1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import java.lang.reflect.Field;
  29 import java.security.ProtectionDomain;
  30 
  31 import sun.reflect.CallerSensitive;
  32 import sun.reflect.Reflection;
  33 import jdk.internal.misc.VM;
  34 
  35 import jdk.internal.HotSpotIntrinsicCandidate;
  36 
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * @author John R. Rose
  44  * @see #getUnsafe
  45  */
  46 
  47 public final class Unsafe {
  48 
  49     private static native void registerNatives();
  50     static {
  51         registerNatives();
  52         sun.reflect.Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
  53     }
  54 
  55     private Unsafe() {}
  56 
  57     private static final Unsafe theUnsafe = new Unsafe();
  58 
  59     /**
  60      * Provides the caller with the capability of performing unsafe
  61      * operations.
  62      *
  63      * <p>The returned {@code Unsafe} object should be carefully guarded
  64      * by the caller, since it can be used to read and write data at arbitrary
  65      * memory addresses.  It must never be passed to untrusted code.
  66      *
  67      * <p>Most methods in this class are very low-level, and correspond to a
  68      * small number of hardware instructions (on typical machines).  Compilers
  69      * are encouraged to optimize these methods accordingly.
  70      *
  71      * <p>Here is a suggested idiom for using unsafe operations:
  72      *
  73      * <pre> {@code
  74      * class MyTrustedClass {
  75      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  76      *   ...
  77      *   private long myCountAddress = ...;
  78      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  79      * }}</pre>
  80      *
  81      * (It may assist compilers to make the local variable {@code final}.)
  82      *
  83      * @throws  SecurityException  if a security manager exists and its
  84      *          {@code checkPropertiesAccess} method doesn't allow
  85      *          access to the system properties.
  86      */
  87     @CallerSensitive
  88     public static Unsafe getUnsafe() {
  89         Class<?> caller = Reflection.getCallerClass();
  90         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
  91             throw new SecurityException("Unsafe");
  92         return theUnsafe;
  93     }
  94 
  95     /// peek and poke operations
  96     /// (compilers should optimize these to memory ops)
  97 
  98     // These work on object fields in the Java heap.
  99     // They will not work on elements of packed arrays.
 100 
 101     /**
 102      * Fetches a value from a given Java variable.
 103      * More specifically, fetches a field or array element within the given
 104      * object {@code o} at the given offset, or (if {@code o} is null)
 105      * from the memory address whose numerical value is the given offset.
 106      * <p>
 107      * The results are undefined unless one of the following cases is true:
 108      * <ul>
 109      * <li>The offset was obtained from {@link #objectFieldOffset} on
 110      * the {@link java.lang.reflect.Field} of some Java field and the object
 111      * referred to by {@code o} is of a class compatible with that
 112      * field's class.
 113      *
 114      * <li>The offset and object reference {@code o} (either null or
 115      * non-null) were both obtained via {@link #staticFieldOffset}
 116      * and {@link #staticFieldBase} (respectively) from the
 117      * reflective {@link Field} representation of some Java field.
 118      *
 119      * <li>The object referred to by {@code o} is an array, and the offset
 120      * is an integer of the form {@code B+N*S}, where {@code N} is
 121      * a valid index into the array, and {@code B} and {@code S} are
 122      * the values obtained by {@link #arrayBaseOffset} and {@link
 123      * #arrayIndexScale} (respectively) from the array's class.  The value
 124      * referred to is the {@code N}<em>th</em> element of the array.
 125      *
 126      * </ul>
 127      * <p>
 128      * If one of the above cases is true, the call references a specific Java
 129      * variable (field or array element).  However, the results are undefined
 130      * if that variable is not in fact of the type returned by this method.
 131      * <p>
 132      * This method refers to a variable by means of two parameters, and so
 133      * it provides (in effect) a <em>double-register</em> addressing mode
 134      * for Java variables.  When the object reference is null, this method
 135      * uses its offset as an absolute address.  This is similar in operation
 136      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 137      * <em>single-register</em> addressing mode for non-Java variables.
 138      * However, because Java variables may have a different layout in memory
 139      * from non-Java variables, programmers should not assume that these
 140      * two addressing modes are ever equivalent.  Also, programmers should
 141      * remember that offsets from the double-register addressing mode cannot
 142      * be portably confused with longs used in the single-register addressing
 143      * mode.
 144      *
 145      * @param o Java heap object in which the variable resides, if any, else
 146      *        null
 147      * @param offset indication of where the variable resides in a Java heap
 148      *        object, if any, else a memory address locating the variable
 149      *        statically
 150      * @return the value fetched from the indicated Java variable
 151      * @throws RuntimeException No defined exceptions are thrown, not even
 152      *         {@link NullPointerException}
 153      */
 154     @HotSpotIntrinsicCandidate
 155     public native int getInt(Object o, long offset);
 156 
 157     /**
 158      * Stores a value into a given Java variable.
 159      * <p>
 160      * The first two parameters are interpreted exactly as with
 161      * {@link #getInt(Object, long)} to refer to a specific
 162      * Java variable (field or array element).  The given value
 163      * is stored into that variable.
 164      * <p>
 165      * The variable must be of the same type as the method
 166      * parameter {@code x}.
 167      *
 168      * @param o Java heap object in which the variable resides, if any, else
 169      *        null
 170      * @param offset indication of where the variable resides in a Java heap
 171      *        object, if any, else a memory address locating the variable
 172      *        statically
 173      * @param x the value to store into the indicated Java variable
 174      * @throws RuntimeException No defined exceptions are thrown, not even
 175      *         {@link NullPointerException}
 176      */
 177     @HotSpotIntrinsicCandidate
 178     public native void putInt(Object o, long offset, int x);
 179 
 180     /**
 181      * Fetches a reference value from a given Java variable.
 182      * @see #getInt(Object, long)
 183      */
 184     @HotSpotIntrinsicCandidate
 185     public native Object getObject(Object o, long offset);
 186 
 187     /**
 188      * Stores a reference value into a given Java variable.
 189      * <p>
 190      * Unless the reference {@code x} being stored is either null
 191      * or matches the field type, the results are undefined.
 192      * If the reference {@code o} is non-null, card marks or
 193      * other store barriers for that object (if the VM requires them)
 194      * are updated.
 195      * @see #putInt(Object, long, int)
 196      */
 197     @HotSpotIntrinsicCandidate
 198     public native void putObject(Object o, long offset, Object x);
 199 
 200     /** @see #getInt(Object, long) */
 201     @HotSpotIntrinsicCandidate
 202     public native boolean getBoolean(Object o, long offset);
 203     /** @see #putInt(Object, long, int) */
 204     @HotSpotIntrinsicCandidate
 205     public native void    putBoolean(Object o, long offset, boolean x);
 206     /** @see #getInt(Object, long) */
 207     @HotSpotIntrinsicCandidate
 208     public native byte    getByte(Object o, long offset);
 209     /** @see #putInt(Object, long, int) */
 210     @HotSpotIntrinsicCandidate
 211     public native void    putByte(Object o, long offset, byte x);
 212     /** @see #getInt(Object, long) */
 213     @HotSpotIntrinsicCandidate
 214     public native short   getShort(Object o, long offset);
 215     /** @see #putInt(Object, long, int) */
 216     @HotSpotIntrinsicCandidate
 217     public native void    putShort(Object o, long offset, short x);
 218     /** @see #getInt(Object, long) */
 219     @HotSpotIntrinsicCandidate
 220     public native char    getChar(Object o, long offset);
 221     /** @see #putInt(Object, long, int) */
 222     @HotSpotIntrinsicCandidate
 223     public native void    putChar(Object o, long offset, char x);
 224     /** @see #getInt(Object, long) */
 225     @HotSpotIntrinsicCandidate
 226     public native long    getLong(Object o, long offset);
 227     /** @see #putInt(Object, long, int) */
 228     @HotSpotIntrinsicCandidate
 229     public native void    putLong(Object o, long offset, long x);
 230     /** @see #getInt(Object, long) */
 231     @HotSpotIntrinsicCandidate
 232     public native float   getFloat(Object o, long offset);
 233     /** @see #putInt(Object, long, int) */
 234     @HotSpotIntrinsicCandidate
 235     public native void    putFloat(Object o, long offset, float x);
 236     /** @see #getInt(Object, long) */
 237     @HotSpotIntrinsicCandidate
 238     public native double  getDouble(Object o, long offset);
 239     /** @see #putInt(Object, long, int) */
 240     @HotSpotIntrinsicCandidate
 241     public native void    putDouble(Object o, long offset, double x);
 242 
 243     // These read VM internal data.
 244 
 245     /**
 246      * Fetches an uncompressed reference value from a given native variable
 247      * ignoring the VM's compressed references mode.
 248      *
 249      * @param address a memory address locating the variable
 250      * @return the value fetched from the indicated native variable
 251      */
 252     public native Object getUncompressedObject(long address);
 253 
 254     /**
 255      * Fetches the {@link java.lang.Class} Java mirror for the given native
 256      * metaspace {@code Klass} pointer.
 257      *
 258      * @param metaspaceKlass a native metaspace {@code Klass} pointer
 259      * @return the {@link java.lang.Class} Java mirror
 260      */
 261     public native Class<?> getJavaMirror(long metaspaceKlass);
 262 
 263     /**
 264      * Fetches a native metaspace {@code Klass} pointer for the given Java
 265      * object.
 266      *
 267      * @param o Java heap object for which to fetch the class pointer
 268      * @return a native metaspace {@code Klass} pointer
 269      */
 270     public native long getKlassPointer(Object o);
 271 
 272     // These work on values in the C heap.
 273 
 274     /**
 275      * Fetches a value from a given memory address.  If the address is zero, or
 276      * does not point into a block obtained from {@link #allocateMemory}, the
 277      * results are undefined.
 278      *
 279      * @see #allocateMemory
 280      */
 281     @HotSpotIntrinsicCandidate
 282     public native byte    getByte(long address);
 283 
 284     /**
 285      * Stores a value into a given memory address.  If the address is zero, or
 286      * does not point into a block obtained from {@link #allocateMemory}, the
 287      * results are undefined.
 288      *
 289      * @see #getByte(long)
 290      */
 291     @HotSpotIntrinsicCandidate
 292     public native void    putByte(long address, byte x);
 293 
 294     /** @see #getByte(long) */
 295     @HotSpotIntrinsicCandidate
 296     public native short   getShort(long address);
 297     /** @see #putByte(long, byte) */
 298     @HotSpotIntrinsicCandidate
 299     public native void    putShort(long address, short x);
 300     /** @see #getByte(long) */
 301     @HotSpotIntrinsicCandidate
 302     public native char    getChar(long address);
 303     /** @see #putByte(long, byte) */
 304     @HotSpotIntrinsicCandidate
 305     public native void    putChar(long address, char x);
 306     /** @see #getByte(long) */
 307     @HotSpotIntrinsicCandidate
 308     public native int     getInt(long address);
 309     /** @see #putByte(long, byte) */
 310     @HotSpotIntrinsicCandidate
 311     public native void    putInt(long address, int x);
 312     /** @see #getByte(long) */
 313     @HotSpotIntrinsicCandidate
 314     public native long    getLong(long address);
 315     /** @see #putByte(long, byte) */
 316     @HotSpotIntrinsicCandidate
 317     public native void    putLong(long address, long x);
 318     /** @see #getByte(long) */
 319     @HotSpotIntrinsicCandidate
 320     public native float   getFloat(long address);
 321     /** @see #putByte(long, byte) */
 322     @HotSpotIntrinsicCandidate
 323     public native void    putFloat(long address, float x);
 324     /** @see #getByte(long) */
 325     @HotSpotIntrinsicCandidate
 326     public native double  getDouble(long address);
 327     /** @see #putByte(long, byte) */
 328     @HotSpotIntrinsicCandidate
 329     public native void    putDouble(long address, double x);
 330 
 331     /**
 332      * Fetches a native pointer from a given memory address.  If the address is
 333      * zero, or does not point into a block obtained from {@link
 334      * #allocateMemory}, the results are undefined.
 335      *
 336      * <p>If the native pointer is less than 64 bits wide, it is extended as
 337      * an unsigned number to a Java long.  The pointer may be indexed by any
 338      * given byte offset, simply by adding that offset (as a simple integer) to
 339      * the long representing the pointer.  The number of bytes actually read
 340      * from the target address may be determined by consulting {@link
 341      * #addressSize}.
 342      *
 343      * @see #allocateMemory
 344      */
 345     @HotSpotIntrinsicCandidate
 346     public native long getAddress(long address);
 347 
 348     /**
 349      * Stores a native pointer into a given memory address.  If the address is
 350      * zero, or does not point into a block obtained from {@link
 351      * #allocateMemory}, the results are undefined.
 352      *
 353      * <p>The number of bytes actually written at the target address may be
 354      * determined by consulting {@link #addressSize}.
 355      *
 356      * @see #getAddress(long)
 357      */
 358     @HotSpotIntrinsicCandidate
 359     public native void putAddress(long address, long x);
 360 
 361     /// wrappers for malloc, realloc, free:
 362 
 363     /**
 364      * Allocates a new block of native memory, of the given size in bytes.  The
 365      * contents of the memory are uninitialized; they will generally be
 366      * garbage.  The resulting native pointer will never be zero, and will be
 367      * aligned for all value types.  Dispose of this memory by calling {@link
 368      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 369      *
 370      * @throws IllegalArgumentException if the size is negative or too large
 371      *         for the native size_t type
 372      *
 373      * @throws OutOfMemoryError if the allocation is refused by the system
 374      *
 375      * @see #getByte(long)
 376      * @see #putByte(long, byte)
 377      */
 378     public native long allocateMemory(long bytes);
 379 
 380     /**
 381      * Resizes a new block of native memory, to the given size in bytes.  The
 382      * contents of the new block past the size of the old block are
 383      * uninitialized; they will generally be garbage.  The resulting native
 384      * pointer will be zero if and only if the requested size is zero.  The
 385      * resulting native pointer will be aligned for all value types.  Dispose
 386      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 387      * #reallocateMemory}.  The address passed to this method may be null, in
 388      * which case an allocation will be performed.
 389      *
 390      * @throws IllegalArgumentException if the size is negative or too large
 391      *         for the native size_t type
 392      *
 393      * @throws OutOfMemoryError if the allocation is refused by the system
 394      *
 395      * @see #allocateMemory
 396      */
 397     public native long reallocateMemory(long address, long bytes);
 398 
 399     /**
 400      * Sets all bytes in a given block of memory to a fixed value
 401      * (usually zero).
 402      *
 403      * <p>This method determines a block's base address by means of two parameters,
 404      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 405      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 406      * the offset supplies an absolute base address.
 407      *
 408      * <p>The stores are in coherent (atomic) units of a size determined
 409      * by the address and length parameters.  If the effective address and
 410      * length are all even modulo 8, the stores take place in 'long' units.
 411      * If the effective address and length are (resp.) even modulo 4 or 2,
 412      * the stores take place in units of 'int' or 'short'.
 413      *
 414      * @since 1.7
 415      */
 416     public native void setMemory(Object o, long offset, long bytes, byte value);
 417 
 418     /**
 419      * Sets all bytes in a given block of memory to a fixed value
 420      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 421      * as discussed in {@link #getInt(Object,long)}.
 422      *
 423      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 424      */
 425     public void setMemory(long address, long bytes, byte value) {
 426         setMemory(null, address, bytes, value);
 427     }
 428 
 429     /**
 430      * Sets all bytes in a given block of memory to a copy of another
 431      * block.
 432      *
 433      * <p>This method determines each block's base address by means of two parameters,
 434      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 435      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 436      * the offset supplies an absolute base address.
 437      *
 438      * <p>The transfers are in coherent (atomic) units of a size determined
 439      * by the address and length parameters.  If the effective addresses and
 440      * length are all even modulo 8, the transfer takes place in 'long' units.
 441      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 442      * the transfer takes place in units of 'int' or 'short'.
 443      *
 444      * @since 1.7
 445      */
 446     @HotSpotIntrinsicCandidate
 447     public native void copyMemory(Object srcBase, long srcOffset,
 448                                   Object destBase, long destOffset,
 449                                   long bytes);
 450     /**
 451      * Sets all bytes in a given block of memory to a copy of another
 452      * block.  This provides a <em>single-register</em> addressing mode,
 453      * as discussed in {@link #getInt(Object,long)}.
 454      *
 455      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 456      */
 457     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 458         copyMemory(null, srcAddress, null, destAddress, bytes);
 459     }
 460 
 461     private boolean isPrimitiveArray(Class<?> c) {
 462         Class<?> componentType = c.getComponentType();
 463         return componentType != null && componentType.isPrimitive();
 464     }
 465 
 466     private native void copySwapMemory0(Object srcBase, long srcOffset,
 467                                         Object destBase, long destOffset,
 468                                         long bytes, long elemSize);
 469 
 470     /**
 471      * Copies all elements from one block of memory to another block,
 472      * *unconditionally* byte swapping the elements on the fly.
 473      *
 474      * <p>This method determines each block's base address by means of two parameters,
 475      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 476      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 477      * the offset supplies an absolute base address.
 478      *
 479      * @since 9
 480      */
 481     public void copySwapMemory(Object srcBase, long srcOffset,
 482                                Object destBase, long destOffset,
 483                                long bytes, long elemSize) {
 484         if (bytes < 0) {
 485             throw new IllegalArgumentException();
 486         }
 487         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 488             throw new IllegalArgumentException();
 489         }
 490         if (bytes % elemSize != 0) {
 491             throw new IllegalArgumentException();
 492         }
 493         if ((srcBase == null && srcOffset == 0) ||
 494             (destBase == null && destOffset == 0)) {
 495             throw new NullPointerException();
 496         }
 497 
 498         // Must be off-heap, or primitive heap arrays
 499         if (srcBase != null && (srcOffset < 0 || !isPrimitiveArray(srcBase.getClass()))) {
 500             throw new IllegalArgumentException();
 501         }
 502         if (destBase != null && (destOffset < 0 || !isPrimitiveArray(destBase.getClass()))) {
 503             throw new IllegalArgumentException();
 504         }
 505 
 506         // Sanity check size and offsets on 32-bit platforms. Most
 507         // significant 32 bits must be zero.
 508         if (ADDRESS_SIZE == 4 &&
 509             (bytes >>> 32 != 0 || srcOffset >>> 32 != 0 || destOffset >>> 32 != 0)) {
 510             throw new IllegalArgumentException();
 511         }
 512 
 513         if (bytes == 0) {
 514             return;
 515         }
 516 
 517         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 518     }
 519 
 520    /**
 521      * Copies all elements from one block of memory to another block, byte swapping the
 522      * elements on the fly.
 523      *
 524      * This provides a <em>single-register</em> addressing mode, as
 525      * discussed in {@link #getInt(Object,long)}.
 526      *
 527      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 528      */
 529     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 530         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 531     }
 532 
 533     /**
 534      * Disposes of a block of native memory, as obtained from {@link
 535      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 536      * this method may be null, in which case no action is taken.
 537      *
 538      * @see #allocateMemory
 539      */
 540     public native void freeMemory(long address);
 541 
 542     /// random queries
 543 
 544     /**
 545      * This constant differs from all results that will ever be returned from
 546      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 547      * or {@link #arrayBaseOffset}.
 548      */
 549     public static final int INVALID_FIELD_OFFSET   = -1;
 550 
 551     /**
 552      * Reports the location of a given field in the storage allocation of its
 553      * class.  Do not expect to perform any sort of arithmetic on this offset;
 554      * it is just a cookie which is passed to the unsafe heap memory accessors.
 555      *
 556      * <p>Any given field will always have the same offset and base, and no
 557      * two distinct fields of the same class will ever have the same offset
 558      * and base.
 559      *
 560      * <p>As of 1.4.1, offsets for fields are represented as long values,
 561      * although the Sun JVM does not use the most significant 32 bits.
 562      * However, JVM implementations which store static fields at absolute
 563      * addresses can use long offsets and null base pointers to express
 564      * the field locations in a form usable by {@link #getInt(Object,long)}.
 565      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 566      * must preserve all bits of static field offsets.
 567      * @see #getInt(Object, long)
 568      */
 569     public native long objectFieldOffset(Field f);
 570 
 571     /**
 572      * Reports the location of a given static field, in conjunction with {@link
 573      * #staticFieldBase}.
 574      * <p>Do not expect to perform any sort of arithmetic on this offset;
 575      * it is just a cookie which is passed to the unsafe heap memory accessors.
 576      *
 577      * <p>Any given field will always have the same offset, and no two distinct
 578      * fields of the same class will ever have the same offset.
 579      *
 580      * <p>As of 1.4.1, offsets for fields are represented as long values,
 581      * although the Sun JVM does not use the most significant 32 bits.
 582      * It is hard to imagine a JVM technology which needs more than
 583      * a few bits to encode an offset within a non-array object,
 584      * However, for consistency with other methods in this class,
 585      * this method reports its result as a long value.
 586      * @see #getInt(Object, long)
 587      */
 588     public native long staticFieldOffset(Field f);
 589 
 590     /**
 591      * Reports the location of a given static field, in conjunction with {@link
 592      * #staticFieldOffset}.
 593      * <p>Fetch the base "Object", if any, with which static fields of the
 594      * given class can be accessed via methods like {@link #getInt(Object,
 595      * long)}.  This value may be null.  This value may refer to an object
 596      * which is a "cookie", not guaranteed to be a real Object, and it should
 597      * not be used in any way except as argument to the get and put routines in
 598      * this class.
 599      */
 600     public native Object staticFieldBase(Field f);
 601 
 602     /**
 603      * Detects if the given class may need to be initialized. This is often
 604      * needed in conjunction with obtaining the static field base of a
 605      * class.
 606      * @return false only if a call to {@code ensureClassInitialized} would have no effect
 607      */
 608     public native boolean shouldBeInitialized(Class<?> c);
 609 
 610     /**
 611      * Ensures the given class has been initialized. This is often
 612      * needed in conjunction with obtaining the static field base of a
 613      * class.
 614      */
 615     public native void ensureClassInitialized(Class<?> c);
 616 
 617     /**
 618      * Reports the offset of the first element in the storage allocation of a
 619      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
 620      * for the same class, you may use that scale factor, together with this
 621      * base offset, to form new offsets to access elements of arrays of the
 622      * given class.
 623      *
 624      * @see #getInt(Object, long)
 625      * @see #putInt(Object, long, int)
 626      */
 627     public native int arrayBaseOffset(Class<?> arrayClass);
 628 
 629     /** The value of {@code arrayBaseOffset(boolean[].class)} */
 630     public static final int ARRAY_BOOLEAN_BASE_OFFSET
 631             = theUnsafe.arrayBaseOffset(boolean[].class);
 632 
 633     /** The value of {@code arrayBaseOffset(byte[].class)} */
 634     public static final int ARRAY_BYTE_BASE_OFFSET
 635             = theUnsafe.arrayBaseOffset(byte[].class);
 636 
 637     /** The value of {@code arrayBaseOffset(short[].class)} */
 638     public static final int ARRAY_SHORT_BASE_OFFSET
 639             = theUnsafe.arrayBaseOffset(short[].class);
 640 
 641     /** The value of {@code arrayBaseOffset(char[].class)} */
 642     public static final int ARRAY_CHAR_BASE_OFFSET
 643             = theUnsafe.arrayBaseOffset(char[].class);
 644 
 645     /** The value of {@code arrayBaseOffset(int[].class)} */
 646     public static final int ARRAY_INT_BASE_OFFSET
 647             = theUnsafe.arrayBaseOffset(int[].class);
 648 
 649     /** The value of {@code arrayBaseOffset(long[].class)} */
 650     public static final int ARRAY_LONG_BASE_OFFSET
 651             = theUnsafe.arrayBaseOffset(long[].class);
 652 
 653     /** The value of {@code arrayBaseOffset(float[].class)} */
 654     public static final int ARRAY_FLOAT_BASE_OFFSET
 655             = theUnsafe.arrayBaseOffset(float[].class);
 656 
 657     /** The value of {@code arrayBaseOffset(double[].class)} */
 658     public static final int ARRAY_DOUBLE_BASE_OFFSET
 659             = theUnsafe.arrayBaseOffset(double[].class);
 660 
 661     /** The value of {@code arrayBaseOffset(Object[].class)} */
 662     public static final int ARRAY_OBJECT_BASE_OFFSET
 663             = theUnsafe.arrayBaseOffset(Object[].class);
 664 
 665     /**
 666      * Reports the scale factor for addressing elements in the storage
 667      * allocation of a given array class.  However, arrays of "narrow" types
 668      * will generally not work properly with accessors like {@link
 669      * #getByte(Object, long)}, so the scale factor for such classes is reported
 670      * as zero.
 671      *
 672      * @see #arrayBaseOffset
 673      * @see #getInt(Object, long)
 674      * @see #putInt(Object, long, int)
 675      */
 676     public native int arrayIndexScale(Class<?> arrayClass);
 677 
 678     /** The value of {@code arrayIndexScale(boolean[].class)} */
 679     public static final int ARRAY_BOOLEAN_INDEX_SCALE
 680             = theUnsafe.arrayIndexScale(boolean[].class);
 681 
 682     /** The value of {@code arrayIndexScale(byte[].class)} */
 683     public static final int ARRAY_BYTE_INDEX_SCALE
 684             = theUnsafe.arrayIndexScale(byte[].class);
 685 
 686     /** The value of {@code arrayIndexScale(short[].class)} */
 687     public static final int ARRAY_SHORT_INDEX_SCALE
 688             = theUnsafe.arrayIndexScale(short[].class);
 689 
 690     /** The value of {@code arrayIndexScale(char[].class)} */
 691     public static final int ARRAY_CHAR_INDEX_SCALE
 692             = theUnsafe.arrayIndexScale(char[].class);
 693 
 694     /** The value of {@code arrayIndexScale(int[].class)} */
 695     public static final int ARRAY_INT_INDEX_SCALE
 696             = theUnsafe.arrayIndexScale(int[].class);
 697 
 698     /** The value of {@code arrayIndexScale(long[].class)} */
 699     public static final int ARRAY_LONG_INDEX_SCALE
 700             = theUnsafe.arrayIndexScale(long[].class);
 701 
 702     /** The value of {@code arrayIndexScale(float[].class)} */
 703     public static final int ARRAY_FLOAT_INDEX_SCALE
 704             = theUnsafe.arrayIndexScale(float[].class);
 705 
 706     /** The value of {@code arrayIndexScale(double[].class)} */
 707     public static final int ARRAY_DOUBLE_INDEX_SCALE
 708             = theUnsafe.arrayIndexScale(double[].class);
 709 
 710     /** The value of {@code arrayIndexScale(Object[].class)} */
 711     public static final int ARRAY_OBJECT_INDEX_SCALE
 712             = theUnsafe.arrayIndexScale(Object[].class);
 713 
 714     /**
 715      * Reports the size in bytes of a native pointer, as stored via {@link
 716      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
 717      * other primitive types (as stored in native memory blocks) is determined
 718      * fully by their information content.
 719      */
 720     public native int addressSize();
 721 
 722     /** The value of {@code addressSize()} */
 723     public static final int ADDRESS_SIZE = theUnsafe.addressSize();
 724 
 725     /**
 726      * Reports the size in bytes of a native memory page (whatever that is).
 727      * This value will always be a power of two.
 728      */
 729     public native int pageSize();
 730 
 731 
 732     /// random trusted operations from JNI:
 733 
 734     /**
 735      * Tells the VM to define a class, without security checks.  By default, the
 736      * class loader and protection domain come from the caller's class.
 737      */
 738     public native Class<?> defineClass(String name, byte[] b, int off, int len,
 739                                        ClassLoader loader,
 740                                        ProtectionDomain protectionDomain);
 741 
 742     /**
 743      * Defines a class but does not make it known to the class loader or system dictionary.
 744      * <p>
 745      * For each CP entry, the corresponding CP patch must either be null or have
 746      * the a format that matches its tag:
 747      * <ul>
 748      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
 749      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
 750      * <li>Class: any java.lang.Class object
 751      * <li>String: any object (not just a java.lang.String)
 752      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
 753      * </ul>
 754      * @param hostClass context for linkage, access control, protection domain, and class loader
 755      * @param data      bytes of a class file
 756      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
 757      */
 758     public native Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches);
 759 
 760     /**
 761      * Allocates an instance but does not run any constructor.
 762      * Initializes the class if it has not yet been.
 763      */
 764     @HotSpotIntrinsicCandidate
 765     public native Object allocateInstance(Class<?> cls)
 766         throws InstantiationException;
 767 
 768     /** Throws the exception without telling the verifier. */
 769     public native void throwException(Throwable ee);
 770 
 771     /**
 772      * Atomically updates Java variable to {@code x} if it is currently
 773      * holding {@code expected}.
 774      *
 775      * <p>This operation has memory semantics of a {@code volatile} read
 776      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 777      *
 778      * @return {@code true} if successful
 779      */
 780     @HotSpotIntrinsicCandidate
 781     public final native boolean compareAndSwapObject(Object o, long offset,
 782                                                      Object expected,
 783                                                      Object x);
 784 
 785     /**
 786      * Atomically updates Java variable to {@code x} if it is currently
 787      * holding {@code expected}.
 788      *
 789      * <p>This operation has memory semantics of a {@code volatile} read
 790      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 791      *
 792      * @return {@code true} if successful
 793      */
 794     @HotSpotIntrinsicCandidate
 795     public final native boolean compareAndSwapInt(Object o, long offset,
 796                                                   int expected,
 797                                                   int x);
 798 
 799     /**
 800      * Atomically updates Java variable to {@code x} if it is currently
 801      * holding {@code expected}.
 802      *
 803      * <p>This operation has memory semantics of a {@code volatile} read
 804      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 805      *
 806      * @return {@code true} if successful
 807      */
 808     @HotSpotIntrinsicCandidate
 809     public final native boolean compareAndSwapLong(Object o, long offset,
 810                                                    long expected,
 811                                                    long x);
 812 
 813     /**
 814      * Fetches a reference value from a given Java variable, with volatile
 815      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
 816      */
 817     @HotSpotIntrinsicCandidate
 818     public native Object getObjectVolatile(Object o, long offset);
 819 
 820     /**
 821      * Stores a reference value into a given Java variable, with
 822      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
 823      */
 824     @HotSpotIntrinsicCandidate
 825     public native void    putObjectVolatile(Object o, long offset, Object x);
 826 
 827     /** Volatile version of {@link #getInt(Object, long)}  */
 828     @HotSpotIntrinsicCandidate
 829     public native int     getIntVolatile(Object o, long offset);
 830 
 831     /** Volatile version of {@link #putInt(Object, long, int)}  */
 832     @HotSpotIntrinsicCandidate
 833     public native void    putIntVolatile(Object o, long offset, int x);
 834 
 835     /** Volatile version of {@link #getBoolean(Object, long)}  */
 836     @HotSpotIntrinsicCandidate
 837     public native boolean getBooleanVolatile(Object o, long offset);
 838 
 839     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
 840     @HotSpotIntrinsicCandidate
 841     public native void    putBooleanVolatile(Object o, long offset, boolean x);
 842 
 843     /** Volatile version of {@link #getByte(Object, long)}  */
 844     @HotSpotIntrinsicCandidate
 845     public native byte    getByteVolatile(Object o, long offset);
 846 
 847     /** Volatile version of {@link #putByte(Object, long, byte)}  */
 848     @HotSpotIntrinsicCandidate
 849     public native void    putByteVolatile(Object o, long offset, byte x);
 850 
 851     /** Volatile version of {@link #getShort(Object, long)}  */
 852     @HotSpotIntrinsicCandidate
 853     public native short   getShortVolatile(Object o, long offset);
 854 
 855     /** Volatile version of {@link #putShort(Object, long, short)}  */
 856     @HotSpotIntrinsicCandidate
 857     public native void    putShortVolatile(Object o, long offset, short x);
 858 
 859     /** Volatile version of {@link #getChar(Object, long)}  */
 860     @HotSpotIntrinsicCandidate
 861     public native char    getCharVolatile(Object o, long offset);
 862 
 863     /** Volatile version of {@link #putChar(Object, long, char)}  */
 864     @HotSpotIntrinsicCandidate
 865     public native void    putCharVolatile(Object o, long offset, char x);
 866 
 867     /** Volatile version of {@link #getLong(Object, long)}  */
 868     @HotSpotIntrinsicCandidate
 869     public native long    getLongVolatile(Object o, long offset);
 870 
 871     /** Volatile version of {@link #putLong(Object, long, long)}  */
 872     @HotSpotIntrinsicCandidate
 873     public native void    putLongVolatile(Object o, long offset, long x);
 874 
 875     /** Volatile version of {@link #getFloat(Object, long)}  */
 876     @HotSpotIntrinsicCandidate
 877     public native float   getFloatVolatile(Object o, long offset);
 878 
 879     /** Volatile version of {@link #putFloat(Object, long, float)}  */
 880     @HotSpotIntrinsicCandidate
 881     public native void    putFloatVolatile(Object o, long offset, float x);
 882 
 883     /** Volatile version of {@link #getDouble(Object, long)}  */
 884     @HotSpotIntrinsicCandidate
 885     public native double  getDoubleVolatile(Object o, long offset);
 886 
 887     /** Volatile version of {@link #putDouble(Object, long, double)}  */
 888     @HotSpotIntrinsicCandidate
 889     public native void    putDoubleVolatile(Object o, long offset, double x);
 890 
 891     /**
 892      * Version of {@link #putObjectVolatile(Object, long, Object)}
 893      * that does not guarantee immediate visibility of the store to
 894      * other threads. This method is generally only useful if the
 895      * underlying field is a Java volatile (or if an array cell, one
 896      * that is otherwise only accessed using volatile accesses).
 897      *
 898      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
 899      */
 900     @HotSpotIntrinsicCandidate
 901     public native void    putOrderedObject(Object o, long offset, Object x);
 902 
 903     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
 904     @HotSpotIntrinsicCandidate
 905     public native void    putOrderedInt(Object o, long offset, int x);
 906 
 907     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
 908     @HotSpotIntrinsicCandidate
 909     public native void    putOrderedLong(Object o, long offset, long x);
 910 
 911     /**
 912      * Unblocks the given thread blocked on {@code park}, or, if it is
 913      * not blocked, causes the subsequent call to {@code park} not to
 914      * block.  Note: this operation is "unsafe" solely because the
 915      * caller must somehow ensure that the thread has not been
 916      * destroyed. Nothing special is usually required to ensure this
 917      * when called from Java (in which there will ordinarily be a live
 918      * reference to the thread) but this is not nearly-automatically
 919      * so when calling from native code.
 920      *
 921      * @param thread the thread to unpark.
 922      */
 923     @HotSpotIntrinsicCandidate
 924     public native void unpark(Object thread);
 925 
 926     /**
 927      * Blocks current thread, returning when a balancing
 928      * {@code unpark} occurs, or a balancing {@code unpark} has
 929      * already occurred, or the thread is interrupted, or, if not
 930      * absolute and time is not zero, the given time nanoseconds have
 931      * elapsed, or if absolute, the given deadline in milliseconds
 932      * since Epoch has passed, or spuriously (i.e., returning for no
 933      * "reason"). Note: This operation is in the Unsafe class only
 934      * because {@code unpark} is, so it would be strange to place it
 935      * elsewhere.
 936      */
 937     @HotSpotIntrinsicCandidate
 938     public native void park(boolean isAbsolute, long time);
 939 
 940     /**
 941      * Gets the load average in the system run queue assigned
 942      * to the available processors averaged over various periods of time.
 943      * This method retrieves the given {@code nelem} samples and
 944      * assigns to the elements of the given {@code loadavg} array.
 945      * The system imposes a maximum of 3 samples, representing
 946      * averages over the last 1,  5,  and  15 minutes, respectively.
 947      *
 948      * @param loadavg an array of double of size nelems
 949      * @param nelems the number of samples to be retrieved and
 950      *        must be 1 to 3.
 951      *
 952      * @return the number of samples actually retrieved; or -1
 953      *         if the load average is unobtainable.
 954      */
 955     public native int getLoadAverage(double[] loadavg, int nelems);
 956 
 957     // The following contain CAS-based Java implementations used on
 958     // platforms not supporting native instructions
 959 
 960     /**
 961      * Atomically adds the given value to the current value of a field
 962      * or array element within the given object {@code o}
 963      * at the given {@code offset}.
 964      *
 965      * @param o object/array to update the field/element in
 966      * @param offset field/element offset
 967      * @param delta the value to add
 968      * @return the previous value
 969      * @since 1.8
 970      */
 971     @HotSpotIntrinsicCandidate
 972     public final int getAndAddInt(Object o, long offset, int delta) {
 973         int v;
 974         do {
 975             v = getIntVolatile(o, offset);
 976         } while (!compareAndSwapInt(o, offset, v, v + delta));
 977         return v;
 978     }
 979 
 980     /**
 981      * Atomically adds the given value to the current value of a field
 982      * or array element within the given object {@code o}
 983      * at the given {@code offset}.
 984      *
 985      * @param o object/array to update the field/element in
 986      * @param offset field/element offset
 987      * @param delta the value to add
 988      * @return the previous value
 989      * @since 1.8
 990      */
 991     @HotSpotIntrinsicCandidate
 992     public final long getAndAddLong(Object o, long offset, long delta) {
 993         long v;
 994         do {
 995             v = getLongVolatile(o, offset);
 996         } while (!compareAndSwapLong(o, offset, v, v + delta));
 997         return v;
 998     }
 999 
1000     /**
1001      * Atomically exchanges the given value with the current value of
1002      * a field or array element within the given object {@code o}
1003      * at the given {@code offset}.
1004      *
1005      * @param o object/array to update the field/element in
1006      * @param offset field/element offset
1007      * @param newValue new value
1008      * @return the previous value
1009      * @since 1.8
1010      */
1011     @HotSpotIntrinsicCandidate
1012     public final int getAndSetInt(Object o, long offset, int newValue) {
1013         int v;
1014         do {
1015             v = getIntVolatile(o, offset);
1016         } while (!compareAndSwapInt(o, offset, v, newValue));
1017         return v;
1018     }
1019 
1020     /**
1021      * Atomically exchanges the given value with the current value of
1022      * a field or array element within the given object {@code o}
1023      * at the given {@code offset}.
1024      *
1025      * @param o object/array to update the field/element in
1026      * @param offset field/element offset
1027      * @param newValue new value
1028      * @return the previous value
1029      * @since 1.8
1030      */
1031     @HotSpotIntrinsicCandidate
1032     public final long getAndSetLong(Object o, long offset, long newValue) {
1033         long v;
1034         do {
1035             v = getLongVolatile(o, offset);
1036         } while (!compareAndSwapLong(o, offset, v, newValue));
1037         return v;
1038     }
1039 
1040     /**
1041      * Atomically exchanges the given reference value with the current
1042      * reference value of a field or array element within the given
1043      * object {@code o} at the given {@code offset}.
1044      *
1045      * @param o object/array to update the field/element in
1046      * @param offset field/element offset
1047      * @param newValue new value
1048      * @return the previous value
1049      * @since 1.8
1050      */
1051     @HotSpotIntrinsicCandidate
1052     public final Object getAndSetObject(Object o, long offset, Object newValue) {
1053         Object v;
1054         do {
1055             v = getObjectVolatile(o, offset);
1056         } while (!compareAndSwapObject(o, offset, v, newValue));
1057         return v;
1058     }
1059 
1060 
1061     /**
1062      * Ensures that loads before the fence will not be reordered with loads and
1063      * stores after the fence; a "LoadLoad plus LoadStore barrier".
1064      *
1065      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
1066      * (an "acquire fence").
1067      *
1068      * A pure LoadLoad fence is not provided, since the addition of LoadStore
1069      * is almost always desired, and most current hardware instructions that
1070      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
1071      * @since 1.8
1072      */
1073     @HotSpotIntrinsicCandidate
1074     public native void loadFence();
1075 
1076     /**
1077      * Ensures that loads and stores before the fence will not be reordered with
1078      * stores after the fence; a "StoreStore plus LoadStore barrier".
1079      *
1080      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1081      * (a "release fence").
1082      *
1083      * A pure StoreStore fence is not provided, since the addition of LoadStore
1084      * is almost always desired, and most current hardware instructions that
1085      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1086      * @since 1.8
1087      */
1088     @HotSpotIntrinsicCandidate
1089     public native void storeFence();
1090 
1091     /**
1092      * Ensures that loads and stores before the fence will not be reordered
1093      * with loads and stores after the fence.  Implies the effects of both
1094      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1095      * barrier.
1096      *
1097      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1098      * @since 1.8
1099      */
1100     @HotSpotIntrinsicCandidate
1101     public native void fullFence();
1102 
1103     /**
1104      * Throws IllegalAccessError; for use by the VM for access control
1105      * error support.
1106      * @since 1.8
1107      */
1108     private static void throwIllegalAccessError() {
1109         throw new IllegalAccessError();
1110     }
1111 
1112     /**
1113      * @return Returns true if the native byte ordering of this
1114      * platform is big-endian, false if it is little-endian.
1115      */
1116     public final boolean isBigEndian() { return BE; }
1117 
1118     /**
1119      * @return Returns true if this platform is capable of performing
1120      * accesses at addresses which are not aligned for the type of the
1121      * primitive type being accessed, false otherwise.
1122      */
1123     public final boolean unalignedAccess() { return unalignedAccess; }
1124 
1125     /**
1126      * Fetches a value at some byte offset into a given Java object.
1127      * More specifically, fetches a value within the given object
1128      * <code>o</code> at the given offset, or (if <code>o</code> is
1129      * null) from the memory address whose numerical value is the
1130      * given offset.  <p>
1131      *
1132      * The specification of this method is the same as {@link
1133      * #getLong(Object, long)} except that the offset does not need to
1134      * have been obtained from {@link #objectFieldOffset} on the
1135      * {@link java.lang.reflect.Field} of some Java field.  The value
1136      * in memory is raw data, and need not correspond to any Java
1137      * variable.  Unless <code>o</code> is null, the value accessed
1138      * must be entirely within the allocated object.  The endianness
1139      * of the value in memory is the endianness of the native platform.
1140      *
1141      * <p> The read will be atomic with respect to the largest power
1142      * of two that divides the GCD of the offset and the storage size.
1143      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
1144      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
1145      * respectively.  There are no other guarantees of atomicity.
1146      * <p>
1147      * 8-byte atomicity is only guaranteed on platforms on which
1148      * support atomic accesses to longs.
1149      *
1150      * @param o Java heap object in which the value resides, if any, else
1151      *        null
1152      * @param offset The offset in bytes from the start of the object
1153      * @return the value fetched from the indicated object
1154      * @throws RuntimeException No defined exceptions are thrown, not even
1155      *         {@link NullPointerException}
1156      * @since 9
1157      */
1158     @HotSpotIntrinsicCandidate
1159     public final long getLongUnaligned(Object o, long offset) {
1160         if ((offset & 7) == 0) {
1161             return getLong(o, offset);
1162         } else if ((offset & 3) == 0) {
1163             return makeLong(getInt(o, offset),
1164                             getInt(o, offset + 4));
1165         } else if ((offset & 1) == 0) {
1166             return makeLong(getShort(o, offset),
1167                             getShort(o, offset + 2),
1168                             getShort(o, offset + 4),
1169                             getShort(o, offset + 6));
1170         } else {
1171             return makeLong(getByte(o, offset),
1172                             getByte(o, offset + 1),
1173                             getByte(o, offset + 2),
1174                             getByte(o, offset + 3),
1175                             getByte(o, offset + 4),
1176                             getByte(o, offset + 5),
1177                             getByte(o, offset + 6),
1178                             getByte(o, offset + 7));
1179         }
1180     }
1181     /**
1182      * As {@link #getLongUnaligned(Object, long)} but with an
1183      * additional argument which specifies the endianness of the value
1184      * as stored in memory.
1185      *
1186      * @param o Java heap object in which the variable resides
1187      * @param offset The offset in bytes from the start of the object
1188      * @param bigEndian The endianness of the value
1189      * @return the value fetched from the indicated object
1190      * @since 9
1191      */
1192     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
1193         return convEndian(bigEndian, getLongUnaligned(o, offset));
1194     }
1195 
1196     /** @see #getLongUnaligned(Object, long) */
1197     @HotSpotIntrinsicCandidate
1198     public final int getIntUnaligned(Object o, long offset) {
1199         if ((offset & 3) == 0) {
1200             return getInt(o, offset);
1201         } else if ((offset & 1) == 0) {
1202             return makeInt(getShort(o, offset),
1203                            getShort(o, offset + 2));
1204         } else {
1205             return makeInt(getByte(o, offset),
1206                            getByte(o, offset + 1),
1207                            getByte(o, offset + 2),
1208                            getByte(o, offset + 3));
1209         }
1210     }
1211     /** @see #getLongUnaligned(Object, long, boolean) */
1212     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
1213         return convEndian(bigEndian, getIntUnaligned(o, offset));
1214     }
1215 
1216     /** @see #getLongUnaligned(Object, long) */
1217     @HotSpotIntrinsicCandidate
1218     public final short getShortUnaligned(Object o, long offset) {
1219         if ((offset & 1) == 0) {
1220             return getShort(o, offset);
1221         } else {
1222             return makeShort(getByte(o, offset),
1223                              getByte(o, offset + 1));
1224         }
1225     }
1226     /** @see #getLongUnaligned(Object, long, boolean) */
1227     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
1228         return convEndian(bigEndian, getShortUnaligned(o, offset));
1229     }
1230 
1231     /** @see #getLongUnaligned(Object, long) */
1232     @HotSpotIntrinsicCandidate
1233     public final char getCharUnaligned(Object o, long offset) {
1234         if ((offset & 1) == 0) {
1235             return getChar(o, offset);
1236         } else {
1237             return (char)makeShort(getByte(o, offset),
1238                                    getByte(o, offset + 1));
1239         }
1240     }
1241 
1242     /** @see #getLongUnaligned(Object, long, boolean) */
1243     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
1244         return convEndian(bigEndian, getCharUnaligned(o, offset));
1245     }
1246 
1247     /**
1248      * Stores a value at some byte offset into a given Java object.
1249      * <p>
1250      * The specification of this method is the same as {@link
1251      * #getLong(Object, long)} except that the offset does not need to
1252      * have been obtained from {@link #objectFieldOffset} on the
1253      * {@link java.lang.reflect.Field} of some Java field.  The value
1254      * in memory is raw data, and need not correspond to any Java
1255      * variable.  The endianness of the value in memory is the
1256      * endianness of the native platform.
1257      * <p>
1258      * The write will be atomic with respect to the largest power of
1259      * two that divides the GCD of the offset and the storage size.
1260      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
1261      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
1262      * respectively.  There are no other guarantees of atomicity.
1263      * <p>
1264      * 8-byte atomicity is only guaranteed on platforms on which
1265      * support atomic accesses to longs.
1266      *
1267      * @param o Java heap object in which the value resides, if any, else
1268      *        null
1269      * @param offset The offset in bytes from the start of the object
1270      * @param x the value to store
1271      * @throws RuntimeException No defined exceptions are thrown, not even
1272      *         {@link NullPointerException}
1273      * @since 9
1274      */
1275     @HotSpotIntrinsicCandidate
1276     public final void putLongUnaligned(Object o, long offset, long x) {
1277         if ((offset & 7) == 0) {
1278             putLong(o, offset, x);
1279         } else if ((offset & 3) == 0) {
1280             putLongParts(o, offset,
1281                          (int)(x >> 0),
1282                          (int)(x >>> 32));
1283         } else if ((offset & 1) == 0) {
1284             putLongParts(o, offset,
1285                          (short)(x >>> 0),
1286                          (short)(x >>> 16),
1287                          (short)(x >>> 32),
1288                          (short)(x >>> 48));
1289         } else {
1290             putLongParts(o, offset,
1291                          (byte)(x >>> 0),
1292                          (byte)(x >>> 8),
1293                          (byte)(x >>> 16),
1294                          (byte)(x >>> 24),
1295                          (byte)(x >>> 32),
1296                          (byte)(x >>> 40),
1297                          (byte)(x >>> 48),
1298                          (byte)(x >>> 56));
1299         }
1300     }
1301 
1302     /**
1303      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
1304      * argument which specifies the endianness of the value as stored in memory.
1305      * @param o Java heap object in which the value resides
1306      * @param offset The offset in bytes from the start of the object
1307      * @param x the value to store
1308      * @param bigEndian The endianness of the value
1309      * @throws RuntimeException No defined exceptions are thrown, not even
1310      *         {@link NullPointerException}
1311      * @since 9
1312      */
1313     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
1314         putLongUnaligned(o, offset, convEndian(bigEndian, x));
1315     }
1316 
1317     /** @see #putLongUnaligned(Object, long, long) */
1318     @HotSpotIntrinsicCandidate
1319     public final void putIntUnaligned(Object o, long offset, int x) {
1320         if ((offset & 3) == 0) {
1321             putInt(o, offset, x);
1322         } else if ((offset & 1) == 0) {
1323             putIntParts(o, offset,
1324                         (short)(x >> 0),
1325                         (short)(x >>> 16));
1326         } else {
1327             putIntParts(o, offset,
1328                         (byte)(x >>> 0),
1329                         (byte)(x >>> 8),
1330                         (byte)(x >>> 16),
1331                         (byte)(x >>> 24));
1332         }
1333     }
1334     /** @see #putLongUnaligned(Object, long, long, boolean) */
1335     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
1336         putIntUnaligned(o, offset, convEndian(bigEndian, x));
1337     }
1338 
1339     /** @see #putLongUnaligned(Object, long, long) */
1340     @HotSpotIntrinsicCandidate
1341     public final void putShortUnaligned(Object o, long offset, short x) {
1342         if ((offset & 1) == 0) {
1343             putShort(o, offset, x);
1344         } else {
1345             putShortParts(o, offset,
1346                           (byte)(x >>> 0),
1347                           (byte)(x >>> 8));
1348         }
1349     }
1350     /** @see #putLongUnaligned(Object, long, long, boolean) */
1351     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
1352         putShortUnaligned(o, offset, convEndian(bigEndian, x));
1353     }
1354 
1355     /** @see #putLongUnaligned(Object, long, long) */
1356     @HotSpotIntrinsicCandidate
1357     public final void putCharUnaligned(Object o, long offset, char x) {
1358         putShortUnaligned(o, offset, (short)x);
1359     }
1360     /** @see #putLongUnaligned(Object, long, long, boolean) */
1361     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
1362         putCharUnaligned(o, offset, convEndian(bigEndian, x));
1363     }
1364 
1365     // JVM interface methods
1366     private native boolean unalignedAccess0();
1367     private native boolean isBigEndian0();
1368 
1369     // BE is true iff the native endianness of this platform is big.
1370     private static final boolean BE = theUnsafe.isBigEndian0();
1371 
1372     // unalignedAccess is true iff this platform can perform unaligned accesses.
1373     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
1374 
1375     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
1376 
1377     // These methods construct integers from bytes.  The byte ordering
1378     // is the native endianness of this platform.
1379     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
1380         return ((toUnsignedLong(i0) << pickPos(56, 0))
1381               | (toUnsignedLong(i1) << pickPos(56, 8))
1382               | (toUnsignedLong(i2) << pickPos(56, 16))
1383               | (toUnsignedLong(i3) << pickPos(56, 24))
1384               | (toUnsignedLong(i4) << pickPos(56, 32))
1385               | (toUnsignedLong(i5) << pickPos(56, 40))
1386               | (toUnsignedLong(i6) << pickPos(56, 48))
1387               | (toUnsignedLong(i7) << pickPos(56, 56)));
1388     }
1389     private static long makeLong(short i0, short i1, short i2, short i3) {
1390         return ((toUnsignedLong(i0) << pickPos(48, 0))
1391               | (toUnsignedLong(i1) << pickPos(48, 16))
1392               | (toUnsignedLong(i2) << pickPos(48, 32))
1393               | (toUnsignedLong(i3) << pickPos(48, 48)));
1394     }
1395     private static long makeLong(int i0, int i1) {
1396         return (toUnsignedLong(i0) << pickPos(32, 0))
1397              | (toUnsignedLong(i1) << pickPos(32, 32));
1398     }
1399     private static int makeInt(short i0, short i1) {
1400         return (toUnsignedInt(i0) << pickPos(16, 0))
1401              | (toUnsignedInt(i1) << pickPos(16, 16));
1402     }
1403     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
1404         return ((toUnsignedInt(i0) << pickPos(24, 0))
1405               | (toUnsignedInt(i1) << pickPos(24, 8))
1406               | (toUnsignedInt(i2) << pickPos(24, 16))
1407               | (toUnsignedInt(i3) << pickPos(24, 24)));
1408     }
1409     private static short makeShort(byte i0, byte i1) {
1410         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
1411                      | (toUnsignedInt(i1) << pickPos(8, 8)));
1412     }
1413 
1414     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
1415     private static short pick(short le, short be) { return BE ? be : le; }
1416     private static int   pick(int   le, int   be) { return BE ? be : le; }
1417 
1418     // These methods write integers to memory from smaller parts
1419     // provided by their caller.  The ordering in which these parts
1420     // are written is the native endianness of this platform.
1421     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
1422         putByte(o, offset + 0, pick(i0, i7));
1423         putByte(o, offset + 1, pick(i1, i6));
1424         putByte(o, offset + 2, pick(i2, i5));
1425         putByte(o, offset + 3, pick(i3, i4));
1426         putByte(o, offset + 4, pick(i4, i3));
1427         putByte(o, offset + 5, pick(i5, i2));
1428         putByte(o, offset + 6, pick(i6, i1));
1429         putByte(o, offset + 7, pick(i7, i0));
1430     }
1431     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
1432         putShort(o, offset + 0, pick(i0, i3));
1433         putShort(o, offset + 2, pick(i1, i2));
1434         putShort(o, offset + 4, pick(i2, i1));
1435         putShort(o, offset + 6, pick(i3, i0));
1436     }
1437     private void putLongParts(Object o, long offset, int i0, int i1) {
1438         putInt(o, offset + 0, pick(i0, i1));
1439         putInt(o, offset + 4, pick(i1, i0));
1440     }
1441     private void putIntParts(Object o, long offset, short i0, short i1) {
1442         putShort(o, offset + 0, pick(i0, i1));
1443         putShort(o, offset + 2, pick(i1, i0));
1444     }
1445     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
1446         putByte(o, offset + 0, pick(i0, i3));
1447         putByte(o, offset + 1, pick(i1, i2));
1448         putByte(o, offset + 2, pick(i2, i1));
1449         putByte(o, offset + 3, pick(i3, i0));
1450     }
1451     private void putShortParts(Object o, long offset, byte i0, byte i1) {
1452         putByte(o, offset + 0, pick(i0, i1));
1453         putByte(o, offset + 1, pick(i1, i0));
1454     }
1455 
1456     // Zero-extend an integer
1457     private static int toUnsignedInt(byte n)    { return n & 0xff; }
1458     private static int toUnsignedInt(short n)   { return n & 0xffff; }
1459     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
1460     private static long toUnsignedLong(short n) { return n & 0xffffl; }
1461     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
1462 
1463     // Maybe byte-reverse an integer
1464     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
1465     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
1466     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
1467     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
1468 }