1 //
   2 // Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Header information of the source block.
 461 // Method declarations/definitions which are used outside
 462 // the ad-scope can conveniently be defined here.
 463 //
 464 // To keep related declarations/definitions/uses close together,
 465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 466 
 467 // Must be visible to the DFA in dfa_sparc.cpp
 468 extern bool can_branch_register( Node *bol, Node *cmp );
 469 
 470 extern bool use_block_zeroing(Node* count);
 471 
 472 // Macros to extract hi & lo halves from a long pair.
 473 // G0 is not part of any long pair, so assert on that.
 474 // Prevents accidentally using G1 instead of G0.
 475 #define LONG_HI_REG(x) (x)
 476 #define LONG_LO_REG(x) (x)
 477 
 478 class CallStubImpl {
 479 
 480   //--------------------------------------------------------------
 481   //---<  Used for optimization in Compile::Shorten_branches  >---
 482   //--------------------------------------------------------------
 483 
 484  public:
 485   // Size of call trampoline stub.
 486   static uint size_call_trampoline() {
 487     return 0; // no call trampolines on this platform
 488   }
 489 
 490   // number of relocations needed by a call trampoline stub
 491   static uint reloc_call_trampoline() {
 492     return 0; // no call trampolines on this platform
 493   }
 494 };
 495 
 496 class HandlerImpl {
 497 
 498  public:
 499 
 500   static int emit_exception_handler(CodeBuffer &cbuf);
 501   static int emit_deopt_handler(CodeBuffer& cbuf);
 502 
 503   static uint size_exception_handler() {
 504     if (TraceJumps) {
 505       return (400); // just a guess
 506     }
 507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 508   }
 509 
 510   static uint size_deopt_handler() {
 511     if (TraceJumps) {
 512       return (400); // just a guess
 513     }
 514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 515   }
 516 };
 517 
 518 %}
 519 
 520 source %{
 521 #define __ _masm.
 522 
 523 // tertiary op of a LoadP or StoreP encoding
 524 #define REGP_OP true
 525 
 526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 528 static Register reg_to_register_object(int register_encoding);
 529 
 530 // Used by the DFA in dfa_sparc.cpp.
 531 // Check for being able to use a V9 branch-on-register.  Requires a
 532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 533 // extended.  Doesn't work following an integer ADD, for example, because of
 534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 536 // replace them with zero, which could become sign-extension in a different OS
 537 // release.  There's no obvious reason why an interrupt will ever fill these
 538 // bits with non-zero junk (the registers are reloaded with standard LD
 539 // instructions which either zero-fill or sign-fill).
 540 bool can_branch_register( Node *bol, Node *cmp ) {
 541   if( !BranchOnRegister ) return false;
 542 #ifdef _LP64
 543   if( cmp->Opcode() == Op_CmpP )
 544     return true;  // No problems with pointer compares
 545 #endif
 546   if( cmp->Opcode() == Op_CmpL )
 547     return true;  // No problems with long compares
 548 
 549   if( !SparcV9RegsHiBitsZero ) return false;
 550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 551       bol->as_Bool()->_test._test != BoolTest::eq )
 552      return false;
 553 
 554   // Check for comparing against a 'safe' value.  Any operation which
 555   // clears out the high word is safe.  Thus, loads and certain shifts
 556   // are safe, as are non-negative constants.  Any operation which
 557   // preserves zero bits in the high word is safe as long as each of its
 558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 559   // inputs are safe.  At present, the only important case to recognize
 560   // seems to be loads.  Constants should fold away, and shifts &
 561   // logicals can use the 'cc' forms.
 562   Node *x = cmp->in(1);
 563   if( x->is_Load() ) return true;
 564   if( x->is_Phi() ) {
 565     for( uint i = 1; i < x->req(); i++ )
 566       if( !x->in(i)->is_Load() )
 567         return false;
 568     return true;
 569   }
 570   return false;
 571 }
 572 
 573 bool use_block_zeroing(Node* count) {
 574   // Use BIS for zeroing if count is not constant
 575   // or it is >= BlockZeroingLowLimit.
 576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 577 }
 578 
 579 // ****************************************************************************
 580 
 581 // REQUIRED FUNCTIONALITY
 582 
 583 // !!!!! Special hack to get all type of calls to specify the byte offset
 584 //       from the start of the call to the point where the return address
 585 //       will point.
 586 //       The "return address" is the address of the call instruction, plus 8.
 587 
 588 int MachCallStaticJavaNode::ret_addr_offset() {
 589   int offset = NativeCall::instruction_size;  // call; delay slot
 590   if (_method_handle_invoke)
 591     offset += 4;  // restore SP
 592   return offset;
 593 }
 594 
 595 int MachCallDynamicJavaNode::ret_addr_offset() {
 596   int vtable_index = this->_vtable_index;
 597   if (vtable_index < 0) {
 598     // must be invalid_vtable_index, not nonvirtual_vtable_index
 599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 600     return (NativeMovConstReg::instruction_size +
 601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 602   } else {
 603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 604     int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
 605     int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
 606     int klass_load_size;
 607     if (UseCompressedClassPointers) {
 608       assert(Universe::heap() != NULL, "java heap should be initialized");
 609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 610     } else {
 611       klass_load_size = 1*BytesPerInstWord;
 612     }
 613     if (Assembler::is_simm13(v_off)) {
 614       return klass_load_size +
 615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 616              NativeCall::instruction_size);  // call; delay slot
 617     } else {
 618       return klass_load_size +
 619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 620              NativeCall::instruction_size);  // call; delay slot
 621     }
 622   }
 623 }
 624 
 625 int MachCallRuntimeNode::ret_addr_offset() {
 626 #ifdef _LP64
 627   if (MacroAssembler::is_far_target(entry_point())) {
 628     return NativeFarCall::instruction_size;
 629   } else {
 630     return NativeCall::instruction_size;
 631   }
 632 #else
 633   return NativeCall::instruction_size;  // call; delay slot
 634 #endif
 635 }
 636 
 637 // Indicate if the safepoint node needs the polling page as an input.
 638 // Since Sparc does not have absolute addressing, it does.
 639 bool SafePointNode::needs_polling_address_input() {
 640   return true;
 641 }
 642 
 643 // emit an interrupt that is caught by the debugger (for debugging compiler)
 644 void emit_break(CodeBuffer &cbuf) {
 645   MacroAssembler _masm(&cbuf);
 646   __ breakpoint_trap();
 647 }
 648 
 649 #ifndef PRODUCT
 650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 651   st->print("TA");
 652 }
 653 #endif
 654 
 655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 656   emit_break(cbuf);
 657 }
 658 
 659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 660   return MachNode::size(ra_);
 661 }
 662 
 663 // Traceable jump
 664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 665   MacroAssembler _masm(&cbuf);
 666   Register rdest = reg_to_register_object(jump_target);
 667   __ JMP(rdest, 0);
 668   __ delayed()->nop();
 669 }
 670 
 671 // Traceable jump and set exception pc
 672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 673   MacroAssembler _masm(&cbuf);
 674   Register rdest = reg_to_register_object(jump_target);
 675   __ JMP(rdest, 0);
 676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 677 }
 678 
 679 void emit_nop(CodeBuffer &cbuf) {
 680   MacroAssembler _masm(&cbuf);
 681   __ nop();
 682 }
 683 
 684 void emit_illtrap(CodeBuffer &cbuf) {
 685   MacroAssembler _masm(&cbuf);
 686   __ illtrap(0);
 687 }
 688 
 689 
 690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 691   assert(n->rule() != loadUB_rule, "");
 692 
 693   intptr_t offset = 0;
 694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 695   const Node* addr = n->get_base_and_disp(offset, adr_type);
 696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 699   atype = atype->add_offset(offset);
 700   assert(disp32 == offset, "wrong disp32");
 701   return atype->_offset;
 702 }
 703 
 704 
 705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 706   assert(n->rule() != loadUB_rule, "");
 707 
 708   intptr_t offset = 0;
 709   Node* addr = n->in(2);
 710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 712     Node* a = addr->in(2/*AddPNode::Address*/);
 713     Node* o = addr->in(3/*AddPNode::Offset*/);
 714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 716     assert(atype->isa_oop_ptr(), "still an oop");
 717   }
 718   offset = atype->is_ptr()->_offset;
 719   if (offset != Type::OffsetBot)  offset += disp32;
 720   return offset;
 721 }
 722 
 723 static inline jdouble replicate_immI(int con, int count, int width) {
 724   // Load a constant replicated "count" times with width "width"
 725   assert(count*width == 8 && width <= 4, "sanity");
 726   int bit_width = width * 8;
 727   jlong val = con;
 728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 729   for (int i = 0; i < count - 1; i++) {
 730     val |= (val << bit_width);
 731   }
 732   jdouble dval = *((jdouble*) &val);  // coerce to double type
 733   return dval;
 734 }
 735 
 736 static inline jdouble replicate_immF(float con) {
 737   // Replicate float con 2 times and pack into vector.
 738   int val = *((int*)&con);
 739   jlong lval = val;
 740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 742   return dval;
 743 }
 744 
 745 // Standard Sparc opcode form2 field breakdown
 746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 748   int op = (f30 << 30) |
 749            (f29 << 29) |
 750            (f25 << 25) |
 751            (f22 << 22) |
 752            (f20 << 20) |
 753            (f19 << 19) |
 754            (f0  <<  0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 // Standard Sparc opcode form2 field breakdown
 759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 760   f0 >>= 10;           // Drop 10 bits
 761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 762   int op = (f30 << 30) |
 763            (f25 << 25) |
 764            (f22 << 22) |
 765            (f0  <<  0);
 766   cbuf.insts()->emit_int32(op);
 767 }
 768 
 769 // Standard Sparc opcode form3 field breakdown
 770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 771   int op = (f30 << 30) |
 772            (f25 << 25) |
 773            (f19 << 19) |
 774            (f14 << 14) |
 775            (f5  <<  5) |
 776            (f0  <<  0);
 777   cbuf.insts()->emit_int32(op);
 778 }
 779 
 780 // Standard Sparc opcode form3 field breakdown
 781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 782   simm13 &= (1<<13)-1; // Mask to 13 bits
 783   int op = (f30 << 30) |
 784            (f25 << 25) |
 785            (f19 << 19) |
 786            (f14 << 14) |
 787            (1   << 13) | // bit to indicate immediate-mode
 788            (simm13<<0);
 789   cbuf.insts()->emit_int32(op);
 790 }
 791 
 792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 793   simm10 &= (1<<10)-1; // Mask to 10 bits
 794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 795 }
 796 
 797 #ifdef ASSERT
 798 // Helper function for VerifyOops in emit_form3_mem_reg
 799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 800   warning("VerifyOops encountered unexpected instruction:");
 801   n->dump(2);
 802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 803 }
 804 #endif
 805 
 806 
 807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 809 
 810 #ifdef ASSERT
 811   // The following code implements the +VerifyOops feature.
 812   // It verifies oop values which are loaded into or stored out of
 813   // the current method activation.  +VerifyOops complements techniques
 814   // like ScavengeALot, because it eagerly inspects oops in transit,
 815   // as they enter or leave the stack, as opposed to ScavengeALot,
 816   // which inspects oops "at rest", in the stack or heap, at safepoints.
 817   // For this reason, +VerifyOops can sometimes detect bugs very close
 818   // to their point of creation.  It can also serve as a cross-check
 819   // on the validity of oop maps, when used toegether with ScavengeALot.
 820 
 821   // It would be good to verify oops at other points, especially
 822   // when an oop is used as a base pointer for a load or store.
 823   // This is presently difficult, because it is hard to know when
 824   // a base address is biased or not.  (If we had such information,
 825   // it would be easy and useful to make a two-argument version of
 826   // verify_oop which unbiases the base, and performs verification.)
 827 
 828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 829   bool is_verified_oop_base  = false;
 830   bool is_verified_oop_load  = false;
 831   bool is_verified_oop_store = false;
 832   int tmp_enc = -1;
 833   if (VerifyOops && src1_enc != R_SP_enc) {
 834     // classify the op, mainly for an assert check
 835     int st_op = 0, ld_op = 0;
 836     switch (primary) {
 837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 841     case Assembler::std_op3:  st_op = Op_StoreL; break;
 842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 844 
 845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 856 
 857     default: ShouldNotReachHere();
 858     }
 859     if (tertiary == REGP_OP) {
 860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 862       else                          ShouldNotReachHere();
 863       if (st_op) {
 864         // a store
 865         // inputs are (0:control, 1:memory, 2:address, 3:value)
 866         Node* n2 = n->in(3);
 867         if (n2 != NULL) {
 868           const Type* t = n2->bottom_type();
 869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 870         }
 871       } else {
 872         // a load
 873         const Type* t = n->bottom_type();
 874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 875       }
 876     }
 877 
 878     if (ld_op) {
 879       // a Load
 880       // inputs are (0:control, 1:memory, 2:address)
 881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 892           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 893           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 894           !(n->rule() == loadUB_rule)) {
 895         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 896       }
 897     } else if (st_op) {
 898       // a Store
 899       // inputs are (0:control, 1:memory, 2:address, 3:value)
 900       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 901           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 902           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 903           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 904           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 905           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 906           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 907         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 908       }
 909     }
 910 
 911     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 912       Node* addr = n->in(2);
 913       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 914         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 915         if (atype != NULL) {
 916           intptr_t offset = get_offset_from_base(n, atype, disp32);
 917           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 918           if (offset != offset_2) {
 919             get_offset_from_base(n, atype, disp32);
 920             get_offset_from_base_2(n, atype, disp32);
 921           }
 922           assert(offset == offset_2, "different offsets");
 923           if (offset == disp32) {
 924             // we now know that src1 is a true oop pointer
 925             is_verified_oop_base = true;
 926             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 927               if( primary == Assembler::ldd_op3 ) {
 928                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 929               } else {
 930                 tmp_enc = dst_enc;
 931                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 932                 assert(src1_enc != dst_enc, "");
 933               }
 934             }
 935           }
 936           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 937                        || offset == oopDesc::mark_offset_in_bytes())) {
 938                       // loading the mark should not be allowed either, but
 939                       // we don't check this since it conflicts with InlineObjectHash
 940                       // usage of LoadINode to get the mark. We could keep the
 941                       // check if we create a new LoadMarkNode
 942             // but do not verify the object before its header is initialized
 943             ShouldNotReachHere();
 944           }
 945         }
 946       }
 947     }
 948   }
 949 #endif
 950 
 951   uint instr = (Assembler::ldst_op << 30)
 952              | (dst_enc        << 25)
 953              | (primary        << 19)
 954              | (src1_enc       << 14);
 955 
 956   uint index = src2_enc;
 957   int disp = disp32;
 958 
 959   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 960     disp += STACK_BIAS;
 961     // Check that stack offset fits, load into O7 if not
 962     if (!Assembler::is_simm13(disp)) {
 963       MacroAssembler _masm(&cbuf);
 964       __ set(disp, O7);
 965       if (index != R_G0_enc) {
 966         __ add(O7, reg_to_register_object(index), O7);
 967       }
 968       index = R_O7_enc;
 969       disp = 0;
 970     }
 971   }
 972 
 973   if( disp == 0 ) {
 974     // use reg-reg form
 975     // bit 13 is already zero
 976     instr |= index;
 977   } else {
 978     // use reg-imm form
 979     instr |= 0x00002000;          // set bit 13 to one
 980     instr |= disp & 0x1FFF;
 981   }
 982 
 983   cbuf.insts()->emit_int32(instr);
 984 
 985 #ifdef ASSERT
 986   if (VerifyOops) {
 987     MacroAssembler _masm(&cbuf);
 988     if (is_verified_oop_base) {
 989       __ verify_oop(reg_to_register_object(src1_enc));
 990     }
 991     if (is_verified_oop_store) {
 992       __ verify_oop(reg_to_register_object(dst_enc));
 993     }
 994     if (tmp_enc != -1) {
 995       __ mov(O7, reg_to_register_object(tmp_enc));
 996     }
 997     if (is_verified_oop_load) {
 998       __ verify_oop(reg_to_register_object(dst_enc));
 999     }
1000   }
1001 #endif
1002 }
1003 
1004 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, RelocationHolder const& rspec, bool preserve_g2 = false) {
1005   // The method which records debug information at every safepoint
1006   // expects the call to be the first instruction in the snippet as
1007   // it creates a PcDesc structure which tracks the offset of a call
1008   // from the start of the codeBlob. This offset is computed as
1009   // code_end() - code_begin() of the code which has been emitted
1010   // so far.
1011   // In this particular case we have skirted around the problem by
1012   // putting the "mov" instruction in the delay slot but the problem
1013   // may bite us again at some other point and a cleaner/generic
1014   // solution using relocations would be needed.
1015   MacroAssembler _masm(&cbuf);
1016   __ set_inst_mark();
1017 
1018   // We flush the current window just so that there is a valid stack copy
1019   // the fact that the current window becomes active again instantly is
1020   // not a problem there is nothing live in it.
1021 
1022 #ifdef ASSERT
1023   int startpos = __ offset();
1024 #endif /* ASSERT */
1025 
1026   __ call((address)entry_point, rspec);
1027 
1028   if (preserve_g2)   __ delayed()->mov(G2, L7);
1029   else __ delayed()->nop();
1030 
1031   if (preserve_g2)   __ mov(L7, G2);
1032 
1033 #ifdef ASSERT
1034   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1035 #ifdef _LP64
1036     // Trash argument dump slots.
1037     __ set(0xb0b8ac0db0b8ac0d, G1);
1038     __ mov(G1, G5);
1039     __ stx(G1, SP, STACK_BIAS + 0x80);
1040     __ stx(G1, SP, STACK_BIAS + 0x88);
1041     __ stx(G1, SP, STACK_BIAS + 0x90);
1042     __ stx(G1, SP, STACK_BIAS + 0x98);
1043     __ stx(G1, SP, STACK_BIAS + 0xA0);
1044     __ stx(G1, SP, STACK_BIAS + 0xA8);
1045 #else // _LP64
1046     // this is also a native call, so smash the first 7 stack locations,
1047     // and the various registers
1048 
1049     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1050     // while [SP+0x44..0x58] are the argument dump slots.
1051     __ set((intptr_t)0xbaadf00d, G1);
1052     __ mov(G1, G5);
1053     __ sllx(G1, 32, G1);
1054     __ or3(G1, G5, G1);
1055     __ mov(G1, G5);
1056     __ stx(G1, SP, 0x40);
1057     __ stx(G1, SP, 0x48);
1058     __ stx(G1, SP, 0x50);
1059     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1060 #endif // _LP64
1061   }
1062 #endif /*ASSERT*/
1063 }
1064 
1065 //=============================================================================
1066 // REQUIRED FUNCTIONALITY for encoding
1067 void emit_lo(CodeBuffer &cbuf, int val) {  }
1068 void emit_hi(CodeBuffer &cbuf, int val) {  }
1069 
1070 
1071 //=============================================================================
1072 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1073 
1074 int Compile::ConstantTable::calculate_table_base_offset() const {
1075   if (UseRDPCForConstantTableBase) {
1076     // The table base offset might be less but then it fits into
1077     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1078     return Assembler::min_simm13();
1079   } else {
1080     int offset = -(size() / 2);
1081     if (!Assembler::is_simm13(offset)) {
1082       offset = Assembler::min_simm13();
1083     }
1084     return offset;
1085   }
1086 }
1087 
1088 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1089 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1090   ShouldNotReachHere();
1091 }
1092 
1093 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1094   Compile* C = ra_->C;
1095   Compile::ConstantTable& constant_table = C->constant_table();
1096   MacroAssembler _masm(&cbuf);
1097 
1098   Register r = as_Register(ra_->get_encode(this));
1099   CodeSection* consts_section = __ code()->consts();
1100   int consts_size = consts_section->align_at_start(consts_section->size());
1101   assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1102 
1103   if (UseRDPCForConstantTableBase) {
1104     // For the following RDPC logic to work correctly the consts
1105     // section must be allocated right before the insts section.  This
1106     // assert checks for that.  The layout and the SECT_* constants
1107     // are defined in src/share/vm/asm/codeBuffer.hpp.
1108     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1109     int insts_offset = __ offset();
1110 
1111     // Layout:
1112     //
1113     // |----------- consts section ------------|----------- insts section -----------...
1114     // |------ constant table -----|- padding -|------------------x----
1115     //                                                            \ current PC (RDPC instruction)
1116     // |<------------- consts_size ----------->|<- insts_offset ->|
1117     //                                                            \ table base
1118     // The table base offset is later added to the load displacement
1119     // so it has to be negative.
1120     int table_base_offset = -(consts_size + insts_offset);
1121     int disp;
1122 
1123     // If the displacement from the current PC to the constant table
1124     // base fits into simm13 we set the constant table base to the
1125     // current PC.
1126     if (Assembler::is_simm13(table_base_offset)) {
1127       constant_table.set_table_base_offset(table_base_offset);
1128       disp = 0;
1129     } else {
1130       // Otherwise we set the constant table base offset to the
1131       // maximum negative displacement of load instructions to keep
1132       // the disp as small as possible:
1133       //
1134       // |<------------- consts_size ----------->|<- insts_offset ->|
1135       // |<--------- min_simm13 --------->|<-------- disp --------->|
1136       //                                  \ table base
1137       table_base_offset = Assembler::min_simm13();
1138       constant_table.set_table_base_offset(table_base_offset);
1139       disp = (consts_size + insts_offset) + table_base_offset;
1140     }
1141 
1142     __ rdpc(r);
1143 
1144     if (disp != 0) {
1145       assert(r != O7, "need temporary");
1146       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1147     }
1148   }
1149   else {
1150     // Materialize the constant table base.
1151     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1152     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1153     AddressLiteral base(baseaddr, rspec);
1154     __ set(base, r);
1155   }
1156 }
1157 
1158 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1159   if (UseRDPCForConstantTableBase) {
1160     // This is really the worst case but generally it's only 1 instruction.
1161     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1162   } else {
1163     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1164   }
1165 }
1166 
1167 #ifndef PRODUCT
1168 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1169   char reg[128];
1170   ra_->dump_register(this, reg);
1171   if (UseRDPCForConstantTableBase) {
1172     st->print("RDPC   %s\t! constant table base", reg);
1173   } else {
1174     st->print("SET    &constanttable,%s\t! constant table base", reg);
1175   }
1176 }
1177 #endif
1178 
1179 
1180 //=============================================================================
1181 
1182 #ifndef PRODUCT
1183 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1184   Compile* C = ra_->C;
1185 
1186   for (int i = 0; i < OptoPrologueNops; i++) {
1187     st->print_cr("NOP"); st->print("\t");
1188   }
1189 
1190   if( VerifyThread ) {
1191     st->print_cr("Verify_Thread"); st->print("\t");
1192   }
1193 
1194   size_t framesize = C->frame_size_in_bytes();
1195   int bangsize = C->bang_size_in_bytes();
1196 
1197   // Calls to C2R adapters often do not accept exceptional returns.
1198   // We require that their callers must bang for them.  But be careful, because
1199   // some VM calls (such as call site linkage) can use several kilobytes of
1200   // stack.  But the stack safety zone should account for that.
1201   // See bugs 4446381, 4468289, 4497237.
1202   if (C->need_stack_bang(bangsize)) {
1203     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1204   }
1205 
1206   if (Assembler::is_simm13(-framesize)) {
1207     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1208   } else {
1209     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1210     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1211     st->print   ("SAVE   R_SP,R_G3,R_SP");
1212   }
1213 
1214 }
1215 #endif
1216 
1217 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1218   Compile* C = ra_->C;
1219   MacroAssembler _masm(&cbuf);
1220 
1221   for (int i = 0; i < OptoPrologueNops; i++) {
1222     __ nop();
1223   }
1224 
1225   __ verify_thread();
1226 
1227   size_t framesize = C->frame_size_in_bytes();
1228   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1229   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1230   int bangsize = C->bang_size_in_bytes();
1231 
1232   // Calls to C2R adapters often do not accept exceptional returns.
1233   // We require that their callers must bang for them.  But be careful, because
1234   // some VM calls (such as call site linkage) can use several kilobytes of
1235   // stack.  But the stack safety zone should account for that.
1236   // See bugs 4446381, 4468289, 4497237.
1237   if (C->need_stack_bang(bangsize)) {
1238     __ generate_stack_overflow_check(bangsize);
1239   }
1240 
1241   if (Assembler::is_simm13(-framesize)) {
1242     __ save(SP, -framesize, SP);
1243   } else {
1244     __ sethi(-framesize & ~0x3ff, G3);
1245     __ add(G3, -framesize & 0x3ff, G3);
1246     __ save(SP, G3, SP);
1247   }
1248   C->set_frame_complete( __ offset() );
1249 
1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1251     // NOTE: We set the table base offset here because users might be
1252     // emitted before MachConstantBaseNode.
1253     Compile::ConstantTable& constant_table = C->constant_table();
1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1255   }
1256 }
1257 
1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachPrologNode::reloc() const {
1263   return 10; // a large enough number
1264 }
1265 
1266 //=============================================================================
1267 #ifndef PRODUCT
1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1269   Compile* C = ra_->C;
1270 
1271   if(do_polling() && ra_->C->is_method_compilation()) {
1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1273 #ifdef _LP64
1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1275 #else
1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1277 #endif
1278   }
1279 
1280   if(do_polling()) {
1281     if (UseCBCond && !ra_->C->is_method_compilation()) {
1282       st->print("NOP\n\t");
1283     }
1284     st->print("RET\n\t");
1285   }
1286 
1287   st->print("RESTORE");
1288 }
1289 #endif
1290 
1291 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1292   MacroAssembler _masm(&cbuf);
1293   Compile* C = ra_->C;
1294 
1295   __ verify_thread();
1296 
1297   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1298     __ reserved_stack_check();
1299   }
1300 
1301   // If this does safepoint polling, then do it here
1302   if(do_polling() && ra_->C->is_method_compilation()) {
1303     AddressLiteral polling_page(os::get_polling_page());
1304     __ sethi(polling_page, L0);
1305     __ relocate(relocInfo::poll_return_type);
1306     __ ld_ptr(L0, 0, G0);
1307   }
1308 
1309   // If this is a return, then stuff the restore in the delay slot
1310   if(do_polling()) {
1311     if (UseCBCond && !ra_->C->is_method_compilation()) {
1312       // Insert extra padding for the case when the epilogue is preceded by
1313       // a cbcond jump, which can't be followed by a CTI instruction
1314       __ nop();
1315     }
1316     __ ret();
1317     __ delayed()->restore();
1318   } else {
1319     __ restore();
1320   }
1321 }
1322 
1323 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1324   return MachNode::size(ra_);
1325 }
1326 
1327 int MachEpilogNode::reloc() const {
1328   return 16; // a large enough number
1329 }
1330 
1331 const Pipeline * MachEpilogNode::pipeline() const {
1332   return MachNode::pipeline_class();
1333 }
1334 
1335 int MachEpilogNode::safepoint_offset() const {
1336   assert( do_polling(), "no return for this epilog node");
1337   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1338 }
1339 
1340 //=============================================================================
1341 
1342 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1343 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1344 static enum RC rc_class( OptoReg::Name reg ) {
1345   if (!OptoReg::is_valid(reg)) return rc_bad;
1346   if (OptoReg::is_stack(reg)) return rc_stack;
1347   VMReg r = OptoReg::as_VMReg(reg);
1348   if (r->is_Register()) return rc_int;
1349   assert(r->is_FloatRegister(), "must be");
1350   return rc_float;
1351 }
1352 
1353 #ifndef PRODUCT
1354 ATTRIBUTE_PRINTF(2, 3)
1355 static void print_helper(outputStream* st, const char* format, ...) {
1356   if (st->position() > 0) {
1357     st->cr();
1358     st->sp();
1359   }
1360   va_list ap;
1361   va_start(ap, format);
1362   st->vprint(format, ap);
1363   va_end(ap);
1364 }
1365 #endif // !PRODUCT
1366 
1367 static void impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool is_load, int offset, int reg, int opcode, const char *op_str, outputStream* st) {
1368   if (cbuf) {
1369     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1370   }
1371 #ifndef PRODUCT
1372   else {
1373     if (is_load) {
1374       print_helper(st, "%s   [R_SP + #%d],R_%s\t! spill", op_str, offset, OptoReg::regname(reg));
1375     } else {
1376       print_helper(st, "%s   R_%s,[R_SP + #%d]\t! spill", op_str, OptoReg::regname(reg), offset);
1377     }
1378   }
1379 #endif
1380 }
1381 
1382 static void impl_mov_helper(CodeBuffer *cbuf, int src, int dst, int op1, int op2, const char *op_str, outputStream* st) {
1383   if (cbuf) {
1384     emit3(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src]);
1385   }
1386 #ifndef PRODUCT
1387   else {
1388     print_helper(st, "%s  R_%s,R_%s\t! spill", op_str, OptoReg::regname(src), OptoReg::regname(dst));
1389   }
1390 #endif
1391 }
1392 
1393 static void mach_spill_copy_implementation_helper(const MachNode* mach,
1394                                                   CodeBuffer *cbuf,
1395                                                   PhaseRegAlloc *ra_,
1396                                                   outputStream* st) {
1397   // Get registers to move
1398   OptoReg::Name src_second = ra_->get_reg_second(mach->in(1));
1399   OptoReg::Name src_first  = ra_->get_reg_first(mach->in(1));
1400   OptoReg::Name dst_second = ra_->get_reg_second(mach);
1401   OptoReg::Name dst_first  = ra_->get_reg_first(mach);
1402 
1403   enum RC src_second_rc = rc_class(src_second);
1404   enum RC src_first_rc  = rc_class(src_first);
1405   enum RC dst_second_rc = rc_class(dst_second);
1406   enum RC dst_first_rc  = rc_class(dst_first);
1407 
1408   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register");
1409 
1410   if (src_first == dst_first && src_second == dst_second) {
1411     return; // Self copy, no move
1412   }
1413 
1414   // --------------------------------------
1415   // Check for mem-mem move.  Load into unused float registers and fall into
1416   // the float-store case.
1417   if (src_first_rc == rc_stack && dst_first_rc == rc_stack) {
1418     int offset = ra_->reg2offset(src_first);
1419     // Further check for aligned-adjacent pair, so we can use a double load
1420     if ((src_first&1) == 0 && src_first+1 == src_second) {
1421       src_second    = OptoReg::Name(R_F31_num);
1422       src_second_rc = rc_float;
1423       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::lddf_op3, "LDDF", st);
1424     } else {
1425       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::ldf_op3, "LDF ", st);
1426     }
1427     src_first    = OptoReg::Name(R_F30_num);
1428     src_first_rc = rc_float;
1429   }
1430 
1431   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1432     int offset = ra_->reg2offset(src_second);
1433     impl_helper(mach, cbuf, ra_, true, offset, R_F31_num, Assembler::ldf_op3, "LDF ", st);
1434     src_second    = OptoReg::Name(R_F31_num);
1435     src_second_rc = rc_float;
1436   }
1437 
1438   // --------------------------------------
1439   // Check for float->int copy; requires a trip through memory
1440   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1441     int offset = frame::register_save_words*wordSize;
1442     if (cbuf) {
1443       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16);
1444       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1445       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1446       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16);
1447     }
1448 #ifndef PRODUCT
1449     else {
1450       print_helper(st, "SUB    R_SP,16,R_SP");
1451       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1452       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1453       print_helper(st, "ADD    R_SP,16,R_SP");
1454     }
1455 #endif
1456   }
1457 
1458   // Check for float->int copy on T4
1459   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1460     // Further check for aligned-adjacent pair, so we can use a double move
1461     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1462       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mdtox_opf, "MOVDTOX", st);
1463       return;
1464     }
1465     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mstouw_opf, "MOVSTOUW", st);
1466   }
1467   // Check for int->float copy on T4
1468   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1469     // Further check for aligned-adjacent pair, so we can use a double move
1470     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1471       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mxtod_opf, "MOVXTOD", st);
1472       return;
1473     }
1474     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mwtos_opf, "MOVWTOS", st);
1475   }
1476 
1477   // --------------------------------------
1478   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1479   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1480   // hardware does the flop for me.  Doubles are always aligned, so no problem
1481   // there.  Misaligned sources only come from native-long-returns (handled
1482   // special below).
1483 #ifndef _LP64
1484   if (src_first_rc == rc_int &&     // source is already big-endian
1485       src_second_rc != rc_bad &&    // 64-bit move
1486       ((dst_first & 1) != 0 || dst_second != dst_first + 1)) { // misaligned dst
1487     assert((src_first & 1) == 0 && src_second == src_first + 1, "source must be aligned");
1488     // Do the big-endian flop.
1489     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1490     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1491   }
1492 #endif
1493 
1494   // --------------------------------------
1495   // Check for integer reg-reg copy
1496   if (src_first_rc == rc_int && dst_first_rc == rc_int) {
1497 #ifndef _LP64
1498     if (src_first == R_O0_num && src_second == R_O1_num) {  // Check for the evil O0/O1 native long-return case
1499       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1500       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1501       //       operand contains the least significant word of the 64-bit value and vice versa.
1502       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1503       assert((dst_first & 1) == 0 && dst_second == dst_first + 1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1504       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1505       if ( cbuf ) {
1506         emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020);
1507         emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000);
1508         emit3       (*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second]);
1509 #ifndef PRODUCT
1510       } else {
1511         print_helper(st, "SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1512         print_helper(st, "SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1513         print_helper(st, "OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1514 #endif
1515       }
1516       return;
1517     } else if (dst_first == R_I0_num && dst_second == R_I1_num) {
1518       // returning a long value in I0/I1
1519       // a SpillCopy must be able to target a return instruction's reg_class
1520       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1521       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1522       //       operand contains the least significant word of the 64-bit value and vice versa.
1523       OptoReg::Name tdest = dst_first;
1524 
1525       if (src_first == dst_first) {
1526         tdest = OptoReg::Name(R_O7_num);
1527       }
1528 
1529       if (cbuf) {
1530         assert((src_first & 1) == 0 && (src_first + 1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1531         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1532         // ShrL_reg_imm6
1533         emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000);
1534         // ShrR_reg_imm6  src, 0, dst
1535         emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000);
1536         if (tdest != dst_first) {
1537           emit3     (*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest]);
1538         }
1539       }
1540 #ifndef PRODUCT
1541       else {
1542         print_helper(st, "SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1543         print_helper(st, "SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1544         if (tdest != dst_first) {
1545           print_helper(st, "MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1546         }
1547       }
1548 #endif // PRODUCT
1549       return size+8;
1550     }
1551 #endif // !_LP64
1552     // Else normal reg-reg copy
1553     assert(src_second != dst_first, "smashed second before evacuating it");
1554     impl_mov_helper(cbuf, src_first, dst_first, Assembler::or_op3, 0, "MOV  ", st);
1555     assert((src_first & 1) == 0 && (dst_first & 1) == 0, "never move second-halves of int registers");
1556     // This moves an aligned adjacent pair.
1557     // See if we are done.
1558     if (src_first + 1 == src_second && dst_first + 1 == dst_second) {
1559       return;
1560     }
1561   }
1562 
1563   // Check for integer store
1564   if (src_first_rc == rc_int && dst_first_rc == rc_stack) {
1565     int offset = ra_->reg2offset(dst_first);
1566     // Further check for aligned-adjacent pair, so we can use a double store
1567     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1568       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stx_op3, "STX ", st);
1569       return;
1570     }
1571     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stw_op3, "STW ", st);
1572   }
1573 
1574   // Check for integer load
1575   if (dst_first_rc == rc_int && src_first_rc == rc_stack) {
1576     int offset = ra_->reg2offset(src_first);
1577     // Further check for aligned-adjacent pair, so we can use a double load
1578     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1579       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldx_op3, "LDX ", st);
1580       return;
1581     }
1582     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1583   }
1584 
1585   // Check for float reg-reg copy
1586   if (src_first_rc == rc_float && dst_first_rc == rc_float) {
1587     // Further check for aligned-adjacent pair, so we can use a double move
1588     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1589       impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovd_opf, "FMOVD", st);
1590       return;
1591     }
1592     impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovs_opf, "FMOVS", st);
1593   }
1594 
1595   // Check for float store
1596   if (src_first_rc == rc_float && dst_first_rc == rc_stack) {
1597     int offset = ra_->reg2offset(dst_first);
1598     // Further check for aligned-adjacent pair, so we can use a double store
1599     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1600       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stdf_op3, "STDF", st);
1601       return;
1602     }
1603     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
1604   }
1605 
1606   // Check for float load
1607   if (dst_first_rc == rc_float && src_first_rc == rc_stack) {
1608     int offset = ra_->reg2offset(src_first);
1609     // Further check for aligned-adjacent pair, so we can use a double load
1610     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1611       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lddf_op3, "LDDF", st);
1612       return;
1613     }
1614     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldf_op3, "LDF ", st);
1615   }
1616 
1617   // --------------------------------------------------------------------
1618   // Check for hi bits still needing moving.  Only happens for misaligned
1619   // arguments to native calls.
1620   if (src_second == dst_second) {
1621     return; // Self copy; no move
1622   }
1623   assert(src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad");
1624 
1625 #ifndef _LP64
1626   // In the LP64 build, all registers can be moved as aligned/adjacent
1627   // pairs, so there's never any need to move the high bits separately.
1628   // The 32-bit builds have to deal with the 32-bit ABI which can force
1629   // all sorts of silly alignment problems.
1630 
1631   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1632   // 32-bits of a 64-bit register, but are needed in low bits of another
1633   // register (else it's a hi-bits-to-hi-bits copy which should have
1634   // happened already as part of a 64-bit move)
1635   if (src_second_rc == rc_int && dst_second_rc == rc_int) {
1636     assert((src_second & 1) == 1, "its the evil O0/O1 native return case");
1637     assert((dst_second & 1) == 0, "should have moved with 1 64-bit move");
1638     // Shift src_second down to dst_second's low bits.
1639     if (cbuf) {
1640       emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020);
1641 #ifndef PRODUCT
1642     } else  {
1643       print_helper(st, "SRLX   R_%s,32,R_%s\t! spill: Move high bits down low", OptoReg::regname(src_second - 1), OptoReg::regname(dst_second));
1644 #endif
1645     }
1646     return;
1647   }
1648 
1649   // Check for high word integer store.  Must down-shift the hi bits
1650   // into a temp register, then fall into the case of storing int bits.
1651   if (src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second & 1) == 1) {
1652     // Shift src_second down to dst_second's low bits.
1653     if (cbuf) {
1654       emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020);
1655 #ifndef PRODUCT
1656     } else {
1657       print_helper(st, "SRLX   R_%s,32,R_%s\t! spill: Move high bits down low", OptoReg::regname(src_second-1), OptoReg::regname(R_O7_num));
1658 #endif
1659     }
1660     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1661   }
1662 
1663   // Check for high word integer load
1664   if (dst_second_rc == rc_int && src_second_rc == rc_stack)
1665     return impl_helper(this, cbuf, ra_, true, ra_->reg2offset(src_second), dst_second, Assembler::lduw_op3, "LDUW", size, st);
1666 
1667   // Check for high word integer store
1668   if (src_second_rc == rc_int && dst_second_rc == rc_stack)
1669     return impl_helper(this, cbuf, ra_, false, ra_->reg2offset(dst_second), src_second, Assembler::stw_op3, "STW ", size, st);
1670 
1671   // Check for high word float store
1672   if (src_second_rc == rc_float && dst_second_rc == rc_stack)
1673     return impl_helper(this, cbuf, ra_, false, ra_->reg2offset(dst_second), src_second, Assembler::stf_op3, "STF ", size, st);
1674 
1675 #endif // !_LP64
1676 
1677   Unimplemented();
1678 }
1679 
1680 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf,
1681                                        PhaseRegAlloc *ra_,
1682                                        bool do_size,
1683                                        outputStream* st) const {
1684   assert(!do_size, "not supported");
1685   mach_spill_copy_implementation_helper(this, cbuf, ra_, st);
1686   return 0;
1687 }
1688 
1689 #ifndef PRODUCT
1690 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1691   implementation( NULL, ra_, false, st );
1692 }
1693 #endif
1694 
1695 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1696   implementation( &cbuf, ra_, false, NULL );
1697 }
1698 
1699 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1700   return MachNode::size(ra_);
1701 }
1702 
1703 //=============================================================================
1704 #ifndef PRODUCT
1705 void MachNopNode::format(PhaseRegAlloc *, outputStream *st) const {
1706   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1707 }
1708 #endif
1709 
1710 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1711   MacroAssembler _masm(&cbuf);
1712   for (int i = 0; i < _count; i += 1) {
1713     __ nop();
1714   }
1715 }
1716 
1717 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1718   return 4 * _count;
1719 }
1720 
1721 
1722 //=============================================================================
1723 #ifndef PRODUCT
1724 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1725   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1726   int reg = ra_->get_reg_first(this);
1727   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1728 }
1729 #endif
1730 
1731 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1732   MacroAssembler _masm(&cbuf);
1733   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1734   int reg = ra_->get_encode(this);
1735 
1736   if (Assembler::is_simm13(offset)) {
1737      __ add(SP, offset, reg_to_register_object(reg));
1738   } else {
1739      __ set(offset, O7);
1740      __ add(SP, O7, reg_to_register_object(reg));
1741   }
1742 }
1743 
1744 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1745   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1746   assert(ra_ == ra_->C->regalloc(), "sanity");
1747   return ra_->C->scratch_emit_size(this);
1748 }
1749 
1750 //=============================================================================
1751 #ifndef PRODUCT
1752 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1753   st->print_cr("\nUEP:");
1754 #ifdef    _LP64
1755   if (UseCompressedClassPointers) {
1756     assert(Universe::heap() != NULL, "java heap should be initialized");
1757     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1758     if (Universe::narrow_klass_base() != 0) {
1759       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1760       if (Universe::narrow_klass_shift() != 0) {
1761         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1762       }
1763       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1764       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1765     } else {
1766       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1767     }
1768   } else {
1769     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1770   }
1771   st->print_cr("\tCMP    R_G5,R_G3" );
1772   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1773 #else  // _LP64
1774   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1775   st->print_cr("\tCMP    R_G5,R_G3" );
1776   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1777 #endif // _LP64
1778 }
1779 #endif
1780 
1781 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1782   MacroAssembler _masm(&cbuf);
1783   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1784   Register temp_reg   = G3;
1785   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1786 
1787   // Load klass from receiver
1788   __ load_klass(O0, temp_reg);
1789   // Compare against expected klass
1790   __ cmp(temp_reg, G5_ic_reg);
1791   // Branch to miss code, checks xcc or icc depending
1792   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1793 }
1794 
1795 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1796   return MachNode::size(ra_);
1797 }
1798 
1799 
1800 //=============================================================================
1801 
1802 
1803 // Emit exception handler code.
1804 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1805   Register temp_reg = G3;
1806   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1807   MacroAssembler _masm(&cbuf);
1808 
1809   address base = __ start_a_stub(size_exception_handler());
1810   if (base == NULL) {
1811     ciEnv::current()->record_failure("CodeCache is full");
1812     return 0;  // CodeBuffer::expand failed
1813   }
1814 
1815   int offset = __ offset();
1816 
1817   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1818   __ delayed()->nop();
1819 
1820   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1821 
1822   __ end_a_stub();
1823 
1824   return offset;
1825 }
1826 
1827 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1828   // Can't use any of the current frame's registers as we may have deopted
1829   // at a poll and everything (including G3) can be live.
1830   Register temp_reg = L0;
1831   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1832   MacroAssembler _masm(&cbuf);
1833 
1834   address base = __ start_a_stub(size_deopt_handler());
1835   if (base == NULL) {
1836     ciEnv::current()->record_failure("CodeCache is full");
1837     return 0;  // CodeBuffer::expand failed
1838   }
1839 
1840   int offset = __ offset();
1841   __ save_frame(0);
1842   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1843   __ delayed()->restore();
1844 
1845   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1846 
1847   __ end_a_stub();
1848   return offset;
1849 
1850 }
1851 
1852 // Given a register encoding, produce a Integer Register object
1853 static Register reg_to_register_object(int register_encoding) {
1854   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1855   return as_Register(register_encoding);
1856 }
1857 
1858 // Given a register encoding, produce a single-precision Float Register object
1859 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1860   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1861   return as_SingleFloatRegister(register_encoding);
1862 }
1863 
1864 // Given a register encoding, produce a double-precision Float Register object
1865 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1866   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1867   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1868   return as_DoubleFloatRegister(register_encoding);
1869 }
1870 
1871 const bool Matcher::match_rule_supported(int opcode) {
1872   if (!has_match_rule(opcode))
1873     return false;
1874 
1875   switch (opcode) {
1876   case Op_CountLeadingZerosI:
1877   case Op_CountLeadingZerosL:
1878   case Op_CountTrailingZerosI:
1879   case Op_CountTrailingZerosL:
1880   case Op_PopCountI:
1881   case Op_PopCountL:
1882     if (!UsePopCountInstruction)
1883       return false;
1884   case Op_CompareAndSwapL:
1885 #ifdef _LP64
1886   case Op_CompareAndSwapP:
1887 #endif
1888     if (!VM_Version::supports_cx8())
1889       return false;
1890     break;
1891   }
1892 
1893   return true;  // Per default match rules are supported.
1894 }
1895 
1896 const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
1897 
1898   // TODO
1899   // identify extra cases that we might want to provide match rules for
1900   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
1901   bool ret_value = match_rule_supported(opcode);
1902   // Add rules here.
1903 
1904   return ret_value;  // Per default match rules are supported.
1905 }
1906 
1907 const int Matcher::float_pressure(int default_pressure_threshold) {
1908   return default_pressure_threshold;
1909 }
1910 
1911 int Matcher::regnum_to_fpu_offset(int regnum) {
1912   return regnum - 32; // The FP registers are in the second chunk
1913 }
1914 
1915 #ifdef ASSERT
1916 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1917 #endif
1918 
1919 // Vector width in bytes
1920 const int Matcher::vector_width_in_bytes(BasicType bt) {
1921   assert(MaxVectorSize == 8, "");
1922   return 8;
1923 }
1924 
1925 // Vector ideal reg
1926 const int Matcher::vector_ideal_reg(int size) {
1927   assert(MaxVectorSize == 8, "");
1928   return Op_RegD;
1929 }
1930 
1931 const int Matcher::vector_shift_count_ideal_reg(int size) {
1932   fatal("vector shift is not supported");
1933   return Node::NotAMachineReg;
1934 }
1935 
1936 // Limits on vector size (number of elements) loaded into vector.
1937 const int Matcher::max_vector_size(const BasicType bt) {
1938   assert(is_java_primitive(bt), "only primitive type vectors");
1939   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1940 }
1941 
1942 const int Matcher::min_vector_size(const BasicType bt) {
1943   return max_vector_size(bt); // Same as max.
1944 }
1945 
1946 // SPARC doesn't support misaligned vectors store/load.
1947 const bool Matcher::misaligned_vectors_ok() {
1948   return false;
1949 }
1950 
1951 // Current (2013) SPARC platforms need to read original key
1952 // to construct decryption expanded key
1953 const bool Matcher::pass_original_key_for_aes() {
1954   return true;
1955 }
1956 
1957 // USII supports fxtof through the whole range of number, USIII doesn't
1958 const bool Matcher::convL2FSupported(void) {
1959   return VM_Version::has_fast_fxtof();
1960 }
1961 
1962 // Is this branch offset short enough that a short branch can be used?
1963 //
1964 // NOTE: If the platform does not provide any short branch variants, then
1965 //       this method should return false for offset 0.
1966 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1967   // The passed offset is relative to address of the branch.
1968   // Don't need to adjust the offset.
1969   return UseCBCond && Assembler::is_simm12(offset);
1970 }
1971 
1972 const bool Matcher::isSimpleConstant64(jlong value) {
1973   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1974   // Depends on optimizations in MacroAssembler::setx.
1975   int hi = (int)(value >> 32);
1976   int lo = (int)(value & ~0);
1977   return (hi == 0) || (hi == -1) || (lo == 0);
1978 }
1979 
1980 // No scaling for the parameter the ClearArray node.
1981 const bool Matcher::init_array_count_is_in_bytes = true;
1982 
1983 // No additional cost for CMOVL.
1984 const int Matcher::long_cmove_cost() { return 0; }
1985 
1986 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1987 const int Matcher::float_cmove_cost() {
1988   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1989 }
1990 
1991 // Does the CPU require late expand (see block.cpp for description of late expand)?
1992 const bool Matcher::require_postalloc_expand = false;
1993 
1994 // Should the Matcher clone shifts on addressing modes, expecting them to
1995 // be subsumed into complex addressing expressions or compute them into
1996 // registers?  True for Intel but false for most RISCs
1997 const bool Matcher::clone_shift_expressions = false;
1998 
1999 // Do we need to mask the count passed to shift instructions or does
2000 // the cpu only look at the lower 5/6 bits anyway?
2001 const bool Matcher::need_masked_shift_count = false;
2002 
2003 bool Matcher::narrow_oop_use_complex_address() {
2004   NOT_LP64(ShouldNotCallThis());
2005   assert(UseCompressedOops, "only for compressed oops code");
2006   return false;
2007 }
2008 
2009 bool Matcher::narrow_klass_use_complex_address() {
2010   NOT_LP64(ShouldNotCallThis());
2011   assert(UseCompressedClassPointers, "only for compressed klass code");
2012   return false;
2013 }
2014 
2015 // Is it better to copy float constants, or load them directly from memory?
2016 // Intel can load a float constant from a direct address, requiring no
2017 // extra registers.  Most RISCs will have to materialize an address into a
2018 // register first, so they would do better to copy the constant from stack.
2019 const bool Matcher::rematerialize_float_constants = false;
2020 
2021 // If CPU can load and store mis-aligned doubles directly then no fixup is
2022 // needed.  Else we split the double into 2 integer pieces and move it
2023 // piece-by-piece.  Only happens when passing doubles into C code as the
2024 // Java calling convention forces doubles to be aligned.
2025 #ifdef _LP64
2026 const bool Matcher::misaligned_doubles_ok = true;
2027 #else
2028 const bool Matcher::misaligned_doubles_ok = false;
2029 #endif
2030 
2031 // No-op on SPARC.
2032 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2033 }
2034 
2035 // Advertise here if the CPU requires explicit rounding operations
2036 // to implement the UseStrictFP mode.
2037 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2038 
2039 // Are floats converted to double when stored to stack during deoptimization?
2040 // Sparc does not handle callee-save floats.
2041 bool Matcher::float_in_double() { return false; }
2042 
2043 // Do ints take an entire long register or just half?
2044 // Note that we if-def off of _LP64.
2045 // The relevant question is how the int is callee-saved.  In _LP64
2046 // the whole long is written but de-opt'ing will have to extract
2047 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
2048 #ifdef _LP64
2049 const bool Matcher::int_in_long = true;
2050 #else
2051 const bool Matcher::int_in_long = false;
2052 #endif
2053 
2054 // Return whether or not this register is ever used as an argument.  This
2055 // function is used on startup to build the trampoline stubs in generateOptoStub.
2056 // Registers not mentioned will be killed by the VM call in the trampoline, and
2057 // arguments in those registers not be available to the callee.
2058 bool Matcher::can_be_java_arg( int reg ) {
2059   // Standard sparc 6 args in registers
2060   if( reg == R_I0_num ||
2061       reg == R_I1_num ||
2062       reg == R_I2_num ||
2063       reg == R_I3_num ||
2064       reg == R_I4_num ||
2065       reg == R_I5_num ) return true;
2066 #ifdef _LP64
2067   // 64-bit builds can pass 64-bit pointers and longs in
2068   // the high I registers
2069   if( reg == R_I0H_num ||
2070       reg == R_I1H_num ||
2071       reg == R_I2H_num ||
2072       reg == R_I3H_num ||
2073       reg == R_I4H_num ||
2074       reg == R_I5H_num ) return true;
2075 
2076   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2077     return true;
2078   }
2079 
2080 #else
2081   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2082   // Longs cannot be passed in O regs, because O regs become I regs
2083   // after a 'save' and I regs get their high bits chopped off on
2084   // interrupt.
2085   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2086   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2087 #endif
2088   // A few float args in registers
2089   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2090 
2091   return false;
2092 }
2093 
2094 bool Matcher::is_spillable_arg( int reg ) {
2095   return can_be_java_arg(reg);
2096 }
2097 
2098 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2099   // Use hardware SDIVX instruction when it is
2100   // faster than a code which use multiply.
2101   return VM_Version::has_fast_idiv();
2102 }
2103 
2104 // Register for DIVI projection of divmodI
2105 RegMask Matcher::divI_proj_mask() {
2106   ShouldNotReachHere();
2107   return RegMask();
2108 }
2109 
2110 // Register for MODI projection of divmodI
2111 RegMask Matcher::modI_proj_mask() {
2112   ShouldNotReachHere();
2113   return RegMask();
2114 }
2115 
2116 // Register for DIVL projection of divmodL
2117 RegMask Matcher::divL_proj_mask() {
2118   ShouldNotReachHere();
2119   return RegMask();
2120 }
2121 
2122 // Register for MODL projection of divmodL
2123 RegMask Matcher::modL_proj_mask() {
2124   ShouldNotReachHere();
2125   return RegMask();
2126 }
2127 
2128 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2129   return L7_REGP_mask();
2130 }
2131 
2132 %}
2133 
2134 
2135 // The intptr_t operand types, defined by textual substitution.
2136 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2137 #ifdef _LP64
2138 #define immX      immL
2139 #define immX13    immL13
2140 #define immX13m7  immL13m7
2141 #define iRegX     iRegL
2142 #define g1RegX    g1RegL
2143 #else
2144 #define immX      immI
2145 #define immX13    immI13
2146 #define immX13m7  immI13m7
2147 #define iRegX     iRegI
2148 #define g1RegX    g1RegI
2149 #endif
2150 
2151 //----------ENCODING BLOCK-----------------------------------------------------
2152 // This block specifies the encoding classes used by the compiler to output
2153 // byte streams.  Encoding classes are parameterized macros used by
2154 // Machine Instruction Nodes in order to generate the bit encoding of the
2155 // instruction.  Operands specify their base encoding interface with the
2156 // interface keyword.  There are currently supported four interfaces,
2157 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2158 // operand to generate a function which returns its register number when
2159 // queried.   CONST_INTER causes an operand to generate a function which
2160 // returns the value of the constant when queried.  MEMORY_INTER causes an
2161 // operand to generate four functions which return the Base Register, the
2162 // Index Register, the Scale Value, and the Offset Value of the operand when
2163 // queried.  COND_INTER causes an operand to generate six functions which
2164 // return the encoding code (ie - encoding bits for the instruction)
2165 // associated with each basic boolean condition for a conditional instruction.
2166 //
2167 // Instructions specify two basic values for encoding.  Again, a function
2168 // is available to check if the constant displacement is an oop. They use the
2169 // ins_encode keyword to specify their encoding classes (which must be
2170 // a sequence of enc_class names, and their parameters, specified in
2171 // the encoding block), and they use the
2172 // opcode keyword to specify, in order, their primary, secondary, and
2173 // tertiary opcode.  Only the opcode sections which a particular instruction
2174 // needs for encoding need to be specified.
2175 encode %{
2176   enc_class enc_untested %{
2177 #ifdef ASSERT
2178     MacroAssembler _masm(&cbuf);
2179     __ untested("encoding");
2180 #endif
2181   %}
2182 
2183   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2184     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2185                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2186   %}
2187 
2188   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2189     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2190                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2191   %}
2192 
2193   enc_class form3_mem_prefetch_read( memory mem ) %{
2194     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2195                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2196   %}
2197 
2198   enc_class form3_mem_prefetch_write( memory mem ) %{
2199     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2200                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2201   %}
2202 
2203   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2204     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2205     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2206     guarantee($mem$$index == R_G0_enc, "double index?");
2207     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2208     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2209     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2210     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2211   %}
2212 
2213   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2214     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2215     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2216     guarantee($mem$$index == R_G0_enc, "double index?");
2217     // Load long with 2 instructions
2218     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2219     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2220   %}
2221 
2222   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2223   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2224     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2225     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2226   %}
2227 
2228   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2229     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2230     if( $rs2$$reg != $rd$$reg )
2231       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2232   %}
2233 
2234   // Target lo half of long
2235   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2236     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2237     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2238       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2239   %}
2240 
2241   // Source lo half of long
2242   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2243     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2244     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2245       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2246   %}
2247 
2248   // Target hi half of long
2249   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2250     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2251   %}
2252 
2253   // Source lo half of long, and leave it sign extended.
2254   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2255     // Sign extend low half
2256     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2257   %}
2258 
2259   // Source hi half of long, and leave it sign extended.
2260   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2261     // Shift high half to low half
2262     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2263   %}
2264 
2265   // Source hi half of long
2266   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2267     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2268     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2269       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2270   %}
2271 
2272   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2273     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2274   %}
2275 
2276   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2277     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2278     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2279   %}
2280 
2281   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2282     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2283     // clear if nothing else is happening
2284     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2285     // blt,a,pn done
2286     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2287     // mov dst,-1 in delay slot
2288     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2289   %}
2290 
2291   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2292     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2293   %}
2294 
2295   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2296     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2297   %}
2298 
2299   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2300     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2301   %}
2302 
2303   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2304     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2305   %}
2306 
2307   enc_class move_return_pc_to_o1() %{
2308     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2309   %}
2310 
2311 #ifdef _LP64
2312   /* %%% merge with enc_to_bool */
2313   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2314     MacroAssembler _masm(&cbuf);
2315 
2316     Register   src_reg = reg_to_register_object($src$$reg);
2317     Register   dst_reg = reg_to_register_object($dst$$reg);
2318     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2319   %}
2320 #endif
2321 
2322   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2323     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2324     MacroAssembler _masm(&cbuf);
2325 
2326     Register   p_reg = reg_to_register_object($p$$reg);
2327     Register   q_reg = reg_to_register_object($q$$reg);
2328     Register   y_reg = reg_to_register_object($y$$reg);
2329     Register tmp_reg = reg_to_register_object($tmp$$reg);
2330 
2331     __ subcc( p_reg, q_reg,   p_reg );
2332     __ add  ( p_reg, y_reg, tmp_reg );
2333     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2334   %}
2335 
2336   enc_class form_d2i_helper(regD src, regF dst) %{
2337     // fcmp %fcc0,$src,$src
2338     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2339     // branch %fcc0 not-nan, predict taken
2340     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2341     // fdtoi $src,$dst
2342     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2343     // fitos $dst,$dst (if nan)
2344     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2345     // clear $dst (if nan)
2346     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2347     // carry on here...
2348   %}
2349 
2350   enc_class form_d2l_helper(regD src, regD dst) %{
2351     // fcmp %fcc0,$src,$src  check for NAN
2352     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2353     // branch %fcc0 not-nan, predict taken
2354     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2355     // fdtox $src,$dst   convert in delay slot
2356     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2357     // fxtod $dst,$dst  (if nan)
2358     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2359     // clear $dst (if nan)
2360     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2361     // carry on here...
2362   %}
2363 
2364   enc_class form_f2i_helper(regF src, regF dst) %{
2365     // fcmps %fcc0,$src,$src
2366     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2367     // branch %fcc0 not-nan, predict taken
2368     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2369     // fstoi $src,$dst
2370     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2371     // fitos $dst,$dst (if nan)
2372     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2373     // clear $dst (if nan)
2374     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2375     // carry on here...
2376   %}
2377 
2378   enc_class form_f2l_helper(regF src, regD dst) %{
2379     // fcmps %fcc0,$src,$src
2380     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2381     // branch %fcc0 not-nan, predict taken
2382     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2383     // fstox $src,$dst
2384     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2385     // fxtod $dst,$dst (if nan)
2386     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2387     // clear $dst (if nan)
2388     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2389     // carry on here...
2390   %}
2391 
2392   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2393   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2394   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2395   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2396 
2397   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2398 
2399   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2400   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2401 
2402   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2403     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2404   %}
2405 
2406   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2407     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2408   %}
2409 
2410   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2411     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2412   %}
2413 
2414   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2415     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2416   %}
2417 
2418   enc_class form3_convI2F(regF rs2, regF rd) %{
2419     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2420   %}
2421 
2422   // Encloding class for traceable jumps
2423   enc_class form_jmpl(g3RegP dest) %{
2424     emit_jmpl(cbuf, $dest$$reg);
2425   %}
2426 
2427   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2428     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2429   %}
2430 
2431   enc_class form2_nop() %{
2432     emit_nop(cbuf);
2433   %}
2434 
2435   enc_class form2_illtrap() %{
2436     emit_illtrap(cbuf);
2437   %}
2438 
2439 
2440   // Compare longs and convert into -1, 0, 1.
2441   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2442     // CMP $src1,$src2
2443     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2444     // blt,a,pn done
2445     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2446     // mov dst,-1 in delay slot
2447     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2448     // bgt,a,pn done
2449     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2450     // mov dst,1 in delay slot
2451     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2452     // CLR    $dst
2453     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2454   %}
2455 
2456   enc_class enc_PartialSubtypeCheck() %{
2457     MacroAssembler _masm(&cbuf);
2458     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2459     __ delayed()->nop();
2460   %}
2461 
2462   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2463     MacroAssembler _masm(&cbuf);
2464     Label* L = $labl$$label;
2465     Assembler::Predict predict_taken =
2466       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2467 
2468     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2469     __ delayed()->nop();
2470   %}
2471 
2472   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2473     MacroAssembler _masm(&cbuf);
2474     Label* L = $labl$$label;
2475     Assembler::Predict predict_taken =
2476       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2477 
2478     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2479     __ delayed()->nop();
2480   %}
2481 
2482   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2483     int op = (Assembler::arith_op << 30) |
2484              ($dst$$reg << 25) |
2485              (Assembler::movcc_op3 << 19) |
2486              (1 << 18) |                    // cc2 bit for 'icc'
2487              ($cmp$$cmpcode << 14) |
2488              (0 << 13) |                    // select register move
2489              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2490              ($src$$reg << 0);
2491     cbuf.insts()->emit_int32(op);
2492   %}
2493 
2494   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2495     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2496     int op = (Assembler::arith_op << 30) |
2497              ($dst$$reg << 25) |
2498              (Assembler::movcc_op3 << 19) |
2499              (1 << 18) |                    // cc2 bit for 'icc'
2500              ($cmp$$cmpcode << 14) |
2501              (1 << 13) |                    // select immediate move
2502              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2503              (simm11 << 0);
2504     cbuf.insts()->emit_int32(op);
2505   %}
2506 
2507   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2508     int op = (Assembler::arith_op << 30) |
2509              ($dst$$reg << 25) |
2510              (Assembler::movcc_op3 << 19) |
2511              (0 << 18) |                    // cc2 bit for 'fccX'
2512              ($cmp$$cmpcode << 14) |
2513              (0 << 13) |                    // select register move
2514              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2515              ($src$$reg << 0);
2516     cbuf.insts()->emit_int32(op);
2517   %}
2518 
2519   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2520     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2521     int op = (Assembler::arith_op << 30) |
2522              ($dst$$reg << 25) |
2523              (Assembler::movcc_op3 << 19) |
2524              (0 << 18) |                    // cc2 bit for 'fccX'
2525              ($cmp$$cmpcode << 14) |
2526              (1 << 13) |                    // select immediate move
2527              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2528              (simm11 << 0);
2529     cbuf.insts()->emit_int32(op);
2530   %}
2531 
2532   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2533     int op = (Assembler::arith_op << 30) |
2534              ($dst$$reg << 25) |
2535              (Assembler::fpop2_op3 << 19) |
2536              (0 << 18) |
2537              ($cmp$$cmpcode << 14) |
2538              (1 << 13) |                    // select register move
2539              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2540              ($primary << 5) |              // select single, double or quad
2541              ($src$$reg << 0);
2542     cbuf.insts()->emit_int32(op);
2543   %}
2544 
2545   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2546     int op = (Assembler::arith_op << 30) |
2547              ($dst$$reg << 25) |
2548              (Assembler::fpop2_op3 << 19) |
2549              (0 << 18) |
2550              ($cmp$$cmpcode << 14) |
2551              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2552              ($primary << 5) |              // select single, double or quad
2553              ($src$$reg << 0);
2554     cbuf.insts()->emit_int32(op);
2555   %}
2556 
2557   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2558   // the condition comes from opcode-field instead of an argument.
2559   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2560     int op = (Assembler::arith_op << 30) |
2561              ($dst$$reg << 25) |
2562              (Assembler::movcc_op3 << 19) |
2563              (1 << 18) |                    // cc2 bit for 'icc'
2564              ($primary << 14) |
2565              (0 << 13) |                    // select register move
2566              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2567              ($src$$reg << 0);
2568     cbuf.insts()->emit_int32(op);
2569   %}
2570 
2571   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2572     int op = (Assembler::arith_op << 30) |
2573              ($dst$$reg << 25) |
2574              (Assembler::movcc_op3 << 19) |
2575              (6 << 16) |                    // cc2 bit for 'xcc'
2576              ($primary << 14) |
2577              (0 << 13) |                    // select register move
2578              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2579              ($src$$reg << 0);
2580     cbuf.insts()->emit_int32(op);
2581   %}
2582 
2583   enc_class Set13( immI13 src, iRegI rd ) %{
2584     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2585   %}
2586 
2587   enc_class SetHi22( immI src, iRegI rd ) %{
2588     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2589   %}
2590 
2591   enc_class Set32( immI src, iRegI rd ) %{
2592     MacroAssembler _masm(&cbuf);
2593     __ set($src$$constant, reg_to_register_object($rd$$reg));
2594   %}
2595 
2596   enc_class call_epilog %{
2597     if( VerifyStackAtCalls ) {
2598       MacroAssembler _masm(&cbuf);
2599       int framesize = ra_->C->frame_size_in_bytes();
2600       Register temp_reg = G3;
2601       __ add(SP, framesize, temp_reg);
2602       __ cmp(temp_reg, FP);
2603       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2604     }
2605   %}
2606 
2607   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2608   // to G1 so the register allocator will not have to deal with the misaligned register
2609   // pair.
2610   enc_class adjust_long_from_native_call %{
2611 #ifndef _LP64
2612     if (returns_long()) {
2613       //    sllx  O0,32,O0
2614       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2615       //    srl   O1,0,O1
2616       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2617       //    or    O0,O1,G1
2618       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2619     }
2620 #endif
2621   %}
2622 
2623   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2624     // CALL directly to the runtime
2625     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2626     emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec(), /*preserve_g2=*/true);
2627   %}
2628 
2629   enc_class preserve_SP %{
2630     MacroAssembler _masm(&cbuf);
2631     __ mov(SP, L7_mh_SP_save);
2632   %}
2633 
2634   enc_class restore_SP %{
2635     MacroAssembler _masm(&cbuf);
2636     __ mov(L7_mh_SP_save, SP);
2637   %}
2638 
2639   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2640     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2641     // who we intended to call.
2642     if (!_method) {
2643       emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec());
2644     } else {
2645       int method_index = resolved_method_index(cbuf);
2646       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2647                                                   : static_call_Relocation::spec(method_index);
2648       emit_call_reloc(cbuf, $meth$$method, rspec);
2649 
2650       // Emit stub for static call.
2651       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2652       // Stub does not fit into scratch buffer if TraceJumps is enabled
2653       if (stub == NULL && !(TraceJumps && Compile::current()->in_scratch_emit_size())) {
2654         ciEnv::current()->record_failure("CodeCache is full");
2655         return;
2656       }
2657     }
2658   %}
2659 
2660   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2661     MacroAssembler _masm(&cbuf);
2662     __ set_inst_mark();
2663     int vtable_index = this->_vtable_index;
2664     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2665     if (vtable_index < 0) {
2666       // must be invalid_vtable_index, not nonvirtual_vtable_index
2667       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2668       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2669       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2670       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2671       __ ic_call((address)$meth$$method, /*emit_delay=*/true, resolved_method_index(cbuf));
2672     } else {
2673       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2674       // Just go thru the vtable
2675       // get receiver klass (receiver already checked for non-null)
2676       // If we end up going thru a c2i adapter interpreter expects method in G5
2677       int off = __ offset();
2678       __ load_klass(O0, G3_scratch);
2679       int klass_load_size;
2680       if (UseCompressedClassPointers) {
2681         assert(Universe::heap() != NULL, "java heap should be initialized");
2682         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2683       } else {
2684         klass_load_size = 1*BytesPerInstWord;
2685       }
2686       int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
2687       int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
2688       if (Assembler::is_simm13(v_off)) {
2689         __ ld_ptr(G3, v_off, G5_method);
2690       } else {
2691         // Generate 2 instructions
2692         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2693         __ or3(G5_method, v_off & 0x3ff, G5_method);
2694         // ld_ptr, set_hi, set
2695         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2696                "Unexpected instruction size(s)");
2697         __ ld_ptr(G3, G5_method, G5_method);
2698       }
2699       // NOTE: for vtable dispatches, the vtable entry will never be null.
2700       // However it may very well end up in handle_wrong_method if the
2701       // method is abstract for the particular class.
2702       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2703       // jump to target (either compiled code or c2iadapter)
2704       __ jmpl(G3_scratch, G0, O7);
2705       __ delayed()->nop();
2706     }
2707   %}
2708 
2709   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2710     MacroAssembler _masm(&cbuf);
2711 
2712     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2713     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2714                               // we might be calling a C2I adapter which needs it.
2715 
2716     assert(temp_reg != G5_ic_reg, "conflicting registers");
2717     // Load nmethod
2718     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2719 
2720     // CALL to compiled java, indirect the contents of G3
2721     __ set_inst_mark();
2722     __ callr(temp_reg, G0);
2723     __ delayed()->nop();
2724   %}
2725 
2726 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2727     MacroAssembler _masm(&cbuf);
2728     Register Rdividend = reg_to_register_object($src1$$reg);
2729     Register Rdivisor = reg_to_register_object($src2$$reg);
2730     Register Rresult = reg_to_register_object($dst$$reg);
2731 
2732     __ sra(Rdivisor, 0, Rdivisor);
2733     __ sra(Rdividend, 0, Rdividend);
2734     __ sdivx(Rdividend, Rdivisor, Rresult);
2735 %}
2736 
2737 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2738     MacroAssembler _masm(&cbuf);
2739 
2740     Register Rdividend = reg_to_register_object($src1$$reg);
2741     int divisor = $imm$$constant;
2742     Register Rresult = reg_to_register_object($dst$$reg);
2743 
2744     __ sra(Rdividend, 0, Rdividend);
2745     __ sdivx(Rdividend, divisor, Rresult);
2746 %}
2747 
2748 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2749     MacroAssembler _masm(&cbuf);
2750     Register Rsrc1 = reg_to_register_object($src1$$reg);
2751     Register Rsrc2 = reg_to_register_object($src2$$reg);
2752     Register Rdst  = reg_to_register_object($dst$$reg);
2753 
2754     __ sra( Rsrc1, 0, Rsrc1 );
2755     __ sra( Rsrc2, 0, Rsrc2 );
2756     __ mulx( Rsrc1, Rsrc2, Rdst );
2757     __ srlx( Rdst, 32, Rdst );
2758 %}
2759 
2760 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2761     MacroAssembler _masm(&cbuf);
2762     Register Rdividend = reg_to_register_object($src1$$reg);
2763     Register Rdivisor = reg_to_register_object($src2$$reg);
2764     Register Rresult = reg_to_register_object($dst$$reg);
2765     Register Rscratch = reg_to_register_object($scratch$$reg);
2766 
2767     assert(Rdividend != Rscratch, "");
2768     assert(Rdivisor  != Rscratch, "");
2769 
2770     __ sra(Rdividend, 0, Rdividend);
2771     __ sra(Rdivisor, 0, Rdivisor);
2772     __ sdivx(Rdividend, Rdivisor, Rscratch);
2773     __ mulx(Rscratch, Rdivisor, Rscratch);
2774     __ sub(Rdividend, Rscratch, Rresult);
2775 %}
2776 
2777 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2778     MacroAssembler _masm(&cbuf);
2779 
2780     Register Rdividend = reg_to_register_object($src1$$reg);
2781     int divisor = $imm$$constant;
2782     Register Rresult = reg_to_register_object($dst$$reg);
2783     Register Rscratch = reg_to_register_object($scratch$$reg);
2784 
2785     assert(Rdividend != Rscratch, "");
2786 
2787     __ sra(Rdividend, 0, Rdividend);
2788     __ sdivx(Rdividend, divisor, Rscratch);
2789     __ mulx(Rscratch, divisor, Rscratch);
2790     __ sub(Rdividend, Rscratch, Rresult);
2791 %}
2792 
2793 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2794     MacroAssembler _masm(&cbuf);
2795 
2796     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2797     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2798 
2799     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2800 %}
2801 
2802 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2803     MacroAssembler _masm(&cbuf);
2804 
2805     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2806     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2807 
2808     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2809 %}
2810 
2811 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2812     MacroAssembler _masm(&cbuf);
2813 
2814     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2815     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2816 
2817     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2818 %}
2819 
2820 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2821     MacroAssembler _masm(&cbuf);
2822 
2823     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2824     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2825 
2826     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2827 %}
2828 
2829 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2830     MacroAssembler _masm(&cbuf);
2831 
2832     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2833     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2834 
2835     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2836 %}
2837 
2838 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2839     MacroAssembler _masm(&cbuf);
2840 
2841     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2842     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2843 
2844     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2845 %}
2846 
2847 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2848     MacroAssembler _masm(&cbuf);
2849 
2850     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2851     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2852 
2853     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2854 %}
2855 
2856 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2857     MacroAssembler _masm(&cbuf);
2858 
2859     Register Roop  = reg_to_register_object($oop$$reg);
2860     Register Rbox  = reg_to_register_object($box$$reg);
2861     Register Rscratch = reg_to_register_object($scratch$$reg);
2862     Register Rmark =    reg_to_register_object($scratch2$$reg);
2863 
2864     assert(Roop  != Rscratch, "");
2865     assert(Roop  != Rmark, "");
2866     assert(Rbox  != Rscratch, "");
2867     assert(Rbox  != Rmark, "");
2868 
2869     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2870 %}
2871 
2872 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2873     MacroAssembler _masm(&cbuf);
2874 
2875     Register Roop  = reg_to_register_object($oop$$reg);
2876     Register Rbox  = reg_to_register_object($box$$reg);
2877     Register Rscratch = reg_to_register_object($scratch$$reg);
2878     Register Rmark =    reg_to_register_object($scratch2$$reg);
2879 
2880     assert(Roop  != Rscratch, "");
2881     assert(Roop  != Rmark, "");
2882     assert(Rbox  != Rscratch, "");
2883     assert(Rbox  != Rmark, "");
2884 
2885     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2886   %}
2887 
2888   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2889     MacroAssembler _masm(&cbuf);
2890     Register Rmem = reg_to_register_object($mem$$reg);
2891     Register Rold = reg_to_register_object($old$$reg);
2892     Register Rnew = reg_to_register_object($new$$reg);
2893 
2894     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2895     __ cmp( Rold, Rnew );
2896   %}
2897 
2898   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2899     Register Rmem = reg_to_register_object($mem$$reg);
2900     Register Rold = reg_to_register_object($old$$reg);
2901     Register Rnew = reg_to_register_object($new$$reg);
2902 
2903     MacroAssembler _masm(&cbuf);
2904     __ mov(Rnew, O7);
2905     __ casx(Rmem, Rold, O7);
2906     __ cmp( Rold, O7 );
2907   %}
2908 
2909   // raw int cas, used for compareAndSwap
2910   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2911     Register Rmem = reg_to_register_object($mem$$reg);
2912     Register Rold = reg_to_register_object($old$$reg);
2913     Register Rnew = reg_to_register_object($new$$reg);
2914 
2915     MacroAssembler _masm(&cbuf);
2916     __ mov(Rnew, O7);
2917     __ cas(Rmem, Rold, O7);
2918     __ cmp( Rold, O7 );
2919   %}
2920 
2921   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2922     Register Rres = reg_to_register_object($res$$reg);
2923 
2924     MacroAssembler _masm(&cbuf);
2925     __ mov(1, Rres);
2926     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2927   %}
2928 
2929   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2930     Register Rres = reg_to_register_object($res$$reg);
2931 
2932     MacroAssembler _masm(&cbuf);
2933     __ mov(1, Rres);
2934     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2935   %}
2936 
2937   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2938     MacroAssembler _masm(&cbuf);
2939     Register Rdst = reg_to_register_object($dst$$reg);
2940     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2941                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2942     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2943                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2944 
2945     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2946     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2947   %}
2948 
2949   enc_class enc_rethrow() %{
2950     cbuf.set_insts_mark();
2951     Register temp_reg = G3;
2952     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
2953     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2954     MacroAssembler _masm(&cbuf);
2955 #ifdef ASSERT
2956     __ save_frame(0);
2957     AddressLiteral last_rethrow_addrlit(&last_rethrow);
2958     __ sethi(last_rethrow_addrlit, L1);
2959     Address addr(L1, last_rethrow_addrlit.low10());
2960     __ rdpc(L2);
2961     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
2962     __ st_ptr(L2, addr);
2963     __ restore();
2964 #endif
2965     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
2966     __ delayed()->nop();
2967   %}
2968 
2969   enc_class emit_mem_nop() %{
2970     // Generates the instruction LDUXA [o6,g0],#0x82,g0
2971     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
2972   %}
2973 
2974   enc_class emit_fadd_nop() %{
2975     // Generates the instruction FMOVS f31,f31
2976     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
2977   %}
2978 
2979   enc_class emit_br_nop() %{
2980     // Generates the instruction BPN,PN .
2981     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
2982   %}
2983 
2984   enc_class enc_membar_acquire %{
2985     MacroAssembler _masm(&cbuf);
2986     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
2987   %}
2988 
2989   enc_class enc_membar_release %{
2990     MacroAssembler _masm(&cbuf);
2991     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
2992   %}
2993 
2994   enc_class enc_membar_volatile %{
2995     MacroAssembler _masm(&cbuf);
2996     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
2997   %}
2998 
2999 %}
3000 
3001 //----------FRAME--------------------------------------------------------------
3002 // Definition of frame structure and management information.
3003 //
3004 //  S T A C K   L A Y O U T    Allocators stack-slot number
3005 //                             |   (to get allocators register number
3006 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3007 //  r   CALLER     |        |
3008 //  o     |        +--------+      pad to even-align allocators stack-slot
3009 //  w     V        |  pad0  |        numbers; owned by CALLER
3010 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3011 //  h     ^        |   in   |  5
3012 //        |        |  args  |  4   Holes in incoming args owned by SELF
3013 //  |     |        |        |  3
3014 //  |     |        +--------+
3015 //  V     |        | old out|      Empty on Intel, window on Sparc
3016 //        |    old |preserve|      Must be even aligned.
3017 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3018 //        |        |   in   |  3   area for Intel ret address
3019 //     Owned by    |preserve|      Empty on Sparc.
3020 //       SELF      +--------+
3021 //        |        |  pad2  |  2   pad to align old SP
3022 //        |        +--------+  1
3023 //        |        | locks  |  0
3024 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3025 //        |        |  pad1  | 11   pad to align new SP
3026 //        |        +--------+
3027 //        |        |        | 10
3028 //        |        | spills |  9   spills
3029 //        V        |        |  8   (pad0 slot for callee)
3030 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3031 //        ^        |  out   |  7
3032 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3033 //     Owned by    +--------+
3034 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3035 //        |    new |preserve|      Must be even-aligned.
3036 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3037 //        |        |        |
3038 //
3039 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3040 //         known from SELF's arguments and the Java calling convention.
3041 //         Region 6-7 is determined per call site.
3042 // Note 2: If the calling convention leaves holes in the incoming argument
3043 //         area, those holes are owned by SELF.  Holes in the outgoing area
3044 //         are owned by the CALLEE.  Holes should not be nessecary in the
3045 //         incoming area, as the Java calling convention is completely under
3046 //         the control of the AD file.  Doubles can be sorted and packed to
3047 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3048 //         varargs C calling conventions.
3049 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3050 //         even aligned with pad0 as needed.
3051 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3052 //         region 6-11 is even aligned; it may be padded out more so that
3053 //         the region from SP to FP meets the minimum stack alignment.
3054 
3055 frame %{
3056   // What direction does stack grow in (assumed to be same for native & Java)
3057   stack_direction(TOWARDS_LOW);
3058 
3059   // These two registers define part of the calling convention
3060   // between compiled code and the interpreter.
3061   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3062   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3063 
3064   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3065   cisc_spilling_operand_name(indOffset);
3066 
3067   // Number of stack slots consumed by a Monitor enter
3068 #ifdef _LP64
3069   sync_stack_slots(2);
3070 #else
3071   sync_stack_slots(1);
3072 #endif
3073 
3074   // Compiled code's Frame Pointer
3075   frame_pointer(R_SP);
3076 
3077   // Stack alignment requirement
3078   stack_alignment(StackAlignmentInBytes);
3079   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3080   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3081 
3082   // Number of stack slots between incoming argument block and the start of
3083   // a new frame.  The PROLOG must add this many slots to the stack.  The
3084   // EPILOG must remove this many slots.
3085   in_preserve_stack_slots(0);
3086 
3087   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3088   // for calls to C.  Supports the var-args backing area for register parms.
3089   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3090 #ifdef _LP64
3091   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3092   varargs_C_out_slots_killed(12);
3093 #else
3094   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3095   varargs_C_out_slots_killed( 7);
3096 #endif
3097 
3098   // The after-PROLOG location of the return address.  Location of
3099   // return address specifies a type (REG or STACK) and a number
3100   // representing the register number (i.e. - use a register name) or
3101   // stack slot.
3102   return_addr(REG R_I7);          // Ret Addr is in register I7
3103 
3104   // Body of function which returns an OptoRegs array locating
3105   // arguments either in registers or in stack slots for calling
3106   // java
3107   calling_convention %{
3108     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3109 
3110   %}
3111 
3112   // Body of function which returns an OptoRegs array locating
3113   // arguments either in registers or in stack slots for calling
3114   // C.
3115   c_calling_convention %{
3116     // This is obviously always outgoing
3117     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3118   %}
3119 
3120   // Location of native (C/C++) and interpreter return values.  This is specified to
3121   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3122   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3123   // to and from the register pairs is done by the appropriate call and epilog
3124   // opcodes.  This simplifies the register allocator.
3125   c_return_value %{
3126     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3127 #ifdef     _LP64
3128     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3129     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3130     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3131     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3132 #else  // !_LP64
3133     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3134     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3135     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3136     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3137 #endif
3138     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3139                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3140   %}
3141 
3142   // Location of compiled Java return values.  Same as C
3143   return_value %{
3144     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3145 #ifdef     _LP64
3146     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3147     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3148     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3149     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3150 #else  // !_LP64
3151     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3152     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3153     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3154     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3155 #endif
3156     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3157                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3158   %}
3159 
3160 %}
3161 
3162 
3163 //----------ATTRIBUTES---------------------------------------------------------
3164 //----------Operand Attributes-------------------------------------------------
3165 op_attrib op_cost(1);          // Required cost attribute
3166 
3167 //----------Instruction Attributes---------------------------------------------
3168 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3169 ins_attrib ins_size(32);           // Required size attribute (in bits)
3170 
3171 // avoid_back_to_back attribute is an expression that must return
3172 // one of the following values defined in MachNode:
3173 // AVOID_NONE   - instruction can be placed anywhere
3174 // AVOID_BEFORE - instruction cannot be placed after an
3175 //                instruction with MachNode::AVOID_AFTER
3176 // AVOID_AFTER  - the next instruction cannot be the one
3177 //                with MachNode::AVOID_BEFORE
3178 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at
3179 //                          the same time
3180 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3181 
3182 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3183                                    // non-matching short branch variant of some
3184                                                             // long branch?
3185 
3186 //----------OPERANDS-----------------------------------------------------------
3187 // Operand definitions must precede instruction definitions for correct parsing
3188 // in the ADLC because operands constitute user defined types which are used in
3189 // instruction definitions.
3190 
3191 //----------Simple Operands----------------------------------------------------
3192 // Immediate Operands
3193 // Integer Immediate: 32-bit
3194 operand immI() %{
3195   match(ConI);
3196 
3197   op_cost(0);
3198   // formats are generated automatically for constants and base registers
3199   format %{ %}
3200   interface(CONST_INTER);
3201 %}
3202 
3203 // Integer Immediate: 0-bit
3204 operand immI0() %{
3205   predicate(n->get_int() == 0);
3206   match(ConI);
3207   op_cost(0);
3208 
3209   format %{ %}
3210   interface(CONST_INTER);
3211 %}
3212 
3213 // Integer Immediate: 5-bit
3214 operand immI5() %{
3215   predicate(Assembler::is_simm5(n->get_int()));
3216   match(ConI);
3217   op_cost(0);
3218   format %{ %}
3219   interface(CONST_INTER);
3220 %}
3221 
3222 // Integer Immediate: 8-bit
3223 operand immI8() %{
3224   predicate(Assembler::is_simm8(n->get_int()));
3225   match(ConI);
3226   op_cost(0);
3227   format %{ %}
3228   interface(CONST_INTER);
3229 %}
3230 
3231 // Integer Immediate: the value 10
3232 operand immI10() %{
3233   predicate(n->get_int() == 10);
3234   match(ConI);
3235   op_cost(0);
3236 
3237   format %{ %}
3238   interface(CONST_INTER);
3239 %}
3240 
3241 // Integer Immediate: 11-bit
3242 operand immI11() %{
3243   predicate(Assembler::is_simm11(n->get_int()));
3244   match(ConI);
3245   op_cost(0);
3246   format %{ %}
3247   interface(CONST_INTER);
3248 %}
3249 
3250 // Integer Immediate: 13-bit
3251 operand immI13() %{
3252   predicate(Assembler::is_simm13(n->get_int()));
3253   match(ConI);
3254   op_cost(0);
3255 
3256   format %{ %}
3257   interface(CONST_INTER);
3258 %}
3259 
3260 // Integer Immediate: 13-bit minus 7
3261 operand immI13m7() %{
3262   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3263   match(ConI);
3264   op_cost(0);
3265 
3266   format %{ %}
3267   interface(CONST_INTER);
3268 %}
3269 
3270 // Integer Immediate: 16-bit
3271 operand immI16() %{
3272   predicate(Assembler::is_simm16(n->get_int()));
3273   match(ConI);
3274   op_cost(0);
3275   format %{ %}
3276   interface(CONST_INTER);
3277 %}
3278 
3279 // Integer Immediate: the values 1-31
3280 operand immI_1_31() %{
3281   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3282   match(ConI);
3283   op_cost(0);
3284 
3285   format %{ %}
3286   interface(CONST_INTER);
3287 %}
3288 
3289 // Integer Immediate: the values 32-63
3290 operand immI_32_63() %{
3291   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3292   match(ConI);
3293   op_cost(0);
3294 
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Immediates for special shifts (sign extend)
3300 
3301 // Integer Immediate: the value 16
3302 operand immI_16() %{
3303   predicate(n->get_int() == 16);
3304   match(ConI);
3305   op_cost(0);
3306 
3307   format %{ %}
3308   interface(CONST_INTER);
3309 %}
3310 
3311 // Integer Immediate: the value 24
3312 operand immI_24() %{
3313   predicate(n->get_int() == 24);
3314   match(ConI);
3315   op_cost(0);
3316 
3317   format %{ %}
3318   interface(CONST_INTER);
3319 %}
3320 // Integer Immediate: the value 255
3321 operand immI_255() %{
3322   predicate( n->get_int() == 255 );
3323   match(ConI);
3324   op_cost(0);
3325 
3326   format %{ %}
3327   interface(CONST_INTER);
3328 %}
3329 
3330 // Integer Immediate: the value 65535
3331 operand immI_65535() %{
3332   predicate(n->get_int() == 65535);
3333   match(ConI);
3334   op_cost(0);
3335 
3336   format %{ %}
3337   interface(CONST_INTER);
3338 %}
3339 
3340 // Integer Immediate: the values 0-31
3341 operand immU5() %{
3342   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3343   match(ConI);
3344   op_cost(0);
3345 
3346   format %{ %}
3347   interface(CONST_INTER);
3348 %}
3349 
3350 // Integer Immediate: 6-bit
3351 operand immU6() %{
3352   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3353   match(ConI);
3354   op_cost(0);
3355   format %{ %}
3356   interface(CONST_INTER);
3357 %}
3358 
3359 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3360 operand immU12() %{
3361   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3362   match(ConI);
3363   op_cost(0);
3364 
3365   format %{ %}
3366   interface(CONST_INTER);
3367 %}
3368 
3369 // Integer Immediate non-negative
3370 operand immU31()
3371 %{
3372   predicate(n->get_int() >= 0);
3373   match(ConI);
3374 
3375   op_cost(0);
3376   format %{ %}
3377   interface(CONST_INTER);
3378 %}
3379 
3380 // Long Immediate: the value FF
3381 operand immL_FF() %{
3382   predicate( n->get_long() == 0xFFL );
3383   match(ConL);
3384   op_cost(0);
3385 
3386   format %{ %}
3387   interface(CONST_INTER);
3388 %}
3389 
3390 // Long Immediate: the value FFFF
3391 operand immL_FFFF() %{
3392   predicate( n->get_long() == 0xFFFFL );
3393   match(ConL);
3394   op_cost(0);
3395 
3396   format %{ %}
3397   interface(CONST_INTER);
3398 %}
3399 
3400 // Pointer Immediate: 32 or 64-bit
3401 operand immP() %{
3402   match(ConP);
3403 
3404   op_cost(5);
3405   // formats are generated automatically for constants and base registers
3406   format %{ %}
3407   interface(CONST_INTER);
3408 %}
3409 
3410 #ifdef _LP64
3411 // Pointer Immediate: 64-bit
3412 operand immP_set() %{
3413   predicate(!VM_Version::is_niagara_plus());
3414   match(ConP);
3415 
3416   op_cost(5);
3417   // formats are generated automatically for constants and base registers
3418   format %{ %}
3419   interface(CONST_INTER);
3420 %}
3421 
3422 // Pointer Immediate: 64-bit
3423 // From Niagara2 processors on a load should be better than materializing.
3424 operand immP_load() %{
3425   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3426   match(ConP);
3427 
3428   op_cost(5);
3429   // formats are generated automatically for constants and base registers
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Pointer Immediate: 64-bit
3435 operand immP_no_oop_cheap() %{
3436   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3437   match(ConP);
3438 
3439   op_cost(5);
3440   // formats are generated automatically for constants and base registers
3441   format %{ %}
3442   interface(CONST_INTER);
3443 %}
3444 #endif
3445 
3446 operand immP13() %{
3447   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3448   match(ConP);
3449   op_cost(0);
3450 
3451   format %{ %}
3452   interface(CONST_INTER);
3453 %}
3454 
3455 operand immP0() %{
3456   predicate(n->get_ptr() == 0);
3457   match(ConP);
3458   op_cost(0);
3459 
3460   format %{ %}
3461   interface(CONST_INTER);
3462 %}
3463 
3464 operand immP_poll() %{
3465   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3466   match(ConP);
3467 
3468   // formats are generated automatically for constants and base registers
3469   format %{ %}
3470   interface(CONST_INTER);
3471 %}
3472 
3473 // Pointer Immediate
3474 operand immN()
3475 %{
3476   match(ConN);
3477 
3478   op_cost(10);
3479   format %{ %}
3480   interface(CONST_INTER);
3481 %}
3482 
3483 operand immNKlass()
3484 %{
3485   match(ConNKlass);
3486 
3487   op_cost(10);
3488   format %{ %}
3489   interface(CONST_INTER);
3490 %}
3491 
3492 // NULL Pointer Immediate
3493 operand immN0()
3494 %{
3495   predicate(n->get_narrowcon() == 0);
3496   match(ConN);
3497 
3498   op_cost(0);
3499   format %{ %}
3500   interface(CONST_INTER);
3501 %}
3502 
3503 operand immL() %{
3504   match(ConL);
3505   op_cost(40);
3506   // formats are generated automatically for constants and base registers
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 operand immL0() %{
3512   predicate(n->get_long() == 0L);
3513   match(ConL);
3514   op_cost(0);
3515   // formats are generated automatically for constants and base registers
3516   format %{ %}
3517   interface(CONST_INTER);
3518 %}
3519 
3520 // Integer Immediate: 5-bit
3521 operand immL5() %{
3522   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3523   match(ConL);
3524   op_cost(0);
3525   format %{ %}
3526   interface(CONST_INTER);
3527 %}
3528 
3529 // Long Immediate: 13-bit
3530 operand immL13() %{
3531   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3532   match(ConL);
3533   op_cost(0);
3534 
3535   format %{ %}
3536   interface(CONST_INTER);
3537 %}
3538 
3539 // Long Immediate: 13-bit minus 7
3540 operand immL13m7() %{
3541   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3542   match(ConL);
3543   op_cost(0);
3544 
3545   format %{ %}
3546   interface(CONST_INTER);
3547 %}
3548 
3549 // Long Immediate: low 32-bit mask
3550 operand immL_32bits() %{
3551   predicate(n->get_long() == 0xFFFFFFFFL);
3552   match(ConL);
3553   op_cost(0);
3554 
3555   format %{ %}
3556   interface(CONST_INTER);
3557 %}
3558 
3559 // Long Immediate: cheap (materialize in <= 3 instructions)
3560 operand immL_cheap() %{
3561   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3562   match(ConL);
3563   op_cost(0);
3564 
3565   format %{ %}
3566   interface(CONST_INTER);
3567 %}
3568 
3569 // Long Immediate: expensive (materialize in > 3 instructions)
3570 operand immL_expensive() %{
3571   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3572   match(ConL);
3573   op_cost(0);
3574 
3575   format %{ %}
3576   interface(CONST_INTER);
3577 %}
3578 
3579 // Double Immediate
3580 operand immD() %{
3581   match(ConD);
3582 
3583   op_cost(40);
3584   format %{ %}
3585   interface(CONST_INTER);
3586 %}
3587 
3588 // Double Immediate: +0.0d
3589 operand immD0() %{
3590   predicate(jlong_cast(n->getd()) == 0);
3591   match(ConD);
3592 
3593   op_cost(0);
3594   format %{ %}
3595   interface(CONST_INTER);
3596 %}
3597 
3598 // Float Immediate
3599 operand immF() %{
3600   match(ConF);
3601 
3602   op_cost(20);
3603   format %{ %}
3604   interface(CONST_INTER);
3605 %}
3606 
3607 // Float Immediate: +0.0f
3608 operand immF0() %{
3609   predicate(jint_cast(n->getf()) == 0);
3610   match(ConF);
3611 
3612   op_cost(0);
3613   format %{ %}
3614   interface(CONST_INTER);
3615 %}
3616 
3617 // Integer Register Operands
3618 // Integer Register
3619 operand iRegI() %{
3620   constraint(ALLOC_IN_RC(int_reg));
3621   match(RegI);
3622 
3623   match(notemp_iRegI);
3624   match(g1RegI);
3625   match(o0RegI);
3626   match(iRegIsafe);
3627 
3628   format %{ %}
3629   interface(REG_INTER);
3630 %}
3631 
3632 operand notemp_iRegI() %{
3633   constraint(ALLOC_IN_RC(notemp_int_reg));
3634   match(RegI);
3635 
3636   match(o0RegI);
3637 
3638   format %{ %}
3639   interface(REG_INTER);
3640 %}
3641 
3642 operand o0RegI() %{
3643   constraint(ALLOC_IN_RC(o0_regI));
3644   match(iRegI);
3645 
3646   format %{ %}
3647   interface(REG_INTER);
3648 %}
3649 
3650 // Pointer Register
3651 operand iRegP() %{
3652   constraint(ALLOC_IN_RC(ptr_reg));
3653   match(RegP);
3654 
3655   match(lock_ptr_RegP);
3656   match(g1RegP);
3657   match(g2RegP);
3658   match(g3RegP);
3659   match(g4RegP);
3660   match(i0RegP);
3661   match(o0RegP);
3662   match(o1RegP);
3663   match(l7RegP);
3664 
3665   format %{ %}
3666   interface(REG_INTER);
3667 %}
3668 
3669 operand sp_ptr_RegP() %{
3670   constraint(ALLOC_IN_RC(sp_ptr_reg));
3671   match(RegP);
3672   match(iRegP);
3673 
3674   format %{ %}
3675   interface(REG_INTER);
3676 %}
3677 
3678 operand lock_ptr_RegP() %{
3679   constraint(ALLOC_IN_RC(lock_ptr_reg));
3680   match(RegP);
3681   match(i0RegP);
3682   match(o0RegP);
3683   match(o1RegP);
3684   match(l7RegP);
3685 
3686   format %{ %}
3687   interface(REG_INTER);
3688 %}
3689 
3690 operand g1RegP() %{
3691   constraint(ALLOC_IN_RC(g1_regP));
3692   match(iRegP);
3693 
3694   format %{ %}
3695   interface(REG_INTER);
3696 %}
3697 
3698 operand g2RegP() %{
3699   constraint(ALLOC_IN_RC(g2_regP));
3700   match(iRegP);
3701 
3702   format %{ %}
3703   interface(REG_INTER);
3704 %}
3705 
3706 operand g3RegP() %{
3707   constraint(ALLOC_IN_RC(g3_regP));
3708   match(iRegP);
3709 
3710   format %{ %}
3711   interface(REG_INTER);
3712 %}
3713 
3714 operand g1RegI() %{
3715   constraint(ALLOC_IN_RC(g1_regI));
3716   match(iRegI);
3717 
3718   format %{ %}
3719   interface(REG_INTER);
3720 %}
3721 
3722 operand g3RegI() %{
3723   constraint(ALLOC_IN_RC(g3_regI));
3724   match(iRegI);
3725 
3726   format %{ %}
3727   interface(REG_INTER);
3728 %}
3729 
3730 operand g4RegI() %{
3731   constraint(ALLOC_IN_RC(g4_regI));
3732   match(iRegI);
3733 
3734   format %{ %}
3735   interface(REG_INTER);
3736 %}
3737 
3738 operand g4RegP() %{
3739   constraint(ALLOC_IN_RC(g4_regP));
3740   match(iRegP);
3741 
3742   format %{ %}
3743   interface(REG_INTER);
3744 %}
3745 
3746 operand i0RegP() %{
3747   constraint(ALLOC_IN_RC(i0_regP));
3748   match(iRegP);
3749 
3750   format %{ %}
3751   interface(REG_INTER);
3752 %}
3753 
3754 operand o0RegP() %{
3755   constraint(ALLOC_IN_RC(o0_regP));
3756   match(iRegP);
3757 
3758   format %{ %}
3759   interface(REG_INTER);
3760 %}
3761 
3762 operand o1RegP() %{
3763   constraint(ALLOC_IN_RC(o1_regP));
3764   match(iRegP);
3765 
3766   format %{ %}
3767   interface(REG_INTER);
3768 %}
3769 
3770 operand o2RegP() %{
3771   constraint(ALLOC_IN_RC(o2_regP));
3772   match(iRegP);
3773 
3774   format %{ %}
3775   interface(REG_INTER);
3776 %}
3777 
3778 operand o7RegP() %{
3779   constraint(ALLOC_IN_RC(o7_regP));
3780   match(iRegP);
3781 
3782   format %{ %}
3783   interface(REG_INTER);
3784 %}
3785 
3786 operand l7RegP() %{
3787   constraint(ALLOC_IN_RC(l7_regP));
3788   match(iRegP);
3789 
3790   format %{ %}
3791   interface(REG_INTER);
3792 %}
3793 
3794 operand o7RegI() %{
3795   constraint(ALLOC_IN_RC(o7_regI));
3796   match(iRegI);
3797 
3798   format %{ %}
3799   interface(REG_INTER);
3800 %}
3801 
3802 operand iRegN() %{
3803   constraint(ALLOC_IN_RC(int_reg));
3804   match(RegN);
3805 
3806   format %{ %}
3807   interface(REG_INTER);
3808 %}
3809 
3810 // Long Register
3811 operand iRegL() %{
3812   constraint(ALLOC_IN_RC(long_reg));
3813   match(RegL);
3814 
3815   format %{ %}
3816   interface(REG_INTER);
3817 %}
3818 
3819 operand o2RegL() %{
3820   constraint(ALLOC_IN_RC(o2_regL));
3821   match(iRegL);
3822 
3823   format %{ %}
3824   interface(REG_INTER);
3825 %}
3826 
3827 operand o7RegL() %{
3828   constraint(ALLOC_IN_RC(o7_regL));
3829   match(iRegL);
3830 
3831   format %{ %}
3832   interface(REG_INTER);
3833 %}
3834 
3835 operand g1RegL() %{
3836   constraint(ALLOC_IN_RC(g1_regL));
3837   match(iRegL);
3838 
3839   format %{ %}
3840   interface(REG_INTER);
3841 %}
3842 
3843 operand g3RegL() %{
3844   constraint(ALLOC_IN_RC(g3_regL));
3845   match(iRegL);
3846 
3847   format %{ %}
3848   interface(REG_INTER);
3849 %}
3850 
3851 // Int Register safe
3852 // This is 64bit safe
3853 operand iRegIsafe() %{
3854   constraint(ALLOC_IN_RC(long_reg));
3855 
3856   match(iRegI);
3857 
3858   format %{ %}
3859   interface(REG_INTER);
3860 %}
3861 
3862 // Condition Code Flag Register
3863 operand flagsReg() %{
3864   constraint(ALLOC_IN_RC(int_flags));
3865   match(RegFlags);
3866 
3867   format %{ "ccr" %} // both ICC and XCC
3868   interface(REG_INTER);
3869 %}
3870 
3871 // Condition Code Register, unsigned comparisons.
3872 operand flagsRegU() %{
3873   constraint(ALLOC_IN_RC(int_flags));
3874   match(RegFlags);
3875 
3876   format %{ "icc_U" %}
3877   interface(REG_INTER);
3878 %}
3879 
3880 // Condition Code Register, pointer comparisons.
3881 operand flagsRegP() %{
3882   constraint(ALLOC_IN_RC(int_flags));
3883   match(RegFlags);
3884 
3885 #ifdef _LP64
3886   format %{ "xcc_P" %}
3887 #else
3888   format %{ "icc_P" %}
3889 #endif
3890   interface(REG_INTER);
3891 %}
3892 
3893 // Condition Code Register, long comparisons.
3894 operand flagsRegL() %{
3895   constraint(ALLOC_IN_RC(int_flags));
3896   match(RegFlags);
3897 
3898   format %{ "xcc_L" %}
3899   interface(REG_INTER);
3900 %}
3901 
3902 // Condition Code Register, floating comparisons, unordered same as "less".
3903 operand flagsRegF() %{
3904   constraint(ALLOC_IN_RC(float_flags));
3905   match(RegFlags);
3906   match(flagsRegF0);
3907 
3908   format %{ %}
3909   interface(REG_INTER);
3910 %}
3911 
3912 operand flagsRegF0() %{
3913   constraint(ALLOC_IN_RC(float_flag0));
3914   match(RegFlags);
3915 
3916   format %{ %}
3917   interface(REG_INTER);
3918 %}
3919 
3920 
3921 // Condition Code Flag Register used by long compare
3922 operand flagsReg_long_LTGE() %{
3923   constraint(ALLOC_IN_RC(int_flags));
3924   match(RegFlags);
3925   format %{ "icc_LTGE" %}
3926   interface(REG_INTER);
3927 %}
3928 operand flagsReg_long_EQNE() %{
3929   constraint(ALLOC_IN_RC(int_flags));
3930   match(RegFlags);
3931   format %{ "icc_EQNE" %}
3932   interface(REG_INTER);
3933 %}
3934 operand flagsReg_long_LEGT() %{
3935   constraint(ALLOC_IN_RC(int_flags));
3936   match(RegFlags);
3937   format %{ "icc_LEGT" %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 
3942 operand regD() %{
3943   constraint(ALLOC_IN_RC(dflt_reg));
3944   match(RegD);
3945 
3946   match(regD_low);
3947 
3948   format %{ %}
3949   interface(REG_INTER);
3950 %}
3951 
3952 operand regF() %{
3953   constraint(ALLOC_IN_RC(sflt_reg));
3954   match(RegF);
3955 
3956   format %{ %}
3957   interface(REG_INTER);
3958 %}
3959 
3960 operand regD_low() %{
3961   constraint(ALLOC_IN_RC(dflt_low_reg));
3962   match(regD);
3963 
3964   format %{ %}
3965   interface(REG_INTER);
3966 %}
3967 
3968 // Special Registers
3969 
3970 // Method Register
3971 operand inline_cache_regP(iRegP reg) %{
3972   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3973   match(reg);
3974   format %{ %}
3975   interface(REG_INTER);
3976 %}
3977 
3978 operand interpreter_method_oop_regP(iRegP reg) %{
3979   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3980   match(reg);
3981   format %{ %}
3982   interface(REG_INTER);
3983 %}
3984 
3985 
3986 //----------Complex Operands---------------------------------------------------
3987 // Indirect Memory Reference
3988 operand indirect(sp_ptr_RegP reg) %{
3989   constraint(ALLOC_IN_RC(sp_ptr_reg));
3990   match(reg);
3991 
3992   op_cost(100);
3993   format %{ "[$reg]" %}
3994   interface(MEMORY_INTER) %{
3995     base($reg);
3996     index(0x0);
3997     scale(0x0);
3998     disp(0x0);
3999   %}
4000 %}
4001 
4002 // Indirect with simm13 Offset
4003 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4004   constraint(ALLOC_IN_RC(sp_ptr_reg));
4005   match(AddP reg offset);
4006 
4007   op_cost(100);
4008   format %{ "[$reg + $offset]" %}
4009   interface(MEMORY_INTER) %{
4010     base($reg);
4011     index(0x0);
4012     scale(0x0);
4013     disp($offset);
4014   %}
4015 %}
4016 
4017 // Indirect with simm13 Offset minus 7
4018 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4019   constraint(ALLOC_IN_RC(sp_ptr_reg));
4020   match(AddP reg offset);
4021 
4022   op_cost(100);
4023   format %{ "[$reg + $offset]" %}
4024   interface(MEMORY_INTER) %{
4025     base($reg);
4026     index(0x0);
4027     scale(0x0);
4028     disp($offset);
4029   %}
4030 %}
4031 
4032 // Note:  Intel has a swapped version also, like this:
4033 //operand indOffsetX(iRegI reg, immP offset) %{
4034 //  constraint(ALLOC_IN_RC(int_reg));
4035 //  match(AddP offset reg);
4036 //
4037 //  op_cost(100);
4038 //  format %{ "[$reg + $offset]" %}
4039 //  interface(MEMORY_INTER) %{
4040 //    base($reg);
4041 //    index(0x0);
4042 //    scale(0x0);
4043 //    disp($offset);
4044 //  %}
4045 //%}
4046 //// However, it doesn't make sense for SPARC, since
4047 // we have no particularly good way to embed oops in
4048 // single instructions.
4049 
4050 // Indirect with Register Index
4051 operand indIndex(iRegP addr, iRegX index) %{
4052   constraint(ALLOC_IN_RC(ptr_reg));
4053   match(AddP addr index);
4054 
4055   op_cost(100);
4056   format %{ "[$addr + $index]" %}
4057   interface(MEMORY_INTER) %{
4058     base($addr);
4059     index($index);
4060     scale(0x0);
4061     disp(0x0);
4062   %}
4063 %}
4064 
4065 //----------Special Memory Operands--------------------------------------------
4066 // Stack Slot Operand - This operand is used for loading and storing temporary
4067 //                      values on the stack where a match requires a value to
4068 //                      flow through memory.
4069 operand stackSlotI(sRegI reg) %{
4070   constraint(ALLOC_IN_RC(stack_slots));
4071   op_cost(100);
4072   //match(RegI);
4073   format %{ "[$reg]" %}
4074   interface(MEMORY_INTER) %{
4075     base(0xE);   // R_SP
4076     index(0x0);
4077     scale(0x0);
4078     disp($reg);  // Stack Offset
4079   %}
4080 %}
4081 
4082 operand stackSlotP(sRegP reg) %{
4083   constraint(ALLOC_IN_RC(stack_slots));
4084   op_cost(100);
4085   //match(RegP);
4086   format %{ "[$reg]" %}
4087   interface(MEMORY_INTER) %{
4088     base(0xE);   // R_SP
4089     index(0x0);
4090     scale(0x0);
4091     disp($reg);  // Stack Offset
4092   %}
4093 %}
4094 
4095 operand stackSlotF(sRegF reg) %{
4096   constraint(ALLOC_IN_RC(stack_slots));
4097   op_cost(100);
4098   //match(RegF);
4099   format %{ "[$reg]" %}
4100   interface(MEMORY_INTER) %{
4101     base(0xE);   // R_SP
4102     index(0x0);
4103     scale(0x0);
4104     disp($reg);  // Stack Offset
4105   %}
4106 %}
4107 operand stackSlotD(sRegD reg) %{
4108   constraint(ALLOC_IN_RC(stack_slots));
4109   op_cost(100);
4110   //match(RegD);
4111   format %{ "[$reg]" %}
4112   interface(MEMORY_INTER) %{
4113     base(0xE);   // R_SP
4114     index(0x0);
4115     scale(0x0);
4116     disp($reg);  // Stack Offset
4117   %}
4118 %}
4119 operand stackSlotL(sRegL reg) %{
4120   constraint(ALLOC_IN_RC(stack_slots));
4121   op_cost(100);
4122   //match(RegL);
4123   format %{ "[$reg]" %}
4124   interface(MEMORY_INTER) %{
4125     base(0xE);   // R_SP
4126     index(0x0);
4127     scale(0x0);
4128     disp($reg);  // Stack Offset
4129   %}
4130 %}
4131 
4132 // Operands for expressing Control Flow
4133 // NOTE:  Label is a predefined operand which should not be redefined in
4134 //        the AD file.  It is generically handled within the ADLC.
4135 
4136 //----------Conditional Branch Operands----------------------------------------
4137 // Comparison Op  - This is the operation of the comparison, and is limited to
4138 //                  the following set of codes:
4139 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4140 //
4141 // Other attributes of the comparison, such as unsignedness, are specified
4142 // by the comparison instruction that sets a condition code flags register.
4143 // That result is represented by a flags operand whose subtype is appropriate
4144 // to the unsignedness (etc.) of the comparison.
4145 //
4146 // Later, the instruction which matches both the Comparison Op (a Bool) and
4147 // the flags (produced by the Cmp) specifies the coding of the comparison op
4148 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4149 
4150 operand cmpOp() %{
4151   match(Bool);
4152 
4153   format %{ "" %}
4154   interface(COND_INTER) %{
4155     equal(0x1);
4156     not_equal(0x9);
4157     less(0x3);
4158     greater_equal(0xB);
4159     less_equal(0x2);
4160     greater(0xA);
4161     overflow(0x7);
4162     no_overflow(0xF);
4163   %}
4164 %}
4165 
4166 // Comparison Op, unsigned
4167 operand cmpOpU() %{
4168   match(Bool);
4169   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4170             n->as_Bool()->_test._test != BoolTest::no_overflow);
4171 
4172   format %{ "u" %}
4173   interface(COND_INTER) %{
4174     equal(0x1);
4175     not_equal(0x9);
4176     less(0x5);
4177     greater_equal(0xD);
4178     less_equal(0x4);
4179     greater(0xC);
4180     overflow(0x7);
4181     no_overflow(0xF);
4182   %}
4183 %}
4184 
4185 // Comparison Op, pointer (same as unsigned)
4186 operand cmpOpP() %{
4187   match(Bool);
4188   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4189             n->as_Bool()->_test._test != BoolTest::no_overflow);
4190 
4191   format %{ "p" %}
4192   interface(COND_INTER) %{
4193     equal(0x1);
4194     not_equal(0x9);
4195     less(0x5);
4196     greater_equal(0xD);
4197     less_equal(0x4);
4198     greater(0xC);
4199     overflow(0x7);
4200     no_overflow(0xF);
4201   %}
4202 %}
4203 
4204 // Comparison Op, branch-register encoding
4205 operand cmpOp_reg() %{
4206   match(Bool);
4207   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4208             n->as_Bool()->_test._test != BoolTest::no_overflow);
4209 
4210   format %{ "" %}
4211   interface(COND_INTER) %{
4212     equal        (0x1);
4213     not_equal    (0x5);
4214     less         (0x3);
4215     greater_equal(0x7);
4216     less_equal   (0x2);
4217     greater      (0x6);
4218     overflow(0x7); // not supported
4219     no_overflow(0xF); // not supported
4220   %}
4221 %}
4222 
4223 // Comparison Code, floating, unordered same as less
4224 operand cmpOpF() %{
4225   match(Bool);
4226   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4227             n->as_Bool()->_test._test != BoolTest::no_overflow);
4228 
4229   format %{ "fl" %}
4230   interface(COND_INTER) %{
4231     equal(0x9);
4232     not_equal(0x1);
4233     less(0x3);
4234     greater_equal(0xB);
4235     less_equal(0xE);
4236     greater(0x6);
4237 
4238     overflow(0x7); // not supported
4239     no_overflow(0xF); // not supported
4240   %}
4241 %}
4242 
4243 // Used by long compare
4244 operand cmpOp_commute() %{
4245   match(Bool);
4246   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4247             n->as_Bool()->_test._test != BoolTest::no_overflow);
4248 
4249   format %{ "" %}
4250   interface(COND_INTER) %{
4251     equal(0x1);
4252     not_equal(0x9);
4253     less(0xA);
4254     greater_equal(0x2);
4255     less_equal(0xB);
4256     greater(0x3);
4257     overflow(0x7);
4258     no_overflow(0xF);
4259   %}
4260 %}
4261 
4262 //----------OPERAND CLASSES----------------------------------------------------
4263 // Operand Classes are groups of operands that are used to simplify
4264 // instruction definitions by not requiring the AD writer to specify separate
4265 // instructions for every form of operand when the instruction accepts
4266 // multiple operand types with the same basic encoding and format.  The classic
4267 // case of this is memory operands.
4268 opclass memory( indirect, indOffset13, indIndex );
4269 opclass indIndexMemory( indIndex );
4270 
4271 //----------PIPELINE-----------------------------------------------------------
4272 pipeline %{
4273 
4274 //----------ATTRIBUTES---------------------------------------------------------
4275 attributes %{
4276   fixed_size_instructions;           // Fixed size instructions
4277   branch_has_delay_slot;             // Branch has delay slot following
4278   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4279   instruction_unit_size = 4;         // An instruction is 4 bytes long
4280   instruction_fetch_unit_size = 16;  // The processor fetches one line
4281   instruction_fetch_units = 1;       // of 16 bytes
4282 
4283   // List of nop instructions
4284   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4285 %}
4286 
4287 //----------RESOURCES----------------------------------------------------------
4288 // Resources are the functional units available to the machine
4289 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4290 
4291 //----------PIPELINE DESCRIPTION-----------------------------------------------
4292 // Pipeline Description specifies the stages in the machine's pipeline
4293 
4294 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4295 
4296 //----------PIPELINE CLASSES---------------------------------------------------
4297 // Pipeline Classes describe the stages in which input and output are
4298 // referenced by the hardware pipeline.
4299 
4300 // Integer ALU reg-reg operation
4301 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4302     single_instruction;
4303     dst   : E(write);
4304     src1  : R(read);
4305     src2  : R(read);
4306     IALU  : R;
4307 %}
4308 
4309 // Integer ALU reg-reg long operation
4310 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4311     instruction_count(2);
4312     dst   : E(write);
4313     src1  : R(read);
4314     src2  : R(read);
4315     IALU  : R;
4316     IALU  : R;
4317 %}
4318 
4319 // Integer ALU reg-reg long dependent operation
4320 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4321     instruction_count(1); multiple_bundles;
4322     dst   : E(write);
4323     src1  : R(read);
4324     src2  : R(read);
4325     cr    : E(write);
4326     IALU  : R(2);
4327 %}
4328 
4329 // Integer ALU reg-imm operaion
4330 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4331     single_instruction;
4332     dst   : E(write);
4333     src1  : R(read);
4334     IALU  : R;
4335 %}
4336 
4337 // Integer ALU reg-reg operation with condition code
4338 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4339     single_instruction;
4340     dst   : E(write);
4341     cr    : E(write);
4342     src1  : R(read);
4343     src2  : R(read);
4344     IALU  : R;
4345 %}
4346 
4347 // Integer ALU reg-imm operation with condition code
4348 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4349     single_instruction;
4350     dst   : E(write);
4351     cr    : E(write);
4352     src1  : R(read);
4353     IALU  : R;
4354 %}
4355 
4356 // Integer ALU zero-reg operation
4357 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4358     single_instruction;
4359     dst   : E(write);
4360     src2  : R(read);
4361     IALU  : R;
4362 %}
4363 
4364 // Integer ALU zero-reg operation with condition code only
4365 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4366     single_instruction;
4367     cr    : E(write);
4368     src   : R(read);
4369     IALU  : R;
4370 %}
4371 
4372 // Integer ALU reg-reg operation with condition code only
4373 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4374     single_instruction;
4375     cr    : E(write);
4376     src1  : R(read);
4377     src2  : R(read);
4378     IALU  : R;
4379 %}
4380 
4381 // Integer ALU reg-imm operation with condition code only
4382 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4383     single_instruction;
4384     cr    : E(write);
4385     src1  : R(read);
4386     IALU  : R;
4387 %}
4388 
4389 // Integer ALU reg-reg-zero operation with condition code only
4390 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4391     single_instruction;
4392     cr    : E(write);
4393     src1  : R(read);
4394     src2  : R(read);
4395     IALU  : R;
4396 %}
4397 
4398 // Integer ALU reg-imm-zero operation with condition code only
4399 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4400     single_instruction;
4401     cr    : E(write);
4402     src1  : R(read);
4403     IALU  : R;
4404 %}
4405 
4406 // Integer ALU reg-reg operation with condition code, src1 modified
4407 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4408     single_instruction;
4409     cr    : E(write);
4410     src1  : E(write);
4411     src1  : R(read);
4412     src2  : R(read);
4413     IALU  : R;
4414 %}
4415 
4416 // Integer ALU reg-imm operation with condition code, src1 modified
4417 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4418     single_instruction;
4419     cr    : E(write);
4420     src1  : E(write);
4421     src1  : R(read);
4422     IALU  : R;
4423 %}
4424 
4425 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4426     multiple_bundles;
4427     dst   : E(write)+4;
4428     cr    : E(write);
4429     src1  : R(read);
4430     src2  : R(read);
4431     IALU  : R(3);
4432     BR    : R(2);
4433 %}
4434 
4435 // Integer ALU operation
4436 pipe_class ialu_none(iRegI dst) %{
4437     single_instruction;
4438     dst   : E(write);
4439     IALU  : R;
4440 %}
4441 
4442 // Integer ALU reg operation
4443 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4444     single_instruction; may_have_no_code;
4445     dst   : E(write);
4446     src   : R(read);
4447     IALU  : R;
4448 %}
4449 
4450 // Integer ALU reg conditional operation
4451 // This instruction has a 1 cycle stall, and cannot execute
4452 // in the same cycle as the instruction setting the condition
4453 // code. We kludge this by pretending to read the condition code
4454 // 1 cycle earlier, and by marking the functional units as busy
4455 // for 2 cycles with the result available 1 cycle later than
4456 // is really the case.
4457 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4458     single_instruction;
4459     op2_out : C(write);
4460     op1     : R(read);
4461     cr      : R(read);       // This is really E, with a 1 cycle stall
4462     BR      : R(2);
4463     MS      : R(2);
4464 %}
4465 
4466 #ifdef _LP64
4467 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4468     instruction_count(1); multiple_bundles;
4469     dst     : C(write)+1;
4470     src     : R(read)+1;
4471     IALU    : R(1);
4472     BR      : E(2);
4473     MS      : E(2);
4474 %}
4475 #endif
4476 
4477 // Integer ALU reg operation
4478 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4479     single_instruction; may_have_no_code;
4480     dst   : E(write);
4481     src   : R(read);
4482     IALU  : R;
4483 %}
4484 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4485     single_instruction; may_have_no_code;
4486     dst   : E(write);
4487     src   : R(read);
4488     IALU  : R;
4489 %}
4490 
4491 // Two integer ALU reg operations
4492 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4493     instruction_count(2);
4494     dst   : E(write);
4495     src   : R(read);
4496     A0    : R;
4497     A1    : R;
4498 %}
4499 
4500 // Two integer ALU reg operations
4501 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4502     instruction_count(2); may_have_no_code;
4503     dst   : E(write);
4504     src   : R(read);
4505     A0    : R;
4506     A1    : R;
4507 %}
4508 
4509 // Integer ALU imm operation
4510 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4511     single_instruction;
4512     dst   : E(write);
4513     IALU  : R;
4514 %}
4515 
4516 // Integer ALU reg-reg with carry operation
4517 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4518     single_instruction;
4519     dst   : E(write);
4520     src1  : R(read);
4521     src2  : R(read);
4522     IALU  : R;
4523 %}
4524 
4525 // Integer ALU cc operation
4526 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4527     single_instruction;
4528     dst   : E(write);
4529     cc    : R(read);
4530     IALU  : R;
4531 %}
4532 
4533 // Integer ALU cc / second IALU operation
4534 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4535     instruction_count(1); multiple_bundles;
4536     dst   : E(write)+1;
4537     src   : R(read);
4538     IALU  : R;
4539 %}
4540 
4541 // Integer ALU cc / second IALU operation
4542 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4543     instruction_count(1); multiple_bundles;
4544     dst   : E(write)+1;
4545     p     : R(read);
4546     q     : R(read);
4547     IALU  : R;
4548 %}
4549 
4550 // Integer ALU hi-lo-reg operation
4551 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4552     instruction_count(1); multiple_bundles;
4553     dst   : E(write)+1;
4554     IALU  : R(2);
4555 %}
4556 
4557 // Float ALU hi-lo-reg operation (with temp)
4558 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4559     instruction_count(1); multiple_bundles;
4560     dst   : E(write)+1;
4561     IALU  : R(2);
4562 %}
4563 
4564 // Long Constant
4565 pipe_class loadConL( iRegL dst, immL src ) %{
4566     instruction_count(2); multiple_bundles;
4567     dst   : E(write)+1;
4568     IALU  : R(2);
4569     IALU  : R(2);
4570 %}
4571 
4572 // Pointer Constant
4573 pipe_class loadConP( iRegP dst, immP src ) %{
4574     instruction_count(0); multiple_bundles;
4575     fixed_latency(6);
4576 %}
4577 
4578 // Polling Address
4579 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4580 #ifdef _LP64
4581     instruction_count(0); multiple_bundles;
4582     fixed_latency(6);
4583 #else
4584     dst   : E(write);
4585     IALU  : R;
4586 #endif
4587 %}
4588 
4589 // Long Constant small
4590 pipe_class loadConLlo( iRegL dst, immL src ) %{
4591     instruction_count(2);
4592     dst   : E(write);
4593     IALU  : R;
4594     IALU  : R;
4595 %}
4596 
4597 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4598 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4599     instruction_count(1); multiple_bundles;
4600     src   : R(read);
4601     dst   : M(write)+1;
4602     IALU  : R;
4603     MS    : E;
4604 %}
4605 
4606 // Integer ALU nop operation
4607 pipe_class ialu_nop() %{
4608     single_instruction;
4609     IALU  : R;
4610 %}
4611 
4612 // Integer ALU nop operation
4613 pipe_class ialu_nop_A0() %{
4614     single_instruction;
4615     A0    : R;
4616 %}
4617 
4618 // Integer ALU nop operation
4619 pipe_class ialu_nop_A1() %{
4620     single_instruction;
4621     A1    : R;
4622 %}
4623 
4624 // Integer Multiply reg-reg operation
4625 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4626     single_instruction;
4627     dst   : E(write);
4628     src1  : R(read);
4629     src2  : R(read);
4630     MS    : R(5);
4631 %}
4632 
4633 // Integer Multiply reg-imm operation
4634 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4635     single_instruction;
4636     dst   : E(write);
4637     src1  : R(read);
4638     MS    : R(5);
4639 %}
4640 
4641 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4642     single_instruction;
4643     dst   : E(write)+4;
4644     src1  : R(read);
4645     src2  : R(read);
4646     MS    : R(6);
4647 %}
4648 
4649 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4650     single_instruction;
4651     dst   : E(write)+4;
4652     src1  : R(read);
4653     MS    : R(6);
4654 %}
4655 
4656 // Integer Divide reg-reg
4657 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4658     instruction_count(1); multiple_bundles;
4659     dst   : E(write);
4660     temp  : E(write);
4661     src1  : R(read);
4662     src2  : R(read);
4663     temp  : R(read);
4664     MS    : R(38);
4665 %}
4666 
4667 // Integer Divide reg-imm
4668 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4669     instruction_count(1); multiple_bundles;
4670     dst   : E(write);
4671     temp  : E(write);
4672     src1  : R(read);
4673     temp  : R(read);
4674     MS    : R(38);
4675 %}
4676 
4677 // Long Divide
4678 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4679     dst  : E(write)+71;
4680     src1 : R(read);
4681     src2 : R(read)+1;
4682     MS   : R(70);
4683 %}
4684 
4685 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4686     dst  : E(write)+71;
4687     src1 : R(read);
4688     MS   : R(70);
4689 %}
4690 
4691 // Floating Point Add Float
4692 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4693     single_instruction;
4694     dst   : X(write);
4695     src1  : E(read);
4696     src2  : E(read);
4697     FA    : R;
4698 %}
4699 
4700 // Floating Point Add Double
4701 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4702     single_instruction;
4703     dst   : X(write);
4704     src1  : E(read);
4705     src2  : E(read);
4706     FA    : R;
4707 %}
4708 
4709 // Floating Point Conditional Move based on integer flags
4710 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4711     single_instruction;
4712     dst   : X(write);
4713     src   : E(read);
4714     cr    : R(read);
4715     FA    : R(2);
4716     BR    : R(2);
4717 %}
4718 
4719 // Floating Point Conditional Move based on integer flags
4720 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4721     single_instruction;
4722     dst   : X(write);
4723     src   : E(read);
4724     cr    : R(read);
4725     FA    : R(2);
4726     BR    : R(2);
4727 %}
4728 
4729 // Floating Point Multiply Float
4730 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4731     single_instruction;
4732     dst   : X(write);
4733     src1  : E(read);
4734     src2  : E(read);
4735     FM    : R;
4736 %}
4737 
4738 // Floating Point Multiply Double
4739 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4740     single_instruction;
4741     dst   : X(write);
4742     src1  : E(read);
4743     src2  : E(read);
4744     FM    : R;
4745 %}
4746 
4747 // Floating Point Divide Float
4748 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4749     single_instruction;
4750     dst   : X(write);
4751     src1  : E(read);
4752     src2  : E(read);
4753     FM    : R;
4754     FDIV  : C(14);
4755 %}
4756 
4757 // Floating Point Divide Double
4758 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4759     single_instruction;
4760     dst   : X(write);
4761     src1  : E(read);
4762     src2  : E(read);
4763     FM    : R;
4764     FDIV  : C(17);
4765 %}
4766 
4767 // Floating Point Move/Negate/Abs Float
4768 pipe_class faddF_reg(regF dst, regF src) %{
4769     single_instruction;
4770     dst   : W(write);
4771     src   : E(read);
4772     FA    : R(1);
4773 %}
4774 
4775 // Floating Point Move/Negate/Abs Double
4776 pipe_class faddD_reg(regD dst, regD src) %{
4777     single_instruction;
4778     dst   : W(write);
4779     src   : E(read);
4780     FA    : R;
4781 %}
4782 
4783 // Floating Point Convert F->D
4784 pipe_class fcvtF2D(regD dst, regF src) %{
4785     single_instruction;
4786     dst   : X(write);
4787     src   : E(read);
4788     FA    : R;
4789 %}
4790 
4791 // Floating Point Convert I->D
4792 pipe_class fcvtI2D(regD dst, regF src) %{
4793     single_instruction;
4794     dst   : X(write);
4795     src   : E(read);
4796     FA    : R;
4797 %}
4798 
4799 // Floating Point Convert LHi->D
4800 pipe_class fcvtLHi2D(regD dst, regD src) %{
4801     single_instruction;
4802     dst   : X(write);
4803     src   : E(read);
4804     FA    : R;
4805 %}
4806 
4807 // Floating Point Convert L->D
4808 pipe_class fcvtL2D(regD dst, regF src) %{
4809     single_instruction;
4810     dst   : X(write);
4811     src   : E(read);
4812     FA    : R;
4813 %}
4814 
4815 // Floating Point Convert L->F
4816 pipe_class fcvtL2F(regD dst, regF src) %{
4817     single_instruction;
4818     dst   : X(write);
4819     src   : E(read);
4820     FA    : R;
4821 %}
4822 
4823 // Floating Point Convert D->F
4824 pipe_class fcvtD2F(regD dst, regF src) %{
4825     single_instruction;
4826     dst   : X(write);
4827     src   : E(read);
4828     FA    : R;
4829 %}
4830 
4831 // Floating Point Convert I->L
4832 pipe_class fcvtI2L(regD dst, regF src) %{
4833     single_instruction;
4834     dst   : X(write);
4835     src   : E(read);
4836     FA    : R;
4837 %}
4838 
4839 // Floating Point Convert D->F
4840 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4841     instruction_count(1); multiple_bundles;
4842     dst   : X(write)+6;
4843     src   : E(read);
4844     FA    : R;
4845 %}
4846 
4847 // Floating Point Convert D->L
4848 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4849     instruction_count(1); multiple_bundles;
4850     dst   : X(write)+6;
4851     src   : E(read);
4852     FA    : R;
4853 %}
4854 
4855 // Floating Point Convert F->I
4856 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4857     instruction_count(1); multiple_bundles;
4858     dst   : X(write)+6;
4859     src   : E(read);
4860     FA    : R;
4861 %}
4862 
4863 // Floating Point Convert F->L
4864 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4865     instruction_count(1); multiple_bundles;
4866     dst   : X(write)+6;
4867     src   : E(read);
4868     FA    : R;
4869 %}
4870 
4871 // Floating Point Convert I->F
4872 pipe_class fcvtI2F(regF dst, regF src) %{
4873     single_instruction;
4874     dst   : X(write);
4875     src   : E(read);
4876     FA    : R;
4877 %}
4878 
4879 // Floating Point Compare
4880 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4881     single_instruction;
4882     cr    : X(write);
4883     src1  : E(read);
4884     src2  : E(read);
4885     FA    : R;
4886 %}
4887 
4888 // Floating Point Compare
4889 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4890     single_instruction;
4891     cr    : X(write);
4892     src1  : E(read);
4893     src2  : E(read);
4894     FA    : R;
4895 %}
4896 
4897 // Floating Add Nop
4898 pipe_class fadd_nop() %{
4899     single_instruction;
4900     FA  : R;
4901 %}
4902 
4903 // Integer Store to Memory
4904 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4905     single_instruction;
4906     mem   : R(read);
4907     src   : C(read);
4908     MS    : R;
4909 %}
4910 
4911 // Integer Store to Memory
4912 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4913     single_instruction;
4914     mem   : R(read);
4915     src   : C(read);
4916     MS    : R;
4917 %}
4918 
4919 // Integer Store Zero to Memory
4920 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4921     single_instruction;
4922     mem   : R(read);
4923     MS    : R;
4924 %}
4925 
4926 // Special Stack Slot Store
4927 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4928     single_instruction;
4929     stkSlot : R(read);
4930     src     : C(read);
4931     MS      : R;
4932 %}
4933 
4934 // Special Stack Slot Store
4935 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4936     instruction_count(2); multiple_bundles;
4937     stkSlot : R(read);
4938     src     : C(read);
4939     MS      : R(2);
4940 %}
4941 
4942 // Float Store
4943 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4944     single_instruction;
4945     mem : R(read);
4946     src : C(read);
4947     MS  : R;
4948 %}
4949 
4950 // Float Store
4951 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4952     single_instruction;
4953     mem : R(read);
4954     MS  : R;
4955 %}
4956 
4957 // Double Store
4958 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4959     instruction_count(1);
4960     mem : R(read);
4961     src : C(read);
4962     MS  : R;
4963 %}
4964 
4965 // Double Store
4966 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4967     single_instruction;
4968     mem : R(read);
4969     MS  : R;
4970 %}
4971 
4972 // Special Stack Slot Float Store
4973 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4974     single_instruction;
4975     stkSlot : R(read);
4976     src     : C(read);
4977     MS      : R;
4978 %}
4979 
4980 // Special Stack Slot Double Store
4981 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4982     single_instruction;
4983     stkSlot : R(read);
4984     src     : C(read);
4985     MS      : R;
4986 %}
4987 
4988 // Integer Load (when sign bit propagation not needed)
4989 pipe_class iload_mem(iRegI dst, memory mem) %{
4990     single_instruction;
4991     mem : R(read);
4992     dst : C(write);
4993     MS  : R;
4994 %}
4995 
4996 // Integer Load from stack operand
4997 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4998     single_instruction;
4999     mem : R(read);
5000     dst : C(write);
5001     MS  : R;
5002 %}
5003 
5004 // Integer Load (when sign bit propagation or masking is needed)
5005 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5006     single_instruction;
5007     mem : R(read);
5008     dst : M(write);
5009     MS  : R;
5010 %}
5011 
5012 // Float Load
5013 pipe_class floadF_mem(regF dst, memory mem) %{
5014     single_instruction;
5015     mem : R(read);
5016     dst : M(write);
5017     MS  : R;
5018 %}
5019 
5020 // Float Load
5021 pipe_class floadD_mem(regD dst, memory mem) %{
5022     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5023     mem : R(read);
5024     dst : M(write);
5025     MS  : R;
5026 %}
5027 
5028 // Float Load
5029 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5030     single_instruction;
5031     stkSlot : R(read);
5032     dst : M(write);
5033     MS  : R;
5034 %}
5035 
5036 // Float Load
5037 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5038     single_instruction;
5039     stkSlot : R(read);
5040     dst : M(write);
5041     MS  : R;
5042 %}
5043 
5044 // Memory Nop
5045 pipe_class mem_nop() %{
5046     single_instruction;
5047     MS  : R;
5048 %}
5049 
5050 pipe_class sethi(iRegP dst, immI src) %{
5051     single_instruction;
5052     dst  : E(write);
5053     IALU : R;
5054 %}
5055 
5056 pipe_class loadPollP(iRegP poll) %{
5057     single_instruction;
5058     poll : R(read);
5059     MS   : R;
5060 %}
5061 
5062 pipe_class br(Universe br, label labl) %{
5063     single_instruction_with_delay_slot;
5064     BR  : R;
5065 %}
5066 
5067 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5068     single_instruction_with_delay_slot;
5069     cr    : E(read);
5070     BR    : R;
5071 %}
5072 
5073 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5074     single_instruction_with_delay_slot;
5075     op1 : E(read);
5076     BR  : R;
5077     MS  : R;
5078 %}
5079 
5080 // Compare and branch
5081 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5082     instruction_count(2); has_delay_slot;
5083     cr    : E(write);
5084     src1  : R(read);
5085     src2  : R(read);
5086     IALU  : R;
5087     BR    : R;
5088 %}
5089 
5090 // Compare and branch
5091 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5092     instruction_count(2); has_delay_slot;
5093     cr    : E(write);
5094     src1  : R(read);
5095     IALU  : R;
5096     BR    : R;
5097 %}
5098 
5099 // Compare and branch using cbcond
5100 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5101     single_instruction;
5102     src1  : E(read);
5103     src2  : E(read);
5104     IALU  : R;
5105     BR    : R;
5106 %}
5107 
5108 // Compare and branch using cbcond
5109 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5110     single_instruction;
5111     src1  : E(read);
5112     IALU  : R;
5113     BR    : R;
5114 %}
5115 
5116 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5117     single_instruction_with_delay_slot;
5118     cr    : E(read);
5119     BR    : R;
5120 %}
5121 
5122 pipe_class br_nop() %{
5123     single_instruction;
5124     BR  : R;
5125 %}
5126 
5127 pipe_class simple_call(method meth) %{
5128     instruction_count(2); multiple_bundles; force_serialization;
5129     fixed_latency(100);
5130     BR  : R(1);
5131     MS  : R(1);
5132     A0  : R(1);
5133 %}
5134 
5135 pipe_class compiled_call(method meth) %{
5136     instruction_count(1); multiple_bundles; force_serialization;
5137     fixed_latency(100);
5138     MS  : R(1);
5139 %}
5140 
5141 pipe_class call(method meth) %{
5142     instruction_count(0); multiple_bundles; force_serialization;
5143     fixed_latency(100);
5144 %}
5145 
5146 pipe_class tail_call(Universe ignore, label labl) %{
5147     single_instruction; has_delay_slot;
5148     fixed_latency(100);
5149     BR  : R(1);
5150     MS  : R(1);
5151 %}
5152 
5153 pipe_class ret(Universe ignore) %{
5154     single_instruction; has_delay_slot;
5155     BR  : R(1);
5156     MS  : R(1);
5157 %}
5158 
5159 pipe_class ret_poll(g3RegP poll) %{
5160     instruction_count(3); has_delay_slot;
5161     poll : E(read);
5162     MS   : R;
5163 %}
5164 
5165 // The real do-nothing guy
5166 pipe_class empty( ) %{
5167     instruction_count(0);
5168 %}
5169 
5170 pipe_class long_memory_op() %{
5171     instruction_count(0); multiple_bundles; force_serialization;
5172     fixed_latency(25);
5173     MS  : R(1);
5174 %}
5175 
5176 // Check-cast
5177 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5178     array : R(read);
5179     match  : R(read);
5180     IALU   : R(2);
5181     BR     : R(2);
5182     MS     : R;
5183 %}
5184 
5185 // Convert FPU flags into +1,0,-1
5186 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5187     src1  : E(read);
5188     src2  : E(read);
5189     dst   : E(write);
5190     FA    : R;
5191     MS    : R(2);
5192     BR    : R(2);
5193 %}
5194 
5195 // Compare for p < q, and conditionally add y
5196 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5197     p     : E(read);
5198     q     : E(read);
5199     y     : E(read);
5200     IALU  : R(3)
5201 %}
5202 
5203 // Perform a compare, then move conditionally in a branch delay slot.
5204 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5205     src2   : E(read);
5206     srcdst : E(read);
5207     IALU   : R;
5208     BR     : R;
5209 %}
5210 
5211 // Define the class for the Nop node
5212 define %{
5213    MachNop = ialu_nop;
5214 %}
5215 
5216 %}
5217 
5218 //----------INSTRUCTIONS-------------------------------------------------------
5219 
5220 //------------Special Stack Slot instructions - no match rules-----------------
5221 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5222   // No match rule to avoid chain rule match.
5223   effect(DEF dst, USE src);
5224   ins_cost(MEMORY_REF_COST);
5225   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5226   opcode(Assembler::ldf_op3);
5227   ins_encode(simple_form3_mem_reg(src, dst));
5228   ins_pipe(floadF_stk);
5229 %}
5230 
5231 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5232   // No match rule to avoid chain rule match.
5233   effect(DEF dst, USE src);
5234   ins_cost(MEMORY_REF_COST);
5235   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5236   opcode(Assembler::lddf_op3);
5237   ins_encode(simple_form3_mem_reg(src, dst));
5238   ins_pipe(floadD_stk);
5239 %}
5240 
5241 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5242   // No match rule to avoid chain rule match.
5243   effect(DEF dst, USE src);
5244   ins_cost(MEMORY_REF_COST);
5245   format %{ "STF    $src,$dst\t! regF to stkI" %}
5246   opcode(Assembler::stf_op3);
5247   ins_encode(simple_form3_mem_reg(dst, src));
5248   ins_pipe(fstoreF_stk_reg);
5249 %}
5250 
5251 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5252   // No match rule to avoid chain rule match.
5253   effect(DEF dst, USE src);
5254   ins_cost(MEMORY_REF_COST);
5255   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5256   opcode(Assembler::stdf_op3);
5257   ins_encode(simple_form3_mem_reg(dst, src));
5258   ins_pipe(fstoreD_stk_reg);
5259 %}
5260 
5261 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5262   effect(DEF dst, USE src);
5263   ins_cost(MEMORY_REF_COST*2);
5264   format %{ "STW    $src,$dst.hi\t! long\n\t"
5265             "STW    R_G0,$dst.lo" %}
5266   opcode(Assembler::stw_op3);
5267   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5268   ins_pipe(lstoreI_stk_reg);
5269 %}
5270 
5271 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5272   // No match rule to avoid chain rule match.
5273   effect(DEF dst, USE src);
5274   ins_cost(MEMORY_REF_COST);
5275   format %{ "STX    $src,$dst\t! regL to stkD" %}
5276   opcode(Assembler::stx_op3);
5277   ins_encode(simple_form3_mem_reg( dst, src ) );
5278   ins_pipe(istore_stk_reg);
5279 %}
5280 
5281 //---------- Chain stack slots between similar types --------
5282 
5283 // Load integer from stack slot
5284 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5285   match(Set dst src);
5286   ins_cost(MEMORY_REF_COST);
5287 
5288   format %{ "LDUW   $src,$dst\t!stk" %}
5289   opcode(Assembler::lduw_op3);
5290   ins_encode(simple_form3_mem_reg( src, dst ) );
5291   ins_pipe(iload_mem);
5292 %}
5293 
5294 // Store integer to stack slot
5295 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5296   match(Set dst src);
5297   ins_cost(MEMORY_REF_COST);
5298 
5299   format %{ "STW    $src,$dst\t!stk" %}
5300   opcode(Assembler::stw_op3);
5301   ins_encode(simple_form3_mem_reg( dst, src ) );
5302   ins_pipe(istore_mem_reg);
5303 %}
5304 
5305 // Load long from stack slot
5306 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5307   match(Set dst src);
5308 
5309   ins_cost(MEMORY_REF_COST);
5310   format %{ "LDX    $src,$dst\t! long" %}
5311   opcode(Assembler::ldx_op3);
5312   ins_encode(simple_form3_mem_reg( src, dst ) );
5313   ins_pipe(iload_mem);
5314 %}
5315 
5316 // Store long to stack slot
5317 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5318   match(Set dst src);
5319 
5320   ins_cost(MEMORY_REF_COST);
5321   format %{ "STX    $src,$dst\t! long" %}
5322   opcode(Assembler::stx_op3);
5323   ins_encode(simple_form3_mem_reg( dst, src ) );
5324   ins_pipe(istore_mem_reg);
5325 %}
5326 
5327 #ifdef _LP64
5328 // Load pointer from stack slot, 64-bit encoding
5329 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5330   match(Set dst src);
5331   ins_cost(MEMORY_REF_COST);
5332   format %{ "LDX    $src,$dst\t!ptr" %}
5333   opcode(Assembler::ldx_op3);
5334   ins_encode(simple_form3_mem_reg( src, dst ) );
5335   ins_pipe(iload_mem);
5336 %}
5337 
5338 // Store pointer to stack slot
5339 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5340   match(Set dst src);
5341   ins_cost(MEMORY_REF_COST);
5342   format %{ "STX    $src,$dst\t!ptr" %}
5343   opcode(Assembler::stx_op3);
5344   ins_encode(simple_form3_mem_reg( dst, src ) );
5345   ins_pipe(istore_mem_reg);
5346 %}
5347 #else // _LP64
5348 // Load pointer from stack slot, 32-bit encoding
5349 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5350   match(Set dst src);
5351   ins_cost(MEMORY_REF_COST);
5352   format %{ "LDUW   $src,$dst\t!ptr" %}
5353   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5354   ins_encode(simple_form3_mem_reg( src, dst ) );
5355   ins_pipe(iload_mem);
5356 %}
5357 
5358 // Store pointer to stack slot
5359 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5360   match(Set dst src);
5361   ins_cost(MEMORY_REF_COST);
5362   format %{ "STW    $src,$dst\t!ptr" %}
5363   opcode(Assembler::stw_op3, Assembler::ldst_op);
5364   ins_encode(simple_form3_mem_reg( dst, src ) );
5365   ins_pipe(istore_mem_reg);
5366 %}
5367 #endif // _LP64
5368 
5369 //------------Special Nop instructions for bundling - no match rules-----------
5370 // Nop using the A0 functional unit
5371 instruct Nop_A0() %{
5372   ins_cost(0);
5373 
5374   format %{ "NOP    ! Alu Pipeline" %}
5375   opcode(Assembler::or_op3, Assembler::arith_op);
5376   ins_encode( form2_nop() );
5377   ins_pipe(ialu_nop_A0);
5378 %}
5379 
5380 // Nop using the A1 functional unit
5381 instruct Nop_A1( ) %{
5382   ins_cost(0);
5383 
5384   format %{ "NOP    ! Alu Pipeline" %}
5385   opcode(Assembler::or_op3, Assembler::arith_op);
5386   ins_encode( form2_nop() );
5387   ins_pipe(ialu_nop_A1);
5388 %}
5389 
5390 // Nop using the memory functional unit
5391 instruct Nop_MS( ) %{
5392   ins_cost(0);
5393 
5394   format %{ "NOP    ! Memory Pipeline" %}
5395   ins_encode( emit_mem_nop );
5396   ins_pipe(mem_nop);
5397 %}
5398 
5399 // Nop using the floating add functional unit
5400 instruct Nop_FA( ) %{
5401   ins_cost(0);
5402 
5403   format %{ "NOP    ! Floating Add Pipeline" %}
5404   ins_encode( emit_fadd_nop );
5405   ins_pipe(fadd_nop);
5406 %}
5407 
5408 // Nop using the branch functional unit
5409 instruct Nop_BR( ) %{
5410   ins_cost(0);
5411 
5412   format %{ "NOP    ! Branch Pipeline" %}
5413   ins_encode( emit_br_nop );
5414   ins_pipe(br_nop);
5415 %}
5416 
5417 //----------Load/Store/Move Instructions---------------------------------------
5418 //----------Load Instructions--------------------------------------------------
5419 // Load Byte (8bit signed)
5420 instruct loadB(iRegI dst, memory mem) %{
5421   match(Set dst (LoadB mem));
5422   ins_cost(MEMORY_REF_COST);
5423 
5424   size(4);
5425   format %{ "LDSB   $mem,$dst\t! byte" %}
5426   ins_encode %{
5427     __ ldsb($mem$$Address, $dst$$Register);
5428   %}
5429   ins_pipe(iload_mask_mem);
5430 %}
5431 
5432 // Load Byte (8bit signed) into a Long Register
5433 instruct loadB2L(iRegL dst, memory mem) %{
5434   match(Set dst (ConvI2L (LoadB mem)));
5435   ins_cost(MEMORY_REF_COST);
5436 
5437   size(4);
5438   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5439   ins_encode %{
5440     __ ldsb($mem$$Address, $dst$$Register);
5441   %}
5442   ins_pipe(iload_mask_mem);
5443 %}
5444 
5445 // Load Unsigned Byte (8bit UNsigned) into an int reg
5446 instruct loadUB(iRegI dst, memory mem) %{
5447   match(Set dst (LoadUB mem));
5448   ins_cost(MEMORY_REF_COST);
5449 
5450   size(4);
5451   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5452   ins_encode %{
5453     __ ldub($mem$$Address, $dst$$Register);
5454   %}
5455   ins_pipe(iload_mem);
5456 %}
5457 
5458 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5459 instruct loadUB2L(iRegL dst, memory mem) %{
5460   match(Set dst (ConvI2L (LoadUB mem)));
5461   ins_cost(MEMORY_REF_COST);
5462 
5463   size(4);
5464   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5465   ins_encode %{
5466     __ ldub($mem$$Address, $dst$$Register);
5467   %}
5468   ins_pipe(iload_mem);
5469 %}
5470 
5471 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5472 instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5473   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5474   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5475 
5476   size(2*4);
5477   format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5478             "AND    $dst,right_n_bits($mask, 8),$dst" %}
5479   ins_encode %{
5480     __ ldub($mem$$Address, $dst$$Register);
5481     __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5482   %}
5483   ins_pipe(iload_mem);
5484 %}
5485 
5486 // Load Short (16bit signed)
5487 instruct loadS(iRegI dst, memory mem) %{
5488   match(Set dst (LoadS mem));
5489   ins_cost(MEMORY_REF_COST);
5490 
5491   size(4);
5492   format %{ "LDSH   $mem,$dst\t! short" %}
5493   ins_encode %{
5494     __ ldsh($mem$$Address, $dst$$Register);
5495   %}
5496   ins_pipe(iload_mask_mem);
5497 %}
5498 
5499 // Load Short (16 bit signed) to Byte (8 bit signed)
5500 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5501   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5502   ins_cost(MEMORY_REF_COST);
5503 
5504   size(4);
5505 
5506   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5507   ins_encode %{
5508     __ ldsb($mem$$Address, $dst$$Register, 1);
5509   %}
5510   ins_pipe(iload_mask_mem);
5511 %}
5512 
5513 // Load Short (16bit signed) into a Long Register
5514 instruct loadS2L(iRegL dst, memory mem) %{
5515   match(Set dst (ConvI2L (LoadS mem)));
5516   ins_cost(MEMORY_REF_COST);
5517 
5518   size(4);
5519   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5520   ins_encode %{
5521     __ ldsh($mem$$Address, $dst$$Register);
5522   %}
5523   ins_pipe(iload_mask_mem);
5524 %}
5525 
5526 // Load Unsigned Short/Char (16bit UNsigned)
5527 instruct loadUS(iRegI dst, memory mem) %{
5528   match(Set dst (LoadUS mem));
5529   ins_cost(MEMORY_REF_COST);
5530 
5531   size(4);
5532   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5533   ins_encode %{
5534     __ lduh($mem$$Address, $dst$$Register);
5535   %}
5536   ins_pipe(iload_mem);
5537 %}
5538 
5539 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5540 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5541   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5542   ins_cost(MEMORY_REF_COST);
5543 
5544   size(4);
5545   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5546   ins_encode %{
5547     __ ldsb($mem$$Address, $dst$$Register, 1);
5548   %}
5549   ins_pipe(iload_mask_mem);
5550 %}
5551 
5552 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5553 instruct loadUS2L(iRegL dst, memory mem) %{
5554   match(Set dst (ConvI2L (LoadUS mem)));
5555   ins_cost(MEMORY_REF_COST);
5556 
5557   size(4);
5558   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5559   ins_encode %{
5560     __ lduh($mem$$Address, $dst$$Register);
5561   %}
5562   ins_pipe(iload_mem);
5563 %}
5564 
5565 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5566 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5567   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5568   ins_cost(MEMORY_REF_COST);
5569 
5570   size(4);
5571   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5572   ins_encode %{
5573     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5574   %}
5575   ins_pipe(iload_mem);
5576 %}
5577 
5578 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5579 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5580   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5581   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5582 
5583   size(2*4);
5584   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5585             "AND    $dst,$mask,$dst" %}
5586   ins_encode %{
5587     Register Rdst = $dst$$Register;
5588     __ lduh($mem$$Address, Rdst);
5589     __ and3(Rdst, $mask$$constant, Rdst);
5590   %}
5591   ins_pipe(iload_mem);
5592 %}
5593 
5594 // Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5595 instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5596   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5597   effect(TEMP dst, TEMP tmp);
5598   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5599 
5600   format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5601             "SET    right_n_bits($mask, 16),$tmp\n\t"
5602             "AND    $dst,$tmp,$dst" %}
5603   ins_encode %{
5604     Register Rdst = $dst$$Register;
5605     Register Rtmp = $tmp$$Register;
5606     __ lduh($mem$$Address, Rdst);
5607     __ set($mask$$constant & right_n_bits(16), Rtmp);
5608     __ and3(Rdst, Rtmp, Rdst);
5609   %}
5610   ins_pipe(iload_mem);
5611 %}
5612 
5613 // Load Integer
5614 instruct loadI(iRegI dst, memory mem) %{
5615   match(Set dst (LoadI mem));
5616   ins_cost(MEMORY_REF_COST);
5617 
5618   size(4);
5619   format %{ "LDUW   $mem,$dst\t! int" %}
5620   ins_encode %{
5621     __ lduw($mem$$Address, $dst$$Register);
5622   %}
5623   ins_pipe(iload_mem);
5624 %}
5625 
5626 // Load Integer to Byte (8 bit signed)
5627 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5628   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5629   ins_cost(MEMORY_REF_COST);
5630 
5631   size(4);
5632 
5633   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5634   ins_encode %{
5635     __ ldsb($mem$$Address, $dst$$Register, 3);
5636   %}
5637   ins_pipe(iload_mask_mem);
5638 %}
5639 
5640 // Load Integer to Unsigned Byte (8 bit UNsigned)
5641 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5642   match(Set dst (AndI (LoadI mem) mask));
5643   ins_cost(MEMORY_REF_COST);
5644 
5645   size(4);
5646 
5647   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5648   ins_encode %{
5649     __ ldub($mem$$Address, $dst$$Register, 3);
5650   %}
5651   ins_pipe(iload_mask_mem);
5652 %}
5653 
5654 // Load Integer to Short (16 bit signed)
5655 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5656   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5657   ins_cost(MEMORY_REF_COST);
5658 
5659   size(4);
5660 
5661   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5662   ins_encode %{
5663     __ ldsh($mem$$Address, $dst$$Register, 2);
5664   %}
5665   ins_pipe(iload_mask_mem);
5666 %}
5667 
5668 // Load Integer to Unsigned Short (16 bit UNsigned)
5669 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5670   match(Set dst (AndI (LoadI mem) mask));
5671   ins_cost(MEMORY_REF_COST);
5672 
5673   size(4);
5674 
5675   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5676   ins_encode %{
5677     __ lduh($mem$$Address, $dst$$Register, 2);
5678   %}
5679   ins_pipe(iload_mask_mem);
5680 %}
5681 
5682 // Load Integer into a Long Register
5683 instruct loadI2L(iRegL dst, memory mem) %{
5684   match(Set dst (ConvI2L (LoadI mem)));
5685   ins_cost(MEMORY_REF_COST);
5686 
5687   size(4);
5688   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5689   ins_encode %{
5690     __ ldsw($mem$$Address, $dst$$Register);
5691   %}
5692   ins_pipe(iload_mask_mem);
5693 %}
5694 
5695 // Load Integer with mask 0xFF into a Long Register
5696 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5697   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5698   ins_cost(MEMORY_REF_COST);
5699 
5700   size(4);
5701   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5702   ins_encode %{
5703     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5704   %}
5705   ins_pipe(iload_mem);
5706 %}
5707 
5708 // Load Integer with mask 0xFFFF into a Long Register
5709 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5710   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5711   ins_cost(MEMORY_REF_COST);
5712 
5713   size(4);
5714   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5715   ins_encode %{
5716     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5717   %}
5718   ins_pipe(iload_mem);
5719 %}
5720 
5721 // Load Integer with a 12-bit mask into a Long Register
5722 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5723   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5724   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5725 
5726   size(2*4);
5727   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5728             "AND    $dst,$mask,$dst" %}
5729   ins_encode %{
5730     Register Rdst = $dst$$Register;
5731     __ lduw($mem$$Address, Rdst);
5732     __ and3(Rdst, $mask$$constant, Rdst);
5733   %}
5734   ins_pipe(iload_mem);
5735 %}
5736 
5737 // Load Integer with a 31-bit mask into a Long Register
5738 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5739   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5740   effect(TEMP dst, TEMP tmp);
5741   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5742 
5743   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5744             "SET    $mask,$tmp\n\t"
5745             "AND    $dst,$tmp,$dst" %}
5746   ins_encode %{
5747     Register Rdst = $dst$$Register;
5748     Register Rtmp = $tmp$$Register;
5749     __ lduw($mem$$Address, Rdst);
5750     __ set($mask$$constant, Rtmp);
5751     __ and3(Rdst, Rtmp, Rdst);
5752   %}
5753   ins_pipe(iload_mem);
5754 %}
5755 
5756 // Load Unsigned Integer into a Long Register
5757 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5758   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5759   ins_cost(MEMORY_REF_COST);
5760 
5761   size(4);
5762   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5763   ins_encode %{
5764     __ lduw($mem$$Address, $dst$$Register);
5765   %}
5766   ins_pipe(iload_mem);
5767 %}
5768 
5769 // Load Long - aligned
5770 instruct loadL(iRegL dst, memory mem ) %{
5771   match(Set dst (LoadL mem));
5772   ins_cost(MEMORY_REF_COST);
5773 
5774   size(4);
5775   format %{ "LDX    $mem,$dst\t! long" %}
5776   ins_encode %{
5777     __ ldx($mem$$Address, $dst$$Register);
5778   %}
5779   ins_pipe(iload_mem);
5780 %}
5781 
5782 // Load Long - UNaligned
5783 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5784   match(Set dst (LoadL_unaligned mem));
5785   effect(KILL tmp);
5786   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5787   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5788           "\tLDUW   $mem  ,$dst\n"
5789           "\tSLLX   #32, $dst, $dst\n"
5790           "\tOR     $dst, R_O7, $dst" %}
5791   opcode(Assembler::lduw_op3);
5792   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5793   ins_pipe(iload_mem);
5794 %}
5795 
5796 // Load Range
5797 instruct loadRange(iRegI dst, memory mem) %{
5798   match(Set dst (LoadRange mem));
5799   ins_cost(MEMORY_REF_COST);
5800 
5801   format %{ "LDUW   $mem,$dst\t! range" %}
5802   opcode(Assembler::lduw_op3);
5803   ins_encode(simple_form3_mem_reg( mem, dst ) );
5804   ins_pipe(iload_mem);
5805 %}
5806 
5807 // Load Integer into %f register (for fitos/fitod)
5808 instruct loadI_freg(regF dst, memory mem) %{
5809   match(Set dst (LoadI mem));
5810   ins_cost(MEMORY_REF_COST);
5811 
5812   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5813   opcode(Assembler::ldf_op3);
5814   ins_encode(simple_form3_mem_reg( mem, dst ) );
5815   ins_pipe(floadF_mem);
5816 %}
5817 
5818 // Load Pointer
5819 instruct loadP(iRegP dst, memory mem) %{
5820   match(Set dst (LoadP mem));
5821   ins_cost(MEMORY_REF_COST);
5822   size(4);
5823 
5824 #ifndef _LP64
5825   format %{ "LDUW   $mem,$dst\t! ptr" %}
5826   ins_encode %{
5827     __ lduw($mem$$Address, $dst$$Register);
5828   %}
5829 #else
5830   format %{ "LDX    $mem,$dst\t! ptr" %}
5831   ins_encode %{
5832     __ ldx($mem$$Address, $dst$$Register);
5833   %}
5834 #endif
5835   ins_pipe(iload_mem);
5836 %}
5837 
5838 // Load Compressed Pointer
5839 instruct loadN(iRegN dst, memory mem) %{
5840   match(Set dst (LoadN mem));
5841   ins_cost(MEMORY_REF_COST);
5842   size(4);
5843 
5844   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5845   ins_encode %{
5846     __ lduw($mem$$Address, $dst$$Register);
5847   %}
5848   ins_pipe(iload_mem);
5849 %}
5850 
5851 // Load Klass Pointer
5852 instruct loadKlass(iRegP dst, memory mem) %{
5853   match(Set dst (LoadKlass mem));
5854   ins_cost(MEMORY_REF_COST);
5855   size(4);
5856 
5857 #ifndef _LP64
5858   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5859   ins_encode %{
5860     __ lduw($mem$$Address, $dst$$Register);
5861   %}
5862 #else
5863   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5864   ins_encode %{
5865     __ ldx($mem$$Address, $dst$$Register);
5866   %}
5867 #endif
5868   ins_pipe(iload_mem);
5869 %}
5870 
5871 // Load narrow Klass Pointer
5872 instruct loadNKlass(iRegN dst, memory mem) %{
5873   match(Set dst (LoadNKlass mem));
5874   ins_cost(MEMORY_REF_COST);
5875   size(4);
5876 
5877   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5878   ins_encode %{
5879     __ lduw($mem$$Address, $dst$$Register);
5880   %}
5881   ins_pipe(iload_mem);
5882 %}
5883 
5884 // Load Double
5885 instruct loadD(regD dst, memory mem) %{
5886   match(Set dst (LoadD mem));
5887   ins_cost(MEMORY_REF_COST);
5888 
5889   format %{ "LDDF   $mem,$dst" %}
5890   opcode(Assembler::lddf_op3);
5891   ins_encode(simple_form3_mem_reg( mem, dst ) );
5892   ins_pipe(floadD_mem);
5893 %}
5894 
5895 // Load Double - UNaligned
5896 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5897   match(Set dst (LoadD_unaligned mem));
5898   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5899   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5900           "\tLDF    $mem+4,$dst.lo\t!" %}
5901   opcode(Assembler::ldf_op3);
5902   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5903   ins_pipe(iload_mem);
5904 %}
5905 
5906 // Load Float
5907 instruct loadF(regF dst, memory mem) %{
5908   match(Set dst (LoadF mem));
5909   ins_cost(MEMORY_REF_COST);
5910 
5911   format %{ "LDF    $mem,$dst" %}
5912   opcode(Assembler::ldf_op3);
5913   ins_encode(simple_form3_mem_reg( mem, dst ) );
5914   ins_pipe(floadF_mem);
5915 %}
5916 
5917 // Load Constant
5918 instruct loadConI( iRegI dst, immI src ) %{
5919   match(Set dst src);
5920   ins_cost(DEFAULT_COST * 3/2);
5921   format %{ "SET    $src,$dst" %}
5922   ins_encode( Set32(src, dst) );
5923   ins_pipe(ialu_hi_lo_reg);
5924 %}
5925 
5926 instruct loadConI13( iRegI dst, immI13 src ) %{
5927   match(Set dst src);
5928 
5929   size(4);
5930   format %{ "MOV    $src,$dst" %}
5931   ins_encode( Set13( src, dst ) );
5932   ins_pipe(ialu_imm);
5933 %}
5934 
5935 #ifndef _LP64
5936 instruct loadConP(iRegP dst, immP con) %{
5937   match(Set dst con);
5938   ins_cost(DEFAULT_COST * 3/2);
5939   format %{ "SET    $con,$dst\t!ptr" %}
5940   ins_encode %{
5941     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5942       intptr_t val = $con$$constant;
5943     if (constant_reloc == relocInfo::oop_type) {
5944       __ set_oop_constant((jobject) val, $dst$$Register);
5945     } else if (constant_reloc == relocInfo::metadata_type) {
5946       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5947     } else {          // non-oop pointers, e.g. card mark base, heap top
5948       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5949       __ set(val, $dst$$Register);
5950     }
5951   %}
5952   ins_pipe(loadConP);
5953 %}
5954 #else
5955 instruct loadConP_set(iRegP dst, immP_set con) %{
5956   match(Set dst con);
5957   ins_cost(DEFAULT_COST * 3/2);
5958   format %{ "SET    $con,$dst\t! ptr" %}
5959   ins_encode %{
5960     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5961       intptr_t val = $con$$constant;
5962     if (constant_reloc == relocInfo::oop_type) {
5963       __ set_oop_constant((jobject) val, $dst$$Register);
5964     } else if (constant_reloc == relocInfo::metadata_type) {
5965       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5966     } else {          // non-oop pointers, e.g. card mark base, heap top
5967       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5968       __ set(val, $dst$$Register);
5969     }
5970   %}
5971   ins_pipe(loadConP);
5972 %}
5973 
5974 instruct loadConP_load(iRegP dst, immP_load con) %{
5975   match(Set dst con);
5976   ins_cost(MEMORY_REF_COST);
5977   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
5978   ins_encode %{
5979     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5980     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
5981   %}
5982   ins_pipe(loadConP);
5983 %}
5984 
5985 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
5986   match(Set dst con);
5987   ins_cost(DEFAULT_COST * 3/2);
5988   format %{ "SET    $con,$dst\t! non-oop ptr" %}
5989   ins_encode %{
5990     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
5991       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
5992     } else {
5993       __ set($con$$constant, $dst$$Register);
5994     }
5995   %}
5996   ins_pipe(loadConP);
5997 %}
5998 #endif // _LP64
5999 
6000 instruct loadConP0(iRegP dst, immP0 src) %{
6001   match(Set dst src);
6002 
6003   size(4);
6004   format %{ "CLR    $dst\t!ptr" %}
6005   ins_encode %{
6006     __ clr($dst$$Register);
6007   %}
6008   ins_pipe(ialu_imm);
6009 %}
6010 
6011 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6012   match(Set dst src);
6013   ins_cost(DEFAULT_COST);
6014   format %{ "SET    $src,$dst\t!ptr" %}
6015   ins_encode %{
6016     AddressLiteral polling_page(os::get_polling_page());
6017     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6018   %}
6019   ins_pipe(loadConP_poll);
6020 %}
6021 
6022 instruct loadConN0(iRegN dst, immN0 src) %{
6023   match(Set dst src);
6024 
6025   size(4);
6026   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6027   ins_encode %{
6028     __ clr($dst$$Register);
6029   %}
6030   ins_pipe(ialu_imm);
6031 %}
6032 
6033 instruct loadConN(iRegN dst, immN src) %{
6034   match(Set dst src);
6035   ins_cost(DEFAULT_COST * 3/2);
6036   format %{ "SET    $src,$dst\t! compressed ptr" %}
6037   ins_encode %{
6038     Register dst = $dst$$Register;
6039     __ set_narrow_oop((jobject)$src$$constant, dst);
6040   %}
6041   ins_pipe(ialu_hi_lo_reg);
6042 %}
6043 
6044 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6045   match(Set dst src);
6046   ins_cost(DEFAULT_COST * 3/2);
6047   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6048   ins_encode %{
6049     Register dst = $dst$$Register;
6050     __ set_narrow_klass((Klass*)$src$$constant, dst);
6051   %}
6052   ins_pipe(ialu_hi_lo_reg);
6053 %}
6054 
6055 // Materialize long value (predicated by immL_cheap).
6056 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6057   match(Set dst con);
6058   effect(KILL tmp);
6059   ins_cost(DEFAULT_COST * 3);
6060   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6061   ins_encode %{
6062     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6063   %}
6064   ins_pipe(loadConL);
6065 %}
6066 
6067 // Load long value from constant table (predicated by immL_expensive).
6068 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6069   match(Set dst con);
6070   ins_cost(MEMORY_REF_COST);
6071   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6072   ins_encode %{
6073       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6074     __ ldx($constanttablebase, con_offset, $dst$$Register);
6075   %}
6076   ins_pipe(loadConL);
6077 %}
6078 
6079 instruct loadConL0( iRegL dst, immL0 src ) %{
6080   match(Set dst src);
6081   ins_cost(DEFAULT_COST);
6082   size(4);
6083   format %{ "CLR    $dst\t! long" %}
6084   ins_encode( Set13( src, dst ) );
6085   ins_pipe(ialu_imm);
6086 %}
6087 
6088 instruct loadConL13( iRegL dst, immL13 src ) %{
6089   match(Set dst src);
6090   ins_cost(DEFAULT_COST * 2);
6091 
6092   size(4);
6093   format %{ "MOV    $src,$dst\t! long" %}
6094   ins_encode( Set13( src, dst ) );
6095   ins_pipe(ialu_imm);
6096 %}
6097 
6098 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6099   match(Set dst con);
6100   effect(KILL tmp);
6101   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6102   ins_encode %{
6103       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6104     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6105   %}
6106   ins_pipe(loadConFD);
6107 %}
6108 
6109 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6110   match(Set dst con);
6111   effect(KILL tmp);
6112   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6113   ins_encode %{
6114     // XXX This is a quick fix for 6833573.
6115     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6116     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6117     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6118   %}
6119   ins_pipe(loadConFD);
6120 %}
6121 
6122 // Prefetch instructions for allocation.
6123 // Must be safe to execute with invalid address (cannot fault).
6124 
6125 instruct prefetchAlloc( memory mem ) %{
6126   predicate(AllocatePrefetchInstr == 0);
6127   match( PrefetchAllocation mem );
6128   ins_cost(MEMORY_REF_COST);
6129 
6130   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6131   opcode(Assembler::prefetch_op3);
6132   ins_encode( form3_mem_prefetch_write( mem ) );
6133   ins_pipe(iload_mem);
6134 %}
6135 
6136 // Use BIS instruction to prefetch for allocation.
6137 // Could fault, need space at the end of TLAB.
6138 instruct prefetchAlloc_bis( iRegP dst ) %{
6139   predicate(AllocatePrefetchInstr == 1);
6140   match( PrefetchAllocation dst );
6141   ins_cost(MEMORY_REF_COST);
6142   size(4);
6143 
6144   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6145   ins_encode %{
6146     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6147   %}
6148   ins_pipe(istore_mem_reg);
6149 %}
6150 
6151 // Next code is used for finding next cache line address to prefetch.
6152 #ifndef _LP64
6153 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6154   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6155   ins_cost(DEFAULT_COST);
6156   size(4);
6157 
6158   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6159   ins_encode %{
6160     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6161   %}
6162   ins_pipe(ialu_reg_imm);
6163 %}
6164 #else
6165 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6166   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6167   ins_cost(DEFAULT_COST);
6168   size(4);
6169 
6170   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6171   ins_encode %{
6172     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6173   %}
6174   ins_pipe(ialu_reg_imm);
6175 %}
6176 #endif
6177 
6178 //----------Store Instructions-------------------------------------------------
6179 // Store Byte
6180 instruct storeB(memory mem, iRegI src) %{
6181   match(Set mem (StoreB mem src));
6182   ins_cost(MEMORY_REF_COST);
6183 
6184   format %{ "STB    $src,$mem\t! byte" %}
6185   opcode(Assembler::stb_op3);
6186   ins_encode(simple_form3_mem_reg( mem, src ) );
6187   ins_pipe(istore_mem_reg);
6188 %}
6189 
6190 instruct storeB0(memory mem, immI0 src) %{
6191   match(Set mem (StoreB mem src));
6192   ins_cost(MEMORY_REF_COST);
6193 
6194   format %{ "STB    $src,$mem\t! byte" %}
6195   opcode(Assembler::stb_op3);
6196   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6197   ins_pipe(istore_mem_zero);
6198 %}
6199 
6200 instruct storeCM0(memory mem, immI0 src) %{
6201   match(Set mem (StoreCM mem src));
6202   ins_cost(MEMORY_REF_COST);
6203 
6204   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6205   opcode(Assembler::stb_op3);
6206   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6207   ins_pipe(istore_mem_zero);
6208 %}
6209 
6210 // Store Char/Short
6211 instruct storeC(memory mem, iRegI src) %{
6212   match(Set mem (StoreC mem src));
6213   ins_cost(MEMORY_REF_COST);
6214 
6215   format %{ "STH    $src,$mem\t! short" %}
6216   opcode(Assembler::sth_op3);
6217   ins_encode(simple_form3_mem_reg( mem, src ) );
6218   ins_pipe(istore_mem_reg);
6219 %}
6220 
6221 instruct storeC0(memory mem, immI0 src) %{
6222   match(Set mem (StoreC mem src));
6223   ins_cost(MEMORY_REF_COST);
6224 
6225   format %{ "STH    $src,$mem\t! short" %}
6226   opcode(Assembler::sth_op3);
6227   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6228   ins_pipe(istore_mem_zero);
6229 %}
6230 
6231 // Store Integer
6232 instruct storeI(memory mem, iRegI src) %{
6233   match(Set mem (StoreI mem src));
6234   ins_cost(MEMORY_REF_COST);
6235 
6236   format %{ "STW    $src,$mem" %}
6237   opcode(Assembler::stw_op3);
6238   ins_encode(simple_form3_mem_reg( mem, src ) );
6239   ins_pipe(istore_mem_reg);
6240 %}
6241 
6242 // Store Long
6243 instruct storeL(memory mem, iRegL src) %{
6244   match(Set mem (StoreL mem src));
6245   ins_cost(MEMORY_REF_COST);
6246   format %{ "STX    $src,$mem\t! long" %}
6247   opcode(Assembler::stx_op3);
6248   ins_encode(simple_form3_mem_reg( mem, src ) );
6249   ins_pipe(istore_mem_reg);
6250 %}
6251 
6252 instruct storeI0(memory mem, immI0 src) %{
6253   match(Set mem (StoreI mem src));
6254   ins_cost(MEMORY_REF_COST);
6255 
6256   format %{ "STW    $src,$mem" %}
6257   opcode(Assembler::stw_op3);
6258   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6259   ins_pipe(istore_mem_zero);
6260 %}
6261 
6262 instruct storeL0(memory mem, immL0 src) %{
6263   match(Set mem (StoreL mem src));
6264   ins_cost(MEMORY_REF_COST);
6265 
6266   format %{ "STX    $src,$mem" %}
6267   opcode(Assembler::stx_op3);
6268   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6269   ins_pipe(istore_mem_zero);
6270 %}
6271 
6272 // Store Integer from float register (used after fstoi)
6273 instruct storeI_Freg(memory mem, regF src) %{
6274   match(Set mem (StoreI mem src));
6275   ins_cost(MEMORY_REF_COST);
6276 
6277   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6278   opcode(Assembler::stf_op3);
6279   ins_encode(simple_form3_mem_reg( mem, src ) );
6280   ins_pipe(fstoreF_mem_reg);
6281 %}
6282 
6283 // Store Pointer
6284 instruct storeP(memory dst, sp_ptr_RegP src) %{
6285   match(Set dst (StoreP dst src));
6286   ins_cost(MEMORY_REF_COST);
6287 
6288 #ifndef _LP64
6289   format %{ "STW    $src,$dst\t! ptr" %}
6290   opcode(Assembler::stw_op3, 0, REGP_OP);
6291 #else
6292   format %{ "STX    $src,$dst\t! ptr" %}
6293   opcode(Assembler::stx_op3, 0, REGP_OP);
6294 #endif
6295   ins_encode( form3_mem_reg( dst, src ) );
6296   ins_pipe(istore_mem_spORreg);
6297 %}
6298 
6299 instruct storeP0(memory dst, immP0 src) %{
6300   match(Set dst (StoreP dst src));
6301   ins_cost(MEMORY_REF_COST);
6302 
6303 #ifndef _LP64
6304   format %{ "STW    $src,$dst\t! ptr" %}
6305   opcode(Assembler::stw_op3, 0, REGP_OP);
6306 #else
6307   format %{ "STX    $src,$dst\t! ptr" %}
6308   opcode(Assembler::stx_op3, 0, REGP_OP);
6309 #endif
6310   ins_encode( form3_mem_reg( dst, R_G0 ) );
6311   ins_pipe(istore_mem_zero);
6312 %}
6313 
6314 // Store Compressed Pointer
6315 instruct storeN(memory dst, iRegN src) %{
6316    match(Set dst (StoreN dst src));
6317    ins_cost(MEMORY_REF_COST);
6318    size(4);
6319 
6320    format %{ "STW    $src,$dst\t! compressed ptr" %}
6321    ins_encode %{
6322      Register base = as_Register($dst$$base);
6323      Register index = as_Register($dst$$index);
6324      Register src = $src$$Register;
6325      if (index != G0) {
6326        __ stw(src, base, index);
6327      } else {
6328        __ stw(src, base, $dst$$disp);
6329      }
6330    %}
6331    ins_pipe(istore_mem_spORreg);
6332 %}
6333 
6334 instruct storeNKlass(memory dst, iRegN src) %{
6335    match(Set dst (StoreNKlass dst src));
6336    ins_cost(MEMORY_REF_COST);
6337    size(4);
6338 
6339    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6340    ins_encode %{
6341      Register base = as_Register($dst$$base);
6342      Register index = as_Register($dst$$index);
6343      Register src = $src$$Register;
6344      if (index != G0) {
6345        __ stw(src, base, index);
6346      } else {
6347        __ stw(src, base, $dst$$disp);
6348      }
6349    %}
6350    ins_pipe(istore_mem_spORreg);
6351 %}
6352 
6353 instruct storeN0(memory dst, immN0 src) %{
6354    match(Set dst (StoreN dst src));
6355    ins_cost(MEMORY_REF_COST);
6356    size(4);
6357 
6358    format %{ "STW    $src,$dst\t! compressed ptr" %}
6359    ins_encode %{
6360      Register base = as_Register($dst$$base);
6361      Register index = as_Register($dst$$index);
6362      if (index != G0) {
6363        __ stw(0, base, index);
6364      } else {
6365        __ stw(0, base, $dst$$disp);
6366      }
6367    %}
6368    ins_pipe(istore_mem_zero);
6369 %}
6370 
6371 // Store Double
6372 instruct storeD( memory mem, regD src) %{
6373   match(Set mem (StoreD mem src));
6374   ins_cost(MEMORY_REF_COST);
6375 
6376   format %{ "STDF   $src,$mem" %}
6377   opcode(Assembler::stdf_op3);
6378   ins_encode(simple_form3_mem_reg( mem, src ) );
6379   ins_pipe(fstoreD_mem_reg);
6380 %}
6381 
6382 instruct storeD0( memory mem, immD0 src) %{
6383   match(Set mem (StoreD mem src));
6384   ins_cost(MEMORY_REF_COST);
6385 
6386   format %{ "STX    $src,$mem" %}
6387   opcode(Assembler::stx_op3);
6388   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6389   ins_pipe(fstoreD_mem_zero);
6390 %}
6391 
6392 // Store Float
6393 instruct storeF( memory mem, regF src) %{
6394   match(Set mem (StoreF mem src));
6395   ins_cost(MEMORY_REF_COST);
6396 
6397   format %{ "STF    $src,$mem" %}
6398   opcode(Assembler::stf_op3);
6399   ins_encode(simple_form3_mem_reg( mem, src ) );
6400   ins_pipe(fstoreF_mem_reg);
6401 %}
6402 
6403 instruct storeF0( memory mem, immF0 src) %{
6404   match(Set mem (StoreF mem src));
6405   ins_cost(MEMORY_REF_COST);
6406 
6407   format %{ "STW    $src,$mem\t! storeF0" %}
6408   opcode(Assembler::stw_op3);
6409   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6410   ins_pipe(fstoreF_mem_zero);
6411 %}
6412 
6413 // Convert oop pointer into compressed form
6414 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6415   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6416   match(Set dst (EncodeP src));
6417   format %{ "encode_heap_oop $src, $dst" %}
6418   ins_encode %{
6419     __ encode_heap_oop($src$$Register, $dst$$Register);
6420   %}
6421   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6422   ins_pipe(ialu_reg);
6423 %}
6424 
6425 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6426   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6427   match(Set dst (EncodeP src));
6428   format %{ "encode_heap_oop_not_null $src, $dst" %}
6429   ins_encode %{
6430     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6431   %}
6432   ins_pipe(ialu_reg);
6433 %}
6434 
6435 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6436   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6437             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6438   match(Set dst (DecodeN src));
6439   format %{ "decode_heap_oop $src, $dst" %}
6440   ins_encode %{
6441     __ decode_heap_oop($src$$Register, $dst$$Register);
6442   %}
6443   ins_pipe(ialu_reg);
6444 %}
6445 
6446 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6447   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6448             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6449   match(Set dst (DecodeN src));
6450   format %{ "decode_heap_oop_not_null $src, $dst" %}
6451   ins_encode %{
6452     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6453   %}
6454   ins_pipe(ialu_reg);
6455 %}
6456 
6457 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6458   match(Set dst (EncodePKlass src));
6459   format %{ "encode_klass_not_null $src, $dst" %}
6460   ins_encode %{
6461     __ encode_klass_not_null($src$$Register, $dst$$Register);
6462   %}
6463   ins_pipe(ialu_reg);
6464 %}
6465 
6466 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6467   match(Set dst (DecodeNKlass src));
6468   format %{ "decode_klass_not_null $src, $dst" %}
6469   ins_encode %{
6470     __ decode_klass_not_null($src$$Register, $dst$$Register);
6471   %}
6472   ins_pipe(ialu_reg);
6473 %}
6474 
6475 //----------MemBar Instructions-----------------------------------------------
6476 // Memory barrier flavors
6477 
6478 instruct membar_acquire() %{
6479   match(MemBarAcquire);
6480   match(LoadFence);
6481   ins_cost(4*MEMORY_REF_COST);
6482 
6483   size(0);
6484   format %{ "MEMBAR-acquire" %}
6485   ins_encode( enc_membar_acquire );
6486   ins_pipe(long_memory_op);
6487 %}
6488 
6489 instruct membar_acquire_lock() %{
6490   match(MemBarAcquireLock);
6491   ins_cost(0);
6492 
6493   size(0);
6494   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6495   ins_encode( );
6496   ins_pipe(empty);
6497 %}
6498 
6499 instruct membar_release() %{
6500   match(MemBarRelease);
6501   match(StoreFence);
6502   ins_cost(4*MEMORY_REF_COST);
6503 
6504   size(0);
6505   format %{ "MEMBAR-release" %}
6506   ins_encode( enc_membar_release );
6507   ins_pipe(long_memory_op);
6508 %}
6509 
6510 instruct membar_release_lock() %{
6511   match(MemBarReleaseLock);
6512   ins_cost(0);
6513 
6514   size(0);
6515   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6516   ins_encode( );
6517   ins_pipe(empty);
6518 %}
6519 
6520 instruct membar_volatile() %{
6521   match(MemBarVolatile);
6522   ins_cost(4*MEMORY_REF_COST);
6523 
6524   size(4);
6525   format %{ "MEMBAR-volatile" %}
6526   ins_encode( enc_membar_volatile );
6527   ins_pipe(long_memory_op);
6528 %}
6529 
6530 instruct unnecessary_membar_volatile() %{
6531   match(MemBarVolatile);
6532   predicate(Matcher::post_store_load_barrier(n));
6533   ins_cost(0);
6534 
6535   size(0);
6536   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6537   ins_encode( );
6538   ins_pipe(empty);
6539 %}
6540 
6541 instruct membar_storestore() %{
6542   match(MemBarStoreStore);
6543   ins_cost(0);
6544 
6545   size(0);
6546   format %{ "!MEMBAR-storestore (empty encoding)" %}
6547   ins_encode( );
6548   ins_pipe(empty);
6549 %}
6550 
6551 //----------Register Move Instructions-----------------------------------------
6552 instruct roundDouble_nop(regD dst) %{
6553   match(Set dst (RoundDouble dst));
6554   ins_cost(0);
6555   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6556   ins_encode( );
6557   ins_pipe(empty);
6558 %}
6559 
6560 
6561 instruct roundFloat_nop(regF dst) %{
6562   match(Set dst (RoundFloat dst));
6563   ins_cost(0);
6564   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6565   ins_encode( );
6566   ins_pipe(empty);
6567 %}
6568 
6569 
6570 // Cast Index to Pointer for unsafe natives
6571 instruct castX2P(iRegX src, iRegP dst) %{
6572   match(Set dst (CastX2P src));
6573 
6574   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6575   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6576   ins_pipe(ialu_reg);
6577 %}
6578 
6579 // Cast Pointer to Index for unsafe natives
6580 instruct castP2X(iRegP src, iRegX dst) %{
6581   match(Set dst (CastP2X src));
6582 
6583   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6584   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6585   ins_pipe(ialu_reg);
6586 %}
6587 
6588 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6589   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6590   match(Set stkSlot src);   // chain rule
6591   ins_cost(MEMORY_REF_COST);
6592   format %{ "STDF   $src,$stkSlot\t!stk" %}
6593   opcode(Assembler::stdf_op3);
6594   ins_encode(simple_form3_mem_reg(stkSlot, src));
6595   ins_pipe(fstoreD_stk_reg);
6596 %}
6597 
6598 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6599   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6600   match(Set dst stkSlot);   // chain rule
6601   ins_cost(MEMORY_REF_COST);
6602   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6603   opcode(Assembler::lddf_op3);
6604   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6605   ins_pipe(floadD_stk);
6606 %}
6607 
6608 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6609   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6610   match(Set stkSlot src);   // chain rule
6611   ins_cost(MEMORY_REF_COST);
6612   format %{ "STF   $src,$stkSlot\t!stk" %}
6613   opcode(Assembler::stf_op3);
6614   ins_encode(simple_form3_mem_reg(stkSlot, src));
6615   ins_pipe(fstoreF_stk_reg);
6616 %}
6617 
6618 //----------Conditional Move---------------------------------------------------
6619 // Conditional move
6620 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6621   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6622   ins_cost(150);
6623   format %{ "MOV$cmp $pcc,$src,$dst" %}
6624   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6625   ins_pipe(ialu_reg);
6626 %}
6627 
6628 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6629   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6630   ins_cost(140);
6631   format %{ "MOV$cmp $pcc,$src,$dst" %}
6632   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6633   ins_pipe(ialu_imm);
6634 %}
6635 
6636 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6637   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6638   ins_cost(150);
6639   size(4);
6640   format %{ "MOV$cmp  $icc,$src,$dst" %}
6641   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6642   ins_pipe(ialu_reg);
6643 %}
6644 
6645 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6646   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6647   ins_cost(140);
6648   size(4);
6649   format %{ "MOV$cmp  $icc,$src,$dst" %}
6650   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6651   ins_pipe(ialu_imm);
6652 %}
6653 
6654 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6655   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6656   ins_cost(150);
6657   size(4);
6658   format %{ "MOV$cmp  $icc,$src,$dst" %}
6659   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6660   ins_pipe(ialu_reg);
6661 %}
6662 
6663 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6664   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6665   ins_cost(140);
6666   size(4);
6667   format %{ "MOV$cmp  $icc,$src,$dst" %}
6668   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6669   ins_pipe(ialu_imm);
6670 %}
6671 
6672 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6673   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6674   ins_cost(150);
6675   size(4);
6676   format %{ "MOV$cmp $fcc,$src,$dst" %}
6677   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6678   ins_pipe(ialu_reg);
6679 %}
6680 
6681 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6682   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6683   ins_cost(140);
6684   size(4);
6685   format %{ "MOV$cmp $fcc,$src,$dst" %}
6686   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6687   ins_pipe(ialu_imm);
6688 %}
6689 
6690 // Conditional move for RegN. Only cmov(reg,reg).
6691 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6692   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6693   ins_cost(150);
6694   format %{ "MOV$cmp $pcc,$src,$dst" %}
6695   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6696   ins_pipe(ialu_reg);
6697 %}
6698 
6699 // This instruction also works with CmpN so we don't need cmovNN_reg.
6700 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6701   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6702   ins_cost(150);
6703   size(4);
6704   format %{ "MOV$cmp  $icc,$src,$dst" %}
6705   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6706   ins_pipe(ialu_reg);
6707 %}
6708 
6709 // This instruction also works with CmpN so we don't need cmovNN_reg.
6710 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6711   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6712   ins_cost(150);
6713   size(4);
6714   format %{ "MOV$cmp  $icc,$src,$dst" %}
6715   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6716   ins_pipe(ialu_reg);
6717 %}
6718 
6719 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6720   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6721   ins_cost(150);
6722   size(4);
6723   format %{ "MOV$cmp $fcc,$src,$dst" %}
6724   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6725   ins_pipe(ialu_reg);
6726 %}
6727 
6728 // Conditional move
6729 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6730   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6731   ins_cost(150);
6732   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6733   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6734   ins_pipe(ialu_reg);
6735 %}
6736 
6737 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6738   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6739   ins_cost(140);
6740   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6741   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6742   ins_pipe(ialu_imm);
6743 %}
6744 
6745 // This instruction also works with CmpN so we don't need cmovPN_reg.
6746 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6747   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6748   ins_cost(150);
6749 
6750   size(4);
6751   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6752   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6753   ins_pipe(ialu_reg);
6754 %}
6755 
6756 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6757   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6758   ins_cost(150);
6759 
6760   size(4);
6761   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6762   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6763   ins_pipe(ialu_reg);
6764 %}
6765 
6766 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6767   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6768   ins_cost(140);
6769 
6770   size(4);
6771   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6772   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6773   ins_pipe(ialu_imm);
6774 %}
6775 
6776 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6777   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6778   ins_cost(140);
6779 
6780   size(4);
6781   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6782   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6783   ins_pipe(ialu_imm);
6784 %}
6785 
6786 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6787   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6788   ins_cost(150);
6789   size(4);
6790   format %{ "MOV$cmp $fcc,$src,$dst" %}
6791   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6792   ins_pipe(ialu_imm);
6793 %}
6794 
6795 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6796   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6797   ins_cost(140);
6798   size(4);
6799   format %{ "MOV$cmp $fcc,$src,$dst" %}
6800   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6801   ins_pipe(ialu_imm);
6802 %}
6803 
6804 // Conditional move
6805 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6806   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6807   ins_cost(150);
6808   opcode(0x101);
6809   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6810   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6811   ins_pipe(int_conditional_float_move);
6812 %}
6813 
6814 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6815   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6816   ins_cost(150);
6817 
6818   size(4);
6819   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6820   opcode(0x101);
6821   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6822   ins_pipe(int_conditional_float_move);
6823 %}
6824 
6825 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6826   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6827   ins_cost(150);
6828 
6829   size(4);
6830   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6831   opcode(0x101);
6832   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6833   ins_pipe(int_conditional_float_move);
6834 %}
6835 
6836 // Conditional move,
6837 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6838   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6839   ins_cost(150);
6840   size(4);
6841   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6842   opcode(0x1);
6843   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6844   ins_pipe(int_conditional_double_move);
6845 %}
6846 
6847 // Conditional move
6848 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6849   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6850   ins_cost(150);
6851   size(4);
6852   opcode(0x102);
6853   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6854   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6855   ins_pipe(int_conditional_double_move);
6856 %}
6857 
6858 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6859   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6860   ins_cost(150);
6861 
6862   size(4);
6863   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6864   opcode(0x102);
6865   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6866   ins_pipe(int_conditional_double_move);
6867 %}
6868 
6869 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6870   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6871   ins_cost(150);
6872 
6873   size(4);
6874   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6875   opcode(0x102);
6876   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6877   ins_pipe(int_conditional_double_move);
6878 %}
6879 
6880 // Conditional move,
6881 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6882   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6883   ins_cost(150);
6884   size(4);
6885   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6886   opcode(0x2);
6887   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6888   ins_pipe(int_conditional_double_move);
6889 %}
6890 
6891 // Conditional move
6892 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6893   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6894   ins_cost(150);
6895   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6896   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6897   ins_pipe(ialu_reg);
6898 %}
6899 
6900 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6901   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6902   ins_cost(140);
6903   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6904   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6905   ins_pipe(ialu_imm);
6906 %}
6907 
6908 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6909   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6910   ins_cost(150);
6911 
6912   size(4);
6913   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6914   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6915   ins_pipe(ialu_reg);
6916 %}
6917 
6918 
6919 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6920   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6921   ins_cost(150);
6922 
6923   size(4);
6924   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6925   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6926   ins_pipe(ialu_reg);
6927 %}
6928 
6929 
6930 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6931   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6932   ins_cost(150);
6933 
6934   size(4);
6935   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6936   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6937   ins_pipe(ialu_reg);
6938 %}
6939 
6940 
6941 
6942 //----------OS and Locking Instructions----------------------------------------
6943 
6944 // This name is KNOWN by the ADLC and cannot be changed.
6945 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6946 // for this guy.
6947 instruct tlsLoadP(g2RegP dst) %{
6948   match(Set dst (ThreadLocal));
6949 
6950   size(0);
6951   ins_cost(0);
6952   format %{ "# TLS is in G2" %}
6953   ins_encode( /*empty encoding*/ );
6954   ins_pipe(ialu_none);
6955 %}
6956 
6957 instruct checkCastPP( iRegP dst ) %{
6958   match(Set dst (CheckCastPP dst));
6959 
6960   size(0);
6961   format %{ "# checkcastPP of $dst" %}
6962   ins_encode( /*empty encoding*/ );
6963   ins_pipe(empty);
6964 %}
6965 
6966 
6967 instruct castPP( iRegP dst ) %{
6968   match(Set dst (CastPP dst));
6969   format %{ "# castPP of $dst" %}
6970   ins_encode( /*empty encoding*/ );
6971   ins_pipe(empty);
6972 %}
6973 
6974 instruct castII( iRegI dst ) %{
6975   match(Set dst (CastII dst));
6976   format %{ "# castII of $dst" %}
6977   ins_encode( /*empty encoding*/ );
6978   ins_cost(0);
6979   ins_pipe(empty);
6980 %}
6981 
6982 //----------Arithmetic Instructions--------------------------------------------
6983 // Addition Instructions
6984 // Register Addition
6985 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6986   match(Set dst (AddI src1 src2));
6987 
6988   size(4);
6989   format %{ "ADD    $src1,$src2,$dst" %}
6990   ins_encode %{
6991     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6992   %}
6993   ins_pipe(ialu_reg_reg);
6994 %}
6995 
6996 // Immediate Addition
6997 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6998   match(Set dst (AddI src1 src2));
6999 
7000   size(4);
7001   format %{ "ADD    $src1,$src2,$dst" %}
7002   opcode(Assembler::add_op3, Assembler::arith_op);
7003   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7004   ins_pipe(ialu_reg_imm);
7005 %}
7006 
7007 // Pointer Register Addition
7008 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7009   match(Set dst (AddP src1 src2));
7010 
7011   size(4);
7012   format %{ "ADD    $src1,$src2,$dst" %}
7013   opcode(Assembler::add_op3, Assembler::arith_op);
7014   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7015   ins_pipe(ialu_reg_reg);
7016 %}
7017 
7018 // Pointer Immediate Addition
7019 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7020   match(Set dst (AddP src1 src2));
7021 
7022   size(4);
7023   format %{ "ADD    $src1,$src2,$dst" %}
7024   opcode(Assembler::add_op3, Assembler::arith_op);
7025   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7026   ins_pipe(ialu_reg_imm);
7027 %}
7028 
7029 // Long Addition
7030 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7031   match(Set dst (AddL src1 src2));
7032 
7033   size(4);
7034   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7035   opcode(Assembler::add_op3, Assembler::arith_op);
7036   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7037   ins_pipe(ialu_reg_reg);
7038 %}
7039 
7040 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7041   match(Set dst (AddL src1 con));
7042 
7043   size(4);
7044   format %{ "ADD    $src1,$con,$dst" %}
7045   opcode(Assembler::add_op3, Assembler::arith_op);
7046   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7047   ins_pipe(ialu_reg_imm);
7048 %}
7049 
7050 //----------Conditional_store--------------------------------------------------
7051 // Conditional-store of the updated heap-top.
7052 // Used during allocation of the shared heap.
7053 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7054 
7055 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7056 instruct loadPLocked(iRegP dst, memory mem) %{
7057   match(Set dst (LoadPLocked mem));
7058   ins_cost(MEMORY_REF_COST);
7059 
7060 #ifndef _LP64
7061   format %{ "LDUW   $mem,$dst\t! ptr" %}
7062   opcode(Assembler::lduw_op3, 0, REGP_OP);
7063 #else
7064   format %{ "LDX    $mem,$dst\t! ptr" %}
7065   opcode(Assembler::ldx_op3, 0, REGP_OP);
7066 #endif
7067   ins_encode( form3_mem_reg( mem, dst ) );
7068   ins_pipe(iload_mem);
7069 %}
7070 
7071 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7072   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7073   effect( KILL newval );
7074   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7075             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7076   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7077   ins_pipe( long_memory_op );
7078 %}
7079 
7080 // Conditional-store of an int value.
7081 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7082   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7083   effect( KILL newval );
7084   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7085             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7086   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7087   ins_pipe( long_memory_op );
7088 %}
7089 
7090 // Conditional-store of a long value.
7091 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7092   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7093   effect( KILL newval );
7094   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7095             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7096   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7097   ins_pipe( long_memory_op );
7098 %}
7099 
7100 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7101 
7102 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7103   predicate(VM_Version::supports_cx8());
7104   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7105   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7106   format %{
7107             "MOV    $newval,O7\n\t"
7108             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7109             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7110             "MOV    1,$res\n\t"
7111             "MOVne  xcc,R_G0,$res"
7112   %}
7113   ins_encode( enc_casx(mem_ptr, oldval, newval),
7114               enc_lflags_ne_to_boolean(res) );
7115   ins_pipe( long_memory_op );
7116 %}
7117 
7118 
7119 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7120   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7121   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7122   format %{
7123             "MOV    $newval,O7\n\t"
7124             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7125             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7126             "MOV    1,$res\n\t"
7127             "MOVne  icc,R_G0,$res"
7128   %}
7129   ins_encode( enc_casi(mem_ptr, oldval, newval),
7130               enc_iflags_ne_to_boolean(res) );
7131   ins_pipe( long_memory_op );
7132 %}
7133 
7134 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7135 #ifdef _LP64
7136   predicate(VM_Version::supports_cx8());
7137 #endif
7138   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7139   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7140   format %{
7141             "MOV    $newval,O7\n\t"
7142             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7143             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7144             "MOV    1,$res\n\t"
7145             "MOVne  xcc,R_G0,$res"
7146   %}
7147 #ifdef _LP64
7148   ins_encode( enc_casx(mem_ptr, oldval, newval),
7149               enc_lflags_ne_to_boolean(res) );
7150 #else
7151   ins_encode( enc_casi(mem_ptr, oldval, newval),
7152               enc_iflags_ne_to_boolean(res) );
7153 #endif
7154   ins_pipe( long_memory_op );
7155 %}
7156 
7157 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7158   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7159   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7160   format %{
7161             "MOV    $newval,O7\n\t"
7162             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7163             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7164             "MOV    1,$res\n\t"
7165             "MOVne  icc,R_G0,$res"
7166   %}
7167   ins_encode( enc_casi(mem_ptr, oldval, newval),
7168               enc_iflags_ne_to_boolean(res) );
7169   ins_pipe( long_memory_op );
7170 %}
7171 
7172 instruct xchgI( memory mem, iRegI newval) %{
7173   match(Set newval (GetAndSetI mem newval));
7174   format %{ "SWAP  [$mem],$newval" %}
7175   size(4);
7176   ins_encode %{
7177     __ swap($mem$$Address, $newval$$Register);
7178   %}
7179   ins_pipe( long_memory_op );
7180 %}
7181 
7182 #ifndef _LP64
7183 instruct xchgP( memory mem, iRegP newval) %{
7184   match(Set newval (GetAndSetP mem newval));
7185   format %{ "SWAP  [$mem],$newval" %}
7186   size(4);
7187   ins_encode %{
7188     __ swap($mem$$Address, $newval$$Register);
7189   %}
7190   ins_pipe( long_memory_op );
7191 %}
7192 #endif
7193 
7194 instruct xchgN( memory mem, iRegN newval) %{
7195   match(Set newval (GetAndSetN mem newval));
7196   format %{ "SWAP  [$mem],$newval" %}
7197   size(4);
7198   ins_encode %{
7199     __ swap($mem$$Address, $newval$$Register);
7200   %}
7201   ins_pipe( long_memory_op );
7202 %}
7203 
7204 //---------------------
7205 // Subtraction Instructions
7206 // Register Subtraction
7207 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7208   match(Set dst (SubI src1 src2));
7209 
7210   size(4);
7211   format %{ "SUB    $src1,$src2,$dst" %}
7212   opcode(Assembler::sub_op3, Assembler::arith_op);
7213   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7214   ins_pipe(ialu_reg_reg);
7215 %}
7216 
7217 // Immediate Subtraction
7218 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7219   match(Set dst (SubI src1 src2));
7220 
7221   size(4);
7222   format %{ "SUB    $src1,$src2,$dst" %}
7223   opcode(Assembler::sub_op3, Assembler::arith_op);
7224   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7225   ins_pipe(ialu_reg_imm);
7226 %}
7227 
7228 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7229   match(Set dst (SubI zero src2));
7230 
7231   size(4);
7232   format %{ "NEG    $src2,$dst" %}
7233   opcode(Assembler::sub_op3, Assembler::arith_op);
7234   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7235   ins_pipe(ialu_zero_reg);
7236 %}
7237 
7238 // Long subtraction
7239 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7240   match(Set dst (SubL src1 src2));
7241 
7242   size(4);
7243   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7244   opcode(Assembler::sub_op3, Assembler::arith_op);
7245   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7246   ins_pipe(ialu_reg_reg);
7247 %}
7248 
7249 // Immediate Subtraction
7250 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7251   match(Set dst (SubL src1 con));
7252 
7253   size(4);
7254   format %{ "SUB    $src1,$con,$dst\t! long" %}
7255   opcode(Assembler::sub_op3, Assembler::arith_op);
7256   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7257   ins_pipe(ialu_reg_imm);
7258 %}
7259 
7260 // Long negation
7261 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7262   match(Set dst (SubL zero src2));
7263 
7264   size(4);
7265   format %{ "NEG    $src2,$dst\t! long" %}
7266   opcode(Assembler::sub_op3, Assembler::arith_op);
7267   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7268   ins_pipe(ialu_zero_reg);
7269 %}
7270 
7271 // Multiplication Instructions
7272 // Integer Multiplication
7273 // Register Multiplication
7274 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7275   match(Set dst (MulI src1 src2));
7276 
7277   size(4);
7278   format %{ "MULX   $src1,$src2,$dst" %}
7279   opcode(Assembler::mulx_op3, Assembler::arith_op);
7280   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7281   ins_pipe(imul_reg_reg);
7282 %}
7283 
7284 // Immediate Multiplication
7285 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7286   match(Set dst (MulI src1 src2));
7287 
7288   size(4);
7289   format %{ "MULX   $src1,$src2,$dst" %}
7290   opcode(Assembler::mulx_op3, Assembler::arith_op);
7291   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7292   ins_pipe(imul_reg_imm);
7293 %}
7294 
7295 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7296   match(Set dst (MulL src1 src2));
7297   ins_cost(DEFAULT_COST * 5);
7298   size(4);
7299   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7300   opcode(Assembler::mulx_op3, Assembler::arith_op);
7301   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7302   ins_pipe(mulL_reg_reg);
7303 %}
7304 
7305 // Immediate Multiplication
7306 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7307   match(Set dst (MulL src1 src2));
7308   ins_cost(DEFAULT_COST * 5);
7309   size(4);
7310   format %{ "MULX   $src1,$src2,$dst" %}
7311   opcode(Assembler::mulx_op3, Assembler::arith_op);
7312   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7313   ins_pipe(mulL_reg_imm);
7314 %}
7315 
7316 // Integer Division
7317 // Register Division
7318 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7319   match(Set dst (DivI src1 src2));
7320   ins_cost((2+71)*DEFAULT_COST);
7321 
7322   format %{ "SRA     $src2,0,$src2\n\t"
7323             "SRA     $src1,0,$src1\n\t"
7324             "SDIVX   $src1,$src2,$dst" %}
7325   ins_encode( idiv_reg( src1, src2, dst ) );
7326   ins_pipe(sdiv_reg_reg);
7327 %}
7328 
7329 // Immediate Division
7330 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7331   match(Set dst (DivI src1 src2));
7332   ins_cost((2+71)*DEFAULT_COST);
7333 
7334   format %{ "SRA     $src1,0,$src1\n\t"
7335             "SDIVX   $src1,$src2,$dst" %}
7336   ins_encode( idiv_imm( src1, src2, dst ) );
7337   ins_pipe(sdiv_reg_imm);
7338 %}
7339 
7340 //----------Div-By-10-Expansion------------------------------------------------
7341 // Extract hi bits of a 32x32->64 bit multiply.
7342 // Expand rule only, not matched
7343 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7344   effect( DEF dst, USE src1, USE src2 );
7345   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7346             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7347   ins_encode( enc_mul_hi(dst,src1,src2));
7348   ins_pipe(sdiv_reg_reg);
7349 %}
7350 
7351 // Magic constant, reciprocal of 10
7352 instruct loadConI_x66666667(iRegIsafe dst) %{
7353   effect( DEF dst );
7354 
7355   size(8);
7356   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7357   ins_encode( Set32(0x66666667, dst) );
7358   ins_pipe(ialu_hi_lo_reg);
7359 %}
7360 
7361 // Register Shift Right Arithmetic Long by 32-63
7362 instruct sra_31( iRegI dst, iRegI src ) %{
7363   effect( DEF dst, USE src );
7364   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7365   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7366   ins_pipe(ialu_reg_reg);
7367 %}
7368 
7369 // Arithmetic Shift Right by 8-bit immediate
7370 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7371   effect( DEF dst, USE src );
7372   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7373   opcode(Assembler::sra_op3, Assembler::arith_op);
7374   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7375   ins_pipe(ialu_reg_imm);
7376 %}
7377 
7378 // Integer DIV with 10
7379 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7380   match(Set dst (DivI src div));
7381   ins_cost((6+6)*DEFAULT_COST);
7382   expand %{
7383     iRegIsafe tmp1;               // Killed temps;
7384     iRegIsafe tmp2;               // Killed temps;
7385     iRegI tmp3;                   // Killed temps;
7386     iRegI tmp4;                   // Killed temps;
7387     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7388     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7389     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7390     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7391     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7392   %}
7393 %}
7394 
7395 // Register Long Division
7396 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7397   match(Set dst (DivL src1 src2));
7398   ins_cost(DEFAULT_COST*71);
7399   size(4);
7400   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7401   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7402   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7403   ins_pipe(divL_reg_reg);
7404 %}
7405 
7406 // Register Long Division
7407 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7408   match(Set dst (DivL src1 src2));
7409   ins_cost(DEFAULT_COST*71);
7410   size(4);
7411   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7412   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7413   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7414   ins_pipe(divL_reg_imm);
7415 %}
7416 
7417 // Integer Remainder
7418 // Register Remainder
7419 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7420   match(Set dst (ModI src1 src2));
7421   effect( KILL ccr, KILL temp);
7422 
7423   format %{ "SREM   $src1,$src2,$dst" %}
7424   ins_encode( irem_reg(src1, src2, dst, temp) );
7425   ins_pipe(sdiv_reg_reg);
7426 %}
7427 
7428 // Immediate Remainder
7429 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7430   match(Set dst (ModI src1 src2));
7431   effect( KILL ccr, KILL temp);
7432 
7433   format %{ "SREM   $src1,$src2,$dst" %}
7434   ins_encode( irem_imm(src1, src2, dst, temp) );
7435   ins_pipe(sdiv_reg_imm);
7436 %}
7437 
7438 // Register Long Remainder
7439 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7440   effect(DEF dst, USE src1, USE src2);
7441   size(4);
7442   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7443   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7444   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7445   ins_pipe(divL_reg_reg);
7446 %}
7447 
7448 // Register Long Division
7449 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7450   effect(DEF dst, USE src1, USE src2);
7451   size(4);
7452   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7453   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7454   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7455   ins_pipe(divL_reg_imm);
7456 %}
7457 
7458 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7459   effect(DEF dst, USE src1, USE src2);
7460   size(4);
7461   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7462   opcode(Assembler::mulx_op3, Assembler::arith_op);
7463   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7464   ins_pipe(mulL_reg_reg);
7465 %}
7466 
7467 // Immediate Multiplication
7468 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7469   effect(DEF dst, USE src1, USE src2);
7470   size(4);
7471   format %{ "MULX   $src1,$src2,$dst" %}
7472   opcode(Assembler::mulx_op3, Assembler::arith_op);
7473   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7474   ins_pipe(mulL_reg_imm);
7475 %}
7476 
7477 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7478   effect(DEF dst, USE src1, USE src2);
7479   size(4);
7480   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7481   opcode(Assembler::sub_op3, Assembler::arith_op);
7482   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7483   ins_pipe(ialu_reg_reg);
7484 %}
7485 
7486 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7487   effect(DEF dst, USE src1, USE src2);
7488   size(4);
7489   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7490   opcode(Assembler::sub_op3, Assembler::arith_op);
7491   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7492   ins_pipe(ialu_reg_reg);
7493 %}
7494 
7495 // Register Long Remainder
7496 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7497   match(Set dst (ModL src1 src2));
7498   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7499   expand %{
7500     iRegL tmp1;
7501     iRegL tmp2;
7502     divL_reg_reg_1(tmp1, src1, src2);
7503     mulL_reg_reg_1(tmp2, tmp1, src2);
7504     subL_reg_reg_1(dst,  src1, tmp2);
7505   %}
7506 %}
7507 
7508 // Register Long Remainder
7509 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7510   match(Set dst (ModL src1 src2));
7511   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7512   expand %{
7513     iRegL tmp1;
7514     iRegL tmp2;
7515     divL_reg_imm13_1(tmp1, src1, src2);
7516     mulL_reg_imm13_1(tmp2, tmp1, src2);
7517     subL_reg_reg_2  (dst,  src1, tmp2);
7518   %}
7519 %}
7520 
7521 // Integer Shift Instructions
7522 // Register Shift Left
7523 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7524   match(Set dst (LShiftI src1 src2));
7525 
7526   size(4);
7527   format %{ "SLL    $src1,$src2,$dst" %}
7528   opcode(Assembler::sll_op3, Assembler::arith_op);
7529   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7530   ins_pipe(ialu_reg_reg);
7531 %}
7532 
7533 // Register Shift Left Immediate
7534 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7535   match(Set dst (LShiftI src1 src2));
7536 
7537   size(4);
7538   format %{ "SLL    $src1,$src2,$dst" %}
7539   opcode(Assembler::sll_op3, Assembler::arith_op);
7540   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7541   ins_pipe(ialu_reg_imm);
7542 %}
7543 
7544 // Register Shift Left
7545 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7546   match(Set dst (LShiftL src1 src2));
7547 
7548   size(4);
7549   format %{ "SLLX   $src1,$src2,$dst" %}
7550   opcode(Assembler::sllx_op3, Assembler::arith_op);
7551   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7552   ins_pipe(ialu_reg_reg);
7553 %}
7554 
7555 // Register Shift Left Immediate
7556 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7557   match(Set dst (LShiftL src1 src2));
7558 
7559   size(4);
7560   format %{ "SLLX   $src1,$src2,$dst" %}
7561   opcode(Assembler::sllx_op3, Assembler::arith_op);
7562   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7563   ins_pipe(ialu_reg_imm);
7564 %}
7565 
7566 // Register Arithmetic Shift Right
7567 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7568   match(Set dst (RShiftI src1 src2));
7569   size(4);
7570   format %{ "SRA    $src1,$src2,$dst" %}
7571   opcode(Assembler::sra_op3, Assembler::arith_op);
7572   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7573   ins_pipe(ialu_reg_reg);
7574 %}
7575 
7576 // Register Arithmetic Shift Right Immediate
7577 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7578   match(Set dst (RShiftI src1 src2));
7579 
7580   size(4);
7581   format %{ "SRA    $src1,$src2,$dst" %}
7582   opcode(Assembler::sra_op3, Assembler::arith_op);
7583   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7584   ins_pipe(ialu_reg_imm);
7585 %}
7586 
7587 // Register Shift Right Arithmatic Long
7588 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7589   match(Set dst (RShiftL src1 src2));
7590 
7591   size(4);
7592   format %{ "SRAX   $src1,$src2,$dst" %}
7593   opcode(Assembler::srax_op3, Assembler::arith_op);
7594   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7595   ins_pipe(ialu_reg_reg);
7596 %}
7597 
7598 // Register Shift Left Immediate
7599 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7600   match(Set dst (RShiftL src1 src2));
7601 
7602   size(4);
7603   format %{ "SRAX   $src1,$src2,$dst" %}
7604   opcode(Assembler::srax_op3, Assembler::arith_op);
7605   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7606   ins_pipe(ialu_reg_imm);
7607 %}
7608 
7609 // Register Shift Right
7610 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7611   match(Set dst (URShiftI src1 src2));
7612 
7613   size(4);
7614   format %{ "SRL    $src1,$src2,$dst" %}
7615   opcode(Assembler::srl_op3, Assembler::arith_op);
7616   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7617   ins_pipe(ialu_reg_reg);
7618 %}
7619 
7620 // Register Shift Right Immediate
7621 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7622   match(Set dst (URShiftI src1 src2));
7623 
7624   size(4);
7625   format %{ "SRL    $src1,$src2,$dst" %}
7626   opcode(Assembler::srl_op3, Assembler::arith_op);
7627   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7628   ins_pipe(ialu_reg_imm);
7629 %}
7630 
7631 // Register Shift Right
7632 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7633   match(Set dst (URShiftL src1 src2));
7634 
7635   size(4);
7636   format %{ "SRLX   $src1,$src2,$dst" %}
7637   opcode(Assembler::srlx_op3, Assembler::arith_op);
7638   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7639   ins_pipe(ialu_reg_reg);
7640 %}
7641 
7642 // Register Shift Right Immediate
7643 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7644   match(Set dst (URShiftL src1 src2));
7645 
7646   size(4);
7647   format %{ "SRLX   $src1,$src2,$dst" %}
7648   opcode(Assembler::srlx_op3, Assembler::arith_op);
7649   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7650   ins_pipe(ialu_reg_imm);
7651 %}
7652 
7653 // Register Shift Right Immediate with a CastP2X
7654 #ifdef _LP64
7655 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7656   match(Set dst (URShiftL (CastP2X src1) src2));
7657   size(4);
7658   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7659   opcode(Assembler::srlx_op3, Assembler::arith_op);
7660   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7661   ins_pipe(ialu_reg_imm);
7662 %}
7663 #else
7664 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7665   match(Set dst (URShiftI (CastP2X src1) src2));
7666   size(4);
7667   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7668   opcode(Assembler::srl_op3, Assembler::arith_op);
7669   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7670   ins_pipe(ialu_reg_imm);
7671 %}
7672 #endif
7673 
7674 
7675 //----------Floating Point Arithmetic Instructions-----------------------------
7676 
7677 //  Add float single precision
7678 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7679   match(Set dst (AddF src1 src2));
7680 
7681   size(4);
7682   format %{ "FADDS  $src1,$src2,$dst" %}
7683   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7684   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7685   ins_pipe(faddF_reg_reg);
7686 %}
7687 
7688 //  Add float double precision
7689 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7690   match(Set dst (AddD src1 src2));
7691 
7692   size(4);
7693   format %{ "FADDD  $src1,$src2,$dst" %}
7694   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7695   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7696   ins_pipe(faddD_reg_reg);
7697 %}
7698 
7699 //  Sub float single precision
7700 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7701   match(Set dst (SubF src1 src2));
7702 
7703   size(4);
7704   format %{ "FSUBS  $src1,$src2,$dst" %}
7705   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7706   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7707   ins_pipe(faddF_reg_reg);
7708 %}
7709 
7710 //  Sub float double precision
7711 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7712   match(Set dst (SubD src1 src2));
7713 
7714   size(4);
7715   format %{ "FSUBD  $src1,$src2,$dst" %}
7716   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7717   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7718   ins_pipe(faddD_reg_reg);
7719 %}
7720 
7721 //  Mul float single precision
7722 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7723   match(Set dst (MulF src1 src2));
7724 
7725   size(4);
7726   format %{ "FMULS  $src1,$src2,$dst" %}
7727   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7728   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7729   ins_pipe(fmulF_reg_reg);
7730 %}
7731 
7732 //  Mul float double precision
7733 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7734   match(Set dst (MulD src1 src2));
7735 
7736   size(4);
7737   format %{ "FMULD  $src1,$src2,$dst" %}
7738   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7739   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7740   ins_pipe(fmulD_reg_reg);
7741 %}
7742 
7743 //  Div float single precision
7744 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7745   match(Set dst (DivF src1 src2));
7746 
7747   size(4);
7748   format %{ "FDIVS  $src1,$src2,$dst" %}
7749   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7750   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7751   ins_pipe(fdivF_reg_reg);
7752 %}
7753 
7754 //  Div float double precision
7755 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7756   match(Set dst (DivD src1 src2));
7757 
7758   size(4);
7759   format %{ "FDIVD  $src1,$src2,$dst" %}
7760   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7761   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7762   ins_pipe(fdivD_reg_reg);
7763 %}
7764 
7765 //  Absolute float double precision
7766 instruct absD_reg(regD dst, regD src) %{
7767   match(Set dst (AbsD src));
7768 
7769   format %{ "FABSd  $src,$dst" %}
7770   ins_encode(fabsd(dst, src));
7771   ins_pipe(faddD_reg);
7772 %}
7773 
7774 //  Absolute float single precision
7775 instruct absF_reg(regF dst, regF src) %{
7776   match(Set dst (AbsF src));
7777 
7778   format %{ "FABSs  $src,$dst" %}
7779   ins_encode(fabss(dst, src));
7780   ins_pipe(faddF_reg);
7781 %}
7782 
7783 instruct negF_reg(regF dst, regF src) %{
7784   match(Set dst (NegF src));
7785 
7786   size(4);
7787   format %{ "FNEGs  $src,$dst" %}
7788   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7789   ins_encode(form3_opf_rs2F_rdF(src, dst));
7790   ins_pipe(faddF_reg);
7791 %}
7792 
7793 instruct negD_reg(regD dst, regD src) %{
7794   match(Set dst (NegD src));
7795 
7796   format %{ "FNEGd  $src,$dst" %}
7797   ins_encode(fnegd(dst, src));
7798   ins_pipe(faddD_reg);
7799 %}
7800 
7801 //  Sqrt float double precision
7802 instruct sqrtF_reg_reg(regF dst, regF src) %{
7803   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7804 
7805   size(4);
7806   format %{ "FSQRTS $src,$dst" %}
7807   ins_encode(fsqrts(dst, src));
7808   ins_pipe(fdivF_reg_reg);
7809 %}
7810 
7811 //  Sqrt float double precision
7812 instruct sqrtD_reg_reg(regD dst, regD src) %{
7813   match(Set dst (SqrtD src));
7814 
7815   size(4);
7816   format %{ "FSQRTD $src,$dst" %}
7817   ins_encode(fsqrtd(dst, src));
7818   ins_pipe(fdivD_reg_reg);
7819 %}
7820 
7821 //----------Logical Instructions-----------------------------------------------
7822 // And Instructions
7823 // Register And
7824 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7825   match(Set dst (AndI src1 src2));
7826 
7827   size(4);
7828   format %{ "AND    $src1,$src2,$dst" %}
7829   opcode(Assembler::and_op3, Assembler::arith_op);
7830   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7831   ins_pipe(ialu_reg_reg);
7832 %}
7833 
7834 // Immediate And
7835 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7836   match(Set dst (AndI src1 src2));
7837 
7838   size(4);
7839   format %{ "AND    $src1,$src2,$dst" %}
7840   opcode(Assembler::and_op3, Assembler::arith_op);
7841   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7842   ins_pipe(ialu_reg_imm);
7843 %}
7844 
7845 // Register And Long
7846 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7847   match(Set dst (AndL src1 src2));
7848 
7849   ins_cost(DEFAULT_COST);
7850   size(4);
7851   format %{ "AND    $src1,$src2,$dst\t! long" %}
7852   opcode(Assembler::and_op3, Assembler::arith_op);
7853   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7854   ins_pipe(ialu_reg_reg);
7855 %}
7856 
7857 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7858   match(Set dst (AndL src1 con));
7859 
7860   ins_cost(DEFAULT_COST);
7861   size(4);
7862   format %{ "AND    $src1,$con,$dst\t! long" %}
7863   opcode(Assembler::and_op3, Assembler::arith_op);
7864   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7865   ins_pipe(ialu_reg_imm);
7866 %}
7867 
7868 // Or Instructions
7869 // Register Or
7870 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7871   match(Set dst (OrI src1 src2));
7872 
7873   size(4);
7874   format %{ "OR     $src1,$src2,$dst" %}
7875   opcode(Assembler::or_op3, Assembler::arith_op);
7876   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7877   ins_pipe(ialu_reg_reg);
7878 %}
7879 
7880 // Immediate Or
7881 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7882   match(Set dst (OrI src1 src2));
7883 
7884   size(4);
7885   format %{ "OR     $src1,$src2,$dst" %}
7886   opcode(Assembler::or_op3, Assembler::arith_op);
7887   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7888   ins_pipe(ialu_reg_imm);
7889 %}
7890 
7891 // Register Or Long
7892 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7893   match(Set dst (OrL src1 src2));
7894 
7895   ins_cost(DEFAULT_COST);
7896   size(4);
7897   format %{ "OR     $src1,$src2,$dst\t! long" %}
7898   opcode(Assembler::or_op3, Assembler::arith_op);
7899   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7900   ins_pipe(ialu_reg_reg);
7901 %}
7902 
7903 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7904   match(Set dst (OrL src1 con));
7905   ins_cost(DEFAULT_COST*2);
7906 
7907   ins_cost(DEFAULT_COST);
7908   size(4);
7909   format %{ "OR     $src1,$con,$dst\t! long" %}
7910   opcode(Assembler::or_op3, Assembler::arith_op);
7911   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7912   ins_pipe(ialu_reg_imm);
7913 %}
7914 
7915 #ifndef _LP64
7916 
7917 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7918 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7919   match(Set dst (OrI src1 (CastP2X src2)));
7920 
7921   size(4);
7922   format %{ "OR     $src1,$src2,$dst" %}
7923   opcode(Assembler::or_op3, Assembler::arith_op);
7924   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7925   ins_pipe(ialu_reg_reg);
7926 %}
7927 
7928 #else
7929 
7930 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7931   match(Set dst (OrL src1 (CastP2X src2)));
7932 
7933   ins_cost(DEFAULT_COST);
7934   size(4);
7935   format %{ "OR     $src1,$src2,$dst\t! long" %}
7936   opcode(Assembler::or_op3, Assembler::arith_op);
7937   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7938   ins_pipe(ialu_reg_reg);
7939 %}
7940 
7941 #endif
7942 
7943 // Xor Instructions
7944 // Register Xor
7945 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7946   match(Set dst (XorI src1 src2));
7947 
7948   size(4);
7949   format %{ "XOR    $src1,$src2,$dst" %}
7950   opcode(Assembler::xor_op3, Assembler::arith_op);
7951   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7952   ins_pipe(ialu_reg_reg);
7953 %}
7954 
7955 // Immediate Xor
7956 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7957   match(Set dst (XorI src1 src2));
7958 
7959   size(4);
7960   format %{ "XOR    $src1,$src2,$dst" %}
7961   opcode(Assembler::xor_op3, Assembler::arith_op);
7962   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7963   ins_pipe(ialu_reg_imm);
7964 %}
7965 
7966 // Register Xor Long
7967 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7968   match(Set dst (XorL src1 src2));
7969 
7970   ins_cost(DEFAULT_COST);
7971   size(4);
7972   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7973   opcode(Assembler::xor_op3, Assembler::arith_op);
7974   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7975   ins_pipe(ialu_reg_reg);
7976 %}
7977 
7978 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7979   match(Set dst (XorL src1 con));
7980 
7981   ins_cost(DEFAULT_COST);
7982   size(4);
7983   format %{ "XOR    $src1,$con,$dst\t! long" %}
7984   opcode(Assembler::xor_op3, Assembler::arith_op);
7985   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7986   ins_pipe(ialu_reg_imm);
7987 %}
7988 
7989 //----------Convert to Boolean-------------------------------------------------
7990 // Nice hack for 32-bit tests but doesn't work for
7991 // 64-bit pointers.
7992 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7993   match(Set dst (Conv2B src));
7994   effect( KILL ccr );
7995   ins_cost(DEFAULT_COST*2);
7996   format %{ "CMP    R_G0,$src\n\t"
7997             "ADDX   R_G0,0,$dst" %}
7998   ins_encode( enc_to_bool( src, dst ) );
7999   ins_pipe(ialu_reg_ialu);
8000 %}
8001 
8002 #ifndef _LP64
8003 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8004   match(Set dst (Conv2B src));
8005   effect( KILL ccr );
8006   ins_cost(DEFAULT_COST*2);
8007   format %{ "CMP    R_G0,$src\n\t"
8008             "ADDX   R_G0,0,$dst" %}
8009   ins_encode( enc_to_bool( src, dst ) );
8010   ins_pipe(ialu_reg_ialu);
8011 %}
8012 #else
8013 instruct convP2B( iRegI dst, iRegP src ) %{
8014   match(Set dst (Conv2B src));
8015   ins_cost(DEFAULT_COST*2);
8016   format %{ "MOV    $src,$dst\n\t"
8017             "MOVRNZ $src,1,$dst" %}
8018   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8019   ins_pipe(ialu_clr_and_mover);
8020 %}
8021 #endif
8022 
8023 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8024   match(Set dst (CmpLTMask src zero));
8025   effect(KILL ccr);
8026   size(4);
8027   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8028   ins_encode %{
8029     __ sra($src$$Register, 31, $dst$$Register);
8030   %}
8031   ins_pipe(ialu_reg_imm);
8032 %}
8033 
8034 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8035   match(Set dst (CmpLTMask p q));
8036   effect( KILL ccr );
8037   ins_cost(DEFAULT_COST*4);
8038   format %{ "CMP    $p,$q\n\t"
8039             "MOV    #0,$dst\n\t"
8040             "BLT,a  .+8\n\t"
8041             "MOV    #-1,$dst" %}
8042   ins_encode( enc_ltmask(p,q,dst) );
8043   ins_pipe(ialu_reg_reg_ialu);
8044 %}
8045 
8046 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8047   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8048   effect(KILL ccr, TEMP tmp);
8049   ins_cost(DEFAULT_COST*3);
8050 
8051   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8052             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8053             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8054   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8055   ins_pipe(cadd_cmpltmask);
8056 %}
8057 
8058 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8059   match(Set p (AndI (CmpLTMask p q) y));
8060   effect(KILL ccr);
8061   ins_cost(DEFAULT_COST*3);
8062 
8063   format %{ "CMP  $p,$q\n\t"
8064             "MOV  $y,$p\n\t"
8065             "MOVge G0,$p" %}
8066   ins_encode %{
8067     __ cmp($p$$Register, $q$$Register);
8068     __ mov($y$$Register, $p$$Register);
8069     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8070   %}
8071   ins_pipe(ialu_reg_reg_ialu);
8072 %}
8073 
8074 //-----------------------------------------------------------------
8075 // Direct raw moves between float and general registers using VIS3.
8076 
8077 //  ins_pipe(faddF_reg);
8078 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8079   predicate(UseVIS >= 3);
8080   match(Set dst (MoveF2I src));
8081 
8082   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8083   ins_encode %{
8084     __ movstouw($src$$FloatRegister, $dst$$Register);
8085   %}
8086   ins_pipe(ialu_reg_reg);
8087 %}
8088 
8089 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8090   predicate(UseVIS >= 3);
8091   match(Set dst (MoveI2F src));
8092 
8093   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8094   ins_encode %{
8095     __ movwtos($src$$Register, $dst$$FloatRegister);
8096   %}
8097   ins_pipe(ialu_reg_reg);
8098 %}
8099 
8100 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8101   predicate(UseVIS >= 3);
8102   match(Set dst (MoveD2L src));
8103 
8104   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8105   ins_encode %{
8106     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8107   %}
8108   ins_pipe(ialu_reg_reg);
8109 %}
8110 
8111 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8112   predicate(UseVIS >= 3);
8113   match(Set dst (MoveL2D src));
8114 
8115   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8116   ins_encode %{
8117     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8118   %}
8119   ins_pipe(ialu_reg_reg);
8120 %}
8121 
8122 
8123 // Raw moves between float and general registers using stack.
8124 
8125 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8126   match(Set dst (MoveF2I src));
8127   effect(DEF dst, USE src);
8128   ins_cost(MEMORY_REF_COST);
8129 
8130   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8131   opcode(Assembler::lduw_op3);
8132   ins_encode(simple_form3_mem_reg( src, dst ) );
8133   ins_pipe(iload_mem);
8134 %}
8135 
8136 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8137   match(Set dst (MoveI2F src));
8138   effect(DEF dst, USE src);
8139   ins_cost(MEMORY_REF_COST);
8140 
8141   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8142   opcode(Assembler::ldf_op3);
8143   ins_encode(simple_form3_mem_reg(src, dst));
8144   ins_pipe(floadF_stk);
8145 %}
8146 
8147 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8148   match(Set dst (MoveD2L src));
8149   effect(DEF dst, USE src);
8150   ins_cost(MEMORY_REF_COST);
8151 
8152   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8153   opcode(Assembler::ldx_op3);
8154   ins_encode(simple_form3_mem_reg( src, dst ) );
8155   ins_pipe(iload_mem);
8156 %}
8157 
8158 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8159   match(Set dst (MoveL2D src));
8160   effect(DEF dst, USE src);
8161   ins_cost(MEMORY_REF_COST);
8162 
8163   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8164   opcode(Assembler::lddf_op3);
8165   ins_encode(simple_form3_mem_reg(src, dst));
8166   ins_pipe(floadD_stk);
8167 %}
8168 
8169 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8170   match(Set dst (MoveF2I src));
8171   effect(DEF dst, USE src);
8172   ins_cost(MEMORY_REF_COST);
8173 
8174   format %{ "STF   $src,$dst\t! MoveF2I" %}
8175   opcode(Assembler::stf_op3);
8176   ins_encode(simple_form3_mem_reg(dst, src));
8177   ins_pipe(fstoreF_stk_reg);
8178 %}
8179 
8180 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8181   match(Set dst (MoveI2F src));
8182   effect(DEF dst, USE src);
8183   ins_cost(MEMORY_REF_COST);
8184 
8185   format %{ "STW    $src,$dst\t! MoveI2F" %}
8186   opcode(Assembler::stw_op3);
8187   ins_encode(simple_form3_mem_reg( dst, src ) );
8188   ins_pipe(istore_mem_reg);
8189 %}
8190 
8191 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8192   match(Set dst (MoveD2L src));
8193   effect(DEF dst, USE src);
8194   ins_cost(MEMORY_REF_COST);
8195 
8196   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8197   opcode(Assembler::stdf_op3);
8198   ins_encode(simple_form3_mem_reg(dst, src));
8199   ins_pipe(fstoreD_stk_reg);
8200 %}
8201 
8202 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8203   match(Set dst (MoveL2D src));
8204   effect(DEF dst, USE src);
8205   ins_cost(MEMORY_REF_COST);
8206 
8207   format %{ "STX    $src,$dst\t! MoveL2D" %}
8208   opcode(Assembler::stx_op3);
8209   ins_encode(simple_form3_mem_reg( dst, src ) );
8210   ins_pipe(istore_mem_reg);
8211 %}
8212 
8213 
8214 //----------Arithmetic Conversion Instructions---------------------------------
8215 // The conversions operations are all Alpha sorted.  Please keep it that way!
8216 
8217 instruct convD2F_reg(regF dst, regD src) %{
8218   match(Set dst (ConvD2F src));
8219   size(4);
8220   format %{ "FDTOS  $src,$dst" %}
8221   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8222   ins_encode(form3_opf_rs2D_rdF(src, dst));
8223   ins_pipe(fcvtD2F);
8224 %}
8225 
8226 
8227 // Convert a double to an int in a float register.
8228 // If the double is a NAN, stuff a zero in instead.
8229 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8230   effect(DEF dst, USE src, KILL fcc0);
8231   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8232             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8233             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8234             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8235             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8236       "skip:" %}
8237   ins_encode(form_d2i_helper(src,dst));
8238   ins_pipe(fcvtD2I);
8239 %}
8240 
8241 instruct convD2I_stk(stackSlotI dst, regD src) %{
8242   match(Set dst (ConvD2I src));
8243   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8244   expand %{
8245     regF tmp;
8246     convD2I_helper(tmp, src);
8247     regF_to_stkI(dst, tmp);
8248   %}
8249 %}
8250 
8251 instruct convD2I_reg(iRegI dst, regD src) %{
8252   predicate(UseVIS >= 3);
8253   match(Set dst (ConvD2I src));
8254   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8255   expand %{
8256     regF tmp;
8257     convD2I_helper(tmp, src);
8258     MoveF2I_reg_reg(dst, tmp);
8259   %}
8260 %}
8261 
8262 
8263 // Convert a double to a long in a double register.
8264 // If the double is a NAN, stuff a zero in instead.
8265 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8266   effect(DEF dst, USE src, KILL fcc0);
8267   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8268             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8269             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8270             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8271             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8272       "skip:" %}
8273   ins_encode(form_d2l_helper(src,dst));
8274   ins_pipe(fcvtD2L);
8275 %}
8276 
8277 instruct convD2L_stk(stackSlotL dst, regD src) %{
8278   match(Set dst (ConvD2L src));
8279   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8280   expand %{
8281     regD tmp;
8282     convD2L_helper(tmp, src);
8283     regD_to_stkL(dst, tmp);
8284   %}
8285 %}
8286 
8287 instruct convD2L_reg(iRegL dst, regD src) %{
8288   predicate(UseVIS >= 3);
8289   match(Set dst (ConvD2L src));
8290   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8291   expand %{
8292     regD tmp;
8293     convD2L_helper(tmp, src);
8294     MoveD2L_reg_reg(dst, tmp);
8295   %}
8296 %}
8297 
8298 
8299 instruct convF2D_reg(regD dst, regF src) %{
8300   match(Set dst (ConvF2D src));
8301   format %{ "FSTOD  $src,$dst" %}
8302   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8303   ins_encode(form3_opf_rs2F_rdD(src, dst));
8304   ins_pipe(fcvtF2D);
8305 %}
8306 
8307 
8308 // Convert a float to an int in a float register.
8309 // If the float is a NAN, stuff a zero in instead.
8310 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8311   effect(DEF dst, USE src, KILL fcc0);
8312   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8313             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8314             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8315             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8316             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8317       "skip:" %}
8318   ins_encode(form_f2i_helper(src,dst));
8319   ins_pipe(fcvtF2I);
8320 %}
8321 
8322 instruct convF2I_stk(stackSlotI dst, regF src) %{
8323   match(Set dst (ConvF2I src));
8324   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8325   expand %{
8326     regF tmp;
8327     convF2I_helper(tmp, src);
8328     regF_to_stkI(dst, tmp);
8329   %}
8330 %}
8331 
8332 instruct convF2I_reg(iRegI dst, regF src) %{
8333   predicate(UseVIS >= 3);
8334   match(Set dst (ConvF2I src));
8335   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8336   expand %{
8337     regF tmp;
8338     convF2I_helper(tmp, src);
8339     MoveF2I_reg_reg(dst, tmp);
8340   %}
8341 %}
8342 
8343 
8344 // Convert a float to a long in a float register.
8345 // If the float is a NAN, stuff a zero in instead.
8346 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8347   effect(DEF dst, USE src, KILL fcc0);
8348   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8349             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8350             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8351             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8352             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8353       "skip:" %}
8354   ins_encode(form_f2l_helper(src,dst));
8355   ins_pipe(fcvtF2L);
8356 %}
8357 
8358 instruct convF2L_stk(stackSlotL dst, regF src) %{
8359   match(Set dst (ConvF2L src));
8360   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8361   expand %{
8362     regD tmp;
8363     convF2L_helper(tmp, src);
8364     regD_to_stkL(dst, tmp);
8365   %}
8366 %}
8367 
8368 instruct convF2L_reg(iRegL dst, regF src) %{
8369   predicate(UseVIS >= 3);
8370   match(Set dst (ConvF2L src));
8371   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8372   expand %{
8373     regD tmp;
8374     convF2L_helper(tmp, src);
8375     MoveD2L_reg_reg(dst, tmp);
8376   %}
8377 %}
8378 
8379 
8380 instruct convI2D_helper(regD dst, regF tmp) %{
8381   effect(USE tmp, DEF dst);
8382   format %{ "FITOD  $tmp,$dst" %}
8383   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8384   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8385   ins_pipe(fcvtI2D);
8386 %}
8387 
8388 instruct convI2D_stk(stackSlotI src, regD dst) %{
8389   match(Set dst (ConvI2D src));
8390   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8391   expand %{
8392     regF tmp;
8393     stkI_to_regF(tmp, src);
8394     convI2D_helper(dst, tmp);
8395   %}
8396 %}
8397 
8398 instruct convI2D_reg(regD_low dst, iRegI src) %{
8399   predicate(UseVIS >= 3);
8400   match(Set dst (ConvI2D src));
8401   expand %{
8402     regF tmp;
8403     MoveI2F_reg_reg(tmp, src);
8404     convI2D_helper(dst, tmp);
8405   %}
8406 %}
8407 
8408 instruct convI2D_mem(regD_low dst, memory mem) %{
8409   match(Set dst (ConvI2D (LoadI mem)));
8410   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8411   format %{ "LDF    $mem,$dst\n\t"
8412             "FITOD  $dst,$dst" %}
8413   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8414   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8415   ins_pipe(floadF_mem);
8416 %}
8417 
8418 
8419 instruct convI2F_helper(regF dst, regF tmp) %{
8420   effect(DEF dst, USE tmp);
8421   format %{ "FITOS  $tmp,$dst" %}
8422   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8423   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8424   ins_pipe(fcvtI2F);
8425 %}
8426 
8427 instruct convI2F_stk(regF dst, stackSlotI src) %{
8428   match(Set dst (ConvI2F src));
8429   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8430   expand %{
8431     regF tmp;
8432     stkI_to_regF(tmp,src);
8433     convI2F_helper(dst, tmp);
8434   %}
8435 %}
8436 
8437 instruct convI2F_reg(regF dst, iRegI src) %{
8438   predicate(UseVIS >= 3);
8439   match(Set dst (ConvI2F src));
8440   ins_cost(DEFAULT_COST);
8441   expand %{
8442     regF tmp;
8443     MoveI2F_reg_reg(tmp, src);
8444     convI2F_helper(dst, tmp);
8445   %}
8446 %}
8447 
8448 instruct convI2F_mem( regF dst, memory mem ) %{
8449   match(Set dst (ConvI2F (LoadI mem)));
8450   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8451   format %{ "LDF    $mem,$dst\n\t"
8452             "FITOS  $dst,$dst" %}
8453   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8454   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8455   ins_pipe(floadF_mem);
8456 %}
8457 
8458 
8459 instruct convI2L_reg(iRegL dst, iRegI src) %{
8460   match(Set dst (ConvI2L src));
8461   size(4);
8462   format %{ "SRA    $src,0,$dst\t! int->long" %}
8463   opcode(Assembler::sra_op3, Assembler::arith_op);
8464   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8465   ins_pipe(ialu_reg_reg);
8466 %}
8467 
8468 // Zero-extend convert int to long
8469 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8470   match(Set dst (AndL (ConvI2L src) mask) );
8471   size(4);
8472   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8473   opcode(Assembler::srl_op3, Assembler::arith_op);
8474   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8475   ins_pipe(ialu_reg_reg);
8476 %}
8477 
8478 // Zero-extend long
8479 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8480   match(Set dst (AndL src mask) );
8481   size(4);
8482   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8483   opcode(Assembler::srl_op3, Assembler::arith_op);
8484   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8485   ins_pipe(ialu_reg_reg);
8486 %}
8487 
8488 
8489 //-----------
8490 // Long to Double conversion using V8 opcodes.
8491 // Still useful because cheetah traps and becomes
8492 // amazingly slow for some common numbers.
8493 
8494 // Magic constant, 0x43300000
8495 instruct loadConI_x43300000(iRegI dst) %{
8496   effect(DEF dst);
8497   size(4);
8498   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8499   ins_encode(SetHi22(0x43300000, dst));
8500   ins_pipe(ialu_none);
8501 %}
8502 
8503 // Magic constant, 0x41f00000
8504 instruct loadConI_x41f00000(iRegI dst) %{
8505   effect(DEF dst);
8506   size(4);
8507   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8508   ins_encode(SetHi22(0x41f00000, dst));
8509   ins_pipe(ialu_none);
8510 %}
8511 
8512 // Construct a double from two float halves
8513 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8514   effect(DEF dst, USE src1, USE src2);
8515   size(8);
8516   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8517             "FMOVS  $src2.lo,$dst.lo" %}
8518   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8519   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8520   ins_pipe(faddD_reg_reg);
8521 %}
8522 
8523 // Convert integer in high half of a double register (in the lower half of
8524 // the double register file) to double
8525 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8526   effect(DEF dst, USE src);
8527   size(4);
8528   format %{ "FITOD  $src,$dst" %}
8529   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8530   ins_encode(form3_opf_rs2D_rdD(src, dst));
8531   ins_pipe(fcvtLHi2D);
8532 %}
8533 
8534 // Add float double precision
8535 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8536   effect(DEF dst, USE src1, USE src2);
8537   size(4);
8538   format %{ "FADDD  $src1,$src2,$dst" %}
8539   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8540   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8541   ins_pipe(faddD_reg_reg);
8542 %}
8543 
8544 // Sub float double precision
8545 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8546   effect(DEF dst, USE src1, USE src2);
8547   size(4);
8548   format %{ "FSUBD  $src1,$src2,$dst" %}
8549   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8550   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8551   ins_pipe(faddD_reg_reg);
8552 %}
8553 
8554 // Mul float double precision
8555 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8556   effect(DEF dst, USE src1, USE src2);
8557   size(4);
8558   format %{ "FMULD  $src1,$src2,$dst" %}
8559   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8560   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8561   ins_pipe(fmulD_reg_reg);
8562 %}
8563 
8564 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8565   match(Set dst (ConvL2D src));
8566   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8567 
8568   expand %{
8569     regD_low   tmpsrc;
8570     iRegI      ix43300000;
8571     iRegI      ix41f00000;
8572     stackSlotL lx43300000;
8573     stackSlotL lx41f00000;
8574     regD_low   dx43300000;
8575     regD       dx41f00000;
8576     regD       tmp1;
8577     regD_low   tmp2;
8578     regD       tmp3;
8579     regD       tmp4;
8580 
8581     stkL_to_regD(tmpsrc, src);
8582 
8583     loadConI_x43300000(ix43300000);
8584     loadConI_x41f00000(ix41f00000);
8585     regI_to_stkLHi(lx43300000, ix43300000);
8586     regI_to_stkLHi(lx41f00000, ix41f00000);
8587     stkL_to_regD(dx43300000, lx43300000);
8588     stkL_to_regD(dx41f00000, lx41f00000);
8589 
8590     convI2D_regDHi_regD(tmp1, tmpsrc);
8591     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8592     subD_regD_regD(tmp3, tmp2, dx43300000);
8593     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8594     addD_regD_regD(dst, tmp3, tmp4);
8595   %}
8596 %}
8597 
8598 // Long to Double conversion using fast fxtof
8599 instruct convL2D_helper(regD dst, regD tmp) %{
8600   effect(DEF dst, USE tmp);
8601   size(4);
8602   format %{ "FXTOD  $tmp,$dst" %}
8603   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8604   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8605   ins_pipe(fcvtL2D);
8606 %}
8607 
8608 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8609   predicate(VM_Version::has_fast_fxtof());
8610   match(Set dst (ConvL2D src));
8611   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8612   expand %{
8613     regD tmp;
8614     stkL_to_regD(tmp, src);
8615     convL2D_helper(dst, tmp);
8616   %}
8617 %}
8618 
8619 instruct convL2D_reg(regD dst, iRegL src) %{
8620   predicate(UseVIS >= 3);
8621   match(Set dst (ConvL2D src));
8622   expand %{
8623     regD tmp;
8624     MoveL2D_reg_reg(tmp, src);
8625     convL2D_helper(dst, tmp);
8626   %}
8627 %}
8628 
8629 // Long to Float conversion using fast fxtof
8630 instruct convL2F_helper(regF dst, regD tmp) %{
8631   effect(DEF dst, USE tmp);
8632   size(4);
8633   format %{ "FXTOS  $tmp,$dst" %}
8634   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8635   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8636   ins_pipe(fcvtL2F);
8637 %}
8638 
8639 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8640   match(Set dst (ConvL2F src));
8641   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8642   expand %{
8643     regD tmp;
8644     stkL_to_regD(tmp, src);
8645     convL2F_helper(dst, tmp);
8646   %}
8647 %}
8648 
8649 instruct convL2F_reg(regF dst, iRegL src) %{
8650   predicate(UseVIS >= 3);
8651   match(Set dst (ConvL2F src));
8652   ins_cost(DEFAULT_COST);
8653   expand %{
8654     regD tmp;
8655     MoveL2D_reg_reg(tmp, src);
8656     convL2F_helper(dst, tmp);
8657   %}
8658 %}
8659 
8660 //-----------
8661 
8662 instruct convL2I_reg(iRegI dst, iRegL src) %{
8663   match(Set dst (ConvL2I src));
8664 #ifndef _LP64
8665   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8666   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8667   ins_pipe(ialu_move_reg_I_to_L);
8668 #else
8669   size(4);
8670   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8671   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8672   ins_pipe(ialu_reg);
8673 #endif
8674 %}
8675 
8676 // Register Shift Right Immediate
8677 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8678   match(Set dst (ConvL2I (RShiftL src cnt)));
8679 
8680   size(4);
8681   format %{ "SRAX   $src,$cnt,$dst" %}
8682   opcode(Assembler::srax_op3, Assembler::arith_op);
8683   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8684   ins_pipe(ialu_reg_imm);
8685 %}
8686 
8687 //----------Control Flow Instructions------------------------------------------
8688 // Compare Instructions
8689 // Compare Integers
8690 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8691   match(Set icc (CmpI op1 op2));
8692   effect( DEF icc, USE op1, USE op2 );
8693 
8694   size(4);
8695   format %{ "CMP    $op1,$op2" %}
8696   opcode(Assembler::subcc_op3, Assembler::arith_op);
8697   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8698   ins_pipe(ialu_cconly_reg_reg);
8699 %}
8700 
8701 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8702   match(Set icc (CmpU op1 op2));
8703 
8704   size(4);
8705   format %{ "CMP    $op1,$op2\t! unsigned" %}
8706   opcode(Assembler::subcc_op3, Assembler::arith_op);
8707   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8708   ins_pipe(ialu_cconly_reg_reg);
8709 %}
8710 
8711 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8712   match(Set icc (CmpI op1 op2));
8713   effect( DEF icc, USE op1 );
8714 
8715   size(4);
8716   format %{ "CMP    $op1,$op2" %}
8717   opcode(Assembler::subcc_op3, Assembler::arith_op);
8718   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8719   ins_pipe(ialu_cconly_reg_imm);
8720 %}
8721 
8722 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8723   match(Set icc (CmpI (AndI op1 op2) zero));
8724 
8725   size(4);
8726   format %{ "BTST   $op2,$op1" %}
8727   opcode(Assembler::andcc_op3, Assembler::arith_op);
8728   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8729   ins_pipe(ialu_cconly_reg_reg_zero);
8730 %}
8731 
8732 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8733   match(Set icc (CmpI (AndI op1 op2) zero));
8734 
8735   size(4);
8736   format %{ "BTST   $op2,$op1" %}
8737   opcode(Assembler::andcc_op3, Assembler::arith_op);
8738   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8739   ins_pipe(ialu_cconly_reg_imm_zero);
8740 %}
8741 
8742 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8743   match(Set xcc (CmpL op1 op2));
8744   effect( DEF xcc, USE op1, USE op2 );
8745 
8746   size(4);
8747   format %{ "CMP    $op1,$op2\t\t! long" %}
8748   opcode(Assembler::subcc_op3, Assembler::arith_op);
8749   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8750   ins_pipe(ialu_cconly_reg_reg);
8751 %}
8752 
8753 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8754   match(Set xcc (CmpL op1 con));
8755   effect( DEF xcc, USE op1, USE con );
8756 
8757   size(4);
8758   format %{ "CMP    $op1,$con\t\t! long" %}
8759   opcode(Assembler::subcc_op3, Assembler::arith_op);
8760   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8761   ins_pipe(ialu_cconly_reg_reg);
8762 %}
8763 
8764 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8765   match(Set xcc (CmpL (AndL op1 op2) zero));
8766   effect( DEF xcc, USE op1, USE op2 );
8767 
8768   size(4);
8769   format %{ "BTST   $op1,$op2\t\t! long" %}
8770   opcode(Assembler::andcc_op3, Assembler::arith_op);
8771   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8772   ins_pipe(ialu_cconly_reg_reg);
8773 %}
8774 
8775 // useful for checking the alignment of a pointer:
8776 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8777   match(Set xcc (CmpL (AndL op1 con) zero));
8778   effect( DEF xcc, USE op1, USE con );
8779 
8780   size(4);
8781   format %{ "BTST   $op1,$con\t\t! long" %}
8782   opcode(Assembler::andcc_op3, Assembler::arith_op);
8783   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8784   ins_pipe(ialu_cconly_reg_reg);
8785 %}
8786 
8787 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8788   match(Set icc (CmpU op1 op2));
8789 
8790   size(4);
8791   format %{ "CMP    $op1,$op2\t! unsigned" %}
8792   opcode(Assembler::subcc_op3, Assembler::arith_op);
8793   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8794   ins_pipe(ialu_cconly_reg_imm);
8795 %}
8796 
8797 // Compare Pointers
8798 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8799   match(Set pcc (CmpP op1 op2));
8800 
8801   size(4);
8802   format %{ "CMP    $op1,$op2\t! ptr" %}
8803   opcode(Assembler::subcc_op3, Assembler::arith_op);
8804   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8805   ins_pipe(ialu_cconly_reg_reg);
8806 %}
8807 
8808 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8809   match(Set pcc (CmpP op1 op2));
8810 
8811   size(4);
8812   format %{ "CMP    $op1,$op2\t! ptr" %}
8813   opcode(Assembler::subcc_op3, Assembler::arith_op);
8814   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8815   ins_pipe(ialu_cconly_reg_imm);
8816 %}
8817 
8818 // Compare Narrow oops
8819 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8820   match(Set icc (CmpN op1 op2));
8821 
8822   size(4);
8823   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8824   opcode(Assembler::subcc_op3, Assembler::arith_op);
8825   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8826   ins_pipe(ialu_cconly_reg_reg);
8827 %}
8828 
8829 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8830   match(Set icc (CmpN op1 op2));
8831 
8832   size(4);
8833   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8834   opcode(Assembler::subcc_op3, Assembler::arith_op);
8835   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8836   ins_pipe(ialu_cconly_reg_imm);
8837 %}
8838 
8839 //----------Max and Min--------------------------------------------------------
8840 // Min Instructions
8841 // Conditional move for min
8842 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8843   effect( USE_DEF op2, USE op1, USE icc );
8844 
8845   size(4);
8846   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8847   opcode(Assembler::less);
8848   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8849   ins_pipe(ialu_reg_flags);
8850 %}
8851 
8852 // Min Register with Register.
8853 instruct minI_eReg(iRegI op1, iRegI op2) %{
8854   match(Set op2 (MinI op1 op2));
8855   ins_cost(DEFAULT_COST*2);
8856   expand %{
8857     flagsReg icc;
8858     compI_iReg(icc,op1,op2);
8859     cmovI_reg_lt(op2,op1,icc);
8860   %}
8861 %}
8862 
8863 // Max Instructions
8864 // Conditional move for max
8865 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8866   effect( USE_DEF op2, USE op1, USE icc );
8867   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8868   opcode(Assembler::greater);
8869   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8870   ins_pipe(ialu_reg_flags);
8871 %}
8872 
8873 // Max Register with Register
8874 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8875   match(Set op2 (MaxI op1 op2));
8876   ins_cost(DEFAULT_COST*2);
8877   expand %{
8878     flagsReg icc;
8879     compI_iReg(icc,op1,op2);
8880     cmovI_reg_gt(op2,op1,icc);
8881   %}
8882 %}
8883 
8884 
8885 //----------Float Compares----------------------------------------------------
8886 // Compare floating, generate condition code
8887 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8888   match(Set fcc (CmpF src1 src2));
8889 
8890   size(4);
8891   format %{ "FCMPs  $fcc,$src1,$src2" %}
8892   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8893   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8894   ins_pipe(faddF_fcc_reg_reg_zero);
8895 %}
8896 
8897 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8898   match(Set fcc (CmpD src1 src2));
8899 
8900   size(4);
8901   format %{ "FCMPd  $fcc,$src1,$src2" %}
8902   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8903   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8904   ins_pipe(faddD_fcc_reg_reg_zero);
8905 %}
8906 
8907 
8908 // Compare floating, generate -1,0,1
8909 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8910   match(Set dst (CmpF3 src1 src2));
8911   effect(KILL fcc0);
8912   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8913   format %{ "fcmpl  $dst,$src1,$src2" %}
8914   // Primary = float
8915   opcode( true );
8916   ins_encode( floating_cmp( dst, src1, src2 ) );
8917   ins_pipe( floating_cmp );
8918 %}
8919 
8920 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8921   match(Set dst (CmpD3 src1 src2));
8922   effect(KILL fcc0);
8923   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8924   format %{ "dcmpl  $dst,$src1,$src2" %}
8925   // Primary = double (not float)
8926   opcode( false );
8927   ins_encode( floating_cmp( dst, src1, src2 ) );
8928   ins_pipe( floating_cmp );
8929 %}
8930 
8931 //----------Branches---------------------------------------------------------
8932 // Jump
8933 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8934 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8935   match(Jump switch_val);
8936   effect(TEMP table);
8937 
8938   ins_cost(350);
8939 
8940   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
8941              "LD     [O7 + $switch_val], O7\n\t"
8942              "JUMP   O7" %}
8943   ins_encode %{
8944     // Calculate table address into a register.
8945     Register table_reg;
8946     Register label_reg = O7;
8947     // If we are calculating the size of this instruction don't trust
8948     // zero offsets because they might change when
8949     // MachConstantBaseNode decides to optimize the constant table
8950     // base.
8951     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
8952       table_reg = $constanttablebase;
8953     } else {
8954       table_reg = O7;
8955       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
8956       __ add($constanttablebase, con_offset, table_reg);
8957     }
8958 
8959     // Jump to base address + switch value
8960     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
8961     __ jmp(label_reg, G0);
8962     __ delayed()->nop();
8963   %}
8964   ins_pipe(ialu_reg_reg);
8965 %}
8966 
8967 // Direct Branch.  Use V8 version with longer range.
8968 instruct branch(label labl) %{
8969   match(Goto);
8970   effect(USE labl);
8971 
8972   size(8);
8973   ins_cost(BRANCH_COST);
8974   format %{ "BA     $labl" %}
8975   ins_encode %{
8976     Label* L = $labl$$label;
8977     __ ba(*L);
8978     __ delayed()->nop();
8979   %}
8980   ins_avoid_back_to_back(AVOID_BEFORE);
8981   ins_pipe(br);
8982 %}
8983 
8984 // Direct Branch, short with no delay slot
8985 instruct branch_short(label labl) %{
8986   match(Goto);
8987   predicate(UseCBCond);
8988   effect(USE labl);
8989 
8990   size(4);
8991   ins_cost(BRANCH_COST);
8992   format %{ "BA     $labl\t! short branch" %}
8993   ins_encode %{
8994     Label* L = $labl$$label;
8995     assert(__ use_cbcond(*L), "back to back cbcond");
8996     __ ba_short(*L);
8997   %}
8998   ins_short_branch(1);
8999   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9000   ins_pipe(cbcond_reg_imm);
9001 %}
9002 
9003 // Conditional Direct Branch
9004 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9005   match(If cmp icc);
9006   effect(USE labl);
9007 
9008   size(8);
9009   ins_cost(BRANCH_COST);
9010   format %{ "BP$cmp   $icc,$labl" %}
9011   // Prim = bits 24-22, Secnd = bits 31-30
9012   ins_encode( enc_bp( labl, cmp, icc ) );
9013   ins_avoid_back_to_back(AVOID_BEFORE);
9014   ins_pipe(br_cc);
9015 %}
9016 
9017 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9018   match(If cmp icc);
9019   effect(USE labl);
9020 
9021   ins_cost(BRANCH_COST);
9022   format %{ "BP$cmp  $icc,$labl" %}
9023   // Prim = bits 24-22, Secnd = bits 31-30
9024   ins_encode( enc_bp( labl, cmp, icc ) );
9025   ins_avoid_back_to_back(AVOID_BEFORE);
9026   ins_pipe(br_cc);
9027 %}
9028 
9029 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9030   match(If cmp pcc);
9031   effect(USE labl);
9032 
9033   size(8);
9034   ins_cost(BRANCH_COST);
9035   format %{ "BP$cmp  $pcc,$labl" %}
9036   ins_encode %{
9037     Label* L = $labl$$label;
9038     Assembler::Predict predict_taken =
9039       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9040 
9041     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9042     __ delayed()->nop();
9043   %}
9044   ins_avoid_back_to_back(AVOID_BEFORE);
9045   ins_pipe(br_cc);
9046 %}
9047 
9048 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9049   match(If cmp fcc);
9050   effect(USE labl);
9051 
9052   size(8);
9053   ins_cost(BRANCH_COST);
9054   format %{ "FBP$cmp $fcc,$labl" %}
9055   ins_encode %{
9056     Label* L = $labl$$label;
9057     Assembler::Predict predict_taken =
9058       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9059 
9060     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9061     __ delayed()->nop();
9062   %}
9063   ins_avoid_back_to_back(AVOID_BEFORE);
9064   ins_pipe(br_fcc);
9065 %}
9066 
9067 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9068   match(CountedLoopEnd cmp icc);
9069   effect(USE labl);
9070 
9071   size(8);
9072   ins_cost(BRANCH_COST);
9073   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9074   // Prim = bits 24-22, Secnd = bits 31-30
9075   ins_encode( enc_bp( labl, cmp, icc ) );
9076   ins_avoid_back_to_back(AVOID_BEFORE);
9077   ins_pipe(br_cc);
9078 %}
9079 
9080 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9081   match(CountedLoopEnd cmp icc);
9082   effect(USE labl);
9083 
9084   size(8);
9085   ins_cost(BRANCH_COST);
9086   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9087   // Prim = bits 24-22, Secnd = bits 31-30
9088   ins_encode( enc_bp( labl, cmp, icc ) );
9089   ins_avoid_back_to_back(AVOID_BEFORE);
9090   ins_pipe(br_cc);
9091 %}
9092 
9093 // Compare and branch instructions
9094 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9095   match(If cmp (CmpI op1 op2));
9096   effect(USE labl, KILL icc);
9097 
9098   size(12);
9099   ins_cost(BRANCH_COST);
9100   format %{ "CMP    $op1,$op2\t! int\n\t"
9101             "BP$cmp   $labl" %}
9102   ins_encode %{
9103     Label* L = $labl$$label;
9104     Assembler::Predict predict_taken =
9105       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9106     __ cmp($op1$$Register, $op2$$Register);
9107     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9108     __ delayed()->nop();
9109   %}
9110   ins_pipe(cmp_br_reg_reg);
9111 %}
9112 
9113 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9114   match(If cmp (CmpI op1 op2));
9115   effect(USE labl, KILL icc);
9116 
9117   size(12);
9118   ins_cost(BRANCH_COST);
9119   format %{ "CMP    $op1,$op2\t! int\n\t"
9120             "BP$cmp   $labl" %}
9121   ins_encode %{
9122     Label* L = $labl$$label;
9123     Assembler::Predict predict_taken =
9124       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9125     __ cmp($op1$$Register, $op2$$constant);
9126     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9127     __ delayed()->nop();
9128   %}
9129   ins_pipe(cmp_br_reg_imm);
9130 %}
9131 
9132 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9133   match(If cmp (CmpU op1 op2));
9134   effect(USE labl, KILL icc);
9135 
9136   size(12);
9137   ins_cost(BRANCH_COST);
9138   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9139             "BP$cmp  $labl" %}
9140   ins_encode %{
9141     Label* L = $labl$$label;
9142     Assembler::Predict predict_taken =
9143       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9144     __ cmp($op1$$Register, $op2$$Register);
9145     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9146     __ delayed()->nop();
9147   %}
9148   ins_pipe(cmp_br_reg_reg);
9149 %}
9150 
9151 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9152   match(If cmp (CmpU op1 op2));
9153   effect(USE labl, KILL icc);
9154 
9155   size(12);
9156   ins_cost(BRANCH_COST);
9157   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9158             "BP$cmp  $labl" %}
9159   ins_encode %{
9160     Label* L = $labl$$label;
9161     Assembler::Predict predict_taken =
9162       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9163     __ cmp($op1$$Register, $op2$$constant);
9164     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9165     __ delayed()->nop();
9166   %}
9167   ins_pipe(cmp_br_reg_imm);
9168 %}
9169 
9170 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9171   match(If cmp (CmpL op1 op2));
9172   effect(USE labl, KILL xcc);
9173 
9174   size(12);
9175   ins_cost(BRANCH_COST);
9176   format %{ "CMP    $op1,$op2\t! long\n\t"
9177             "BP$cmp   $labl" %}
9178   ins_encode %{
9179     Label* L = $labl$$label;
9180     Assembler::Predict predict_taken =
9181       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9182     __ cmp($op1$$Register, $op2$$Register);
9183     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9184     __ delayed()->nop();
9185   %}
9186   ins_pipe(cmp_br_reg_reg);
9187 %}
9188 
9189 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9190   match(If cmp (CmpL op1 op2));
9191   effect(USE labl, KILL xcc);
9192 
9193   size(12);
9194   ins_cost(BRANCH_COST);
9195   format %{ "CMP    $op1,$op2\t! long\n\t"
9196             "BP$cmp   $labl" %}
9197   ins_encode %{
9198     Label* L = $labl$$label;
9199     Assembler::Predict predict_taken =
9200       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9201     __ cmp($op1$$Register, $op2$$constant);
9202     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9203     __ delayed()->nop();
9204   %}
9205   ins_pipe(cmp_br_reg_imm);
9206 %}
9207 
9208 // Compare Pointers and branch
9209 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9210   match(If cmp (CmpP op1 op2));
9211   effect(USE labl, KILL pcc);
9212 
9213   size(12);
9214   ins_cost(BRANCH_COST);
9215   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9216             "B$cmp   $labl" %}
9217   ins_encode %{
9218     Label* L = $labl$$label;
9219     Assembler::Predict predict_taken =
9220       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9221     __ cmp($op1$$Register, $op2$$Register);
9222     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9223     __ delayed()->nop();
9224   %}
9225   ins_pipe(cmp_br_reg_reg);
9226 %}
9227 
9228 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9229   match(If cmp (CmpP op1 null));
9230   effect(USE labl, KILL pcc);
9231 
9232   size(12);
9233   ins_cost(BRANCH_COST);
9234   format %{ "CMP    $op1,0\t! ptr\n\t"
9235             "B$cmp   $labl" %}
9236   ins_encode %{
9237     Label* L = $labl$$label;
9238     Assembler::Predict predict_taken =
9239       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9240     __ cmp($op1$$Register, G0);
9241     // bpr() is not used here since it has shorter distance.
9242     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9243     __ delayed()->nop();
9244   %}
9245   ins_pipe(cmp_br_reg_reg);
9246 %}
9247 
9248 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9249   match(If cmp (CmpN op1 op2));
9250   effect(USE labl, KILL icc);
9251 
9252   size(12);
9253   ins_cost(BRANCH_COST);
9254   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9255             "BP$cmp   $labl" %}
9256   ins_encode %{
9257     Label* L = $labl$$label;
9258     Assembler::Predict predict_taken =
9259       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9260     __ cmp($op1$$Register, $op2$$Register);
9261     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9262     __ delayed()->nop();
9263   %}
9264   ins_pipe(cmp_br_reg_reg);
9265 %}
9266 
9267 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9268   match(If cmp (CmpN op1 null));
9269   effect(USE labl, KILL icc);
9270 
9271   size(12);
9272   ins_cost(BRANCH_COST);
9273   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9274             "BP$cmp   $labl" %}
9275   ins_encode %{
9276     Label* L = $labl$$label;
9277     Assembler::Predict predict_taken =
9278       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9279     __ cmp($op1$$Register, G0);
9280     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9281     __ delayed()->nop();
9282   %}
9283   ins_pipe(cmp_br_reg_reg);
9284 %}
9285 
9286 // Loop back branch
9287 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9288   match(CountedLoopEnd cmp (CmpI op1 op2));
9289   effect(USE labl, KILL icc);
9290 
9291   size(12);
9292   ins_cost(BRANCH_COST);
9293   format %{ "CMP    $op1,$op2\t! int\n\t"
9294             "BP$cmp   $labl\t! Loop end" %}
9295   ins_encode %{
9296     Label* L = $labl$$label;
9297     Assembler::Predict predict_taken =
9298       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9299     __ cmp($op1$$Register, $op2$$Register);
9300     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9301     __ delayed()->nop();
9302   %}
9303   ins_pipe(cmp_br_reg_reg);
9304 %}
9305 
9306 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9307   match(CountedLoopEnd cmp (CmpI op1 op2));
9308   effect(USE labl, KILL icc);
9309 
9310   size(12);
9311   ins_cost(BRANCH_COST);
9312   format %{ "CMP    $op1,$op2\t! int\n\t"
9313             "BP$cmp   $labl\t! Loop end" %}
9314   ins_encode %{
9315     Label* L = $labl$$label;
9316     Assembler::Predict predict_taken =
9317       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9318     __ cmp($op1$$Register, $op2$$constant);
9319     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9320     __ delayed()->nop();
9321   %}
9322   ins_pipe(cmp_br_reg_imm);
9323 %}
9324 
9325 // Short compare and branch instructions
9326 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9327   match(If cmp (CmpI op1 op2));
9328   predicate(UseCBCond);
9329   effect(USE labl, KILL icc);
9330 
9331   size(4);
9332   ins_cost(BRANCH_COST);
9333   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9334   ins_encode %{
9335     Label* L = $labl$$label;
9336     assert(__ use_cbcond(*L), "back to back cbcond");
9337     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9338   %}
9339   ins_short_branch(1);
9340   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9341   ins_pipe(cbcond_reg_reg);
9342 %}
9343 
9344 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9345   match(If cmp (CmpI op1 op2));
9346   predicate(UseCBCond);
9347   effect(USE labl, KILL icc);
9348 
9349   size(4);
9350   ins_cost(BRANCH_COST);
9351   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9352   ins_encode %{
9353     Label* L = $labl$$label;
9354     assert(__ use_cbcond(*L), "back to back cbcond");
9355     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9356   %}
9357   ins_short_branch(1);
9358   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9359   ins_pipe(cbcond_reg_imm);
9360 %}
9361 
9362 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9363   match(If cmp (CmpU op1 op2));
9364   predicate(UseCBCond);
9365   effect(USE labl, KILL icc);
9366 
9367   size(4);
9368   ins_cost(BRANCH_COST);
9369   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9370   ins_encode %{
9371     Label* L = $labl$$label;
9372     assert(__ use_cbcond(*L), "back to back cbcond");
9373     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9374   %}
9375   ins_short_branch(1);
9376   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9377   ins_pipe(cbcond_reg_reg);
9378 %}
9379 
9380 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9381   match(If cmp (CmpU op1 op2));
9382   predicate(UseCBCond);
9383   effect(USE labl, KILL icc);
9384 
9385   size(4);
9386   ins_cost(BRANCH_COST);
9387   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9388   ins_encode %{
9389     Label* L = $labl$$label;
9390     assert(__ use_cbcond(*L), "back to back cbcond");
9391     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9392   %}
9393   ins_short_branch(1);
9394   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9395   ins_pipe(cbcond_reg_imm);
9396 %}
9397 
9398 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9399   match(If cmp (CmpL op1 op2));
9400   predicate(UseCBCond);
9401   effect(USE labl, KILL xcc);
9402 
9403   size(4);
9404   ins_cost(BRANCH_COST);
9405   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9406   ins_encode %{
9407     Label* L = $labl$$label;
9408     assert(__ use_cbcond(*L), "back to back cbcond");
9409     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9410   %}
9411   ins_short_branch(1);
9412   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9413   ins_pipe(cbcond_reg_reg);
9414 %}
9415 
9416 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9417   match(If cmp (CmpL op1 op2));
9418   predicate(UseCBCond);
9419   effect(USE labl, KILL xcc);
9420 
9421   size(4);
9422   ins_cost(BRANCH_COST);
9423   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9424   ins_encode %{
9425     Label* L = $labl$$label;
9426     assert(__ use_cbcond(*L), "back to back cbcond");
9427     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9428   %}
9429   ins_short_branch(1);
9430   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9431   ins_pipe(cbcond_reg_imm);
9432 %}
9433 
9434 // Compare Pointers and branch
9435 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9436   match(If cmp (CmpP op1 op2));
9437   predicate(UseCBCond);
9438   effect(USE labl, KILL pcc);
9439 
9440   size(4);
9441   ins_cost(BRANCH_COST);
9442 #ifdef _LP64
9443   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9444 #else
9445   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9446 #endif
9447   ins_encode %{
9448     Label* L = $labl$$label;
9449     assert(__ use_cbcond(*L), "back to back cbcond");
9450     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9451   %}
9452   ins_short_branch(1);
9453   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9454   ins_pipe(cbcond_reg_reg);
9455 %}
9456 
9457 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9458   match(If cmp (CmpP op1 null));
9459   predicate(UseCBCond);
9460   effect(USE labl, KILL pcc);
9461 
9462   size(4);
9463   ins_cost(BRANCH_COST);
9464 #ifdef _LP64
9465   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9466 #else
9467   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9468 #endif
9469   ins_encode %{
9470     Label* L = $labl$$label;
9471     assert(__ use_cbcond(*L), "back to back cbcond");
9472     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9473   %}
9474   ins_short_branch(1);
9475   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9476   ins_pipe(cbcond_reg_reg);
9477 %}
9478 
9479 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9480   match(If cmp (CmpN op1 op2));
9481   predicate(UseCBCond);
9482   effect(USE labl, KILL icc);
9483 
9484   size(4);
9485   ins_cost(BRANCH_COST);
9486   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9487   ins_encode %{
9488     Label* L = $labl$$label;
9489     assert(__ use_cbcond(*L), "back to back cbcond");
9490     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9491   %}
9492   ins_short_branch(1);
9493   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9494   ins_pipe(cbcond_reg_reg);
9495 %}
9496 
9497 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9498   match(If cmp (CmpN op1 null));
9499   predicate(UseCBCond);
9500   effect(USE labl, KILL icc);
9501 
9502   size(4);
9503   ins_cost(BRANCH_COST);
9504   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9505   ins_encode %{
9506     Label* L = $labl$$label;
9507     assert(__ use_cbcond(*L), "back to back cbcond");
9508     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9509   %}
9510   ins_short_branch(1);
9511   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9512   ins_pipe(cbcond_reg_reg);
9513 %}
9514 
9515 // Loop back branch
9516 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9517   match(CountedLoopEnd cmp (CmpI op1 op2));
9518   predicate(UseCBCond);
9519   effect(USE labl, KILL icc);
9520 
9521   size(4);
9522   ins_cost(BRANCH_COST);
9523   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9524   ins_encode %{
9525     Label* L = $labl$$label;
9526     assert(__ use_cbcond(*L), "back to back cbcond");
9527     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9528   %}
9529   ins_short_branch(1);
9530   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9531   ins_pipe(cbcond_reg_reg);
9532 %}
9533 
9534 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9535   match(CountedLoopEnd cmp (CmpI op1 op2));
9536   predicate(UseCBCond);
9537   effect(USE labl, KILL icc);
9538 
9539   size(4);
9540   ins_cost(BRANCH_COST);
9541   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9542   ins_encode %{
9543     Label* L = $labl$$label;
9544     assert(__ use_cbcond(*L), "back to back cbcond");
9545     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9546   %}
9547   ins_short_branch(1);
9548   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9549   ins_pipe(cbcond_reg_imm);
9550 %}
9551 
9552 // Branch-on-register tests all 64 bits.  We assume that values
9553 // in 64-bit registers always remains zero or sign extended
9554 // unless our code munges the high bits.  Interrupts can chop
9555 // the high order bits to zero or sign at any time.
9556 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9557   match(If cmp (CmpI op1 zero));
9558   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9559   effect(USE labl);
9560 
9561   size(8);
9562   ins_cost(BRANCH_COST);
9563   format %{ "BR$cmp   $op1,$labl" %}
9564   ins_encode( enc_bpr( labl, cmp, op1 ) );
9565   ins_avoid_back_to_back(AVOID_BEFORE);
9566   ins_pipe(br_reg);
9567 %}
9568 
9569 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9570   match(If cmp (CmpP op1 null));
9571   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9572   effect(USE labl);
9573 
9574   size(8);
9575   ins_cost(BRANCH_COST);
9576   format %{ "BR$cmp   $op1,$labl" %}
9577   ins_encode( enc_bpr( labl, cmp, op1 ) );
9578   ins_avoid_back_to_back(AVOID_BEFORE);
9579   ins_pipe(br_reg);
9580 %}
9581 
9582 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9583   match(If cmp (CmpL op1 zero));
9584   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9585   effect(USE labl);
9586 
9587   size(8);
9588   ins_cost(BRANCH_COST);
9589   format %{ "BR$cmp   $op1,$labl" %}
9590   ins_encode( enc_bpr( labl, cmp, op1 ) );
9591   ins_avoid_back_to_back(AVOID_BEFORE);
9592   ins_pipe(br_reg);
9593 %}
9594 
9595 
9596 // ============================================================================
9597 // Long Compare
9598 //
9599 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9600 // is tricky.  The flavor of compare used depends on whether we are testing
9601 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9602 // The GE test is the negated LT test.  The LE test can be had by commuting
9603 // the operands (yielding a GE test) and then negating; negate again for the
9604 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9605 // NE test is negated from that.
9606 
9607 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9608 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9609 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9610 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9611 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9612 // foo match ends up with the wrong leaf.  One fix is to not match both
9613 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9614 // both forms beat the trinary form of long-compare and both are very useful
9615 // on Intel which has so few registers.
9616 
9617 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9618   match(If cmp xcc);
9619   effect(USE labl);
9620 
9621   size(8);
9622   ins_cost(BRANCH_COST);
9623   format %{ "BP$cmp   $xcc,$labl" %}
9624   ins_encode %{
9625     Label* L = $labl$$label;
9626     Assembler::Predict predict_taken =
9627       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9628 
9629     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9630     __ delayed()->nop();
9631   %}
9632   ins_avoid_back_to_back(AVOID_BEFORE);
9633   ins_pipe(br_cc);
9634 %}
9635 
9636 // Manifest a CmpL3 result in an integer register.  Very painful.
9637 // This is the test to avoid.
9638 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9639   match(Set dst (CmpL3 src1 src2) );
9640   effect( KILL ccr );
9641   ins_cost(6*DEFAULT_COST);
9642   size(24);
9643   format %{ "CMP    $src1,$src2\t\t! long\n"
9644           "\tBLT,a,pn done\n"
9645           "\tMOV    -1,$dst\t! delay slot\n"
9646           "\tBGT,a,pn done\n"
9647           "\tMOV    1,$dst\t! delay slot\n"
9648           "\tCLR    $dst\n"
9649     "done:"     %}
9650   ins_encode( cmpl_flag(src1,src2,dst) );
9651   ins_pipe(cmpL_reg);
9652 %}
9653 
9654 // Conditional move
9655 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9656   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9657   ins_cost(150);
9658   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9659   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9660   ins_pipe(ialu_reg);
9661 %}
9662 
9663 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9664   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9665   ins_cost(140);
9666   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9667   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9668   ins_pipe(ialu_imm);
9669 %}
9670 
9671 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9672   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9673   ins_cost(150);
9674   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9675   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9676   ins_pipe(ialu_reg);
9677 %}
9678 
9679 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9680   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9681   ins_cost(140);
9682   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9683   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9684   ins_pipe(ialu_imm);
9685 %}
9686 
9687 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9688   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9689   ins_cost(150);
9690   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9691   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9692   ins_pipe(ialu_reg);
9693 %}
9694 
9695 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9696   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9697   ins_cost(150);
9698   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9699   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9700   ins_pipe(ialu_reg);
9701 %}
9702 
9703 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9704   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9705   ins_cost(140);
9706   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9707   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9708   ins_pipe(ialu_imm);
9709 %}
9710 
9711 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9712   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9713   ins_cost(150);
9714   opcode(0x101);
9715   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9716   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9717   ins_pipe(int_conditional_float_move);
9718 %}
9719 
9720 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9721   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9722   ins_cost(150);
9723   opcode(0x102);
9724   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9725   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9726   ins_pipe(int_conditional_float_move);
9727 %}
9728 
9729 // ============================================================================
9730 // Safepoint Instruction
9731 instruct safePoint_poll(iRegP poll) %{
9732   match(SafePoint poll);
9733   effect(USE poll);
9734 
9735   size(4);
9736 #ifdef _LP64
9737   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9738 #else
9739   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9740 #endif
9741   ins_encode %{
9742     __ relocate(relocInfo::poll_type);
9743     __ ld_ptr($poll$$Register, 0, G0);
9744   %}
9745   ins_pipe(loadPollP);
9746 %}
9747 
9748 // ============================================================================
9749 // Call Instructions
9750 // Call Java Static Instruction
9751 instruct CallStaticJavaDirect( method meth ) %{
9752   match(CallStaticJava);
9753   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9754   effect(USE meth);
9755 
9756   size(8);
9757   ins_cost(CALL_COST);
9758   format %{ "CALL,static  ; NOP ==> " %}
9759   ins_encode( Java_Static_Call( meth ), call_epilog );
9760   ins_avoid_back_to_back(AVOID_BEFORE);
9761   ins_pipe(simple_call);
9762 %}
9763 
9764 // Call Java Static Instruction (method handle version)
9765 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9766   match(CallStaticJava);
9767   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9768   effect(USE meth, KILL l7_mh_SP_save);
9769 
9770   size(16);
9771   ins_cost(CALL_COST);
9772   format %{ "CALL,static/MethodHandle" %}
9773   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9774   ins_pipe(simple_call);
9775 %}
9776 
9777 // Call Java Dynamic Instruction
9778 instruct CallDynamicJavaDirect( method meth ) %{
9779   match(CallDynamicJava);
9780   effect(USE meth);
9781 
9782   ins_cost(CALL_COST);
9783   format %{ "SET    (empty),R_G5\n\t"
9784             "CALL,dynamic  ; NOP ==> " %}
9785   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9786   ins_pipe(call);
9787 %}
9788 
9789 // Call Runtime Instruction
9790 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9791   match(CallRuntime);
9792   effect(USE meth, KILL l7);
9793   ins_cost(CALL_COST);
9794   format %{ "CALL,runtime" %}
9795   ins_encode( Java_To_Runtime( meth ),
9796               call_epilog, adjust_long_from_native_call );
9797   ins_avoid_back_to_back(AVOID_BEFORE);
9798   ins_pipe(simple_call);
9799 %}
9800 
9801 // Call runtime without safepoint - same as CallRuntime
9802 instruct CallLeafDirect(method meth, l7RegP l7) %{
9803   match(CallLeaf);
9804   effect(USE meth, KILL l7);
9805   ins_cost(CALL_COST);
9806   format %{ "CALL,runtime leaf" %}
9807   ins_encode( Java_To_Runtime( meth ),
9808               call_epilog,
9809               adjust_long_from_native_call );
9810   ins_avoid_back_to_back(AVOID_BEFORE);
9811   ins_pipe(simple_call);
9812 %}
9813 
9814 // Call runtime without safepoint - same as CallLeaf
9815 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9816   match(CallLeafNoFP);
9817   effect(USE meth, KILL l7);
9818   ins_cost(CALL_COST);
9819   format %{ "CALL,runtime leaf nofp" %}
9820   ins_encode( Java_To_Runtime( meth ),
9821               call_epilog,
9822               adjust_long_from_native_call );
9823   ins_avoid_back_to_back(AVOID_BEFORE);
9824   ins_pipe(simple_call);
9825 %}
9826 
9827 // Tail Call; Jump from runtime stub to Java code.
9828 // Also known as an 'interprocedural jump'.
9829 // Target of jump will eventually return to caller.
9830 // TailJump below removes the return address.
9831 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9832   match(TailCall jump_target method_oop );
9833 
9834   ins_cost(CALL_COST);
9835   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9836   ins_encode(form_jmpl(jump_target));
9837   ins_avoid_back_to_back(AVOID_BEFORE);
9838   ins_pipe(tail_call);
9839 %}
9840 
9841 
9842 // Return Instruction
9843 instruct Ret() %{
9844   match(Return);
9845 
9846   // The epilogue node did the ret already.
9847   size(0);
9848   format %{ "! return" %}
9849   ins_encode();
9850   ins_pipe(empty);
9851 %}
9852 
9853 
9854 // Tail Jump; remove the return address; jump to target.
9855 // TailCall above leaves the return address around.
9856 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9857 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9858 // "restore" before this instruction (in Epilogue), we need to materialize it
9859 // in %i0.
9860 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9861   match( TailJump jump_target ex_oop );
9862   ins_cost(CALL_COST);
9863   format %{ "! discard R_O7\n\t"
9864             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9865   ins_encode(form_jmpl_set_exception_pc(jump_target));
9866   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9867   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9868   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9869   ins_avoid_back_to_back(AVOID_BEFORE);
9870   ins_pipe(tail_call);
9871 %}
9872 
9873 // Create exception oop: created by stack-crawling runtime code.
9874 // Created exception is now available to this handler, and is setup
9875 // just prior to jumping to this handler.  No code emitted.
9876 instruct CreateException( o0RegP ex_oop )
9877 %{
9878   match(Set ex_oop (CreateEx));
9879   ins_cost(0);
9880 
9881   size(0);
9882   // use the following format syntax
9883   format %{ "! exception oop is in R_O0; no code emitted" %}
9884   ins_encode();
9885   ins_pipe(empty);
9886 %}
9887 
9888 
9889 // Rethrow exception:
9890 // The exception oop will come in the first argument position.
9891 // Then JUMP (not call) to the rethrow stub code.
9892 instruct RethrowException()
9893 %{
9894   match(Rethrow);
9895   ins_cost(CALL_COST);
9896 
9897   // use the following format syntax
9898   format %{ "Jmp    rethrow_stub" %}
9899   ins_encode(enc_rethrow);
9900   ins_avoid_back_to_back(AVOID_BEFORE);
9901   ins_pipe(tail_call);
9902 %}
9903 
9904 
9905 // Die now
9906 instruct ShouldNotReachHere( )
9907 %{
9908   match(Halt);
9909   ins_cost(CALL_COST);
9910 
9911   size(4);
9912   // Use the following format syntax
9913   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9914   ins_encode( form2_illtrap() );
9915   ins_pipe(tail_call);
9916 %}
9917 
9918 // ============================================================================
9919 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9920 // array for an instance of the superklass.  Set a hidden internal cache on a
9921 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9922 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9923 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9924   match(Set index (PartialSubtypeCheck sub super));
9925   effect( KILL pcc, KILL o7 );
9926   ins_cost(DEFAULT_COST*10);
9927   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9928   ins_encode( enc_PartialSubtypeCheck() );
9929   ins_avoid_back_to_back(AVOID_BEFORE);
9930   ins_pipe(partial_subtype_check_pipe);
9931 %}
9932 
9933 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9934   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9935   effect( KILL idx, KILL o7 );
9936   ins_cost(DEFAULT_COST*10);
9937   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9938   ins_encode( enc_PartialSubtypeCheck() );
9939   ins_avoid_back_to_back(AVOID_BEFORE);
9940   ins_pipe(partial_subtype_check_pipe);
9941 %}
9942 
9943 
9944 // ============================================================================
9945 // inlined locking and unlocking
9946 
9947 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9948   match(Set pcc (FastLock object box));
9949 
9950   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9951   ins_cost(100);
9952 
9953   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9954   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9955   ins_pipe(long_memory_op);
9956 %}
9957 
9958 
9959 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9960   match(Set pcc (FastUnlock object box));
9961   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9962   ins_cost(100);
9963 
9964   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9965   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9966   ins_pipe(long_memory_op);
9967 %}
9968 
9969 // The encodings are generic.
9970 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9971   predicate(!use_block_zeroing(n->in(2)) );
9972   match(Set dummy (ClearArray cnt base));
9973   effect(TEMP temp, KILL ccr);
9974   ins_cost(300);
9975   format %{ "MOV    $cnt,$temp\n"
9976     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9977     "        BRge   loop\t\t! Clearing loop\n"
9978     "        STX    G0,[$base+$temp]\t! delay slot" %}
9979 
9980   ins_encode %{
9981     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
9982     Register nof_bytes_arg    = $cnt$$Register;
9983     Register nof_bytes_tmp    = $temp$$Register;
9984     Register base_pointer_arg = $base$$Register;
9985 
9986     Label loop;
9987     __ mov(nof_bytes_arg, nof_bytes_tmp);
9988 
9989     // Loop and clear, walking backwards through the array.
9990     // nof_bytes_tmp (if >0) is always the number of bytes to zero
9991     __ bind(loop);
9992     __ deccc(nof_bytes_tmp, 8);
9993     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
9994     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
9995     // %%%% this mini-loop must not cross a cache boundary!
9996   %}
9997   ins_pipe(long_memory_op);
9998 %}
9999 
10000 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10001   predicate(use_block_zeroing(n->in(2)));
10002   match(Set dummy (ClearArray cnt base));
10003   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10004   ins_cost(300);
10005   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10006 
10007   ins_encode %{
10008 
10009     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10010     Register to    = $base$$Register;
10011     Register count = $cnt$$Register;
10012 
10013     Label Ldone;
10014     __ nop(); // Separate short branches
10015     // Use BIS for zeroing (temp is not used).
10016     __ bis_zeroing(to, count, G0, Ldone);
10017     __ bind(Ldone);
10018 
10019   %}
10020   ins_pipe(long_memory_op);
10021 %}
10022 
10023 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10024   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10025   match(Set dummy (ClearArray cnt base));
10026   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10027   ins_cost(300);
10028   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10029 
10030   ins_encode %{
10031 
10032     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10033     Register to    = $base$$Register;
10034     Register count = $cnt$$Register;
10035     Register temp  = $tmp$$Register;
10036 
10037     Label Ldone;
10038     __ nop(); // Separate short branches
10039     // Use BIS for zeroing
10040     __ bis_zeroing(to, count, temp, Ldone);
10041     __ bind(Ldone);
10042 
10043   %}
10044   ins_pipe(long_memory_op);
10045 %}
10046 
10047 instruct string_compareL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10048                          o7RegI tmp, flagsReg ccr) %{
10049   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10050   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10051   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10052   ins_cost(300);
10053   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10054   ins_encode %{
10055     __ string_compare($str1$$Register, $str2$$Register,
10056                       $cnt1$$Register, $cnt2$$Register,
10057                       $tmp$$Register, $tmp$$Register,
10058                       $result$$Register, StrIntrinsicNode::LL);
10059   %}
10060   ins_pipe(long_memory_op);
10061 %}
10062 
10063 instruct string_compareU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10064                          o7RegI tmp, flagsReg ccr) %{
10065   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10066   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10067   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10068   ins_cost(300);
10069   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10070   ins_encode %{
10071     __ string_compare($str1$$Register, $str2$$Register,
10072                       $cnt1$$Register, $cnt2$$Register,
10073                       $tmp$$Register, $tmp$$Register,
10074                       $result$$Register, StrIntrinsicNode::UU);
10075   %}
10076   ins_pipe(long_memory_op);
10077 %}
10078 
10079 instruct string_compareLU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10080                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10081   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10082   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10083   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10084   ins_cost(300);
10085   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10086   ins_encode %{
10087     __ string_compare($str1$$Register, $str2$$Register,
10088                       $cnt1$$Register, $cnt2$$Register,
10089                       $tmp1$$Register, $tmp2$$Register,
10090                       $result$$Register, StrIntrinsicNode::LU);
10091   %}
10092   ins_pipe(long_memory_op);
10093 %}
10094 
10095 instruct string_compareUL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10096                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10097   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10098   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10099   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10100   ins_cost(300);
10101   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10102   ins_encode %{
10103     __ string_compare($str2$$Register, $str1$$Register,
10104                       $cnt2$$Register, $cnt1$$Register,
10105                       $tmp1$$Register, $tmp2$$Register,
10106                       $result$$Register, StrIntrinsicNode::UL);
10107   %}
10108   ins_pipe(long_memory_op);
10109 %}
10110 
10111 instruct string_equalsL(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10112                         o7RegI tmp, flagsReg ccr) %{
10113   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10114   match(Set result (StrEquals (Binary str1 str2) cnt));
10115   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10116   ins_cost(300);
10117   format %{ "String Equals byte[] $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10118   ins_encode %{
10119     __ array_equals(false, $str1$$Register, $str2$$Register,
10120                     $cnt$$Register, $tmp$$Register,
10121                     $result$$Register, true /* byte */);
10122   %}
10123   ins_pipe(long_memory_op);
10124 %}
10125 
10126 instruct string_equalsU(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10127                         o7RegI tmp, flagsReg ccr) %{
10128   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
10129   match(Set result (StrEquals (Binary str1 str2) cnt));
10130   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10131   ins_cost(300);
10132   format %{ "String Equals char[]  $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10133   ins_encode %{
10134     __ array_equals(false, $str1$$Register, $str2$$Register,
10135                     $cnt$$Register, $tmp$$Register,
10136                     $result$$Register, false /* byte */);
10137   %}
10138   ins_pipe(long_memory_op);
10139 %}
10140 
10141 instruct array_equalsB(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10142                        o7RegI tmp2, flagsReg ccr) %{
10143   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10144   match(Set result (AryEq ary1 ary2));
10145   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10146   ins_cost(300);
10147   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10148   ins_encode %{
10149     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10150                     $tmp1$$Register, $tmp2$$Register,
10151                     $result$$Register, true /* byte */);
10152   %}
10153   ins_pipe(long_memory_op);
10154 %}
10155 
10156 instruct array_equalsC(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10157                        o7RegI tmp2, flagsReg ccr) %{
10158   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10159   match(Set result (AryEq ary1 ary2));
10160   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10161   ins_cost(300);
10162   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10163   ins_encode %{
10164     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10165                     $tmp1$$Register, $tmp2$$Register,
10166                     $result$$Register, false /* byte */);
10167   %}
10168   ins_pipe(long_memory_op);
10169 %}
10170 
10171 // char[] to byte[] compression
10172 instruct string_compress(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result, iRegL tmp, flagsReg ccr) %{
10173   predicate(UseVIS < 3);
10174   match(Set result (StrCompressedCopy src (Binary dst len)));
10175   effect(TEMP result, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10176   ins_cost(300);
10177   format %{ "String Compress $src,$dst,$len -> $result    // KILL $tmp" %}
10178   ins_encode %{
10179     Label Ldone;
10180     __ signx($len$$Register);
10181     __ cmp_zero_and_br(Assembler::zero, $len$$Register, Ldone, false, Assembler::pn);
10182     __ delayed()->mov($len$$Register, $result$$Register); // copy count
10183     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp$$Register, Ldone);
10184     __ bind(Ldone);
10185   %}
10186   ins_pipe(long_memory_op);
10187 %}
10188 
10189 // fast char[] to byte[] compression using VIS instructions
10190 instruct string_compress_fast(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result,
10191                               iRegL tmp1, iRegL tmp2, iRegL tmp3, iRegL tmp4,
10192                               regD ftmp1, regD ftmp2, regD ftmp3, flagsReg ccr) %{
10193   predicate(UseVIS >= 3);
10194   match(Set result (StrCompressedCopy src (Binary dst len)));
10195   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10196   ins_cost(300);
10197   format %{ "String Compress Fast $src,$dst,$len -> $result    // KILL $tmp1,$tmp2,$tmp3,$tmp4,$ftmp1,$ftmp2,$ftmp3" %}
10198   ins_encode %{
10199     Label Ldone;
10200     __ signx($len$$Register);
10201     __ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $result$$Register,
10202                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
10203                           $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, Ldone);
10204     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10205     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp1$$Register, Ldone);
10206     __ bind(Ldone);
10207   %}
10208   ins_pipe(long_memory_op);
10209 %}
10210 
10211 // byte[] to char[] inflation
10212 instruct string_inflate(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10213                         iRegL tmp, flagsReg ccr) %{
10214   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10215   effect(TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10216   ins_cost(300);
10217   format %{ "String Inflate $src,$dst,$len    // KILL $tmp" %}
10218   ins_encode %{
10219     Label Ldone;
10220     __ signx($len$$Register);
10221     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10222     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10223     __ bind(Ldone);
10224   %}
10225   ins_pipe(long_memory_op);
10226 %}
10227 
10228 // fast byte[] to char[] inflation using VIS instructions
10229 instruct string_inflate_fast(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10230                              iRegL tmp, regD ftmp1, regD ftmp2, regD ftmp3, regD ftmp4, flagsReg ccr) %{
10231   predicate(UseVIS >= 3);
10232   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10233   effect(TEMP tmp, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, TEMP ftmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10234   ins_cost(300);
10235   format %{ "String Inflate Fast $src,$dst,$len    // KILL $tmp,$ftmp1,$ftmp2,$ftmp3,$ftmp4" %}
10236   ins_encode %{
10237     Label Ldone;
10238     __ signx($len$$Register);
10239     __ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register,
10240                          $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, $ftmp4$$FloatRegister, Ldone);
10241     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10242     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10243     __ bind(Ldone);
10244   %}
10245   ins_pipe(long_memory_op);
10246 %}
10247 
10248 
10249 //---------- Zeros Count Instructions ------------------------------------------
10250 
10251 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10252   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10253   match(Set dst (CountLeadingZerosI src));
10254   effect(TEMP dst, TEMP tmp, KILL cr);
10255 
10256   // x |= (x >> 1);
10257   // x |= (x >> 2);
10258   // x |= (x >> 4);
10259   // x |= (x >> 8);
10260   // x |= (x >> 16);
10261   // return (WORDBITS - popc(x));
10262   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10263             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10264             "OR      $dst,$tmp,$dst\n\t"
10265             "SRL     $dst,2,$tmp\n\t"
10266             "OR      $dst,$tmp,$dst\n\t"
10267             "SRL     $dst,4,$tmp\n\t"
10268             "OR      $dst,$tmp,$dst\n\t"
10269             "SRL     $dst,8,$tmp\n\t"
10270             "OR      $dst,$tmp,$dst\n\t"
10271             "SRL     $dst,16,$tmp\n\t"
10272             "OR      $dst,$tmp,$dst\n\t"
10273             "POPC    $dst,$dst\n\t"
10274             "MOV     32,$tmp\n\t"
10275             "SUB     $tmp,$dst,$dst" %}
10276   ins_encode %{
10277     Register Rdst = $dst$$Register;
10278     Register Rsrc = $src$$Register;
10279     Register Rtmp = $tmp$$Register;
10280     __ srl(Rsrc, 1,    Rtmp);
10281     __ srl(Rsrc, 0,    Rdst);
10282     __ or3(Rdst, Rtmp, Rdst);
10283     __ srl(Rdst, 2,    Rtmp);
10284     __ or3(Rdst, Rtmp, Rdst);
10285     __ srl(Rdst, 4,    Rtmp);
10286     __ or3(Rdst, Rtmp, Rdst);
10287     __ srl(Rdst, 8,    Rtmp);
10288     __ or3(Rdst, Rtmp, Rdst);
10289     __ srl(Rdst, 16,   Rtmp);
10290     __ or3(Rdst, Rtmp, Rdst);
10291     __ popc(Rdst, Rdst);
10292     __ mov(BitsPerInt, Rtmp);
10293     __ sub(Rtmp, Rdst, Rdst);
10294   %}
10295   ins_pipe(ialu_reg);
10296 %}
10297 
10298 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10299   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10300   match(Set dst (CountLeadingZerosL src));
10301   effect(TEMP dst, TEMP tmp, KILL cr);
10302 
10303   // x |= (x >> 1);
10304   // x |= (x >> 2);
10305   // x |= (x >> 4);
10306   // x |= (x >> 8);
10307   // x |= (x >> 16);
10308   // x |= (x >> 32);
10309   // return (WORDBITS - popc(x));
10310   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10311             "OR      $src,$tmp,$dst\n\t"
10312             "SRLX    $dst,2,$tmp\n\t"
10313             "OR      $dst,$tmp,$dst\n\t"
10314             "SRLX    $dst,4,$tmp\n\t"
10315             "OR      $dst,$tmp,$dst\n\t"
10316             "SRLX    $dst,8,$tmp\n\t"
10317             "OR      $dst,$tmp,$dst\n\t"
10318             "SRLX    $dst,16,$tmp\n\t"
10319             "OR      $dst,$tmp,$dst\n\t"
10320             "SRLX    $dst,32,$tmp\n\t"
10321             "OR      $dst,$tmp,$dst\n\t"
10322             "POPC    $dst,$dst\n\t"
10323             "MOV     64,$tmp\n\t"
10324             "SUB     $tmp,$dst,$dst" %}
10325   ins_encode %{
10326     Register Rdst = $dst$$Register;
10327     Register Rsrc = $src$$Register;
10328     Register Rtmp = $tmp$$Register;
10329     __ srlx(Rsrc, 1,    Rtmp);
10330     __ or3( Rsrc, Rtmp, Rdst);
10331     __ srlx(Rdst, 2,    Rtmp);
10332     __ or3( Rdst, Rtmp, Rdst);
10333     __ srlx(Rdst, 4,    Rtmp);
10334     __ or3( Rdst, Rtmp, Rdst);
10335     __ srlx(Rdst, 8,    Rtmp);
10336     __ or3( Rdst, Rtmp, Rdst);
10337     __ srlx(Rdst, 16,   Rtmp);
10338     __ or3( Rdst, Rtmp, Rdst);
10339     __ srlx(Rdst, 32,   Rtmp);
10340     __ or3( Rdst, Rtmp, Rdst);
10341     __ popc(Rdst, Rdst);
10342     __ mov(BitsPerLong, Rtmp);
10343     __ sub(Rtmp, Rdst, Rdst);
10344   %}
10345   ins_pipe(ialu_reg);
10346 %}
10347 
10348 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10349   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10350   match(Set dst (CountTrailingZerosI src));
10351   effect(TEMP dst, KILL cr);
10352 
10353   // return popc(~x & (x - 1));
10354   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10355             "ANDN    $dst,$src,$dst\n\t"
10356             "SRL     $dst,R_G0,$dst\n\t"
10357             "POPC    $dst,$dst" %}
10358   ins_encode %{
10359     Register Rdst = $dst$$Register;
10360     Register Rsrc = $src$$Register;
10361     __ sub(Rsrc, 1, Rdst);
10362     __ andn(Rdst, Rsrc, Rdst);
10363     __ srl(Rdst, G0, Rdst);
10364     __ popc(Rdst, Rdst);
10365   %}
10366   ins_pipe(ialu_reg);
10367 %}
10368 
10369 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10370   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10371   match(Set dst (CountTrailingZerosL src));
10372   effect(TEMP dst, KILL cr);
10373 
10374   // return popc(~x & (x - 1));
10375   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10376             "ANDN    $dst,$src,$dst\n\t"
10377             "POPC    $dst,$dst" %}
10378   ins_encode %{
10379     Register Rdst = $dst$$Register;
10380     Register Rsrc = $src$$Register;
10381     __ sub(Rsrc, 1, Rdst);
10382     __ andn(Rdst, Rsrc, Rdst);
10383     __ popc(Rdst, Rdst);
10384   %}
10385   ins_pipe(ialu_reg);
10386 %}
10387 
10388 
10389 //---------- Population Count Instructions -------------------------------------
10390 
10391 instruct popCountI(iRegIsafe dst, iRegI src) %{
10392   predicate(UsePopCountInstruction);
10393   match(Set dst (PopCountI src));
10394 
10395   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10396             "POPC   $dst, $dst" %}
10397   ins_encode %{
10398     __ srl($src$$Register, G0, $dst$$Register);
10399     __ popc($dst$$Register, $dst$$Register);
10400   %}
10401   ins_pipe(ialu_reg);
10402 %}
10403 
10404 // Note: Long.bitCount(long) returns an int.
10405 instruct popCountL(iRegIsafe dst, iRegL src) %{
10406   predicate(UsePopCountInstruction);
10407   match(Set dst (PopCountL src));
10408 
10409   format %{ "POPC   $src, $dst" %}
10410   ins_encode %{
10411     __ popc($src$$Register, $dst$$Register);
10412   %}
10413   ins_pipe(ialu_reg);
10414 %}
10415 
10416 
10417 // ============================================================================
10418 //------------Bytes reverse--------------------------------------------------
10419 
10420 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10421   match(Set dst (ReverseBytesI src));
10422 
10423   // Op cost is artificially doubled to make sure that load or store
10424   // instructions are preferred over this one which requires a spill
10425   // onto a stack slot.
10426   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10427   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10428 
10429   ins_encode %{
10430     __ set($src$$disp + STACK_BIAS, O7);
10431     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10432   %}
10433   ins_pipe( iload_mem );
10434 %}
10435 
10436 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10437   match(Set dst (ReverseBytesL src));
10438 
10439   // Op cost is artificially doubled to make sure that load or store
10440   // instructions are preferred over this one which requires a spill
10441   // onto a stack slot.
10442   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10443   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10444 
10445   ins_encode %{
10446     __ set($src$$disp + STACK_BIAS, O7);
10447     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10448   %}
10449   ins_pipe( iload_mem );
10450 %}
10451 
10452 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10453   match(Set dst (ReverseBytesUS src));
10454 
10455   // Op cost is artificially doubled to make sure that load or store
10456   // instructions are preferred over this one which requires a spill
10457   // onto a stack slot.
10458   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10459   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10460 
10461   ins_encode %{
10462     // the value was spilled as an int so bias the load
10463     __ set($src$$disp + STACK_BIAS + 2, O7);
10464     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10465   %}
10466   ins_pipe( iload_mem );
10467 %}
10468 
10469 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10470   match(Set dst (ReverseBytesS src));
10471 
10472   // Op cost is artificially doubled to make sure that load or store
10473   // instructions are preferred over this one which requires a spill
10474   // onto a stack slot.
10475   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10476   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10477 
10478   ins_encode %{
10479     // the value was spilled as an int so bias the load
10480     __ set($src$$disp + STACK_BIAS + 2, O7);
10481     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10482   %}
10483   ins_pipe( iload_mem );
10484 %}
10485 
10486 // Load Integer reversed byte order
10487 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10488   match(Set dst (ReverseBytesI (LoadI src)));
10489 
10490   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10491   size(4);
10492   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10493 
10494   ins_encode %{
10495     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10496   %}
10497   ins_pipe(iload_mem);
10498 %}
10499 
10500 // Load Long - aligned and reversed
10501 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10502   match(Set dst (ReverseBytesL (LoadL src)));
10503 
10504   ins_cost(MEMORY_REF_COST);
10505   size(4);
10506   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10507 
10508   ins_encode %{
10509     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10510   %}
10511   ins_pipe(iload_mem);
10512 %}
10513 
10514 // Load unsigned short / char reversed byte order
10515 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10516   match(Set dst (ReverseBytesUS (LoadUS src)));
10517 
10518   ins_cost(MEMORY_REF_COST);
10519   size(4);
10520   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10521 
10522   ins_encode %{
10523     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10524   %}
10525   ins_pipe(iload_mem);
10526 %}
10527 
10528 // Load short reversed byte order
10529 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10530   match(Set dst (ReverseBytesS (LoadS src)));
10531 
10532   ins_cost(MEMORY_REF_COST);
10533   size(4);
10534   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10535 
10536   ins_encode %{
10537     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10538   %}
10539   ins_pipe(iload_mem);
10540 %}
10541 
10542 // Store Integer reversed byte order
10543 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10544   match(Set dst (StoreI dst (ReverseBytesI src)));
10545 
10546   ins_cost(MEMORY_REF_COST);
10547   size(4);
10548   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10549 
10550   ins_encode %{
10551     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10552   %}
10553   ins_pipe(istore_mem_reg);
10554 %}
10555 
10556 // Store Long reversed byte order
10557 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10558   match(Set dst (StoreL dst (ReverseBytesL src)));
10559 
10560   ins_cost(MEMORY_REF_COST);
10561   size(4);
10562   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10563 
10564   ins_encode %{
10565     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10566   %}
10567   ins_pipe(istore_mem_reg);
10568 %}
10569 
10570 // Store unsighed short/char reversed byte order
10571 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10572   match(Set dst (StoreC dst (ReverseBytesUS src)));
10573 
10574   ins_cost(MEMORY_REF_COST);
10575   size(4);
10576   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10577 
10578   ins_encode %{
10579     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10580   %}
10581   ins_pipe(istore_mem_reg);
10582 %}
10583 
10584 // Store short reversed byte order
10585 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10586   match(Set dst (StoreC dst (ReverseBytesS src)));
10587 
10588   ins_cost(MEMORY_REF_COST);
10589   size(4);
10590   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10591 
10592   ins_encode %{
10593     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10594   %}
10595   ins_pipe(istore_mem_reg);
10596 %}
10597 
10598 // ====================VECTOR INSTRUCTIONS=====================================
10599 
10600 // Load Aligned Packed values into a Double Register
10601 instruct loadV8(regD dst, memory mem) %{
10602   predicate(n->as_LoadVector()->memory_size() == 8);
10603   match(Set dst (LoadVector mem));
10604   ins_cost(MEMORY_REF_COST);
10605   size(4);
10606   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10607   ins_encode %{
10608     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10609   %}
10610   ins_pipe(floadD_mem);
10611 %}
10612 
10613 // Store Vector in Double register to memory
10614 instruct storeV8(memory mem, regD src) %{
10615   predicate(n->as_StoreVector()->memory_size() == 8);
10616   match(Set mem (StoreVector mem src));
10617   ins_cost(MEMORY_REF_COST);
10618   size(4);
10619   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10620   ins_encode %{
10621     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10622   %}
10623   ins_pipe(fstoreD_mem_reg);
10624 %}
10625 
10626 // Store Zero into vector in memory
10627 instruct storeV8B_zero(memory mem, immI0 zero) %{
10628   predicate(n->as_StoreVector()->memory_size() == 8);
10629   match(Set mem (StoreVector mem (ReplicateB zero)));
10630   ins_cost(MEMORY_REF_COST);
10631   size(4);
10632   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10633   ins_encode %{
10634     __ stx(G0, $mem$$Address);
10635   %}
10636   ins_pipe(fstoreD_mem_zero);
10637 %}
10638 
10639 instruct storeV4S_zero(memory mem, immI0 zero) %{
10640   predicate(n->as_StoreVector()->memory_size() == 8);
10641   match(Set mem (StoreVector mem (ReplicateS zero)));
10642   ins_cost(MEMORY_REF_COST);
10643   size(4);
10644   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10645   ins_encode %{
10646     __ stx(G0, $mem$$Address);
10647   %}
10648   ins_pipe(fstoreD_mem_zero);
10649 %}
10650 
10651 instruct storeV2I_zero(memory mem, immI0 zero) %{
10652   predicate(n->as_StoreVector()->memory_size() == 8);
10653   match(Set mem (StoreVector mem (ReplicateI zero)));
10654   ins_cost(MEMORY_REF_COST);
10655   size(4);
10656   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10657   ins_encode %{
10658     __ stx(G0, $mem$$Address);
10659   %}
10660   ins_pipe(fstoreD_mem_zero);
10661 %}
10662 
10663 instruct storeV2F_zero(memory mem, immF0 zero) %{
10664   predicate(n->as_StoreVector()->memory_size() == 8);
10665   match(Set mem (StoreVector mem (ReplicateF zero)));
10666   ins_cost(MEMORY_REF_COST);
10667   size(4);
10668   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10669   ins_encode %{
10670     __ stx(G0, $mem$$Address);
10671   %}
10672   ins_pipe(fstoreD_mem_zero);
10673 %}
10674 
10675 // Replicate scalar to packed byte values into Double register
10676 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10677   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10678   match(Set dst (ReplicateB src));
10679   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10680   format %{ "SLLX  $src,56,$tmp\n\t"
10681             "SRLX  $tmp, 8,$tmp2\n\t"
10682             "OR    $tmp,$tmp2,$tmp\n\t"
10683             "SRLX  $tmp,16,$tmp2\n\t"
10684             "OR    $tmp,$tmp2,$tmp\n\t"
10685             "SRLX  $tmp,32,$tmp2\n\t"
10686             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10687             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10688   ins_encode %{
10689     Register Rsrc = $src$$Register;
10690     Register Rtmp = $tmp$$Register;
10691     Register Rtmp2 = $tmp2$$Register;
10692     __ sllx(Rsrc,    56, Rtmp);
10693     __ srlx(Rtmp,     8, Rtmp2);
10694     __ or3 (Rtmp, Rtmp2, Rtmp);
10695     __ srlx(Rtmp,    16, Rtmp2);
10696     __ or3 (Rtmp, Rtmp2, Rtmp);
10697     __ srlx(Rtmp,    32, Rtmp2);
10698     __ or3 (Rtmp, Rtmp2, Rtmp);
10699     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10700   %}
10701   ins_pipe(ialu_reg);
10702 %}
10703 
10704 // Replicate scalar to packed byte values into Double stack
10705 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10706   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10707   match(Set dst (ReplicateB src));
10708   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10709   format %{ "SLLX  $src,56,$tmp\n\t"
10710             "SRLX  $tmp, 8,$tmp2\n\t"
10711             "OR    $tmp,$tmp2,$tmp\n\t"
10712             "SRLX  $tmp,16,$tmp2\n\t"
10713             "OR    $tmp,$tmp2,$tmp\n\t"
10714             "SRLX  $tmp,32,$tmp2\n\t"
10715             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10716             "STX   $tmp,$dst\t! regL to stkD" %}
10717   ins_encode %{
10718     Register Rsrc = $src$$Register;
10719     Register Rtmp = $tmp$$Register;
10720     Register Rtmp2 = $tmp2$$Register;
10721     __ sllx(Rsrc,    56, Rtmp);
10722     __ srlx(Rtmp,     8, Rtmp2);
10723     __ or3 (Rtmp, Rtmp2, Rtmp);
10724     __ srlx(Rtmp,    16, Rtmp2);
10725     __ or3 (Rtmp, Rtmp2, Rtmp);
10726     __ srlx(Rtmp,    32, Rtmp2);
10727     __ or3 (Rtmp, Rtmp2, Rtmp);
10728     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10729     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10730   %}
10731   ins_pipe(ialu_reg);
10732 %}
10733 
10734 // Replicate scalar constant to packed byte values in Double register
10735 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10736   predicate(n->as_Vector()->length() == 8);
10737   match(Set dst (ReplicateB con));
10738   effect(KILL tmp);
10739   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10740   ins_encode %{
10741     // XXX This is a quick fix for 6833573.
10742     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10743     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10744     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10745   %}
10746   ins_pipe(loadConFD);
10747 %}
10748 
10749 // Replicate scalar to packed char/short values into Double register
10750 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10751   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10752   match(Set dst (ReplicateS src));
10753   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10754   format %{ "SLLX  $src,48,$tmp\n\t"
10755             "SRLX  $tmp,16,$tmp2\n\t"
10756             "OR    $tmp,$tmp2,$tmp\n\t"
10757             "SRLX  $tmp,32,$tmp2\n\t"
10758             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10759             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10760   ins_encode %{
10761     Register Rsrc = $src$$Register;
10762     Register Rtmp = $tmp$$Register;
10763     Register Rtmp2 = $tmp2$$Register;
10764     __ sllx(Rsrc,    48, Rtmp);
10765     __ srlx(Rtmp,    16, Rtmp2);
10766     __ or3 (Rtmp, Rtmp2, Rtmp);
10767     __ srlx(Rtmp,    32, Rtmp2);
10768     __ or3 (Rtmp, Rtmp2, Rtmp);
10769     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10770   %}
10771   ins_pipe(ialu_reg);
10772 %}
10773 
10774 // Replicate scalar to packed char/short values into Double stack
10775 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10776   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10777   match(Set dst (ReplicateS src));
10778   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10779   format %{ "SLLX  $src,48,$tmp\n\t"
10780             "SRLX  $tmp,16,$tmp2\n\t"
10781             "OR    $tmp,$tmp2,$tmp\n\t"
10782             "SRLX  $tmp,32,$tmp2\n\t"
10783             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10784             "STX   $tmp,$dst\t! regL to stkD" %}
10785   ins_encode %{
10786     Register Rsrc = $src$$Register;
10787     Register Rtmp = $tmp$$Register;
10788     Register Rtmp2 = $tmp2$$Register;
10789     __ sllx(Rsrc,    48, Rtmp);
10790     __ srlx(Rtmp,    16, Rtmp2);
10791     __ or3 (Rtmp, Rtmp2, Rtmp);
10792     __ srlx(Rtmp,    32, Rtmp2);
10793     __ or3 (Rtmp, Rtmp2, Rtmp);
10794     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10795     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10796   %}
10797   ins_pipe(ialu_reg);
10798 %}
10799 
10800 // Replicate scalar constant to packed char/short values in Double register
10801 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10802   predicate(n->as_Vector()->length() == 4);
10803   match(Set dst (ReplicateS con));
10804   effect(KILL tmp);
10805   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10806   ins_encode %{
10807     // XXX This is a quick fix for 6833573.
10808     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10809     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10810     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10811   %}
10812   ins_pipe(loadConFD);
10813 %}
10814 
10815 // Replicate scalar to packed int values into Double register
10816 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10817   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10818   match(Set dst (ReplicateI src));
10819   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10820   format %{ "SLLX  $src,32,$tmp\n\t"
10821             "SRLX  $tmp,32,$tmp2\n\t"
10822             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10823             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10824   ins_encode %{
10825     Register Rsrc = $src$$Register;
10826     Register Rtmp = $tmp$$Register;
10827     Register Rtmp2 = $tmp2$$Register;
10828     __ sllx(Rsrc,    32, Rtmp);
10829     __ srlx(Rtmp,    32, Rtmp2);
10830     __ or3 (Rtmp, Rtmp2, Rtmp);
10831     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10832   %}
10833   ins_pipe(ialu_reg);
10834 %}
10835 
10836 // Replicate scalar to packed int values into Double stack
10837 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10838   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10839   match(Set dst (ReplicateI src));
10840   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10841   format %{ "SLLX  $src,32,$tmp\n\t"
10842             "SRLX  $tmp,32,$tmp2\n\t"
10843             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10844             "STX   $tmp,$dst\t! regL to stkD" %}
10845   ins_encode %{
10846     Register Rsrc = $src$$Register;
10847     Register Rtmp = $tmp$$Register;
10848     Register Rtmp2 = $tmp2$$Register;
10849     __ sllx(Rsrc,    32, Rtmp);
10850     __ srlx(Rtmp,    32, Rtmp2);
10851     __ or3 (Rtmp, Rtmp2, Rtmp);
10852     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10853     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10854   %}
10855   ins_pipe(ialu_reg);
10856 %}
10857 
10858 // Replicate scalar zero constant to packed int values in Double register
10859 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10860   predicate(n->as_Vector()->length() == 2);
10861   match(Set dst (ReplicateI con));
10862   effect(KILL tmp);
10863   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10864   ins_encode %{
10865     // XXX This is a quick fix for 6833573.
10866     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10867     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10868     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10869   %}
10870   ins_pipe(loadConFD);
10871 %}
10872 
10873 // Replicate scalar to packed float values into Double stack
10874 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10875   predicate(n->as_Vector()->length() == 2);
10876   match(Set dst (ReplicateF src));
10877   ins_cost(MEMORY_REF_COST*2);
10878   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10879             "STF    $src,$dst.lo" %}
10880   opcode(Assembler::stf_op3);
10881   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10882   ins_pipe(fstoreF_stk_reg);
10883 %}
10884 
10885 // Replicate scalar zero constant to packed float values in Double register
10886 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10887   predicate(n->as_Vector()->length() == 2);
10888   match(Set dst (ReplicateF con));
10889   effect(KILL tmp);
10890   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10891   ins_encode %{
10892     // XXX This is a quick fix for 6833573.
10893     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10894     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10895     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10896   %}
10897   ins_pipe(loadConFD);
10898 %}
10899 
10900 //----------PEEPHOLE RULES-----------------------------------------------------
10901 // These must follow all instruction definitions as they use the names
10902 // defined in the instructions definitions.
10903 //
10904 // peepmatch ( root_instr_name [preceding_instruction]* );
10905 //
10906 // peepconstraint %{
10907 // (instruction_number.operand_name relational_op instruction_number.operand_name
10908 //  [, ...] );
10909 // // instruction numbers are zero-based using left to right order in peepmatch
10910 //
10911 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10912 // // provide an instruction_number.operand_name for each operand that appears
10913 // // in the replacement instruction's match rule
10914 //
10915 // ---------VM FLAGS---------------------------------------------------------
10916 //
10917 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10918 //
10919 // Each peephole rule is given an identifying number starting with zero and
10920 // increasing by one in the order seen by the parser.  An individual peephole
10921 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10922 // on the command-line.
10923 //
10924 // ---------CURRENT LIMITATIONS----------------------------------------------
10925 //
10926 // Only match adjacent instructions in same basic block
10927 // Only equality constraints
10928 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10929 // Only one replacement instruction
10930 //
10931 // ---------EXAMPLE----------------------------------------------------------
10932 //
10933 // // pertinent parts of existing instructions in architecture description
10934 // instruct movI(eRegI dst, eRegI src) %{
10935 //   match(Set dst (CopyI src));
10936 // %}
10937 //
10938 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10939 //   match(Set dst (AddI dst src));
10940 //   effect(KILL cr);
10941 // %}
10942 //
10943 // // Change (inc mov) to lea
10944 // peephole %{
10945 //   // increment preceeded by register-register move
10946 //   peepmatch ( incI_eReg movI );
10947 //   // require that the destination register of the increment
10948 //   // match the destination register of the move
10949 //   peepconstraint ( 0.dst == 1.dst );
10950 //   // construct a replacement instruction that sets
10951 //   // the destination to ( move's source register + one )
10952 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10953 // %}
10954 //
10955 
10956 // // Change load of spilled value to only a spill
10957 // instruct storeI(memory mem, eRegI src) %{
10958 //   match(Set mem (StoreI mem src));
10959 // %}
10960 //
10961 // instruct loadI(eRegI dst, memory mem) %{
10962 //   match(Set dst (LoadI mem));
10963 // %}
10964 //
10965 // peephole %{
10966 //   peepmatch ( loadI storeI );
10967 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10968 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10969 // %}
10970 
10971 //----------SMARTSPILL RULES---------------------------------------------------
10972 // These must follow all instruction definitions as they use the names
10973 // defined in the instructions definitions.
10974 //
10975 // SPARC will probably not have any of these rules due to RISC instruction set.
10976 
10977 //----------PIPELINE-----------------------------------------------------------
10978 // Rules which define the behavior of the target architectures pipeline.