1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release,       // Store has to release or be preceded by MemBarRelease.
  60                  seqcst,        // LoadStore has to have both acquire and release semantics.
  61                  unset          // The memory ordering is not set (used for testing)
  62   } MemOrd;
  63 protected:
  64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  65     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  66     init_class_id(Class_Mem);
  67     debug_only(_adr_type=at; adr_type();)
  68   }
  69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  70     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  71     init_class_id(Class_Mem);
  72     debug_only(_adr_type=at; adr_type();)
  73   }
  74   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  75     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  76     init_class_id(Class_Mem);
  77     debug_only(_adr_type=at; adr_type();)
  78   }
  79 
  80   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
  81 
  82 public:
  83   // Helpers for the optimizer.  Documented in memnode.cpp.
  84   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  85                                       Node* p2, AllocateNode* a2,
  86                                       PhaseTransform* phase);
  87   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  88 
  89   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  90   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  91   // This one should probably be a phase-specific function:
  92   static bool all_controls_dominate(Node* dom, Node* sub);
  93 
  94   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  95 
  96   // Shared code for Ideal methods:
  97   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  98 
  99   // Helper function for adr_type() implementations.
 100   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
 101 
 102   // Raw access function, to allow copying of adr_type efficiently in
 103   // product builds and retain the debug info for debug builds.
 104   const TypePtr *raw_adr_type() const {
 105 #ifdef ASSERT
 106     return _adr_type;
 107 #else
 108     return 0;
 109 #endif
 110   }
 111 
 112   // Map a load or store opcode to its corresponding store opcode.
 113   // (Return -1 if unknown.)
 114   virtual int store_Opcode() const { return -1; }
 115 
 116   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 117   virtual BasicType memory_type() const = 0;
 118   virtual int memory_size() const {
 119 #ifdef ASSERT
 120     return type2aelembytes(memory_type(), true);
 121 #else
 122     return type2aelembytes(memory_type());
 123 #endif
 124   }
 125 
 126   // Search through memory states which precede this node (load or store).
 127   // Look for an exact match for the address, with no intervening
 128   // aliased stores.
 129   Node* find_previous_store(PhaseTransform* phase);
 130 
 131   // Can this node (load or store) accurately see a stored value in
 132   // the given memory state?  (The state may or may not be in(Memory).)
 133   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 134 
 135   void set_unaligned_access() { _unaligned_access = true; }
 136   bool is_unaligned_access() const { return _unaligned_access; }
 137   void set_mismatched_access() { _mismatched_access = true; }
 138   bool is_mismatched_access() const { return _mismatched_access; }
 139 
 140 #ifndef PRODUCT
 141   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 142   virtual void dump_spec(outputStream *st) const;
 143 #endif
 144 };
 145 
 146 //------------------------------LoadNode---------------------------------------
 147 // Load value; requires Memory and Address
 148 class LoadNode : public MemNode {
 149 public:
 150   // Some loads (from unsafe) should be pinned: they don't depend only
 151   // on the dominating test.  The boolean field _depends_only_on_test
 152   // below records whether that node depends only on the dominating
 153   // test.
 154   // Methods used to build LoadNodes pass an argument of type enum
 155   // ControlDependency instead of a boolean because those methods
 156   // typically have multiple boolean parameters with default values:
 157   // passing the wrong boolean to one of these parameters by mistake
 158   // goes easily unnoticed. Using an enum, the compiler can check that
 159   // the type of a value and the type of the parameter match.
 160   enum ControlDependency {
 161     Pinned,
 162     DependsOnlyOnTest
 163   };
 164 private:
 165   // LoadNode::hash() doesn't take the _depends_only_on_test field
 166   // into account: If the graph already has a non-pinned LoadNode and
 167   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 168   // to replace the pinned LoadNode with the non-pinned LoadNode,
 169   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 170   // those inputs in the first place. If the graph already has a
 171   // pinned LoadNode and we add a non pinned LoadNode with the same
 172   // inputs, it's safe (but suboptimal) for GVN to replace the
 173   // non-pinned LoadNode by the pinned LoadNode.
 174   bool _depends_only_on_test;
 175 
 176   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 177   // loads that can be reordered, and such requiring acquire semantics to
 178   // adhere to the Java specification.  The required behaviour is stored in
 179   // this field.
 180   const MemOrd _mo;
 181 
 182 protected:
 183   virtual uint cmp(const Node &n) const;
 184   virtual uint size_of() const; // Size is bigger
 185   // Should LoadNode::Ideal() attempt to remove control edges?
 186   virtual bool can_remove_control() const;
 187   const Type* const _type;      // What kind of value is loaded?
 188 
 189   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
 190 public:
 191 
 192   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 193     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 194     init_class_id(Class_Load);
 195   }
 196   inline bool is_unordered() const { return !is_acquire(); }
 197   inline bool is_acquire() const {
 198     assert(_mo == unordered || _mo == acquire, "unexpected");
 199     return _mo == acquire;
 200   }
 201 
 202   // Polymorphic factory method:
 203   static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 204                     const TypePtr* at, const Type *rt, BasicType bt,
 205                     MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 206                     bool unaligned = false, bool mismatched = false);
 207 
 208   virtual uint hash()   const;  // Check the type
 209 
 210   // Handle algebraic identities here.  If we have an identity, return the Node
 211   // we are equivalent to.  We look for Load of a Store.
 212   virtual Node* Identity(PhaseGVN* phase);
 213 
 214   // If the load is from Field memory and the pointer is non-null, it might be possible to
 215   // zero out the control input.
 216   // If the offset is constant and the base is an object allocation,
 217   // try to hook me up to the exact initializing store.
 218   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 219 
 220   // Split instance field load through Phi.
 221   Node* split_through_phi(PhaseGVN *phase);
 222 
 223   // Recover original value from boxed values
 224   Node *eliminate_autobox(PhaseGVN *phase);
 225 
 226   // Compute a new Type for this node.  Basically we just do the pre-check,
 227   // then call the virtual add() to set the type.
 228   virtual const Type* Value(PhaseGVN* phase) const;
 229 
 230   // Common methods for LoadKlass and LoadNKlass nodes.
 231   const Type* klass_value_common(PhaseGVN* phase) const;
 232   Node* klass_identity_common(PhaseGVN* phase);
 233 
 234   virtual uint ideal_reg() const;
 235   virtual const Type *bottom_type() const;
 236   // Following method is copied from TypeNode:
 237   void set_type(const Type* t) {
 238     assert(t != NULL, "sanity");
 239     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 240     *(const Type**)&_type = t;   // cast away const-ness
 241     // If this node is in the hash table, make sure it doesn't need a rehash.
 242     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 243   }
 244   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 245 
 246   // Do not match memory edge
 247   virtual uint match_edge(uint idx) const;
 248 
 249   // Map a load opcode to its corresponding store opcode.
 250   virtual int store_Opcode() const = 0;
 251 
 252   // Check if the load's memory input is a Phi node with the same control.
 253   bool is_instance_field_load_with_local_phi(Node* ctrl);
 254 
 255 #ifndef PRODUCT
 256   virtual void dump_spec(outputStream *st) const;
 257 #endif
 258 #ifdef ASSERT
 259   // Helper function to allow a raw load without control edge for some cases
 260   static bool is_immutable_value(Node* adr);
 261 #endif
 262 protected:
 263   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 264                                      ciKlass* klass) const;
 265 
 266   Node* can_see_arraycopy_value(Node* st, PhaseTransform* phase) const;
 267 
 268   // depends_only_on_test is almost always true, and needs to be almost always
 269   // true to enable key hoisting & commoning optimizations.  However, for the
 270   // special case of RawPtr loads from TLS top & end, and other loads performed by
 271   // GC barriers, the control edge carries the dependence preventing hoisting past
 272   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 273   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 274   // which produce results (new raw memory state) inside of loops preventing all
 275   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 276   // See comment in macro.cpp, around line 125 expand_allocate_common().
 277   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 278 };
 279 
 280 //------------------------------LoadBNode--------------------------------------
 281 // Load a byte (8bits signed) from memory
 282 class LoadBNode : public LoadNode {
 283 public:
 284   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 285     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 286   virtual int Opcode() const;
 287   virtual uint ideal_reg() const { return Op_RegI; }
 288   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 289   virtual const Type* Value(PhaseGVN* phase) const;
 290   virtual int store_Opcode() const { return Op_StoreB; }
 291   virtual BasicType memory_type() const { return T_BYTE; }
 292 };
 293 
 294 //------------------------------LoadUBNode-------------------------------------
 295 // Load a unsigned byte (8bits unsigned) from memory
 296 class LoadUBNode : public LoadNode {
 297 public:
 298   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 299     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 300   virtual int Opcode() const;
 301   virtual uint ideal_reg() const { return Op_RegI; }
 302   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 303   virtual const Type* Value(PhaseGVN* phase) const;
 304   virtual int store_Opcode() const { return Op_StoreB; }
 305   virtual BasicType memory_type() const { return T_BYTE; }
 306 };
 307 
 308 //------------------------------LoadUSNode-------------------------------------
 309 // Load an unsigned short/char (16bits unsigned) from memory
 310 class LoadUSNode : public LoadNode {
 311 public:
 312   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 313     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 314   virtual int Opcode() const;
 315   virtual uint ideal_reg() const { return Op_RegI; }
 316   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 317   virtual const Type* Value(PhaseGVN* phase) const;
 318   virtual int store_Opcode() const { return Op_StoreC; }
 319   virtual BasicType memory_type() const { return T_CHAR; }
 320 };
 321 
 322 //------------------------------LoadSNode--------------------------------------
 323 // Load a short (16bits signed) from memory
 324 class LoadSNode : public LoadNode {
 325 public:
 326   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 327     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 328   virtual int Opcode() const;
 329   virtual uint ideal_reg() const { return Op_RegI; }
 330   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 331   virtual const Type* Value(PhaseGVN* phase) const;
 332   virtual int store_Opcode() const { return Op_StoreC; }
 333   virtual BasicType memory_type() const { return T_SHORT; }
 334 };
 335 
 336 //------------------------------LoadINode--------------------------------------
 337 // Load an integer from memory
 338 class LoadINode : public LoadNode {
 339 public:
 340   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 341     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 342   virtual int Opcode() const;
 343   virtual uint ideal_reg() const { return Op_RegI; }
 344   virtual int store_Opcode() const { return Op_StoreI; }
 345   virtual BasicType memory_type() const { return T_INT; }
 346 };
 347 
 348 //------------------------------LoadRangeNode----------------------------------
 349 // Load an array length from the array
 350 class LoadRangeNode : public LoadINode {
 351 public:
 352   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 353     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 354   virtual int Opcode() const;
 355   virtual const Type* Value(PhaseGVN* phase) const;
 356   virtual Node* Identity(PhaseGVN* phase);
 357   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 358 };
 359 
 360 //------------------------------LoadLNode--------------------------------------
 361 // Load a long from memory
 362 class LoadLNode : public LoadNode {
 363   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 364   virtual uint cmp( const Node &n ) const {
 365     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 366       && LoadNode::cmp(n);
 367   }
 368   virtual uint size_of() const { return sizeof(*this); }
 369   const bool _require_atomic_access;  // is piecewise load forbidden?
 370 
 371 public:
 372   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 373             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 374     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 375   virtual int Opcode() const;
 376   virtual uint ideal_reg() const { return Op_RegL; }
 377   virtual int store_Opcode() const { return Op_StoreL; }
 378   virtual BasicType memory_type() const { return T_LONG; }
 379   bool require_atomic_access() const { return _require_atomic_access; }
 380   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 381                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 382                                 bool unaligned = false, bool mismatched = false);
 383 #ifndef PRODUCT
 384   virtual void dump_spec(outputStream *st) const {
 385     LoadNode::dump_spec(st);
 386     if (_require_atomic_access)  st->print(" Atomic!");
 387   }
 388 #endif
 389 };
 390 
 391 //------------------------------LoadL_unalignedNode----------------------------
 392 // Load a long from unaligned memory
 393 class LoadL_unalignedNode : public LoadLNode {
 394 public:
 395   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 396     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 397   virtual int Opcode() const;
 398 };
 399 
 400 //------------------------------LoadFNode--------------------------------------
 401 // Load a float (64 bits) from memory
 402 class LoadFNode : public LoadNode {
 403 public:
 404   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 405     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 406   virtual int Opcode() const;
 407   virtual uint ideal_reg() const { return Op_RegF; }
 408   virtual int store_Opcode() const { return Op_StoreF; }
 409   virtual BasicType memory_type() const { return T_FLOAT; }
 410 };
 411 
 412 //------------------------------LoadDNode--------------------------------------
 413 // Load a double (64 bits) from memory
 414 class LoadDNode : public LoadNode {
 415   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 416   virtual uint cmp( const Node &n ) const {
 417     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 418       && LoadNode::cmp(n);
 419   }
 420   virtual uint size_of() const { return sizeof(*this); }
 421   const bool _require_atomic_access;  // is piecewise load forbidden?
 422 
 423 public:
 424   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 425             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 426     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 427   virtual int Opcode() const;
 428   virtual uint ideal_reg() const { return Op_RegD; }
 429   virtual int store_Opcode() const { return Op_StoreD; }
 430   virtual BasicType memory_type() const { return T_DOUBLE; }
 431   bool require_atomic_access() const { return _require_atomic_access; }
 432   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 433                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 434                                 bool unaligned = false, bool mismatched = false);
 435 #ifndef PRODUCT
 436   virtual void dump_spec(outputStream *st) const {
 437     LoadNode::dump_spec(st);
 438     if (_require_atomic_access)  st->print(" Atomic!");
 439   }
 440 #endif
 441 };
 442 
 443 //------------------------------LoadD_unalignedNode----------------------------
 444 // Load a double from unaligned memory
 445 class LoadD_unalignedNode : public LoadDNode {
 446 public:
 447   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 448     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 449   virtual int Opcode() const;
 450 };
 451 
 452 //------------------------------LoadPNode--------------------------------------
 453 // Load a pointer from memory (either object or array)
 454 class LoadPNode : public LoadNode {
 455 public:
 456   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 457     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 458   virtual int Opcode() const;
 459   virtual uint ideal_reg() const { return Op_RegP; }
 460   virtual int store_Opcode() const { return Op_StoreP; }
 461   virtual BasicType memory_type() const { return T_ADDRESS; }
 462 };
 463 
 464 
 465 //------------------------------LoadNNode--------------------------------------
 466 // Load a narrow oop from memory (either object or array)
 467 class LoadNNode : public LoadNode {
 468 public:
 469   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 470     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 471   virtual int Opcode() const;
 472   virtual uint ideal_reg() const { return Op_RegN; }
 473   virtual int store_Opcode() const { return Op_StoreN; }
 474   virtual BasicType memory_type() const { return T_NARROWOOP; }
 475 };
 476 
 477 //------------------------------LoadKlassNode----------------------------------
 478 // Load a Klass from an object
 479 class LoadKlassNode : public LoadPNode {
 480 protected:
 481   // In most cases, LoadKlassNode does not have the control input set. If the control
 482   // input is set, it must not be removed (by LoadNode::Ideal()).
 483   virtual bool can_remove_control() const;
 484 public:
 485   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 486     : LoadPNode(c, mem, adr, at, tk, mo) {}
 487   virtual int Opcode() const;
 488   virtual const Type* Value(PhaseGVN* phase) const;
 489   virtual Node* Identity(PhaseGVN* phase);
 490   virtual bool depends_only_on_test() const { return true; }
 491 
 492   // Polymorphic factory method:
 493   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 494                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 495 };
 496 
 497 //------------------------------LoadNKlassNode---------------------------------
 498 // Load a narrow Klass from an object.
 499 class LoadNKlassNode : public LoadNNode {
 500 public:
 501   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 502     : LoadNNode(c, mem, adr, at, tk, mo) {}
 503   virtual int Opcode() const;
 504   virtual uint ideal_reg() const { return Op_RegN; }
 505   virtual int store_Opcode() const { return Op_StoreNKlass; }
 506   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 507 
 508   virtual const Type* Value(PhaseGVN* phase) const;
 509   virtual Node* Identity(PhaseGVN* phase);
 510   virtual bool depends_only_on_test() const { return true; }
 511 };
 512 
 513 
 514 //------------------------------StoreNode--------------------------------------
 515 // Store value; requires Store, Address and Value
 516 class StoreNode : public MemNode {
 517 private:
 518   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 519   // stores that can be reordered, and such requiring release semantics to
 520   // adhere to the Java specification.  The required behaviour is stored in
 521   // this field.
 522   const MemOrd _mo;
 523   // Needed for proper cloning.
 524   virtual uint size_of() const { return sizeof(*this); }
 525 protected:
 526   virtual uint cmp( const Node &n ) const;
 527   virtual bool depends_only_on_test() const { return false; }
 528 
 529   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 530   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 531 
 532 public:
 533   // We must ensure that stores of object references will be visible
 534   // only after the object's initialization. So the callers of this
 535   // procedure must indicate that the store requires `release'
 536   // semantics, if the stored value is an object reference that might
 537   // point to a new object and may become externally visible.
 538   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 539     : MemNode(c, mem, adr, at, val), _mo(mo) {
 540     init_class_id(Class_Store);
 541   }
 542   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 543     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 544     init_class_id(Class_Store);
 545   }
 546 
 547   inline bool is_unordered() const { return !is_release(); }
 548   inline bool is_release() const {
 549     assert((_mo == unordered || _mo == release), "unexpected");
 550     return _mo == release;
 551   }
 552 
 553   // Conservatively release stores of object references in order to
 554   // ensure visibility of object initialization.
 555   static inline MemOrd release_if_reference(const BasicType t) {
 556 #ifdef AARCH64
 557     // AArch64 doesn't need a release store here because object
 558     // initialization contains the necessary barriers.
 559     return unordered;
 560 #else
 561     const MemOrd mo = (t == T_ARRAY ||
 562                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 563                        t == T_OBJECT) ? release : unordered;
 564     return mo;
 565 #endif
 566   }
 567 
 568   // Polymorphic factory method
 569   //
 570   // We must ensure that stores of object references will be visible
 571   // only after the object's initialization. So the callers of this
 572   // procedure must indicate that the store requires `release'
 573   // semantics, if the stored value is an object reference that might
 574   // point to a new object and may become externally visible.
 575   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 576                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 577 
 578   virtual uint hash() const;    // Check the type
 579 
 580   // If the store is to Field memory and the pointer is non-null, we can
 581   // zero out the control input.
 582   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 583 
 584   // Compute a new Type for this node.  Basically we just do the pre-check,
 585   // then call the virtual add() to set the type.
 586   virtual const Type* Value(PhaseGVN* phase) const;
 587 
 588   // Check for identity function on memory (Load then Store at same address)
 589   virtual Node* Identity(PhaseGVN* phase);
 590 
 591   // Do not match memory edge
 592   virtual uint match_edge(uint idx) const;
 593 
 594   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 595 
 596   // Map a store opcode to its corresponding own opcode, trivially.
 597   virtual int store_Opcode() const { return Opcode(); }
 598 
 599   // have all possible loads of the value stored been optimized away?
 600   bool value_never_loaded(PhaseTransform *phase) const;
 601 };
 602 
 603 //------------------------------StoreBNode-------------------------------------
 604 // Store byte to memory
 605 class StoreBNode : public StoreNode {
 606 public:
 607   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 608     : StoreNode(c, mem, adr, at, val, mo) {}
 609   virtual int Opcode() const;
 610   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 611   virtual BasicType memory_type() const { return T_BYTE; }
 612 };
 613 
 614 //------------------------------StoreCNode-------------------------------------
 615 // Store char/short to memory
 616 class StoreCNode : public StoreNode {
 617 public:
 618   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 619     : StoreNode(c, mem, adr, at, val, mo) {}
 620   virtual int Opcode() const;
 621   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 622   virtual BasicType memory_type() const { return T_CHAR; }
 623 };
 624 
 625 //------------------------------StoreINode-------------------------------------
 626 // Store int to memory
 627 class StoreINode : public StoreNode {
 628 public:
 629   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 630     : StoreNode(c, mem, adr, at, val, mo) {}
 631   virtual int Opcode() const;
 632   virtual BasicType memory_type() const { return T_INT; }
 633 };
 634 
 635 //------------------------------StoreLNode-------------------------------------
 636 // Store long to memory
 637 class StoreLNode : public StoreNode {
 638   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 639   virtual uint cmp( const Node &n ) const {
 640     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 641       && StoreNode::cmp(n);
 642   }
 643   virtual uint size_of() const { return sizeof(*this); }
 644   const bool _require_atomic_access;  // is piecewise store forbidden?
 645 
 646 public:
 647   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 648     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 649   virtual int Opcode() const;
 650   virtual BasicType memory_type() const { return T_LONG; }
 651   bool require_atomic_access() const { return _require_atomic_access; }
 652   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 653 #ifndef PRODUCT
 654   virtual void dump_spec(outputStream *st) const {
 655     StoreNode::dump_spec(st);
 656     if (_require_atomic_access)  st->print(" Atomic!");
 657   }
 658 #endif
 659 };
 660 
 661 //------------------------------StoreFNode-------------------------------------
 662 // Store float to memory
 663 class StoreFNode : public StoreNode {
 664 public:
 665   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 666     : StoreNode(c, mem, adr, at, val, mo) {}
 667   virtual int Opcode() const;
 668   virtual BasicType memory_type() const { return T_FLOAT; }
 669 };
 670 
 671 //------------------------------StoreDNode-------------------------------------
 672 // Store double to memory
 673 class StoreDNode : public StoreNode {
 674   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 675   virtual uint cmp( const Node &n ) const {
 676     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 677       && StoreNode::cmp(n);
 678   }
 679   virtual uint size_of() const { return sizeof(*this); }
 680   const bool _require_atomic_access;  // is piecewise store forbidden?
 681 public:
 682   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 683              MemOrd mo, bool require_atomic_access = false)
 684     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 685   virtual int Opcode() const;
 686   virtual BasicType memory_type() const { return T_DOUBLE; }
 687   bool require_atomic_access() const { return _require_atomic_access; }
 688   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 689 #ifndef PRODUCT
 690   virtual void dump_spec(outputStream *st) const {
 691     StoreNode::dump_spec(st);
 692     if (_require_atomic_access)  st->print(" Atomic!");
 693   }
 694 #endif
 695 
 696 };
 697 
 698 //------------------------------StorePNode-------------------------------------
 699 // Store pointer to memory
 700 class StorePNode : public StoreNode {
 701 public:
 702   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 703     : StoreNode(c, mem, adr, at, val, mo) {}
 704   virtual int Opcode() const;
 705   virtual BasicType memory_type() const { return T_ADDRESS; }
 706 };
 707 
 708 //------------------------------StoreNNode-------------------------------------
 709 // Store narrow oop to memory
 710 class StoreNNode : public StoreNode {
 711 public:
 712   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 713     : StoreNode(c, mem, adr, at, val, mo) {}
 714   virtual int Opcode() const;
 715   virtual BasicType memory_type() const { return T_NARROWOOP; }
 716 };
 717 
 718 //------------------------------StoreNKlassNode--------------------------------------
 719 // Store narrow klass to memory
 720 class StoreNKlassNode : public StoreNNode {
 721 public:
 722   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 723     : StoreNNode(c, mem, adr, at, val, mo) {}
 724   virtual int Opcode() const;
 725   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 726 };
 727 
 728 //------------------------------StoreCMNode-----------------------------------
 729 // Store card-mark byte to memory for CM
 730 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 731 // Preceeding equivalent StoreCMs may be eliminated.
 732 class StoreCMNode : public StoreNode {
 733  private:
 734   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 735   virtual uint cmp( const Node &n ) const {
 736     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 737       && StoreNode::cmp(n);
 738   }
 739   virtual uint size_of() const { return sizeof(*this); }
 740   int _oop_alias_idx;   // The alias_idx of OopStore
 741 
 742 public:
 743   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 744     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 745     _oop_alias_idx(oop_alias_idx) {
 746     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 747            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 748            "bad oop alias idx");
 749   }
 750   virtual int Opcode() const;
 751   virtual Node* Identity(PhaseGVN* phase);
 752   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 753   virtual const Type* Value(PhaseGVN* phase) const;
 754   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 755   int oop_alias_idx() const { return _oop_alias_idx; }
 756 };
 757 
 758 //------------------------------LoadPLockedNode---------------------------------
 759 // Load-locked a pointer from memory (either object or array).
 760 // On Sparc & Intel this is implemented as a normal pointer load.
 761 // On PowerPC and friends it's a real load-locked.
 762 class LoadPLockedNode : public LoadPNode {
 763 public:
 764   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 765     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 766   virtual int Opcode() const;
 767   virtual int store_Opcode() const { return Op_StorePConditional; }
 768   virtual bool depends_only_on_test() const { return true; }
 769 };
 770 
 771 //------------------------------SCMemProjNode---------------------------------------
 772 // This class defines a projection of the memory  state of a store conditional node.
 773 // These nodes return a value, but also update memory.
 774 class SCMemProjNode : public ProjNode {
 775 public:
 776   enum {SCMEMPROJCON = (uint)-2};
 777   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 778   virtual int Opcode() const;
 779   virtual bool      is_CFG() const  { return false; }
 780   virtual const Type *bottom_type() const {return Type::MEMORY;}
 781   virtual const TypePtr *adr_type() const {
 782     Node* ctrl = in(0);
 783     if (ctrl == NULL)  return NULL; // node is dead
 784     return ctrl->in(MemNode::Memory)->adr_type();
 785   }
 786   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 787   virtual const Type* Value(PhaseGVN* phase) const;
 788 #ifndef PRODUCT
 789   virtual void dump_spec(outputStream *st) const {};
 790 #endif
 791 };
 792 
 793 //------------------------------LoadStoreNode---------------------------
 794 // Note: is_Mem() method returns 'true' for this class.
 795 class LoadStoreNode : public Node {
 796 private:
 797   const Type* const _type;      // What kind of value is loaded?
 798   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 799   virtual uint size_of() const; // Size is bigger
 800 public:
 801   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 802   virtual bool depends_only_on_test() const { return false; }
 803   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 804 
 805   virtual const Type *bottom_type() const { return _type; }
 806   virtual uint ideal_reg() const;
 807   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 808 
 809   bool result_not_used() const;
 810 };
 811 
 812 class LoadStoreConditionalNode : public LoadStoreNode {
 813 public:
 814   enum {
 815     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 816   };
 817   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 818 };
 819 
 820 //------------------------------StorePConditionalNode---------------------------
 821 // Conditionally store pointer to memory, if no change since prior
 822 // load-locked.  Sets flags for success or failure of the store.
 823 class StorePConditionalNode : public LoadStoreConditionalNode {
 824 public:
 825   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 826   virtual int Opcode() const;
 827   // Produces flags
 828   virtual uint ideal_reg() const { return Op_RegFlags; }
 829 };
 830 
 831 //------------------------------StoreIConditionalNode---------------------------
 832 // Conditionally store int to memory, if no change since prior
 833 // load-locked.  Sets flags for success or failure of the store.
 834 class StoreIConditionalNode : public LoadStoreConditionalNode {
 835 public:
 836   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 837   virtual int Opcode() const;
 838   // Produces flags
 839   virtual uint ideal_reg() const { return Op_RegFlags; }
 840 };
 841 
 842 //------------------------------StoreLConditionalNode---------------------------
 843 // Conditionally store long to memory, if no change since prior
 844 // load-locked.  Sets flags for success or failure of the store.
 845 class StoreLConditionalNode : public LoadStoreConditionalNode {
 846 public:
 847   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 848   virtual int Opcode() const;
 849   // Produces flags
 850   virtual uint ideal_reg() const { return Op_RegFlags; }
 851 };
 852 
 853 class CompareAndSwapNode : public LoadStoreConditionalNode {
 854 private:
 855   const MemNode::MemOrd _mem_ord;
 856 public:
 857   CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
 858   MemNode::MemOrd order() const {
 859     return _mem_ord;
 860   }
 861 };
 862 
 863 class CompareAndExchangeNode : public LoadStoreNode {
 864 private:
 865   const MemNode::MemOrd _mem_ord;
 866 public:
 867   enum {
 868     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 869   };
 870   CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
 871     LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
 872      init_req(ExpectedIn, ex );
 873   }
 874 
 875   MemNode::MemOrd order() const {
 876     return _mem_ord;
 877   }
 878 };
 879 
 880 //------------------------------CompareAndSwapLNode---------------------------
 881 class CompareAndSwapLNode : public CompareAndSwapNode {
 882 public:
 883   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 884   virtual int Opcode() const;
 885 };
 886 
 887 
 888 //------------------------------CompareAndSwapINode---------------------------
 889 class CompareAndSwapINode : public CompareAndSwapNode {
 890 public:
 891   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 892   virtual int Opcode() const;
 893 };
 894 
 895 
 896 //------------------------------CompareAndSwapPNode---------------------------
 897 class CompareAndSwapPNode : public CompareAndSwapNode {
 898 public:
 899   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 900   virtual int Opcode() const;
 901 };
 902 
 903 //------------------------------CompareAndSwapNNode---------------------------
 904 class CompareAndSwapNNode : public CompareAndSwapNode {
 905 public:
 906   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 907   virtual int Opcode() const;
 908 };
 909 
 910 
 911 //------------------------------WeakCompareAndSwapLNode---------------------------
 912 class WeakCompareAndSwapLNode : public CompareAndSwapNode {
 913 public:
 914   WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 915   virtual int Opcode() const;
 916 };
 917 
 918 
 919 //------------------------------WeakCompareAndSwapINode---------------------------
 920 class WeakCompareAndSwapINode : public CompareAndSwapNode {
 921 public:
 922   WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 923   virtual int Opcode() const;
 924 };
 925 
 926 
 927 //------------------------------WeakCompareAndSwapPNode---------------------------
 928 class WeakCompareAndSwapPNode : public CompareAndSwapNode {
 929 public:
 930   WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 931   virtual int Opcode() const;
 932 };
 933 
 934 //------------------------------WeakCompareAndSwapNNode---------------------------
 935 class WeakCompareAndSwapNNode : public CompareAndSwapNode {
 936 public:
 937   WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 938   virtual int Opcode() const;
 939 };
 940 
 941 //------------------------------CompareAndExchangeLNode---------------------------
 942 class CompareAndExchangeLNode : public CompareAndExchangeNode {
 943 public:
 944   CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
 945   virtual int Opcode() const;
 946 };
 947 
 948 
 949 //------------------------------CompareAndExchangeINode---------------------------
 950 class CompareAndExchangeINode : public CompareAndExchangeNode {
 951 public:
 952   CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
 953   virtual int Opcode() const;
 954 };
 955 
 956 
 957 //------------------------------CompareAndExchangePNode---------------------------
 958 class CompareAndExchangePNode : public CompareAndExchangeNode {
 959 public:
 960   CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
 961   virtual int Opcode() const;
 962 };
 963 
 964 //------------------------------CompareAndExchangeNNode---------------------------
 965 class CompareAndExchangeNNode : public CompareAndExchangeNode {
 966 public:
 967   CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
 968   virtual int Opcode() const;
 969 };
 970 
 971 //------------------------------GetAndAddINode---------------------------
 972 class GetAndAddINode : public LoadStoreNode {
 973 public:
 974   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 975   virtual int Opcode() const;
 976 };
 977 
 978 //------------------------------GetAndAddLNode---------------------------
 979 class GetAndAddLNode : public LoadStoreNode {
 980 public:
 981   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 982   virtual int Opcode() const;
 983 };
 984 
 985 
 986 //------------------------------GetAndSetINode---------------------------
 987 class GetAndSetINode : public LoadStoreNode {
 988 public:
 989   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 990   virtual int Opcode() const;
 991 };
 992 
 993 //------------------------------GetAndSetINode---------------------------
 994 class GetAndSetLNode : public LoadStoreNode {
 995 public:
 996   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 997   virtual int Opcode() const;
 998 };
 999 
1000 //------------------------------GetAndSetPNode---------------------------
1001 class GetAndSetPNode : public LoadStoreNode {
1002 public:
1003   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1004   virtual int Opcode() const;
1005 };
1006 
1007 //------------------------------GetAndSetNNode---------------------------
1008 class GetAndSetNNode : public LoadStoreNode {
1009 public:
1010   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1011   virtual int Opcode() const;
1012 };
1013 
1014 //------------------------------ClearArray-------------------------------------
1015 class ClearArrayNode: public Node {
1016 public:
1017   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
1018     : Node(ctrl,arymem,word_cnt,base) {
1019     init_class_id(Class_ClearArray);
1020   }
1021   virtual int         Opcode() const;
1022   virtual const Type *bottom_type() const { return Type::MEMORY; }
1023   // ClearArray modifies array elements, and so affects only the
1024   // array memory addressed by the bottom_type of its base address.
1025   virtual const class TypePtr *adr_type() const;
1026   virtual Node* Identity(PhaseGVN* phase);
1027   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1028   virtual uint match_edge(uint idx) const;
1029 
1030   // Clear the given area of an object or array.
1031   // The start offset must always be aligned mod BytesPerInt.
1032   // The end offset must always be aligned mod BytesPerLong.
1033   // Return the new memory.
1034   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1035                             intptr_t start_offset,
1036                             intptr_t end_offset,
1037                             PhaseGVN* phase);
1038   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1039                             intptr_t start_offset,
1040                             Node* end_offset,
1041                             PhaseGVN* phase);
1042   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1043                             Node* start_offset,
1044                             Node* end_offset,
1045                             PhaseGVN* phase);
1046   // Return allocation input memory edge if it is different instance
1047   // or itself if it is the one we are looking for.
1048   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
1049 };
1050 
1051 //------------------------------MemBar-----------------------------------------
1052 // There are different flavors of Memory Barriers to match the Java Memory
1053 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1054 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1055 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1056 // preceding ref can be moved to after them.  We insert a MemBar-Release
1057 // before a FastUnlock or volatile-store.  All volatiles need to be
1058 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1059 // separate it from any following volatile-load.
1060 class MemBarNode: public MultiNode {
1061   virtual uint hash() const ;                  // { return NO_HASH; }
1062   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1063 
1064   virtual uint size_of() const { return sizeof(*this); }
1065   // Memory type this node is serializing.  Usually either rawptr or bottom.
1066   const TypePtr* _adr_type;
1067 
1068 public:
1069   enum {
1070     Precedent = TypeFunc::Parms  // optional edge to force precedence
1071   };
1072   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1073   virtual int Opcode() const = 0;
1074   virtual const class TypePtr *adr_type() const { return _adr_type; }
1075   virtual const Type* Value(PhaseGVN* phase) const;
1076   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1077   virtual uint match_edge(uint idx) const { return 0; }
1078   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1079   virtual Node *match( const ProjNode *proj, const Matcher *m );
1080   // Factory method.  Builds a wide or narrow membar.
1081   // Optional 'precedent' becomes an extra edge if not null.
1082   static MemBarNode* make(Compile* C, int opcode,
1083                           int alias_idx = Compile::AliasIdxBot,
1084                           Node* precedent = NULL);
1085 };
1086 
1087 // "Acquire" - no following ref can move before (but earlier refs can
1088 // follow, like an early Load stalled in cache).  Requires multi-cpu
1089 // visibility.  Inserted after a volatile load.
1090 class MemBarAcquireNode: public MemBarNode {
1091 public:
1092   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1093     : MemBarNode(C, alias_idx, precedent) {}
1094   virtual int Opcode() const;
1095 };
1096 
1097 // "Acquire" - no following ref can move before (but earlier refs can
1098 // follow, like an early Load stalled in cache).  Requires multi-cpu
1099 // visibility.  Inserted independ of any load, as required
1100 // for intrinsic Unsafe.loadFence().
1101 class LoadFenceNode: public MemBarNode {
1102 public:
1103   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1104     : MemBarNode(C, alias_idx, precedent) {}
1105   virtual int Opcode() const;
1106 };
1107 
1108 // "Release" - no earlier ref can move after (but later refs can move
1109 // up, like a speculative pipelined cache-hitting Load).  Requires
1110 // multi-cpu visibility.  Inserted before a volatile store.
1111 class MemBarReleaseNode: public MemBarNode {
1112 public:
1113   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1114     : MemBarNode(C, alias_idx, precedent) {}
1115   virtual int Opcode() const;
1116 };
1117 
1118 // "Release" - no earlier ref can move after (but later refs can move
1119 // up, like a speculative pipelined cache-hitting Load).  Requires
1120 // multi-cpu visibility.  Inserted independent of any store, as required
1121 // for intrinsic Unsafe.storeFence().
1122 class StoreFenceNode: public MemBarNode {
1123 public:
1124   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1125     : MemBarNode(C, alias_idx, precedent) {}
1126   virtual int Opcode() const;
1127 };
1128 
1129 // "Acquire" - no following ref can move before (but earlier refs can
1130 // follow, like an early Load stalled in cache).  Requires multi-cpu
1131 // visibility.  Inserted after a FastLock.
1132 class MemBarAcquireLockNode: public MemBarNode {
1133 public:
1134   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1135     : MemBarNode(C, alias_idx, precedent) {}
1136   virtual int Opcode() const;
1137 };
1138 
1139 // "Release" - no earlier ref can move after (but later refs can move
1140 // up, like a speculative pipelined cache-hitting Load).  Requires
1141 // multi-cpu visibility.  Inserted before a FastUnLock.
1142 class MemBarReleaseLockNode: public MemBarNode {
1143 public:
1144   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1145     : MemBarNode(C, alias_idx, precedent) {}
1146   virtual int Opcode() const;
1147 };
1148 
1149 class MemBarStoreStoreNode: public MemBarNode {
1150 public:
1151   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1152     : MemBarNode(C, alias_idx, precedent) {
1153     init_class_id(Class_MemBarStoreStore);
1154   }
1155   virtual int Opcode() const;
1156 };
1157 
1158 // Ordering between a volatile store and a following volatile load.
1159 // Requires multi-CPU visibility?
1160 class MemBarVolatileNode: public MemBarNode {
1161 public:
1162   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1163     : MemBarNode(C, alias_idx, precedent) {}
1164   virtual int Opcode() const;
1165 };
1166 
1167 // Ordering within the same CPU.  Used to order unsafe memory references
1168 // inside the compiler when we lack alias info.  Not needed "outside" the
1169 // compiler because the CPU does all the ordering for us.
1170 class MemBarCPUOrderNode: public MemBarNode {
1171 public:
1172   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1173     : MemBarNode(C, alias_idx, precedent) {}
1174   virtual int Opcode() const;
1175   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1176 };
1177 
1178 // Isolation of object setup after an AllocateNode and before next safepoint.
1179 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1180 class InitializeNode: public MemBarNode {
1181   friend class AllocateNode;
1182 
1183   enum {
1184     Incomplete    = 0,
1185     Complete      = 1,
1186     WithArraycopy = 2
1187   };
1188   int _is_complete;
1189 
1190   bool _does_not_escape;
1191 
1192 public:
1193   enum {
1194     Control    = TypeFunc::Control,
1195     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1196     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1197     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1198   };
1199 
1200   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1201   virtual int Opcode() const;
1202   virtual uint size_of() const { return sizeof(*this); }
1203   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1204   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1205 
1206   // Manage incoming memory edges via a MergeMem on in(Memory):
1207   Node* memory(uint alias_idx);
1208 
1209   // The raw memory edge coming directly from the Allocation.
1210   // The contents of this memory are *always* all-zero-bits.
1211   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1212 
1213   // Return the corresponding allocation for this initialization (or null if none).
1214   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1215   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1216   AllocateNode* allocation();
1217 
1218   // Anything other than zeroing in this init?
1219   bool is_non_zero();
1220 
1221   // An InitializeNode must completed before macro expansion is done.
1222   // Completion requires that the AllocateNode must be followed by
1223   // initialization of the new memory to zero, then to any initializers.
1224   bool is_complete() { return _is_complete != Incomplete; }
1225   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1226 
1227   // Mark complete.  (Must not yet be complete.)
1228   void set_complete(PhaseGVN* phase);
1229   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1230 
1231   bool does_not_escape() { return _does_not_escape; }
1232   void set_does_not_escape() { _does_not_escape = true; }
1233 
1234 #ifdef ASSERT
1235   // ensure all non-degenerate stores are ordered and non-overlapping
1236   bool stores_are_sane(PhaseTransform* phase);
1237 #endif //ASSERT
1238 
1239   // See if this store can be captured; return offset where it initializes.
1240   // Return 0 if the store cannot be moved (any sort of problem).
1241   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1242 
1243   // Capture another store; reformat it to write my internal raw memory.
1244   // Return the captured copy, else NULL if there is some sort of problem.
1245   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1246 
1247   // Find captured store which corresponds to the range [start..start+size).
1248   // Return my own memory projection (meaning the initial zero bits)
1249   // if there is no such store.  Return NULL if there is a problem.
1250   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1251 
1252   // Called when the associated AllocateNode is expanded into CFG.
1253   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1254                         intptr_t header_size, Node* size_in_bytes,
1255                         PhaseGVN* phase);
1256 
1257  private:
1258   void remove_extra_zeroes();
1259 
1260   // Find out where a captured store should be placed (or already is placed).
1261   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1262                                      PhaseTransform* phase);
1263 
1264   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1265 
1266   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1267 
1268   bool detect_init_independence(Node* n, int& count);
1269 
1270   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1271                                PhaseGVN* phase);
1272 
1273   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1274 };
1275 
1276 //------------------------------MergeMem---------------------------------------
1277 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1278 class MergeMemNode: public Node {
1279   virtual uint hash() const ;                  // { return NO_HASH; }
1280   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1281   friend class MergeMemStream;
1282   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1283 
1284 public:
1285   // If the input is a whole memory state, clone it with all its slices intact.
1286   // Otherwise, make a new memory state with just that base memory input.
1287   // In either case, the result is a newly created MergeMem.
1288   static MergeMemNode* make(Node* base_memory);
1289 
1290   virtual int Opcode() const;
1291   virtual Node* Identity(PhaseGVN* phase);
1292   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1293   virtual uint ideal_reg() const { return NotAMachineReg; }
1294   virtual uint match_edge(uint idx) const { return 0; }
1295   virtual const RegMask &out_RegMask() const;
1296   virtual const Type *bottom_type() const { return Type::MEMORY; }
1297   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1298   // sparse accessors
1299   // Fetch the previously stored "set_memory_at", or else the base memory.
1300   // (Caller should clone it if it is a phi-nest.)
1301   Node* memory_at(uint alias_idx) const;
1302   // set the memory, regardless of its previous value
1303   void set_memory_at(uint alias_idx, Node* n);
1304   // the "base" is the memory that provides the non-finite support
1305   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1306   // warning: setting the base can implicitly set any of the other slices too
1307   void set_base_memory(Node* def);
1308   // sentinel value which denotes a copy of the base memory:
1309   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1310   static Node* make_empty_memory(); // where the sentinel comes from
1311   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1312   // hook for the iterator, to perform any necessary setup
1313   void iteration_setup(const MergeMemNode* other = NULL);
1314   // push sentinels until I am at least as long as the other (semantic no-op)
1315   void grow_to_match(const MergeMemNode* other);
1316   bool verify_sparse() const PRODUCT_RETURN0;
1317 #ifndef PRODUCT
1318   virtual void dump_spec(outputStream *st) const;
1319 #endif
1320 };
1321 
1322 class MergeMemStream : public StackObj {
1323  private:
1324   MergeMemNode*       _mm;
1325   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1326   Node*               _mm_base;  // loop-invariant base memory of _mm
1327   int                 _idx;
1328   int                 _cnt;
1329   Node*               _mem;
1330   Node*               _mem2;
1331   int                 _cnt2;
1332 
1333   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1334     // subsume_node will break sparseness at times, whenever a memory slice
1335     // folds down to a copy of the base ("fat") memory.  In such a case,
1336     // the raw edge will update to base, although it should be top.
1337     // This iterator will recognize either top or base_memory as an
1338     // "empty" slice.  See is_empty, is_empty2, and next below.
1339     //
1340     // The sparseness property is repaired in MergeMemNode::Ideal.
1341     // As long as access to a MergeMem goes through this iterator
1342     // or the memory_at accessor, flaws in the sparseness will
1343     // never be observed.
1344     //
1345     // Also, iteration_setup repairs sparseness.
1346     assert(mm->verify_sparse(), "please, no dups of base");
1347     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1348 
1349     _mm  = mm;
1350     _mm_base = mm->base_memory();
1351     _mm2 = mm2;
1352     _cnt = mm->req();
1353     _idx = Compile::AliasIdxBot-1; // start at the base memory
1354     _mem = NULL;
1355     _mem2 = NULL;
1356   }
1357 
1358 #ifdef ASSERT
1359   Node* check_memory() const {
1360     if (at_base_memory())
1361       return _mm->base_memory();
1362     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1363       return _mm->memory_at(_idx);
1364     else
1365       return _mm_base;
1366   }
1367   Node* check_memory2() const {
1368     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1369   }
1370 #endif
1371 
1372   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1373   void assert_synch() const {
1374     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1375            "no side-effects except through the stream");
1376   }
1377 
1378  public:
1379 
1380   // expected usages:
1381   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1382   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1383 
1384   // iterate over one merge
1385   MergeMemStream(MergeMemNode* mm) {
1386     mm->iteration_setup();
1387     init(mm);
1388     debug_only(_cnt2 = 999);
1389   }
1390   // iterate in parallel over two merges
1391   // only iterates through non-empty elements of mm2
1392   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1393     assert(mm2, "second argument must be a MergeMem also");
1394     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1395     mm->iteration_setup(mm2);
1396     init(mm, mm2);
1397     _cnt2 = mm2->req();
1398   }
1399 #ifdef ASSERT
1400   ~MergeMemStream() {
1401     assert_synch();
1402   }
1403 #endif
1404 
1405   MergeMemNode* all_memory() const {
1406     return _mm;
1407   }
1408   Node* base_memory() const {
1409     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1410     return _mm_base;
1411   }
1412   const MergeMemNode* all_memory2() const {
1413     assert(_mm2 != NULL, "");
1414     return _mm2;
1415   }
1416   bool at_base_memory() const {
1417     return _idx == Compile::AliasIdxBot;
1418   }
1419   int alias_idx() const {
1420     assert(_mem, "must call next 1st");
1421     return _idx;
1422   }
1423 
1424   const TypePtr* adr_type() const {
1425     return Compile::current()->get_adr_type(alias_idx());
1426   }
1427 
1428   const TypePtr* adr_type(Compile* C) const {
1429     return C->get_adr_type(alias_idx());
1430   }
1431   bool is_empty() const {
1432     assert(_mem, "must call next 1st");
1433     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1434     return _mem->is_top();
1435   }
1436   bool is_empty2() const {
1437     assert(_mem2, "must call next 1st");
1438     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1439     return _mem2->is_top();
1440   }
1441   Node* memory() const {
1442     assert(!is_empty(), "must not be empty");
1443     assert_synch();
1444     return _mem;
1445   }
1446   // get the current memory, regardless of empty or non-empty status
1447   Node* force_memory() const {
1448     assert(!is_empty() || !at_base_memory(), "");
1449     // Use _mm_base to defend against updates to _mem->base_memory().
1450     Node *mem = _mem->is_top() ? _mm_base : _mem;
1451     assert(mem == check_memory(), "");
1452     return mem;
1453   }
1454   Node* memory2() const {
1455     assert(_mem2 == check_memory2(), "");
1456     return _mem2;
1457   }
1458   void set_memory(Node* mem) {
1459     if (at_base_memory()) {
1460       // Note that this does not change the invariant _mm_base.
1461       _mm->set_base_memory(mem);
1462     } else {
1463       _mm->set_memory_at(_idx, mem);
1464     }
1465     _mem = mem;
1466     assert_synch();
1467   }
1468 
1469   // Recover from a side effect to the MergeMemNode.
1470   void set_memory() {
1471     _mem = _mm->in(_idx);
1472   }
1473 
1474   bool next()  { return next(false); }
1475   bool next2() { return next(true); }
1476 
1477   bool next_non_empty()  { return next_non_empty(false); }
1478   bool next_non_empty2() { return next_non_empty(true); }
1479   // next_non_empty2 can yield states where is_empty() is true
1480 
1481  private:
1482   // find the next item, which might be empty
1483   bool next(bool have_mm2) {
1484     assert((_mm2 != NULL) == have_mm2, "use other next");
1485     assert_synch();
1486     if (++_idx < _cnt) {
1487       // Note:  This iterator allows _mm to be non-sparse.
1488       // It behaves the same whether _mem is top or base_memory.
1489       _mem = _mm->in(_idx);
1490       if (have_mm2)
1491         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1492       return true;
1493     }
1494     return false;
1495   }
1496 
1497   // find the next non-empty item
1498   bool next_non_empty(bool have_mm2) {
1499     while (next(have_mm2)) {
1500       if (!is_empty()) {
1501         // make sure _mem2 is filled in sensibly
1502         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1503         return true;
1504       } else if (have_mm2 && !is_empty2()) {
1505         return true;   // is_empty() == true
1506       }
1507     }
1508     return false;
1509   }
1510 };
1511 
1512 //------------------------------Prefetch---------------------------------------
1513 
1514 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1515 class PrefetchAllocationNode : public Node {
1516 public:
1517   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1518   virtual int Opcode() const;
1519   virtual uint ideal_reg() const { return NotAMachineReg; }
1520   virtual uint match_edge(uint idx) const { return idx==2; }
1521   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1522 };
1523 
1524 #endif // SHARE_VM_OPTO_MEMNODE_HPP