/* * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "oops/metadata.hpp" #include "runtime/os.hpp" #include "code/relocInfo.hpp" #include "interpreter/invocationCounter.hpp" #include "runtime/arguments.hpp" #include "runtime/commandLineFlagConstraintsCompiler.hpp" #include "runtime/commandLineFlagRangeList.hpp" #include "runtime/globals.hpp" #include "utilities/defaultStream.hpp" Flag::Error AliasLevelConstraintFunc(intx value, bool verbose) { if ((value <= 1) && (Arguments::mode() == Arguments::_comp || Arguments::mode() == Arguments::_mixed)) { CommandLineError::print(verbose, "AliasLevel (" INTX_FORMAT ") is not " "compatible with -Xcomp or -Xmixed\n", value); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } /** * Validate the minimum number of compiler threads needed to run the * JVM. The following configurations are possible. * * 1) The JVM is build using an interpreter only. As a result, the minimum number of * compiler threads is 0. * 2) The JVM is build using the compiler(s) and tiered compilation is disabled. As * a result, either C1 or C2 is used, so the minimum number of compiler threads is 1. * 3) The JVM is build using the compiler(s) and tiered compilation is enabled. However, * the option "TieredStopAtLevel < CompLevel_full_optimization". As a result, only * C1 can be used, so the minimum number of compiler threads is 1. * 4) The JVM is build using the compilers and tiered compilation is enabled. The option * 'TieredStopAtLevel = CompLevel_full_optimization' (the default value). As a result, * the minimum number of compiler threads is 2. */ Flag::Error CICompilerCountConstraintFunc(intx value, bool verbose) { int min_number_of_compiler_threads = 0; #if !defined(COMPILER1) && !defined(COMPILER2) && !defined(SHARK) && !INCLUDE_JVMCI // case 1 #else if (!TieredCompilation || (TieredStopAtLevel < CompLevel_full_optimization)) { min_number_of_compiler_threads = 1; // case 2 or case 3 } else { min_number_of_compiler_threads = 2; // case 4 (tiered) } #endif // The default CICompilerCount's value is CI_COMPILER_COUNT. // With a client VM, -XX:+TieredCompilation causes TieredCompilation // to be true here (the option is validated later) and // min_number_of_compiler_threads to exceed CI_COMPILER_COUNT. min_number_of_compiler_threads = MIN2(min_number_of_compiler_threads, CI_COMPILER_COUNT); if (value < (intx)min_number_of_compiler_threads) { CommandLineError::print(verbose, "CICompilerCount (" INTX_FORMAT ") must be " "at least %d \n", value, min_number_of_compiler_threads); return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } Flag::Error AllocatePrefetchDistanceConstraintFunc(intx value, bool verbose) { if (value < 0) { CommandLineError::print(verbose, "Unable to determine system-specific value for AllocatePrefetchDistance. " "Please provide appropriate value, if unsure, use 0 to disable prefetching\n"); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error AllocatePrefetchInstrConstraintFunc(intx value, bool verbose) { intx max_value = max_intx; #if defined(SPARC) max_value = 1; #elif defined(X86) max_value = 3; #endif if (value < 0 || value > max_value) { CommandLineError::print(verbose, "AllocatePrefetchInstr (" INTX_FORMAT ") must be " "between 0 and " INTX_FORMAT "\n", value, max_value); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error AllocatePrefetchStepSizeConstraintFunc(intx value, bool verbose) { intx max_value = 512; if (value < 1 || value > max_value) { CommandLineError::print(verbose, "AllocatePrefetchStepSize (" INTX_FORMAT ") " "must be between 1 and %d\n", AllocatePrefetchStepSize, max_value); return Flag::VIOLATES_CONSTRAINT; } if (AllocatePrefetchDistance % AllocatePrefetchStepSize != 0) { CommandLineError::print(verbose, "AllocatePrefetchDistance (" INTX_FORMAT ") " "%% AllocatePrefetchStepSize (" INTX_FORMAT ") " "= " INTX_FORMAT " " "must be 0\n", AllocatePrefetchDistance, AllocatePrefetchStepSize, AllocatePrefetchDistance % AllocatePrefetchStepSize); return Flag::VIOLATES_CONSTRAINT; } /* The limit of 64 for the quotient of AllocatePrefetchDistance and AllocatePrefetchSize * originates from the limit of 64 for AllocatePrefetchLines/AllocateInstancePrefetchLines. * If AllocatePrefetchStyle == 2, the quotient from above is used in PhaseMacroExpand::prefetch_allocation() * to determine the number of lines to prefetch. For other values of AllocatePrefetchStyle, * AllocatePrefetchDistance and AllocatePrefetchSize is used. For consistency, all these * quantities must have the same limit (64 in this case). */ if (AllocatePrefetchDistance / AllocatePrefetchStepSize > 64) { CommandLineError::print(verbose, "AllocatePrefetchDistance (" INTX_FORMAT ") too large or " "AllocatePrefetchStepSize (" INTX_FORMAT ") too small; " "try decreasing/increasing values so that " "AllocatePrefetchDistance / AllocatePrefetchStepSize <= 64\n", AllocatePrefetchDistance, AllocatePrefetchStepSize, AllocatePrefetchDistance % AllocatePrefetchStepSize); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error CompileThresholdConstraintFunc(intx value, bool verbose) { if (value < 0 || value > INT_MAX >> InvocationCounter::count_shift) { CommandLineError::print(verbose, "CompileThreshold (" INTX_FORMAT ") " "must be between 0 and %d\n", value, INT_MAX >> InvocationCounter::count_shift); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error OnStackReplacePercentageConstraintFunc(intx value, bool verbose) { int backward_branch_limit; if (ProfileInterpreter) { if (OnStackReplacePercentage < InterpreterProfilePercentage) { CommandLineError::print(verbose, "OnStackReplacePercentage (" INTX_FORMAT ") must be " "larger than InterpreterProfilePercentage (" INTX_FORMAT ")\n", OnStackReplacePercentage, InterpreterProfilePercentage); return Flag::VIOLATES_CONSTRAINT; } backward_branch_limit = ((CompileThreshold * (OnStackReplacePercentage - InterpreterProfilePercentage)) / 100) << InvocationCounter::count_shift; if (backward_branch_limit < 0) { CommandLineError::print(verbose, "CompileThreshold * (InterpreterProfilePercentage - OnStackReplacePercentage) / 100 = " INTX_FORMAT " " "must be between 0 and " INTX_FORMAT ", try changing " "CompileThreshold, InterpreterProfilePercentage, and/or OnStackReplacePercentage\n", (CompileThreshold * (OnStackReplacePercentage - InterpreterProfilePercentage)) / 100, INT_MAX >> InvocationCounter::count_shift); return Flag::VIOLATES_CONSTRAINT; } } else { if (OnStackReplacePercentage < 0 ) { CommandLineError::print(verbose, "OnStackReplacePercentage (" INTX_FORMAT ") must be " "non-negative\n", OnStackReplacePercentage); return Flag::VIOLATES_CONSTRAINT; } backward_branch_limit = ((CompileThreshold * OnStackReplacePercentage) / 100) << InvocationCounter::count_shift; if (backward_branch_limit < 0) { CommandLineError::print(verbose, "CompileThreshold * OnStackReplacePercentage / 100 = " INTX_FORMAT " " "must be between 0 and " INTX_FORMAT ", try changing " "CompileThreshold and/or OnStackReplacePercentage\n", (CompileThreshold * OnStackReplacePercentage) / 100, INT_MAX >> InvocationCounter::count_shift); return Flag::VIOLATES_CONSTRAINT; } } return Flag::SUCCESS; } Flag::Error CodeCacheSegmentSizeConstraintFunc(uintx value, bool verbose) { if (CodeCacheSegmentSize < (uintx)CodeEntryAlignment) { CommandLineError::print(verbose, "CodeCacheSegmentSize (" UINTX_FORMAT ") must be " "larger than or equal to CodeEntryAlignment (" INTX_FORMAT ") " "to align entry points\n", CodeCacheSegmentSize, CodeEntryAlignment); return Flag::VIOLATES_CONSTRAINT; } if (CodeCacheSegmentSize < sizeof(jdouble)) { CommandLineError::print(verbose, "CodeCacheSegmentSize (" UINTX_FORMAT ") must be " "at least " SIZE_FORMAT " to align constants\n", CodeCacheSegmentSize, sizeof(jdouble)); return Flag::VIOLATES_CONSTRAINT; } #ifdef COMPILER2 if (CodeCacheSegmentSize < (uintx)OptoLoopAlignment) { CommandLineError::print(verbose, "CodeCacheSegmentSize (" UINTX_FORMAT ") must be " "larger than or equal to OptoLoopAlignment (" INTX_FORMAT ") " "to align inner loops\n", CodeCacheSegmentSize, OptoLoopAlignment); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error CompilerThreadPriorityConstraintFunc(intx value, bool verbose) { #ifdef SOLARIS if ((value < MinimumPriority || value > MaximumPriority) && (value != -1) && (value != -FXCriticalPriority)) { CommandLineError::print(verbose, "CompileThreadPriority (" INTX_FORMAT ") must be " "between %d and %d inclusively or -1 (means no change) " "or %d (special value for critical thread class/priority)\n", value, MinimumPriority, MaximumPriority, -FXCriticalPriority); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error CodeEntryAlignmentConstraintFunc(intx value, bool verbose) { #ifdef SPARC if (CodeEntryAlignment % relocInfo::addr_unit() != 0) { CommandLineError::print(verbose, "CodeEntryAlignment (" INTX_FORMAT ") must be " "multiple of NOP size\n", CodeEntryAlignment); return Flag::VIOLATES_CONSTRAINT; } #endif if (!is_power_of_2(value)) { CommandLineError::print(verbose, "CodeEntryAlignment (" INTX_FORMAT ") must be " "a power of two\n", CodeEntryAlignment); return Flag::VIOLATES_CONSTRAINT; } if (CodeEntryAlignment < 16) { CommandLineError::print(verbose, "CodeEntryAlignment (" INTX_FORMAT ") must be " "greater than or equal to %d\n", CodeEntryAlignment, 16); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error OptoLoopAlignmentConstraintFunc(intx value, bool verbose) { if (!is_power_of_2(value)) { CommandLineError::print(verbose, "OptoLoopAlignment (" INTX_FORMAT ") " "must be a power of two\n", value); return Flag::VIOLATES_CONSTRAINT; } #ifdef SPARC if (OptoLoopAlignment % relocInfo::addr_unit() != 0) { CommandLineError::print(verbose, "OptoLoopAlignment (" INTX_FORMAT ") must be " "multiple of NOP size\n"); return Flag::VIOLATES_CONSTRAINT; } #endif return Flag::SUCCESS; } Flag::Error ArraycopyDstPrefetchDistanceConstraintFunc(uintx value, bool verbose) { if (value != 0) { CommandLineError::print(verbose, "ArraycopyDstPrefetchDistance (" UINTX_FORMAT ") must be 0\n", value); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error ArraycopySrcPrefetchDistanceConstraintFunc(uintx value, bool verbose) { if (value != 0) { CommandLineError::print(verbose, "ArraycopySrcPrefetchDistance (" UINTX_FORMAT ") must be 0\n", value); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error TypeProfileLevelConstraintFunc(uintx value, bool verbose) { for (int i = 0; i < 3; i++) { if (value % 10 > 2) { CommandLineError::print(verbose, "Invalid value (" UINTX_FORMAT ") " "in TypeProfileLevel at position %d\n", value, i); return Flag::VIOLATES_CONSTRAINT; } value = value / 10; } return Flag::SUCCESS; } Flag::Error InitArrayShortSizeConstraintFunc(intx value, bool verbose) { if (value % BytesPerLong != 0) { return Flag::VIOLATES_CONSTRAINT; } else { return Flag::SUCCESS; } } #ifdef COMPILER2 Flag::Error InteriorEntryAlignmentConstraintFunc(intx value, bool verbose) { if (InteriorEntryAlignment > CodeEntryAlignment) { CommandLineError::print(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "less than or equal to CodeEntryAlignment (" INTX_FORMAT ")\n", InteriorEntryAlignment, CodeEntryAlignment); return Flag::VIOLATES_CONSTRAINT; } #ifdef SPARC if (InteriorEntryAlignment % relocInfo::addr_unit() != 0) { CommandLineError::print(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "multiple of NOP size\n"); return Flag::VIOLATES_CONSTRAINT; } #endif if (!is_power_of_2(value)) { CommandLineError::print(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "a power of two\n", InteriorEntryAlignment); return Flag::VIOLATES_CONSTRAINT; } int minimum_alignment = 16; #if defined(SPARC) || (defined(X86) && !defined(AMD64)) minimum_alignment = 4; #endif if (InteriorEntryAlignment < minimum_alignment) { CommandLineError::print(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "greater than or equal to %d\n", InteriorEntryAlignment, minimum_alignment); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } Flag::Error NodeLimitFudgeFactorConstraintFunc(intx value, bool verbose) { if (value < MaxNodeLimit * 2 / 100 || value > MaxNodeLimit * 40 / 100) { CommandLineError::print(verbose, "NodeLimitFudgeFactor must be between 2%% and 40%% " "of MaxNodeLimit (" INTX_FORMAT ")\n", MaxNodeLimit); return Flag::VIOLATES_CONSTRAINT; } return Flag::SUCCESS; } #endif // COMPILER2