991   void hint(int imm) {
 992     system(0b00, 0b011, 0b0010, imm, 0b000);
 993   }
 994 
 995   void nop(int count = 1) {
 996     for (int i = 0; i < count; i++)
 997       hint(0);
 998   }
 999   // we only provide mrs and msr for the special purpose system
1000   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1001   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1002 
1003   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1004     starti;
1005     f(0b1101010100011, 31, 19);
1006     f(op1, 18, 16);
1007     f(CRn, 15, 12);
1008     f(CRm, 11, 8);
1009     f(op2, 7, 5);
1010     // writing zr is ok
1011     zrf(rt, 0);
1012   }
1013 
1014   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1015     starti;
1016     f(0b1101010100111, 31, 19);
1017     f(op1, 18, 16);
1018     f(CRn, 15, 12);
1019     f(CRm, 11, 8);
1020     f(op2, 7, 5);
1021     // reading to zr is a mistake
1022     rf(rt, 0);
1023   }
1024 
1025   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1026                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1027 
1028   void dsb(barrier imm) {
1029     system(0b00, 0b011, 0b00011, imm, 0b100);
1030   }
1031 
1032   void dmb(barrier imm) {
1033     system(0b00, 0b011, 0b00011, imm, 0b101);
1034   }
1035 
1036   void isb() {
1037     system(0b00, 0b011, 0b00011, SY, 0b110);
1038   }
1039 
1040   void dc(Register Rt) {
1041     system(0b01, 0b011, 0b0111, 0b1011, 0b001, Rt);
1042   }
1043 
1044   void ic(Register Rt) {
1045     system(0b01, 0b011, 0b0111, 0b0101, 0b001, Rt);
1046   }
1047 
1048   // A more convenient access to dmb for our purposes
1049   enum Membar_mask_bits {
1050     // We can use ISH for a barrier because the ARM ARM says "This
1051     // architecture assumes that all Processing Elements that use the
1052     // same operating system or hypervisor are in the same Inner
1053     // Shareable shareability domain."
1054     StoreStore = ISHST,
1055     LoadStore  = ISHLD,
1056     LoadLoad   = ISHLD,
1057     StoreLoad  = ISH,
1058     AnyAny     = ISH
1059   };
1060 
1061   void membar(Membar_mask_bits order_constraint) {
1062     dmb(Assembler::barrier(order_constraint));
1063   }
1064 
1065   // Unconditional branch (register)
1066   void branch_reg(Register R, int opc) {
1067     starti;
1068     f(0b1101011, 31, 25);
1069     f(opc, 24, 21);
1070     f(0b11111000000, 20, 10);
1071     rf(R, 5);
1072     f(0b00000, 4, 0);
1073   }
1074 
1075 #define INSN(NAME, opc)                         \
1076   void NAME(Register R) {                       \
1077     branch_reg(R, opc);                         \
1078   }
1079 
1080   INSN(br, 0b0000);
1081   INSN(blr, 0b0001);
1082   INSN(ret, 0b0010);
1083 
1084   void ret(void *p); // This forces a compile-time error for ret(0)
1085 
1086 #undef INSN
1087 
1088 #define INSN(NAME, opc)                         \
1089   void NAME() {                 \
1090     branch_reg((Register)0b11111, opc);         \
1091   }
1092 
1093   INSN(eret, 0b0100);
1094   INSN(drps, 0b0101);
1095 
1096 #undef INSN
1097 
1098   // Load/store exclusive
1099   enum operand_size { byte, halfword, word, xword };
1100 
1101   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1102     Register Rn, enum operand_size sz, int op, int o0) {
1103     starti;
1104     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1105     rf(Rs, 16), f(o0, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1106   }
1107 
1108 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1109   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1110     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1111   }
1112 
1113 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1114   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1115     load_store_exclusive(Rs, Rt, (Register)0b11111, Rn, sz, op, o0);    \
1116   }
1117 
1118 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1119   void NAME(Register Rt, Register Rn) {                                 \
1120     load_store_exclusive((Register)0b11111, Rt, (Register)0b11111,      \
1121                          Rn, sz, op, o0);                               \
1122   }
1123 
1124 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1125   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1126     load_store_exclusive((Register)0b11111, Rt1, Rt2, Rn, sz, op, o0);  \
1127   }
1128 
1129   // bytes
1130   INSN3(stxrb, byte, 0b000, 0);
1131   INSN3(stlxrb, byte, 0b000, 1);
1132   INSN2(ldxrb, byte, 0b010, 0);
1133   INSN2(ldaxrb, byte, 0b010, 1);
1134   INSN2(stlrb, byte, 0b100, 1);
1135   INSN2(ldarb, byte, 0b110, 1);
1136 
1137   // halfwords
1138   INSN3(stxrh, halfword, 0b000, 0);
1139   INSN3(stlxrh, halfword, 0b000, 1);
1140   INSN2(ldxrh, halfword, 0b010, 0);
1141   INSN2(ldaxrh, halfword, 0b010, 1);
1142   INSN2(stlrh, halfword, 0b100, 1);
1143   INSN2(ldarh, halfword, 0b110, 1);
1144 
1145   // words
1146   INSN3(stxrw, word, 0b000, 0);
1147   INSN3(stlxrw, word, 0b000, 1);
1148   INSN4(stxpw, word, 0b001, 0);
1149   INSN4(stlxpw, word, 0b001, 1);
1150   INSN2(ldxrw, word, 0b010, 0);
1151   INSN2(ldaxrw, word, 0b010, 1);
1152   INSN_FOO(ldxpw, word, 0b011, 0);
1153   INSN_FOO(ldaxpw, word, 0b011, 1);
1154   INSN2(stlrw, word, 0b100, 1);
1155   INSN2(ldarw, word, 0b110, 1);
1156 
1157   // xwords
1158   INSN3(stxr, xword, 0b000, 0);
1159   INSN3(stlxr, xword, 0b000, 1);
1160   INSN4(stxp, xword, 0b001, 0);
1161   INSN4(stlxp, xword, 0b001, 1);
1162   INSN2(ldxr, xword, 0b010, 0);
1163   INSN2(ldaxr, xword, 0b010, 1);
1164   INSN_FOO(ldxp, xword, 0b011, 0);
1165   INSN_FOO(ldaxp, xword, 0b011, 1);
1166   INSN2(stlr, xword, 0b100, 1);
1167   INSN2(ldar, xword, 0b110, 1);
1168 
1169 #undef INSN2
1170 #undef INSN3
1171 #undef INSN4
1172 #undef INSN_FOO
1173 
1174   // Load register (literal)
1175 #define INSN(NAME, opc, V)                                              \
1176   void NAME(Register Rt, address dest) {                                \
1177     long offset = (dest - pc()) >> 2;                                   \
1178     starti;                                                             \
1179     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1180       sf(offset, 23, 5);                                                \
1181     rf(Rt, 0);                                                          \
1182   }                                                                     \
1183   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1184     InstructionMark im(this);                                           \
1185     guarantee(rtype == relocInfo::internal_word_type,                   \
1186               "only internal_word_type relocs make sense here");        \
1187     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1188     NAME(Rt, dest);                                                     \
1189   }                                                                     \
1190   void NAME(Register Rt, Label &L) {                                    \
1191     wrap_label(Rt, L, &Assembler::NAME);                                \
1192   }
1193 
1194   INSN(ldrw, 0b00, 0);
1195   INSN(ldr, 0b01, 0);
1196   INSN(ldrsw, 0b10, 0);
1197 
1198 #undef INSN
1199 
1200 #define INSN(NAME, opc, V)                                              \
1201   void NAME(FloatRegister Rt, address dest) {                           \
1202     long offset = (dest - pc()) >> 2;                                   \
1203     starti;                                                             \
1204     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1205       sf(offset, 23, 5);                                                \
1206     rf((Register)Rt, 0);                                                \
1207   }
1208 
1209   INSN(ldrs, 0b00, 1);
1210   INSN(ldrd, 0b01, 1);
1211   INSN(ldrq, 0x10, 1);
1212 
1213 #undef INSN
1214 
1215 #define INSN(NAME, opc, V)                                              \
1216   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1217     long offset = (dest - pc()) >> 2;                                   \
1218     starti;                                                             \
1219     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1220       sf(offset, 23, 5);                                                \
1221     f(op, 4, 0);                                                        \
1222   }                                                                     \
1223   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1224     wrap_label(L, op, &Assembler::NAME);                                \
1225   }
1226 
1227   INSN(prfm, 0b11, 0);
1228 
1229 #undef INSN
1230 
1231   // Load/store
1232   void ld_st1(int opc, int p1, int V, int L,
1233               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1234     starti;
1235     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1236     zrf(Rt2, 10), zrf(Rt1, 0);
1237     if (no_allocate) {
1238       adr.encode_nontemporal_pair(current);
1239     } else {
1240       adr.encode_pair(current);
1241     }
1242   }
1243 
1244   // Load/store register pair (offset)
1245 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1246   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1247     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1248    }
1249 
1250   INSN(stpw, 0b00, 0b101, 0, 0, false);
1251   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1252   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1253   INSN(stp, 0b10, 0b101, 0, 0, false);
1254   INSN(ldp, 0b10, 0b101, 0, 1, false);
1255 
1256   // Load/store no-allocate pair (offset)
1257   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1258   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1259   INSN(stnp, 0b10, 0b101, 0, 0, true);
1260   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1261 
1262 #undef INSN
1263 
1264 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1265   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1266     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1267    }
1268 
1269   INSN(stps, 0b00, 0b101, 1, 0, false);
1270   INSN(ldps, 0b00, 0b101, 1, 1, false);
1271   INSN(stpd, 0b01, 0b101, 1, 0, false);
1272   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1273   INSN(stpq, 0b10, 0b101, 1, 0, false);
1274   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1275 
1276 #undef INSN
1277 
1278   // Load/store register (all modes)
1279   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1280     starti;
1281 
1282     f(V, 26); // general reg?
1283     zrf(Rt, 0);
1284 
1285     // Encoding for literal loads is done here (rather than pushed
1286     // down into Address::encode) because the encoding of this
1287     // instruction is too different from all of the other forms to
1288     // make it worth sharing.
1289     if (adr.getMode() == Address::literal) {
1290       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1291       assert(op == 0b01, "literal form can only be used with loads");
1292       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1293       long offset = (adr.target() - pc()) >> 2;
1294       sf(offset, 23, 5);
1295       code_section()->relocate(pc(), adr.rspec());
1296       return;
1297     }
1298 
1299     f(size, 31, 30);
1300     f(op, 23, 22); // str
1301     adr.encode(current);
1302   }
1303 
1304 #define INSN(NAME, size, op)                            \
1305   void NAME(Register Rt, const Address &adr) {          \
1306     ld_st2(Rt, adr, size, op);                          \
1307   }                                                     \
1308 
1309   INSN(str, 0b11, 0b00);
1310   INSN(strw, 0b10, 0b00);
1311   INSN(strb, 0b00, 0b00);
1312   INSN(strh, 0b01, 0b00);
1313 
1314   INSN(ldr, 0b11, 0b01);
1315   INSN(ldrw, 0b10, 0b01);
1316   INSN(ldrb, 0b00, 0b01);
1317   INSN(ldrh, 0b01, 0b01);
1318 
1319   INSN(ldrsb, 0b00, 0b10);
1320   INSN(ldrsbw, 0b00, 0b11);
1321   INSN(ldrsh, 0b01, 0b10);
1322   INSN(ldrshw, 0b01, 0b11);
1323   INSN(ldrsw, 0b10, 0b10);
1324 
1325 #undef INSN
1326 
1327 #define INSN(NAME, size, op)                                    \
1328   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1329     ld_st2((Register)pfop, adr, size, op);                      \
1330   }
1331 
1332   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1333                           // writeback modes, but the assembler
1334                           // doesn't enfore that.
1335 
1336 #undef INSN
1337 
1338 #define INSN(NAME, size, op)                            \
1339   void NAME(FloatRegister Rt, const Address &adr) {     \
1340     ld_st2((Register)Rt, adr, size, op, 1);             \
1341   }
1342 
1343   INSN(strd, 0b11, 0b00);
1344   INSN(strs, 0b10, 0b00);
1345   INSN(ldrd, 0b11, 0b01);
1346   INSN(ldrs, 0b10, 0b01);
1347   INSN(strq, 0b00, 0b10);
1348   INSN(ldrq, 0x00, 0b11);
1349 
1350 #undef INSN
1351 
1352   enum shift_kind { LSL, LSR, ASR, ROR };
1353 
1354   void op_shifted_reg(unsigned decode,
1355                       enum shift_kind kind, unsigned shift,
1356                       unsigned size, unsigned op) {
1357     f(size, 31);
1358     f(op, 30, 29);
1359     f(decode, 28, 24);
1360     f(shift, 15, 10);
1361     f(kind, 23, 22);
1362   }
1363 
1364   // Logical (shifted register)
1365 #define INSN(NAME, size, op, N)                                 \
1366   void NAME(Register Rd, Register Rn, Register Rm,              \
1367             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1368     starti;                                                     \
1369     f(N, 21);                                                   \
1370     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1371     op_shifted_reg(0b01010, kind, shift, size, op);             \
1372   }
1373 
1374   INSN(andr, 1, 0b00, 0);
1375   INSN(orr, 1, 0b01, 0);
1376   INSN(eor, 1, 0b10, 0);
1377   INSN(ands, 1, 0b11, 0);
1378   INSN(andw, 0, 0b00, 0);
1379   INSN(orrw, 0, 0b01, 0);
1380   INSN(eorw, 0, 0b10, 0);
1381   INSN(andsw, 0, 0b11, 0);
1382 
1383   INSN(bic, 1, 0b00, 1);
1384   INSN(orn, 1, 0b01, 1);
1385   INSN(eon, 1, 0b10, 1);
1386   INSN(bics, 1, 0b11, 1);
1387   INSN(bicw, 0, 0b00, 1);
1388   INSN(ornw, 0, 0b01, 1);
1389   INSN(eonw, 0, 0b10, 1);
1390   INSN(bicsw, 0, 0b11, 1);
1391 
1392 #undef INSN
1393 
1394   // Add/subtract (shifted register)
1395 #define INSN(NAME, size, op)                            \
1396   void NAME(Register Rd, Register Rn, Register Rm,      \
1397             enum shift_kind kind, unsigned shift = 0) { \
1398     starti;                                             \
1399     f(0, 21);                                           \
1400     assert_cond(kind != ROR);                           \
1401     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1402     op_shifted_reg(0b01011, kind, shift, size, op);     \
1403   }
1404 
1405   INSN(add, 1, 0b000);
1406   INSN(sub, 1, 0b10);
1407   INSN(addw, 0, 0b000);
1408   INSN(subw, 0, 0b10);
1409 
1410   INSN(adds, 1, 0b001);
1411   INSN(subs, 1, 0b11);
1412   INSN(addsw, 0, 0b001);
1413   INSN(subsw, 0, 0b11);
1414 
1415 #undef INSN
1416 
1417   // Add/subtract (extended register)
1418 #define INSN(NAME, op)                                                  \
1419   void NAME(Register Rd, Register Rn, Register Rm,                      \
1420            ext::operation option, int amount = 0) {                     \
1421     starti;                                                             \
1422     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1423     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1424   }
1425 
1426   void add_sub_extended_reg(unsigned op, unsigned decode,
1427     Register Rd, Register Rn, Register Rm,
1428     unsigned opt, ext::operation option, unsigned imm) {
1429     guarantee(imm <= 4, "shift amount must be < 4");
1430     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1431     f(option, 15, 13), f(imm, 12, 10);
1432   }
1433 
1434   INSN(addw, 0b000);
1435   INSN(subw, 0b010);
1436   INSN(add, 0b100);
1437   INSN(sub, 0b110);
1438 
1439 #undef INSN
1440 
1441 #define INSN(NAME, op)                                                  \
1442   void NAME(Register Rd, Register Rn, Register Rm,                      \
1443            ext::operation option, int amount = 0) {                     \
1444     starti;                                                             \
1445     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1446     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1447   }
1448 
1449   INSN(addsw, 0b001);
1450   INSN(subsw, 0b011);
1451   INSN(adds, 0b101);
1452   INSN(subs, 0b111);
1453 
1454 #undef INSN
1455 
1456   // Aliases for short forms of add and sub
1457 #define INSN(NAME)                                      \
1458   void NAME(Register Rd, Register Rn, Register Rm) {    \
1459     if (Rd == sp || Rn == sp)                           \
1460       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1461     else                                                \
1462       NAME(Rd, Rn, Rm, LSL);                            \
1463   }
1464 
1465   INSN(addw);
1466   INSN(subw);
1467   INSN(add);
1468   INSN(sub);
1469 
1470   INSN(addsw);
1471   INSN(subsw);
1472   INSN(adds);
1473   INSN(subs);
1474 
1475 #undef INSN
1476 
1477   // Add/subtract (with carry)
1478   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1479     starti;
1480     f(op, 31, 29);
1481     f(0b11010000, 28, 21);
1482     f(0b000000, 15, 10);
1483     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1484   }
1485 
1486   #define INSN(NAME, op)                                \
1487     void NAME(Register Rd, Register Rn, Register Rm) {  \
1488       add_sub_carry(op, Rd, Rn, Rm);                    \
1489     }
1490 
1491   INSN(adcw, 0b000);
1492   INSN(adcsw, 0b001);
1493   INSN(sbcw, 0b010);
1494   INSN(sbcsw, 0b011);
1495   INSN(adc, 0b100);
1496   INSN(adcs, 0b101);
1497   INSN(sbc,0b110);
1498   INSN(sbcs, 0b111);
1499 
1500 #undef INSN
1501 
1502   // Conditional compare (both kinds)
1503   void conditional_compare(unsigned op, int o2, int o3,
1504                            Register Rn, unsigned imm5, unsigned nzcv,
1505                            unsigned cond) {
1506     f(op, 31, 29);
1507     f(0b11010010, 28, 21);
1508     f(cond, 15, 12);
1509     f(o2, 10);
1510     f(o3, 4);
1511     f(nzcv, 3, 0);
1512     f(imm5, 20, 16), rf(Rn, 5);
1513   }
1514 
1515 #define INSN(NAME, op)                                                  \
1516   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1517     starti;                                                             \
1518     f(0, 11);                                                           \
1519     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1520   }                                                                     \
1521                                                                         \
1522   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1523     starti;                                                             \
1524     f(1, 11);                                                           \
1525     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1526   }
1527 
1528   INSN(ccmnw, 0b001);
1529   INSN(ccmpw, 0b011);
1530   INSN(ccmn, 0b101);
1531   INSN(ccmp, 0b111);
1532 
1533 #undef INSN
1534 
1535   // Conditional select
1536   void conditional_select(unsigned op, unsigned op2,
1537                           Register Rd, Register Rn, Register Rm,
1538                           unsigned cond) {
1539     starti;
1540     f(op, 31, 29);
1541     f(0b11010100, 28, 21);
1542     f(cond, 15, 12);
1543     f(op2, 11, 10);
1544     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1545   }
1546 
1547 #define INSN(NAME, op, op2)                                             \
1548   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1549     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1550   }
1551 
1552   INSN(cselw, 0b000, 0b00);
1553   INSN(csincw, 0b000, 0b01);
1554   INSN(csinvw, 0b010, 0b00);
1555   INSN(csnegw, 0b010, 0b01);
1556   INSN(csel, 0b100, 0b00);
1557   INSN(csinc, 0b100, 0b01);
1558   INSN(csinv, 0b110, 0b00);
1559   INSN(csneg, 0b110, 0b01);
1560 
1561 #undef INSN
1562 
1563   // Data processing
1564   void data_processing(unsigned op29, unsigned opcode,
1565                        Register Rd, Register Rn) {
1566     f(op29, 31, 29), f(0b11010110, 28, 21);
1567     f(opcode, 15, 10);
1568     rf(Rn, 5), rf(Rd, 0);
1569   }
1570 
1571   // (1 source)
1572 #define INSN(NAME, op29, opcode2, opcode)       \
1573   void NAME(Register Rd, Register Rn) {         \
1574     starti;                                     \
1575     f(opcode2, 20, 16);                         \
1576     data_processing(op29, opcode, Rd, Rn);      \
1577   }
1578 
1579   INSN(rbitw,  0b010, 0b00000, 0b00000);
1580   INSN(rev16w, 0b010, 0b00000, 0b00001);
1581   INSN(revw,   0b010, 0b00000, 0b00010);
1582   INSN(clzw,   0b010, 0b00000, 0b00100);
1583   INSN(clsw,   0b010, 0b00000, 0b00101);
1584 
1585   INSN(rbit,   0b110, 0b00000, 0b00000);
1586   INSN(rev16,  0b110, 0b00000, 0b00001);
1587   INSN(rev32,  0b110, 0b00000, 0b00010);
1588   INSN(rev,    0b110, 0b00000, 0b00011);
1589   INSN(clz,    0b110, 0b00000, 0b00100);
1590   INSN(cls,    0b110, 0b00000, 0b00101);
1591 
1592 #undef INSN
1593 
1594   // (2 sources)
1595 #define INSN(NAME, op29, opcode)                        \
1596   void NAME(Register Rd, Register Rn, Register Rm) {    \
1597     starti;                                             \
1598     rf(Rm, 16);                                         \
1599     data_processing(op29, opcode, Rd, Rn);              \
1600   }
1601 
1602   INSN(udivw, 0b000, 0b000010);
1603   INSN(sdivw, 0b000, 0b000011);
1604   INSN(lslvw, 0b000, 0b001000);
1605   INSN(lsrvw, 0b000, 0b001001);
1606   INSN(asrvw, 0b000, 0b001010);
1607   INSN(rorvw, 0b000, 0b001011);
1608 
1609   INSN(udiv, 0b100, 0b000010);
1610   INSN(sdiv, 0b100, 0b000011);
1611   INSN(lslv, 0b100, 0b001000);
1612   INSN(lsrv, 0b100, 0b001001);
1613   INSN(asrv, 0b100, 0b001010);
1614   INSN(rorv, 0b100, 0b001011);
1615 
1616 #undef INSN
1617 
1618   // (3 sources)
1619   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1620                        Register Rd, Register Rn, Register Rm,
1621                        Register Ra) {
1622     starti;
1623     f(op54, 31, 29), f(0b11011, 28, 24);
1624     f(op31, 23, 21), f(o0, 15);
1625     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1626   }
1627 
1628 #define INSN(NAME, op54, op31, o0)                                      \
1629   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1630     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1631   }
1632 
1633   INSN(maddw, 0b000, 0b000, 0);
1634   INSN(msubw, 0b000, 0b000, 1);
1635   INSN(madd, 0b100, 0b000, 0);
1636   INSN(msub, 0b100, 0b000, 1);
1637   INSN(smaddl, 0b100, 0b001, 0);
1638   INSN(smsubl, 0b100, 0b001, 1);
1639   INSN(umaddl, 0b100, 0b101, 0);
1640   INSN(umsubl, 0b100, 0b101, 1);
1641 
1642 #undef INSN
1643 
1644 #define INSN(NAME, op54, op31, o0)                      \
1645   void NAME(Register Rd, Register Rn, Register Rm) {    \
1646     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1647   }
1648 
1649   INSN(smulh, 0b100, 0b010, 0);
1650   INSN(umulh, 0b100, 0b110, 0);
1651 
1652 #undef INSN
1653 
1654   // Floating-point data-processing (1 source)
1655   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1656                        FloatRegister Vd, FloatRegister Vn) {
1657     starti;
1658     f(op31, 31, 29);
1659     f(0b11110, 28, 24);
1660     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1661     rf(Vn, 5), rf(Vd, 0);
1662   }
1663 
1664 #define INSN(NAME, op31, type, opcode)                  \
1665   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1666     data_processing(op31, type, opcode, Vd, Vn);        \
1667   }
1668 
1669 private:
1670   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1671 public:
1672   INSN(fabss, 0b000, 0b00, 0b000001);
1673   INSN(fnegs, 0b000, 0b00, 0b000010);
1674   INSN(fsqrts, 0b000, 0b00, 0b000011);
1675   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1676 
1677 private:
1678   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1679 public:
1680   INSN(fabsd, 0b000, 0b01, 0b000001);
1681   INSN(fnegd, 0b000, 0b01, 0b000010);
1682   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1683   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1684 
1685   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1686     assert(Vd != Vn, "should be");
1687     i_fmovd(Vd, Vn);
1688   }
1689 
1690   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1691     assert(Vd != Vn, "should be");
1692     i_fmovs(Vd, Vn);
1693   }
1694 
1695 #undef INSN
1696 
1697   // Floating-point data-processing (2 source)
1698   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1699                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1700     starti;
1701     f(op31, 31, 29);
1702     f(0b11110, 28, 24);
1703     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1704     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1705   }
1706 
1707 #define INSN(NAME, op31, type, opcode)                  \
1708   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1709     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1710   }
1711 
1712   INSN(fmuls, 0b000, 0b00, 0b0000);
1713   INSN(fdivs, 0b000, 0b00, 0b0001);
1714   INSN(fadds, 0b000, 0b00, 0b0010);
1715   INSN(fsubs, 0b000, 0b00, 0b0011);
1716   INSN(fnmuls, 0b000, 0b00, 0b1000);
1717 
1718   INSN(fmuld, 0b000, 0b01, 0b0000);
1719   INSN(fdivd, 0b000, 0b01, 0b0001);
1720   INSN(faddd, 0b000, 0b01, 0b0010);
1721   INSN(fsubd, 0b000, 0b01, 0b0011);
1722   INSN(fnmuld, 0b000, 0b01, 0b1000);
1723 
1724 #undef INSN
1725 
1726    // Floating-point data-processing (3 source)
1727   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1728                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1729                        FloatRegister Va) {
1730     starti;
1731     f(op31, 31, 29);
1732     f(0b11111, 28, 24);
1733     f(type, 23, 22), f(o1, 21), f(o0, 15);
1734     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1735   }
1736 
1737 #define INSN(NAME, op31, type, o1, o0)                                  \
1738   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1739             FloatRegister Va) {                                         \
1740     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1741   }
1742 
1743   INSN(fmadds, 0b000, 0b00, 0, 0);
1744   INSN(fmsubs, 0b000, 0b00, 0, 1);
1745   INSN(fnmadds, 0b000, 0b00, 1, 0);
1746   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1747 
1748   INSN(fmaddd, 0b000, 0b01, 0, 0);
1749   INSN(fmsubd, 0b000, 0b01, 0, 1);
1750   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1751   INSN(fnmsub, 0b000, 0b01, 1, 1);
1752 
1753 #undef INSN
1754 
1755    // Floating-point conditional select
1756   void fp_conditional_select(unsigned op31, unsigned type,
1757                              unsigned op1, unsigned op2,
1758                              Condition cond, FloatRegister Vd,
1759                              FloatRegister Vn, FloatRegister Vm) {
1760     starti;
1761     f(op31, 31, 29);
1762     f(0b11110, 28, 24);
1763     f(type, 23, 22);
1764     f(op1, 21, 21);
1765     f(op2, 11, 10);
1766     f(cond, 15, 12);
1767     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1768   }
1769 
1770 #define INSN(NAME, op31, type, op1, op2)                                \
1771   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1772             FloatRegister Vm, Condition cond) {                         \
1773     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1774   }
1775 
1776   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1777   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1778 
1779 #undef INSN
1780 
1781    // Floating-point<->integer conversions
1782   void float_int_convert(unsigned op31, unsigned type,
1783                          unsigned rmode, unsigned opcode,
1784                          Register Rd, Register Rn) {
1785     starti;
1786     f(op31, 31, 29);
1787     f(0b11110, 28, 24);
1788     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1789     f(opcode, 18, 16), f(0b000000, 15, 10);
1790     zrf(Rn, 5), zrf(Rd, 0);
1791   }
1792 
1793 #define INSN(NAME, op31, type, rmode, opcode)                           \
1794   void NAME(Register Rd, FloatRegister Vn) {                            \
1795     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1796   }
1797 
1798   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1799   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1800   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1801   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1802 
1803   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1804   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1805 
1806   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1807 
1808 #undef INSN
1809 
1810 #define INSN(NAME, op31, type, rmode, opcode)                           \
1811   void NAME(FloatRegister Vd, Register Rn) {                            \
1812     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1813   }
1814 
1815   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1816   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1817 
1818   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1819   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1820   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1821   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1822 
1823   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1824 
1825 #undef INSN
1826 
1827   // Floating-point compare
1828   void float_compare(unsigned op31, unsigned type,
1829                      unsigned op, unsigned op2,
1830                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1831     starti;
1832     f(op31, 31, 29);
1833     f(0b11110, 28, 24);
1834     f(type, 23, 22), f(1, 21);
1835     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1836     rf(Vn, 5), rf(Vm, 16);
1837   }
1838 
1839 
1840 #define INSN(NAME, op31, type, op, op2)                 \
1841   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1842     float_compare(op31, type, op, op2, Vn, Vm);         \
1843   }
1844 
1845 #define INSN1(NAME, op31, type, op, op2)        \
1846   void NAME(FloatRegister Vn, double d) {       \
1847     assert_cond(d == 0.0);                      \
1848     float_compare(op31, type, op, op2, Vn);     \
1849   }
1850 
1851   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1852   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1853   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1854   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1855 
1856   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1857   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1858   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1859   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1860 
1861 #undef INSN
1862 #undef INSN1
1863 
1864   // Floating-point Move (immediate)
1865 private:
1866   unsigned pack(double value);
1867 
1868   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1869     starti;
1870     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1871     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1872     rf(Vn, 0);
1873   }
1874 
1875 public:
1876 
1877   void fmovs(FloatRegister Vn, double value) {
1878     if (value)
1879       fmov_imm(Vn, value, 0b00);
1880     else
1881       fmovs(Vn, zr);
1882   }
1883   void fmovd(FloatRegister Vn, double value) {
1884     if (value)
1885       fmov_imm(Vn, value, 0b01);
1886     else
1887       fmovd(Vn, zr);
1888   }
1889 
1890 /* SIMD extensions
1891  *
1892  * We just use FloatRegister in the following. They are exactly the same
1893  * as SIMD registers.
1894  */
1895  public:
1896 
1897   enum SIMD_Arrangement {
1898        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D
1899   };
1900 
1901   enum SIMD_RegVariant {
1902        B, H, S, D, Q
1903   };
1904 
1905 #define INSN(NAME, op)                                            \
1906   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
1907     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
1908   }                                                                      \
1909 
1910   INSN(ldr, 1);
1911   INSN(str, 0);
1912 
1913 #undef INSN
1914 
1915  private:
1916 
1917   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
1918     starti;
1919     f(0,31), f((int)T & 1, 30);
1920     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
1921     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1922   }
1923   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1924              int imm, int op1, int op2) {
1925     starti;
1926     f(0,31), f((int)T & 1, 30);
1927     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
1928     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1929   }
1930   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1931              Register Xm, int op1, int op2) {
1932     starti;
1933     f(0,31), f((int)T & 1, 30);
1934     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
1935     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1936   }
1937 
1938  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
1939    switch (a.getMode()) {
1940    case Address::base_plus_offset:
1941      guarantee(a.offset() == 0, "no offset allowed here");
1942      ld_st(Vt, T, a.base(), op1, op2);
1943      break;
1944    case Address::post:
1945      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
1946      break;
1947    case Address::base_plus_offset_reg:
1948      ld_st(Vt, T, a.base(), a.index(), op1, op2);
1949      break;
1950    default:
1951      ShouldNotReachHere();
1952    }
1953  }
1954 
1955  public:
1956 
1957 #define INSN1(NAME, op1, op2)                                   \
1958   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
1959    ld_st(Vt, T, a, op1, op2);                                           \
1960  }
1961 
1962 #define INSN2(NAME, op1, op2)                                           \
1963   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
1964     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
1965     ld_st(Vt, T, a, op1, op2);                                          \
1966   }
1967 
1968 #define INSN3(NAME, op1, op2)                                           \
1969   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1970             SIMD_Arrangement T, const Address &a) {                     \
1971     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
1972            "Registers must be ordered");                                \
1973     ld_st(Vt, T, a, op1, op2);                                          \
1974   }
1975 
1976 #define INSN4(NAME, op1, op2)                                           \
1977   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1978             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
1979     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
1980            Vt3->successor() == Vt4, "Registers must be ordered");       \
1981     ld_st(Vt, T, a, op1, op2);                                          \
1982   }
1983 
1984   INSN1(ld1,  0b001100010, 0b0111);
1985   INSN2(ld1,  0b001100010, 0b1010);
1986   INSN3(ld1,  0b001100010, 0b0110);
1987   INSN4(ld1,  0b001100010, 0b0010);
1988 
1989   INSN2(ld2,  0b001100010, 0b1000);
1990   INSN3(ld3,  0b001100010, 0b0100);
1991   INSN4(ld4,  0b001100010, 0b0000);
1992 
1993   INSN1(st1,  0b001100000, 0b0111);
1994   INSN2(st1,  0b001100000, 0b1010);
1995   INSN3(st1,  0b001100000, 0b0110);
1996   INSN4(st1,  0b001100000, 0b0010);
1997 
1998   INSN2(st2,  0b001100000, 0b1000);
1999   INSN3(st3,  0b001100000, 0b0100);
2000   INSN4(st4,  0b001100000, 0b0000);
2001 
2002   INSN1(ld1r, 0b001101010, 0b1100);
2003   INSN2(ld2r, 0b001101011, 0b1100);
2004   INSN3(ld3r, 0b001101010, 0b1110);
2005   INSN4(ld4r, 0b001101011, 0b1110);
2006 
2007 #undef INSN1
2008 #undef INSN2
2009 #undef INSN3
2010 #undef INSN4
2011 
2012 #define INSN(NAME, opc)                                                                 \
2013   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2014     starti;                                                                             \
2015     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2016     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2017     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2018   }
2019 
2020   INSN(eor,  0b101110001);
2021   INSN(orr,  0b001110101);
2022   INSN(andr, 0b001110001);
2023   INSN(bic,  0b001110011);
2024   INSN(bif,  0b101110111);
2025   INSN(bit,  0b101110101);
2026   INSN(bsl,  0b101110011);
2027   INSN(orn,  0b001110111);
2028 
2029 #undef INSN
2030 
2031 #define INSN(NAME, opc, opc2)                                                                 \
2032   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2033     starti;                                                                             \
2034     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2035     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2036     rf(Vn, 5), rf(Vd, 0);                                                               \
2037   }
2038 
2039   INSN(addv, 0, 0b100001);
2040   INSN(subv, 1, 0b100001);
2041   INSN(mulv, 0, 0b100111);
2042   INSN(sshl, 0, 0b010001);
2043   INSN(ushl, 1, 0b010001);
2044 
2045 #undef INSN
2046 
2047 #define INSN(NAME, opc, opc2) \
2048   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2049     starti;                                                                             \
2050     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2051     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2052     rf(Vn, 5), rf(Vd, 0);                                                               \
2053   }
2054 
2055   INSN(absr,  0, 0b100000101110);
2056   INSN(negr,  1, 0b100000101110);
2057   INSN(notr,  1, 0b100000010110);
2058   INSN(addv,  0, 0b110001101110);
2059   INSN(cls,   0, 0b100000010010);
2060   INSN(clz,   1, 0b100000010010);
2061   INSN(cnt,   0, 0b100000010110);
2062 
2063 #undef INSN
2064 
2065 #define INSN(NAME, op0, cmode0) \
2066   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2067     unsigned cmode = cmode0;                                                           \
2068     unsigned op = op0;                                                                 \
2069     starti;                                                                            \
2070     assert(lsl == 0 ||                                                                 \
2071            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2072            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2073     cmode |= lsl >> 2;                                                                 \
2074     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2075     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2076       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2077       cmode = 0b1110;                                                                  \
2078       if (T == T1D || T == T2D) op = 1;                                                \
2079     }                                                                                  \
2080     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2081     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2082     rf(Vd, 0);                                                                         \
2083   }
2084 
2085   INSN(movi, 0, 0);
2086   INSN(orri, 0, 1);
2087   INSN(mvni, 1, 0);
2088   INSN(bici, 1, 1);
2089 
2090 #undef INSN
2091 
2092 #define INSN(NAME, op1, op2, op3) \
2093   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2094     starti;                                                                             \
2095     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2096     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2097     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2098   }
2099 
2100   INSN(fadd, 0, 0, 0b110101);
2101   INSN(fdiv, 1, 0, 0b111111);
2102   INSN(fmul, 1, 0, 0b110111);
2103   INSN(fsub, 0, 1, 0b110101);
2104 
2105 #undef INSN
2106 
2107 #define INSN(NAME, opc)                                                                 \
2108   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2109     starti;                                                                             \
2110     assert(T == T4S, "arrangement must be T4S");                                        \
2111     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2112   }
2113 
2114   INSN(sha1c,     0b000000);
2115   INSN(sha1m,     0b001000);
2116   INSN(sha1p,     0b000100);
2117   INSN(sha1su0,   0b001100);
2118   INSN(sha256h2,  0b010100);
2119   INSN(sha256h,   0b010000);
2120   INSN(sha256su1, 0b011000);
2121 
2122 #undef INSN
2123 
2124 #define INSN(NAME, opc)                                                                 \
2125   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2126     starti;                                                                             \
2127     assert(T == T4S, "arrangement must be T4S");                                        \
2128     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2129   }
2130 
2131   INSN(sha1h,     0b000010);
2132   INSN(sha1su1,   0b000110);
2133   INSN(sha256su0, 0b001010);
2134 
2135 #undef INSN
2136 
2137 #define INSN(NAME, opc)                           \
2138   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2139     starti;                                       \
2140     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2141   }
2142 
2143   INSN(aese, 0b0100111000101000010010);
2144   INSN(aesd, 0b0100111000101000010110);
2145   INSN(aesmc, 0b0100111000101000011010);
2146   INSN(aesimc, 0b0100111000101000011110);
2147 
2148 #undef INSN
2149 
2150   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2151     starti;
2152     assert(T != Q, "invalid register variant");
2153     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2154     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2155   }
2156 
2157   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2158     starti;
2159     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2160     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2161     rf(Vn, 5), rf(Rd, 0);
2162   }
2163 
2164 #define INSN(NAME, opc, opc2) \
2165   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){         \
2166     starti;                                                                             \
2167     /* The encodings for the immh:immb fields (bits 22:16) are                          \
2168      *   0001 xxx       8B/16B, shift = xxx                                             \
2169      *   001x xxx       4H/8H,  shift = xxxx                                            \
2170      *   01xx xxx       2S/4S,  shift = xxxxx                                           \
2171      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)                         \
2172      */                                                                                 \
2173     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");                           \
2174     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),                            \
2175     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2176   }
2177 
2178   INSN(shl,  0, 0b010101);
2179   INSN(sshr, 0, 0b000001);
2180   INSN(ushr, 1, 0b000001);
2181 
2182 #undef INSN
2183 
2184   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2185     starti;
2186     /* The encodings for the immh:immb fields (bits 22:16) are
2187      *   0001 xxx       8H, 8B/16b shift = xxx
2188      *   001x xxx       4S, 4H/8H  shift = xxxx
2189      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2190      *   1xxx xxx       RESERVED
2191      */
2192     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2193     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2194     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2195     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2196   }
2197   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2198     ushll(Vd, Ta, Vn, Tb, shift);
2199   }
2200 
2201   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2202     starti;
2203     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2204     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2205   }
2206   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2207     uzp1(Vd, Vn, Vm, T, 1);
2208   }
2209 
2210   // Move from general purpose register
2211   //   mov  Vd.T[index], Rn
2212   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2213     starti;
2214     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2215     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2216   }
2217 
2218   // Move to general purpose register
2219   //   mov  Rd, Vn.T[index]
2220   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2221     starti;
2222     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2223     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2224     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2225   }
2226 
2227   // We do not handle the 1Q arrangement.
2228   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2229     starti;
2230     assert(Ta == T8H && (Tb == T8B || Tb == T16B), "Invalid Size specifier");
2231     f(0, 31), f(Tb & 1, 30), f(0b001110001, 29, 21), rf(Vm, 16), f(0b111000, 15, 10);
2232     rf(Vn, 5), rf(Vd, 0);
2233   }
2234   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2235     pmull(Vd, Ta, Vn, Vm, Tb);
2236   }
2237 
2238   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2239     starti;
2240     int size_b = (int)Tb >> 1;
2241     int size_a = (int)Ta >> 1;
2242     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2243     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2244     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2245   }
2246 
2247   void rev32(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn)
2248   {
2249     starti;
2250     assert(T <= T8H, "must be one of T8B, T16B, T4H, T8H");
2251     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24);
2252     f(T <= T16B ? 0b00 : 0b01, 23, 22), f(0b100000000010, 21, 10);
2253     rf(Vn, 5), rf(Vd, 0);
2254   }
2255 
2256   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2257   {
2258     starti;
2259     assert(T != T1D, "reserved encoding");
2260     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2261     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2262   }
2263 
2264   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2265   {
2266     starti;
2267     assert(T != T1D, "reserved encoding");
2268     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2269     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2270     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2271   }
2272 
2273   // CRC32 instructions
2274 #define INSN(NAME, c, sf, sz)                                             \
2275   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2276     starti;                                                               \
2277     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2278     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2279   }
2280 
2281   INSN(crc32b,  0, 0, 0b00);
2282   INSN(crc32h,  0, 0, 0b01);
2283   INSN(crc32w,  0, 0, 0b10);
2284   INSN(crc32x,  0, 1, 0b11);
2285   INSN(crc32cb, 1, 0, 0b00);
2286   INSN(crc32ch, 1, 0, 0b01);
2287   INSN(crc32cw, 1, 0, 0b10);
2288   INSN(crc32cx, 1, 1, 0b11);
2289 
2290 #undef INSN
2291 
2292 
2293 /* Simulator extensions to the ISA
2294 
2295    haltsim
2296 
2297    takes no arguments, causes the sim to enter a debug break and then
2298    return from the simulator run() call with STATUS_HALT? The linking
2299    code will call fatal() when it sees STATUS_HALT.
2300 
2301    blrt Xn, Wm
2302    blrt Xn, #gpargs, #fpargs, #type
2303    Xn holds the 64 bit x86 branch_address
2304    call format is encoded either as immediate data in the call
2305    or in register Wm. In the latter case
2306      Wm[13..6] = #gpargs,
2307      Wm[5..2] = #fpargs,
2308      Wm[1,0] = #type
2309 
2310    calls the x86 code address 'branch_address' supplied in Xn passing
2311    arguments taken from the general and floating point registers according
2312    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2313    or v0 according to the the return type #type' where
2314 
2315    address branch_address;
2316    uimm4 gpargs;
2317    uimm4 fpargs;
2318    enum ReturnType type;
2319 
2320    enum ReturnType
2321      {
2322        void_ret = 0,
2323        int_ret = 1,
2324        long_ret = 1,
2325        obj_ret = 1, // i.e. same as long
2326        float_ret = 2,
2327        double_ret = 3
2328      }
2329 
2330    notify
2331 
2332    notifies the simulator of a transfer of control. instr[14:0]
2333    identifies the type of change of control.
2334 
2335    0 ==> initial entry to a method.
2336 
2337    1 ==> return into a method from a submethod call.
2338 
2339    2 ==> exit out of Java method code.
2340 
2341    3 ==> start execution for a new bytecode.
2342 
2343    in cases 1 and 2 the simulator is expected to use a JVM callback to
2344    identify the name of the specific method being executed. in case 4
2345    the simulator is expected to use a JVM callback to identify the
2346    bytecode index.
2347 
2348    Instruction encodings
2349    ---------------------
2350 
2351    These are encoded in the space with instr[28:25] = 00 which is
2352    unallocated. Encodings are
2353 
2354                      10987654321098765432109876543210
2355    PSEUDO_HALT   = 0x11100000000000000000000000000000
2356    PSEUDO_BLRT  = 0x11000000000000000_______________
2357    PSEUDO_BLRTR = 0x1100000000000000100000__________
2358    PSEUDO_NOTIFY = 0x10100000000000000_______________
2359 
2360    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2361 
2362    for BLRT
2363      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2364      instr[6,5] = #type, instr[4,0] = Rn
2365    for BLRTR
2366      instr[9,5] = Rm, instr[4,0] = Rn
2367    for NOTIFY
2368      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2369 */
2370 
2371   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2372 
2373   virtual void notify(int type) {
2374     if (UseBuiltinSim) {
2375       starti;
2376       //  109
2377       f(0b101, 31, 29);
2378       //  87654321098765
2379       f(0b00000000000000, 28, 15);
2380       f(type, 14, 0);
2381     }
2382   }
2383 
2384   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2385     if (UseBuiltinSim) {
2386       starti;
2387       f(0b110, 31 ,29);
2388       f(0b00, 28, 25);
2389       //  4321098765
2390       f(0b0000000000, 24, 15);
2391       f(gpargs, 14, 11);
2392       f(fpargs, 10, 7);
2393       f(type, 6, 5);
2394       rf(Rn, 0);
2395     } else {
2396       blr(Rn);
2397     }
2398   }
2399 
2400   void blrt(Register Rn, Register Rm) {
2401     if (UseBuiltinSim) {
2402       starti;
2403       f(0b110, 31 ,29);
2404       f(0b00, 28, 25);
2405       //  4321098765
2406       f(0b0000000001, 24, 15);
2407       //  43210
2408       f(0b00000, 14, 10);
2409       rf(Rm, 5);
2410       rf(Rn, 0);
2411     } else {
2412       blr(Rn);
2413     }
2414   }
2415 
2416   void haltsim() {
2417     starti;
2418     f(0b111, 31 ,29);
2419     f(0b00, 28, 27);
2420     //  654321098765432109876543210
2421     f(0b000000000000000000000000000, 26, 0);
2422   }
2423 
2424   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2425   }
2426 
2427   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2428                                                 Register tmp,
2429                                                 int offset) {
2430     ShouldNotCallThis();
2431     return RegisterOrConstant();
2432   }
2433 
2434   // Stack overflow checking
2435   virtual void bang_stack_with_offset(int offset);
2436 
2437   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2438   static bool operand_valid_for_add_sub_immediate(long imm);
2439   static bool operand_valid_for_float_immediate(double imm);
2440 
2441   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2442   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2443 };
2444 
2445 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2446                                              Assembler::Membar_mask_bits b) {
2447   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2448 }
2449 
2450 Instruction_aarch64::~Instruction_aarch64() {
2451   assem->emit();
2452 }
2453 
2454 #undef starti
2455 
2456 // Invert a condition
2457 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2458   return Assembler::Condition(int(cond) ^ 1);
2459 }
2460 
2461 class BiasedLockingCounters;
2462 
2463 extern "C" void das(uint64_t start, int len);
2464 
2465 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP