1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 
  47 #ifdef ASSERT
  48 #define __ gen()->lir(__FILE__, __LINE__)->
  49 #else
  50 #define __ gen()->lir()->
  51 #endif
  52 
  53 #ifndef PATCHED_ADDR
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset(int max_vregs) {
  58   // Initialize array sizes
  59   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _virtual_operands.trunc_to(0);
  61   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _other_operands.trunc_to(0);
  63   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  64   _vreg_table.trunc_to(0);
  65 }
  66 
  67 
  68 
  69 //--------------------------------------------------------------
  70 // PhiResolver
  71 
  72 // Resolves cycles:
  73 //
  74 //  r1 := r2  becomes  temp := r1
  75 //  r2 := r1           r1 := r2
  76 //                     r2 := temp
  77 // and orders moves:
  78 //
  79 //  r2 := r3  becomes  r1 := r2
  80 //  r1 := r2           r2 := r3
  81 
  82 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  83  : _gen(gen)
  84  , _state(gen->resolver_state())
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset(max_vregs);
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == NULL, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != NULL) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands()[i];
 151     if (!node->visited()) {
 152       _loop = NULL;
 153       move(NULL, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands()[i];
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, NULL);
 174     assert(node == NULL || node->operand() == opr, "");
 175     if (node == NULL) {
 176       node = new ResolveNode(opr);
 177       vreg_table()[vreg_num] = node;
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210   if (opr->is_virtual()) {
 211     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 212   }
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {
 238       _result = LIR_OprFact::value_type(value()->type());
 239     }
 240   } else if (type == T_BYTE || type == T_BOOLEAN) {
 241     load_byte_item();
 242   } else {
 243     load_item();
 244   }
 245 }
 246 
 247 void LIRItem::load_item_force(LIR_Opr reg) {
 248   LIR_Opr r = result();
 249   if (r != reg) {
 250 #if !defined(ARM) && !defined(E500V2)
 251     if (r->type() != reg->type()) {
 252       // moves between different types need an intervening spill slot
 253       r = _gen->force_to_spill(r, reg->type());
 254     }
 255 #endif
 256     __ move(r, reg);
 257     _result = reg;
 258   }
 259 }
 260 
 261 ciObject* LIRItem::get_jobject_constant() const {
 262   ObjectType* oc = type()->as_ObjectType();
 263   if (oc) {
 264     return oc->constant_value();
 265   }
 266   return NULL;
 267 }
 268 
 269 
 270 jint LIRItem::get_jint_constant() const {
 271   assert(is_constant() && value() != NULL, "");
 272   assert(type()->as_IntConstant() != NULL, "type check");
 273   return type()->as_IntConstant()->value();
 274 }
 275 
 276 
 277 jint LIRItem::get_address_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_AddressConstant() != NULL, "type check");
 280   return type()->as_AddressConstant()->value();
 281 }
 282 
 283 
 284 jfloat LIRItem::get_jfloat_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_FloatConstant() != NULL, "type check");
 287   return type()->as_FloatConstant()->value();
 288 }
 289 
 290 
 291 jdouble LIRItem::get_jdouble_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_DoubleConstant() != NULL, "type check");
 294   return type()->as_DoubleConstant()->value();
 295 }
 296 
 297 
 298 jlong LIRItem::get_jlong_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_LongConstant() != NULL, "type check");
 301   return type()->as_LongConstant()->value();
 302 }
 303 
 304 
 305 
 306 //--------------------------------------------------------------
 307 
 308 
 309 void LIRGenerator::init() {
 310   _bs = Universe::heap()->barrier_set();
 311 }
 312 
 313 
 314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 315 #ifndef PRODUCT
 316   if (PrintIRWithLIR) {
 317     block->print();
 318   }
 319 #endif
 320 
 321   // set up the list of LIR instructions
 322   assert(block->lir() == NULL, "LIR list already computed for this block");
 323   _lir = new LIR_List(compilation(), block);
 324   block->set_lir(_lir);
 325 
 326   __ branch_destination(block->label());
 327 
 328   if (LIRTraceExecution &&
 329       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 330       !block->is_set(BlockBegin::exception_entry_flag)) {
 331     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 332     trace_block_entry(block);
 333   }
 334 }
 335 
 336 
 337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 338 #ifndef PRODUCT
 339   if (PrintIRWithLIR) {
 340     tty->cr();
 341   }
 342 #endif
 343 
 344   // LIR_Opr for unpinned constants shouldn't be referenced by other
 345   // blocks so clear them out after processing the block.
 346   for (int i = 0; i < _unpinned_constants.length(); i++) {
 347     _unpinned_constants.at(i)->clear_operand();
 348   }
 349   _unpinned_constants.trunc_to(0);
 350 
 351   // clear our any registers for other local constants
 352   _constants.trunc_to(0);
 353   _reg_for_constants.trunc_to(0);
 354 }
 355 
 356 
 357 void LIRGenerator::block_do(BlockBegin* block) {
 358   CHECK_BAILOUT();
 359 
 360   block_do_prolog(block);
 361   set_block(block);
 362 
 363   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 364     if (instr->is_pinned()) do_root(instr);
 365   }
 366 
 367   set_block(NULL);
 368   block_do_epilog(block);
 369 }
 370 
 371 
 372 //-------------------------LIRGenerator-----------------------------
 373 
 374 // This is where the tree-walk starts; instr must be root;
 375 void LIRGenerator::do_root(Value instr) {
 376   CHECK_BAILOUT();
 377 
 378   InstructionMark im(compilation(), instr);
 379 
 380   assert(instr->is_pinned(), "use only with roots");
 381   assert(instr->subst() == instr, "shouldn't have missed substitution");
 382 
 383   instr->visit(this);
 384 
 385   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 386          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 387 }
 388 
 389 
 390 // This is called for each node in tree; the walk stops if a root is reached
 391 void LIRGenerator::walk(Value instr) {
 392   InstructionMark im(compilation(), instr);
 393   //stop walk when encounter a root
 394   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 395     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 396   } else {
 397     assert(instr->subst() == instr, "shouldn't have missed substitution");
 398     instr->visit(this);
 399     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 400   }
 401 }
 402 
 403 
 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 405   assert(state != NULL, "state must be defined");
 406 
 407 #ifndef PRODUCT
 408   state->verify();
 409 #endif
 410 
 411   ValueStack* s = state;
 412   for_each_state(s) {
 413     if (s->kind() == ValueStack::EmptyExceptionState) {
 414       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 415       continue;
 416     }
 417 
 418     int index;
 419     Value value;
 420     for_each_stack_value(s, index, value) {
 421       assert(value->subst() == value, "missed substitution");
 422       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 423         walk(value);
 424         assert(value->operand()->is_valid(), "must be evaluated now");
 425       }
 426     }
 427 
 428     int bci = s->bci();
 429     IRScope* scope = s->scope();
 430     ciMethod* method = scope->method();
 431 
 432     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 433     if (bci == SynchronizationEntryBCI) {
 434       if (x->as_ExceptionObject() || x->as_Throw()) {
 435         // all locals are dead on exit from the synthetic unlocker
 436         liveness.clear();
 437       } else {
 438         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 439       }
 440     }
 441     if (!liveness.is_valid()) {
 442       // Degenerate or breakpointed method.
 443       bailout("Degenerate or breakpointed method");
 444     } else {
 445       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 446       for_each_local_value(s, index, value) {
 447         assert(value->subst() == value, "missed substition");
 448         if (liveness.at(index) && !value->type()->is_illegal()) {
 449           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 450             walk(value);
 451             assert(value->operand()->is_valid(), "must be evaluated now");
 452           }
 453         } else {
 454           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 455           s->invalidate_local(index);
 456         }
 457       }
 458     }
 459   }
 460 
 461   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 462 }
 463 
 464 
 465 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 466   return state_for(x, x->exception_state());
 467 }
 468 
 469 
 470 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 471   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 472    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 473    * the class. */
 474   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 475     assert(info != NULL, "info must be set if class is not loaded");
 476     __ klass2reg_patch(NULL, r, info);
 477   } else {
 478     // no patching needed
 479     __ metadata2reg(obj->constant_encoding(), r);
 480   }
 481 }
 482 
 483 
 484 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 485                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 486   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 487   if (index->is_constant()) {
 488     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 489                 index->as_jint(), null_check_info);
 490     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 491   } else {
 492     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 493                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 494     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 495   }
 496 }
 497 
 498 
 499 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 500   CodeStub* stub = new RangeCheckStub(info, index, true);
 501   if (index->is_constant()) {
 502     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 503     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 504   } else {
 505     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 506                 java_nio_Buffer::limit_offset(), T_INT, info);
 507     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 508   }
 509   __ move(index, result);
 510 }
 511 
 512 
 513 
 514 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 515   LIR_Opr result_op = result;
 516   LIR_Opr left_op   = left;
 517   LIR_Opr right_op  = right;
 518 
 519   if (TwoOperandLIRForm && left_op != result_op) {
 520     assert(right_op != result_op, "malformed");
 521     __ move(left_op, result_op);
 522     left_op = result_op;
 523   }
 524 
 525   switch(code) {
 526     case Bytecodes::_dadd:
 527     case Bytecodes::_fadd:
 528     case Bytecodes::_ladd:
 529     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 530     case Bytecodes::_fmul:
 531     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 532 
 533     case Bytecodes::_dmul:
 534       {
 535         if (is_strictfp) {
 536           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 537         } else {
 538           __ mul(left_op, right_op, result_op); break;
 539         }
 540       }
 541       break;
 542 
 543     case Bytecodes::_imul:
 544       {
 545         bool    did_strength_reduce = false;
 546 
 547         if (right->is_constant()) {
 548           int c = right->as_jint();
 549           if (is_power_of_2(c)) {
 550             // do not need tmp here
 551             __ shift_left(left_op, exact_log2(c), result_op);
 552             did_strength_reduce = true;
 553           } else {
 554             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 555           }
 556         }
 557         // we couldn't strength reduce so just emit the multiply
 558         if (!did_strength_reduce) {
 559           __ mul(left_op, right_op, result_op);
 560         }
 561       }
 562       break;
 563 
 564     case Bytecodes::_dsub:
 565     case Bytecodes::_fsub:
 566     case Bytecodes::_lsub:
 567     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 568 
 569     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 570     // ldiv and lrem are implemented with a direct runtime call
 571 
 572     case Bytecodes::_ddiv:
 573       {
 574         if (is_strictfp) {
 575           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 576         } else {
 577           __ div (left_op, right_op, result_op); break;
 578         }
 579       }
 580       break;
 581 
 582     case Bytecodes::_drem:
 583     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 584 
 585     default: ShouldNotReachHere();
 586   }
 587 }
 588 
 589 
 590 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 591   arithmetic_op(code, result, left, right, false, tmp);
 592 }
 593 
 594 
 595 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 596   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 597 }
 598 
 599 
 600 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 601   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 602 }
 603 
 604 
 605 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 606   if (TwoOperandLIRForm && value != result_op) {
 607     assert(count != result_op, "malformed");
 608     __ move(value, result_op);
 609     value = result_op;
 610   }
 611 
 612   assert(count->is_constant() || count->is_register(), "must be");
 613   switch(code) {
 614   case Bytecodes::_ishl:
 615   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 616   case Bytecodes::_ishr:
 617   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 618   case Bytecodes::_iushr:
 619   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 620   default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 626   if (TwoOperandLIRForm && left_op != result_op) {
 627     assert(right_op != result_op, "malformed");
 628     __ move(left_op, result_op);
 629     left_op = result_op;
 630   }
 631 
 632   switch(code) {
 633     case Bytecodes::_iand:
 634     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 635 
 636     case Bytecodes::_ior:
 637     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 638 
 639     case Bytecodes::_ixor:
 640     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 641 
 642     default: ShouldNotReachHere();
 643   }
 644 }
 645 
 646 
 647 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     LIR_Opr operand = cur_val->operand();
1000     if (cur_val->operand()->is_illegal()) {
1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002              "these can be produced lazily");
1003       operand = operand_for_instruction(cur_val);
1004     }
1005     resolver->move(operand, operand_for_instruction(phi));
1006   }
1007 }
1008 
1009 
1010 // Moves all stack values into their PHI position
1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012   BlockBegin* bb = block();
1013   if (bb->number_of_sux() == 1) {
1014     BlockBegin* sux = bb->sux_at(0);
1015     assert(sux->number_of_preds() > 0, "invalid CFG");
1016 
1017     // a block with only one predecessor never has phi functions
1018     if (sux->number_of_preds() > 1) {
1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021 
1022       ValueStack* sux_state = sux->state();
1023       Value sux_value;
1024       int index;
1025 
1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029 
1030       for_each_stack_value(sux_state, index, sux_value) {
1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032       }
1033 
1034       for_each_local_value(sux_state, index, sux_value) {
1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036       }
1037 
1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039     }
1040   }
1041 }
1042 
1043 
1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
1045   int vreg = _virtual_register_number;
1046   // add a little fudge factor for the bailout, since the bailout is
1047   // only checked periodically.  This gives a few extra registers to
1048   // hand out before we really run out, which helps us keep from
1049   // tripping over assertions.
1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051     bailout("out of virtual registers");
1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053       // wrap it around
1054       _virtual_register_number = LIR_OprDesc::vreg_base;
1055     }
1056   }
1057   _virtual_register_number += 1;
1058   return LIR_OprFact::virtual_register(vreg, type);
1059 }
1060 
1061 
1062 // Try to lock using register in hint
1063 LIR_Opr LIRGenerator::rlock(Value instr) {
1064   return new_register(instr->type());
1065 }
1066 
1067 
1068 // does an rlock and sets result
1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
1070   LIR_Opr reg = rlock(x);
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078   LIR_Opr reg;
1079   switch (type) {
1080   case T_BYTE:
1081   case T_BOOLEAN:
1082     reg = rlock_byte(type);
1083     break;
1084   default:
1085     reg = rlock(x);
1086     break;
1087   }
1088 
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 //---------------------------------------------------------------------
1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096   ObjectType* oc = value->type()->as_ObjectType();
1097   if (oc) {
1098     return oc->constant_value();
1099   }
1100   return NULL;
1101 }
1102 
1103 
1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107 
1108   // no moves are created for phi functions at the begin of exception
1109   // handlers, so assign operands manually here
1110   for_each_phi_fun(block(), phi,
1111                    operand_for_instruction(phi));
1112 
1113   LIR_Opr thread_reg = getThreadPointer();
1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115                exceptionOopOpr());
1116   __ move_wide(LIR_OprFact::oopConst(NULL),
1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120 
1121   LIR_Opr result = new_register(T_OBJECT);
1122   __ move(exceptionOopOpr(), result);
1123   set_result(x, result);
1124 }
1125 
1126 
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //                        visitor functions
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 
1137 void LIRGenerator::do_Phi(Phi* x) {
1138   // phi functions are never visited directly
1139   ShouldNotReachHere();
1140 }
1141 
1142 
1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144 void LIRGenerator::do_Constant(Constant* x) {
1145   if (x->state_before() != NULL) {
1146     // Any constant with a ValueStack requires patching so emit the patch here
1147     LIR_Opr reg = rlock_result(x);
1148     CodeEmitInfo* info = state_for(x, x->state_before());
1149     __ oop2reg_patch(NULL, reg, info);
1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151     if (!x->is_pinned()) {
1152       // unpinned constants are handled specially so that they can be
1153       // put into registers when they are used multiple times within a
1154       // block.  After the block completes their operand will be
1155       // cleared so that other blocks can't refer to that register.
1156       set_result(x, load_constant(x));
1157     } else {
1158       LIR_Opr res = x->operand();
1159       if (!res->is_valid()) {
1160         res = LIR_OprFact::value_type(x->type());
1161       }
1162       if (res->is_constant()) {
1163         LIR_Opr reg = rlock_result(x);
1164         __ move(res, reg);
1165       } else {
1166         set_result(x, res);
1167       }
1168     }
1169   } else {
1170     set_result(x, LIR_OprFact::value_type(x->type()));
1171   }
1172 }
1173 
1174 
1175 void LIRGenerator::do_Local(Local* x) {
1176   // operand_for_instruction has the side effect of setting the result
1177   // so there's no need to do it here.
1178   operand_for_instruction(x);
1179 }
1180 
1181 
1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183   Unimplemented();
1184 }
1185 
1186 
1187 void LIRGenerator::do_Return(Return* x) {
1188   if (compilation()->env()->dtrace_method_probes()) {
1189     BasicTypeList signature;
1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191     signature.append(T_METADATA); // Method*
1192     LIR_OprList* args = new LIR_OprList();
1193     args->append(getThreadPointer());
1194     LIR_Opr meth = new_register(T_METADATA);
1195     __ metadata2reg(method()->constant_encoding(), meth);
1196     args->append(meth);
1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198   }
1199 
1200   if (x->type()->is_void()) {
1201     __ return_op(LIR_OprFact::illegalOpr);
1202   } else {
1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204     LIRItem result(x->result(), this);
1205 
1206     result.load_item_force(reg);
1207     __ return_op(result.result());
1208   }
1209   set_no_result(x);
1210 }
1211 
1212 // Examble: ref.get()
1213 // Combination of LoadField and g1 pre-write barrier
1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215 
1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
1217   guarantee(referent_offset > 0, "referent offset not initialized");
1218 
1219   assert(x->number_of_arguments() == 1, "wrong type");
1220 
1221   LIRItem reference(x->argument_at(0), this);
1222   reference.load_item();
1223 
1224   // need to perform the null check on the reference objecy
1225   CodeEmitInfo* info = NULL;
1226   if (x->needs_null_check()) {
1227     info = state_for(x);
1228   }
1229 
1230   LIR_Address* referent_field_adr =
1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232 
1233   LIR_Opr result = rlock_result(x);
1234 
1235   __ load(referent_field_adr, result, info);
1236 
1237   // Register the value in the referent field with the pre-barrier
1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239               result /* pre_val */,
1240               false  /* do_load */,
1241               false  /* patch */,
1242               NULL   /* info */);
1243 }
1244 
1245 // Example: clazz.isInstance(object)
1246 void LIRGenerator::do_isInstance(Intrinsic* x) {
1247   assert(x->number_of_arguments() == 2, "wrong type");
1248 
1249   // TODO could try to substitute this node with an equivalent InstanceOf
1250   // if clazz is known to be a constant Class. This will pick up newly found
1251   // constants after HIR construction. I'll leave this to a future change.
1252 
1253   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1254   // could follow the aastore example in a future change.
1255 
1256   LIRItem clazz(x->argument_at(0), this);
1257   LIRItem object(x->argument_at(1), this);
1258   clazz.load_item();
1259   object.load_item();
1260   LIR_Opr result = rlock_result(x);
1261 
1262   // need to perform null check on clazz
1263   if (x->needs_null_check()) {
1264     CodeEmitInfo* info = state_for(x);
1265     __ null_check(clazz.result(), info);
1266   }
1267 
1268   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1269                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1270                                      x->type(),
1271                                      NULL); // NULL CodeEmitInfo results in a leaf call
1272   __ move(call_result, result);
1273 }
1274 
1275 // java.lang.Class::isPrimitive()
1276 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1277   assert(x->number_of_arguments() == 1, "wrong type");
1278 
1279   LIRItem clazz(x->argument_at(0), this);
1280   clazz.load_item();
1281   LIR_Opr result = rlock_result(x);
1282 
1283   if (x->needs_null_check()) {
1284     CodeEmitInfo* info = state_for(x);
1285     __ null_check(clazz.result(), info);
1286   }
1287 
1288   LIR_Opr call_result = call_runtime(clazz.value(),
1289                                      CAST_FROM_FN_PTR(address, Runtime1::is_primitive),
1290                                      x->type(),
1291                                      NULL); // NULL CodeEmitInfo results in a leaf call
1292   __ move(call_result, result);
1293 }
1294 
1295 // Example: object.getClass ()
1296 void LIRGenerator::do_getClass(Intrinsic* x) {
1297   assert(x->number_of_arguments() == 1, "wrong type");
1298 
1299   LIRItem rcvr(x->argument_at(0), this);
1300   rcvr.load_item();
1301   LIR_Opr temp = new_register(T_METADATA);
1302   LIR_Opr result = rlock_result(x);
1303 
1304   // need to perform the null check on the rcvr
1305   CodeEmitInfo* info = NULL;
1306   if (x->needs_null_check()) {
1307     info = state_for(x);
1308   }
1309 
1310   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1311   // meaning of these two is mixed up (see JDK-8026837).
1312   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1313   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1314 }
1315 
1316 
1317 // Example: Thread.currentThread()
1318 void LIRGenerator::do_currentThread(Intrinsic* x) {
1319   assert(x->number_of_arguments() == 0, "wrong type");
1320   LIR_Opr reg = rlock_result(x);
1321   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1322 }
1323 
1324 
1325 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1326   assert(x->number_of_arguments() == 1, "wrong type");
1327   LIRItem receiver(x->argument_at(0), this);
1328 
1329   receiver.load_item();
1330   BasicTypeList signature;
1331   signature.append(T_OBJECT); // receiver
1332   LIR_OprList* args = new LIR_OprList();
1333   args->append(receiver.result());
1334   CodeEmitInfo* info = state_for(x, x->state());
1335   call_runtime(&signature, args,
1336                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1337                voidType, info);
1338 
1339   set_no_result(x);
1340 }
1341 
1342 
1343 //------------------------local access--------------------------------------
1344 
1345 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1346   if (x->operand()->is_illegal()) {
1347     Constant* c = x->as_Constant();
1348     if (c != NULL) {
1349       x->set_operand(LIR_OprFact::value_type(c->type()));
1350     } else {
1351       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1352       // allocate a virtual register for this local or phi
1353       x->set_operand(rlock(x));
1354       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1355     }
1356   }
1357   return x->operand();
1358 }
1359 
1360 
1361 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1362   if (opr->is_virtual()) {
1363     return instruction_for_vreg(opr->vreg_number());
1364   }
1365   return NULL;
1366 }
1367 
1368 
1369 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1370   if (reg_num < _instruction_for_operand.length()) {
1371     return _instruction_for_operand.at(reg_num);
1372   }
1373   return NULL;
1374 }
1375 
1376 
1377 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1378   if (_vreg_flags.size_in_bits() == 0) {
1379     BitMap2D temp(100, num_vreg_flags);
1380     temp.clear();
1381     _vreg_flags = temp;
1382   }
1383   _vreg_flags.at_put_grow(vreg_num, f, true);
1384 }
1385 
1386 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1387   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1388     return false;
1389   }
1390   return _vreg_flags.at(vreg_num, f);
1391 }
1392 
1393 
1394 // Block local constant handling.  This code is useful for keeping
1395 // unpinned constants and constants which aren't exposed in the IR in
1396 // registers.  Unpinned Constant instructions have their operands
1397 // cleared when the block is finished so that other blocks can't end
1398 // up referring to their registers.
1399 
1400 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1401   assert(!x->is_pinned(), "only for unpinned constants");
1402   _unpinned_constants.append(x);
1403   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1404 }
1405 
1406 
1407 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1408   BasicType t = c->type();
1409   for (int i = 0; i < _constants.length(); i++) {
1410     LIR_Const* other = _constants.at(i);
1411     if (t == other->type()) {
1412       switch (t) {
1413       case T_INT:
1414       case T_FLOAT:
1415         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1416         break;
1417       case T_LONG:
1418       case T_DOUBLE:
1419         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1420         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1421         break;
1422       case T_OBJECT:
1423         if (c->as_jobject() != other->as_jobject()) continue;
1424         break;
1425       }
1426       return _reg_for_constants.at(i);
1427     }
1428   }
1429 
1430   LIR_Opr result = new_register(t);
1431   __ move((LIR_Opr)c, result);
1432   _constants.append(c);
1433   _reg_for_constants.append(result);
1434   return result;
1435 }
1436 
1437 // Various barriers
1438 
1439 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1440                                bool do_load, bool patch, CodeEmitInfo* info) {
1441   // Do the pre-write barrier, if any.
1442   switch (_bs->kind()) {
1443 #if INCLUDE_ALL_GCS
1444     case BarrierSet::G1SATBCTLogging:
1445       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1446       break;
1447 #endif // INCLUDE_ALL_GCS
1448     case BarrierSet::CardTableForRS:
1449     case BarrierSet::CardTableExtension:
1450       // No pre barriers
1451       break;
1452     case BarrierSet::ModRef:
1453       // No pre barriers
1454       break;
1455     default      :
1456       ShouldNotReachHere();
1457 
1458   }
1459 }
1460 
1461 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1462   switch (_bs->kind()) {
1463 #if INCLUDE_ALL_GCS
1464     case BarrierSet::G1SATBCTLogging:
1465       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1466       break;
1467 #endif // INCLUDE_ALL_GCS
1468     case BarrierSet::CardTableForRS:
1469     case BarrierSet::CardTableExtension:
1470       CardTableModRef_post_barrier(addr,  new_val);
1471       break;
1472     case BarrierSet::ModRef:
1473       // No post barriers
1474       break;
1475     default      :
1476       ShouldNotReachHere();
1477     }
1478 }
1479 
1480 ////////////////////////////////////////////////////////////////////////
1481 #if INCLUDE_ALL_GCS
1482 
1483 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1484                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1485   // First we test whether marking is in progress.
1486   BasicType flag_type;
1487   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1488     flag_type = T_INT;
1489   } else {
1490     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1491               "Assumption");
1492     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1493     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1494     flag_type = T_BOOLEAN;
1495   }
1496   LIR_Opr thrd = getThreadPointer();
1497   LIR_Address* mark_active_flag_addr =
1498     new LIR_Address(thrd,
1499                     in_bytes(JavaThread::satb_mark_queue_offset() +
1500                              SATBMarkQueue::byte_offset_of_active()),
1501                     flag_type);
1502   // Read the marking-in-progress flag.
1503   LIR_Opr flag_val = new_register(T_INT);
1504   __ load(mark_active_flag_addr, flag_val);
1505   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1506 
1507   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1508 
1509   CodeStub* slow;
1510 
1511   if (do_load) {
1512     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1513     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1514 
1515     if (patch)
1516       pre_val_patch_code = lir_patch_normal;
1517 
1518     pre_val = new_register(T_OBJECT);
1519 
1520     if (!addr_opr->is_address()) {
1521       assert(addr_opr->is_register(), "must be");
1522       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1523     }
1524     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1525   } else {
1526     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1527     assert(pre_val->is_register(), "must be");
1528     assert(pre_val->type() == T_OBJECT, "must be an object");
1529     assert(info == NULL, "sanity");
1530 
1531     slow = new G1PreBarrierStub(pre_val);
1532   }
1533 
1534   __ branch(lir_cond_notEqual, T_INT, slow);
1535   __ branch_destination(slow->continuation());
1536 }
1537 
1538 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1539   // If the "new_val" is a constant NULL, no barrier is necessary.
1540   if (new_val->is_constant() &&
1541       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1542 
1543   if (!new_val->is_register()) {
1544     LIR_Opr new_val_reg = new_register(T_OBJECT);
1545     if (new_val->is_constant()) {
1546       __ move(new_val, new_val_reg);
1547     } else {
1548       __ leal(new_val, new_val_reg);
1549     }
1550     new_val = new_val_reg;
1551   }
1552   assert(new_val->is_register(), "must be a register at this point");
1553 
1554   if (addr->is_address()) {
1555     LIR_Address* address = addr->as_address_ptr();
1556     LIR_Opr ptr = new_pointer_register();
1557     if (!address->index()->is_valid() && address->disp() == 0) {
1558       __ move(address->base(), ptr);
1559     } else {
1560       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1561       __ leal(addr, ptr);
1562     }
1563     addr = ptr;
1564   }
1565   assert(addr->is_register(), "must be a register at this point");
1566 
1567   LIR_Opr xor_res = new_pointer_register();
1568   LIR_Opr xor_shift_res = new_pointer_register();
1569   if (TwoOperandLIRForm ) {
1570     __ move(addr, xor_res);
1571     __ logical_xor(xor_res, new_val, xor_res);
1572     __ move(xor_res, xor_shift_res);
1573     __ unsigned_shift_right(xor_shift_res,
1574                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1575                             xor_shift_res,
1576                             LIR_OprDesc::illegalOpr());
1577   } else {
1578     __ logical_xor(addr, new_val, xor_res);
1579     __ unsigned_shift_right(xor_res,
1580                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1581                             xor_shift_res,
1582                             LIR_OprDesc::illegalOpr());
1583   }
1584 
1585   if (!new_val->is_register()) {
1586     LIR_Opr new_val_reg = new_register(T_OBJECT);
1587     __ leal(new_val, new_val_reg);
1588     new_val = new_val_reg;
1589   }
1590   assert(new_val->is_register(), "must be a register at this point");
1591 
1592   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1593 
1594   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1595   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1596   __ branch_destination(slow->continuation());
1597 }
1598 
1599 #endif // INCLUDE_ALL_GCS
1600 ////////////////////////////////////////////////////////////////////////
1601 
1602 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1603   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1604   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1605   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1606   if (addr->is_address()) {
1607     LIR_Address* address = addr->as_address_ptr();
1608     // ptr cannot be an object because we use this barrier for array card marks
1609     // and addr can point in the middle of an array.
1610     LIR_Opr ptr = new_pointer_register();
1611     if (!address->index()->is_valid() && address->disp() == 0) {
1612       __ move(address->base(), ptr);
1613     } else {
1614       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1615       __ leal(addr, ptr);
1616     }
1617     addr = ptr;
1618   }
1619   assert(addr->is_register(), "must be a register at this point");
1620 
1621 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1622   CardTableModRef_post_barrier_helper(addr, card_table_base);
1623 #else
1624   LIR_Opr tmp = new_pointer_register();
1625   if (TwoOperandLIRForm) {
1626     __ move(addr, tmp);
1627     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1628   } else {
1629     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1630   }
1631 
1632   LIR_Address* card_addr;
1633   if (can_inline_as_constant(card_table_base)) {
1634     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1635   } else {
1636     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1637   }
1638 
1639   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1640   if (UseCondCardMark) {
1641     LIR_Opr cur_value = new_register(T_INT);
1642     if (UseConcMarkSweepGC) {
1643       __ membar_storeload();
1644     }
1645     __ move(card_addr, cur_value);
1646 
1647     LabelObj* L_already_dirty = new LabelObj();
1648     __ cmp(lir_cond_equal, cur_value, dirty);
1649     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1650     __ move(dirty, card_addr);
1651     __ branch_destination(L_already_dirty->label());
1652   } else {
1653     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1654       __ membar_storestore();
1655     }
1656     __ move(dirty, card_addr);
1657   }
1658 #endif
1659 }
1660 
1661 
1662 //------------------------field access--------------------------------------
1663 
1664 // Comment copied form templateTable_i486.cpp
1665 // ----------------------------------------------------------------------------
1666 // Volatile variables demand their effects be made known to all CPU's in
1667 // order.  Store buffers on most chips allow reads & writes to reorder; the
1668 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1669 // memory barrier (i.e., it's not sufficient that the interpreter does not
1670 // reorder volatile references, the hardware also must not reorder them).
1671 //
1672 // According to the new Java Memory Model (JMM):
1673 // (1) All volatiles are serialized wrt to each other.
1674 // ALSO reads & writes act as aquire & release, so:
1675 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1676 // the read float up to before the read.  It's OK for non-volatile memory refs
1677 // that happen before the volatile read to float down below it.
1678 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1679 // that happen BEFORE the write float down to after the write.  It's OK for
1680 // non-volatile memory refs that happen after the volatile write to float up
1681 // before it.
1682 //
1683 // We only put in barriers around volatile refs (they are expensive), not
1684 // _between_ memory refs (that would require us to track the flavor of the
1685 // previous memory refs).  Requirements (2) and (3) require some barriers
1686 // before volatile stores and after volatile loads.  These nearly cover
1687 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1688 // case is placed after volatile-stores although it could just as well go
1689 // before volatile-loads.
1690 
1691 
1692 void LIRGenerator::do_StoreField(StoreField* x) {
1693   bool needs_patching = x->needs_patching();
1694   bool is_volatile = x->field()->is_volatile();
1695   BasicType field_type = x->field_type();
1696   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1697 
1698   CodeEmitInfo* info = NULL;
1699   if (needs_patching) {
1700     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1701     info = state_for(x, x->state_before());
1702   } else if (x->needs_null_check()) {
1703     NullCheck* nc = x->explicit_null_check();
1704     if (nc == NULL) {
1705       info = state_for(x);
1706     } else {
1707       info = state_for(nc);
1708     }
1709   }
1710 
1711 
1712   LIRItem object(x->obj(), this);
1713   LIRItem value(x->value(),  this);
1714 
1715   object.load_item();
1716 
1717   if (is_volatile || needs_patching) {
1718     // load item if field is volatile (fewer special cases for volatiles)
1719     // load item if field not initialized
1720     // load item if field not constant
1721     // because of code patching we cannot inline constants
1722     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1723       value.load_byte_item();
1724     } else  {
1725       value.load_item();
1726     }
1727   } else {
1728     value.load_for_store(field_type);
1729   }
1730 
1731   set_no_result(x);
1732 
1733 #ifndef PRODUCT
1734   if (PrintNotLoaded && needs_patching) {
1735     tty->print_cr("   ###class not loaded at store_%s bci %d",
1736                   x->is_static() ?  "static" : "field", x->printable_bci());
1737   }
1738 #endif
1739 
1740   if (x->needs_null_check() &&
1741       (needs_patching ||
1742        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1743     // emit an explicit null check because the offset is too large
1744     __ null_check(object.result(), new CodeEmitInfo(info));
1745   }
1746 
1747   LIR_Address* address;
1748   if (needs_patching) {
1749     // we need to patch the offset in the instruction so don't allow
1750     // generate_address to try to be smart about emitting the -1.
1751     // Otherwise the patching code won't know how to find the
1752     // instruction to patch.
1753     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1754   } else {
1755     address = generate_address(object.result(), x->offset(), field_type);
1756   }
1757 
1758   if (is_volatile && os::is_MP()) {
1759     __ membar_release();
1760   }
1761 
1762   if (is_oop) {
1763     // Do the pre-write barrier, if any.
1764     pre_barrier(LIR_OprFact::address(address),
1765                 LIR_OprFact::illegalOpr /* pre_val */,
1766                 true /* do_load*/,
1767                 needs_patching,
1768                 (info ? new CodeEmitInfo(info) : NULL));
1769   }
1770 
1771   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1772   if (needs_atomic_access && !needs_patching) {
1773     volatile_field_store(value.result(), address, info);
1774   } else {
1775     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1776     __ store(value.result(), address, info, patch_code);
1777   }
1778 
1779   if (is_oop) {
1780     // Store to object so mark the card of the header
1781     post_barrier(object.result(), value.result());
1782   }
1783 
1784   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1785     __ membar();
1786   }
1787 }
1788 
1789 
1790 void LIRGenerator::do_LoadField(LoadField* x) {
1791   bool needs_patching = x->needs_patching();
1792   bool is_volatile = x->field()->is_volatile();
1793   BasicType field_type = x->field_type();
1794 
1795   CodeEmitInfo* info = NULL;
1796   if (needs_patching) {
1797     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1798     info = state_for(x, x->state_before());
1799   } else if (x->needs_null_check()) {
1800     NullCheck* nc = x->explicit_null_check();
1801     if (nc == NULL) {
1802       info = state_for(x);
1803     } else {
1804       info = state_for(nc);
1805     }
1806   }
1807 
1808   LIRItem object(x->obj(), this);
1809 
1810   object.load_item();
1811 
1812 #ifndef PRODUCT
1813   if (PrintNotLoaded && needs_patching) {
1814     tty->print_cr("   ###class not loaded at load_%s bci %d",
1815                   x->is_static() ?  "static" : "field", x->printable_bci());
1816   }
1817 #endif
1818 
1819   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1820   if (x->needs_null_check() &&
1821       (needs_patching ||
1822        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1823        stress_deopt)) {
1824     LIR_Opr obj = object.result();
1825     if (stress_deopt) {
1826       obj = new_register(T_OBJECT);
1827       __ move(LIR_OprFact::oopConst(NULL), obj);
1828     }
1829     // emit an explicit null check because the offset is too large
1830     __ null_check(obj, new CodeEmitInfo(info));
1831   }
1832 
1833   LIR_Opr reg = rlock_result(x, field_type);
1834   LIR_Address* address;
1835   if (needs_patching) {
1836     // we need to patch the offset in the instruction so don't allow
1837     // generate_address to try to be smart about emitting the -1.
1838     // Otherwise the patching code won't know how to find the
1839     // instruction to patch.
1840     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1841   } else {
1842     address = generate_address(object.result(), x->offset(), field_type);
1843   }
1844 
1845   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1846     __ membar();
1847   }
1848 
1849   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1850   if (needs_atomic_access && !needs_patching) {
1851     volatile_field_load(address, reg, info);
1852   } else {
1853     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1854     __ load(address, reg, info, patch_code);
1855   }
1856 
1857   if (is_volatile && os::is_MP()) {
1858     __ membar_acquire();
1859   }
1860 }
1861 
1862 
1863 //------------------------java.nio.Buffer.checkIndex------------------------
1864 
1865 // int java.nio.Buffer.checkIndex(int)
1866 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1867   // NOTE: by the time we are in checkIndex() we are guaranteed that
1868   // the buffer is non-null (because checkIndex is package-private and
1869   // only called from within other methods in the buffer).
1870   assert(x->number_of_arguments() == 2, "wrong type");
1871   LIRItem buf  (x->argument_at(0), this);
1872   LIRItem index(x->argument_at(1), this);
1873   buf.load_item();
1874   index.load_item();
1875 
1876   LIR_Opr result = rlock_result(x);
1877   if (GenerateRangeChecks) {
1878     CodeEmitInfo* info = state_for(x);
1879     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1880     if (index.result()->is_constant()) {
1881       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1882       __ branch(lir_cond_belowEqual, T_INT, stub);
1883     } else {
1884       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1885                   java_nio_Buffer::limit_offset(), T_INT, info);
1886       __ branch(lir_cond_aboveEqual, T_INT, stub);
1887     }
1888     __ move(index.result(), result);
1889   } else {
1890     // Just load the index into the result register
1891     __ move(index.result(), result);
1892   }
1893 }
1894 
1895 
1896 //------------------------array access--------------------------------------
1897 
1898 
1899 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1900   LIRItem array(x->array(), this);
1901   array.load_item();
1902   LIR_Opr reg = rlock_result(x);
1903 
1904   CodeEmitInfo* info = NULL;
1905   if (x->needs_null_check()) {
1906     NullCheck* nc = x->explicit_null_check();
1907     if (nc == NULL) {
1908       info = state_for(x);
1909     } else {
1910       info = state_for(nc);
1911     }
1912     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1913       LIR_Opr obj = new_register(T_OBJECT);
1914       __ move(LIR_OprFact::oopConst(NULL), obj);
1915       __ null_check(obj, new CodeEmitInfo(info));
1916     }
1917   }
1918   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1919 }
1920 
1921 
1922 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1923   bool use_length = x->length() != NULL;
1924   LIRItem array(x->array(), this);
1925   LIRItem index(x->index(), this);
1926   LIRItem length(this);
1927   bool needs_range_check = x->compute_needs_range_check();
1928 
1929   if (use_length && needs_range_check) {
1930     length.set_instruction(x->length());
1931     length.load_item();
1932   }
1933 
1934   array.load_item();
1935   if (index.is_constant() && can_inline_as_constant(x->index())) {
1936     // let it be a constant
1937     index.dont_load_item();
1938   } else {
1939     index.load_item();
1940   }
1941 
1942   CodeEmitInfo* range_check_info = state_for(x);
1943   CodeEmitInfo* null_check_info = NULL;
1944   if (x->needs_null_check()) {
1945     NullCheck* nc = x->explicit_null_check();
1946     if (nc != NULL) {
1947       null_check_info = state_for(nc);
1948     } else {
1949       null_check_info = range_check_info;
1950     }
1951     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1952       LIR_Opr obj = new_register(T_OBJECT);
1953       __ move(LIR_OprFact::oopConst(NULL), obj);
1954       __ null_check(obj, new CodeEmitInfo(null_check_info));
1955     }
1956   }
1957 
1958   // emit array address setup early so it schedules better
1959   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1960 
1961   if (GenerateRangeChecks && needs_range_check) {
1962     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1963       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1964     } else if (use_length) {
1965       // TODO: use a (modified) version of array_range_check that does not require a
1966       //       constant length to be loaded to a register
1967       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1968       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1969     } else {
1970       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1971       // The range check performs the null check, so clear it out for the load
1972       null_check_info = NULL;
1973     }
1974   }
1975 
1976   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1977 }
1978 
1979 
1980 void LIRGenerator::do_NullCheck(NullCheck* x) {
1981   if (x->can_trap()) {
1982     LIRItem value(x->obj(), this);
1983     value.load_item();
1984     CodeEmitInfo* info = state_for(x);
1985     __ null_check(value.result(), info);
1986   }
1987 }
1988 
1989 
1990 void LIRGenerator::do_TypeCast(TypeCast* x) {
1991   LIRItem value(x->obj(), this);
1992   value.load_item();
1993   // the result is the same as from the node we are casting
1994   set_result(x, value.result());
1995 }
1996 
1997 
1998 void LIRGenerator::do_Throw(Throw* x) {
1999   LIRItem exception(x->exception(), this);
2000   exception.load_item();
2001   set_no_result(x);
2002   LIR_Opr exception_opr = exception.result();
2003   CodeEmitInfo* info = state_for(x, x->state());
2004 
2005 #ifndef PRODUCT
2006   if (PrintC1Statistics) {
2007     increment_counter(Runtime1::throw_count_address(), T_INT);
2008   }
2009 #endif
2010 
2011   // check if the instruction has an xhandler in any of the nested scopes
2012   bool unwind = false;
2013   if (info->exception_handlers()->length() == 0) {
2014     // this throw is not inside an xhandler
2015     unwind = true;
2016   } else {
2017     // get some idea of the throw type
2018     bool type_is_exact = true;
2019     ciType* throw_type = x->exception()->exact_type();
2020     if (throw_type == NULL) {
2021       type_is_exact = false;
2022       throw_type = x->exception()->declared_type();
2023     }
2024     if (throw_type != NULL && throw_type->is_instance_klass()) {
2025       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2026       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2027     }
2028   }
2029 
2030   // do null check before moving exception oop into fixed register
2031   // to avoid a fixed interval with an oop during the null check.
2032   // Use a copy of the CodeEmitInfo because debug information is
2033   // different for null_check and throw.
2034   if (GenerateCompilerNullChecks &&
2035       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2036     // if the exception object wasn't created using new then it might be null.
2037     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2038   }
2039 
2040   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2041     // we need to go through the exception lookup path to get JVMTI
2042     // notification done
2043     unwind = false;
2044   }
2045 
2046   // move exception oop into fixed register
2047   __ move(exception_opr, exceptionOopOpr());
2048 
2049   if (unwind) {
2050     __ unwind_exception(exceptionOopOpr());
2051   } else {
2052     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2053   }
2054 }
2055 
2056 
2057 void LIRGenerator::do_RoundFP(RoundFP* x) {
2058   LIRItem input(x->input(), this);
2059   input.load_item();
2060   LIR_Opr input_opr = input.result();
2061   assert(input_opr->is_register(), "why round if value is not in a register?");
2062   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2063   if (input_opr->is_single_fpu()) {
2064     set_result(x, round_item(input_opr)); // This code path not currently taken
2065   } else {
2066     LIR_Opr result = new_register(T_DOUBLE);
2067     set_vreg_flag(result, must_start_in_memory);
2068     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2069     set_result(x, result);
2070   }
2071 }
2072 
2073 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2074 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2075 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2076   LIRItem base(x->base(), this);
2077   LIRItem idx(this);
2078 
2079   base.load_item();
2080   if (x->has_index()) {
2081     idx.set_instruction(x->index());
2082     idx.load_nonconstant();
2083   }
2084 
2085   LIR_Opr reg = rlock_result(x, x->basic_type());
2086 
2087   int   log2_scale = 0;
2088   if (x->has_index()) {
2089     log2_scale = x->log2_scale();
2090   }
2091 
2092   assert(!x->has_index() || idx.value() == x->index(), "should match");
2093 
2094   LIR_Opr base_op = base.result();
2095   LIR_Opr index_op = idx.result();
2096 #ifndef _LP64
2097   if (base_op->type() == T_LONG) {
2098     base_op = new_register(T_INT);
2099     __ convert(Bytecodes::_l2i, base.result(), base_op);
2100   }
2101   if (x->has_index()) {
2102     if (index_op->type() == T_LONG) {
2103       LIR_Opr long_index_op = index_op;
2104       if (index_op->is_constant()) {
2105         long_index_op = new_register(T_LONG);
2106         __ move(index_op, long_index_op);
2107       }
2108       index_op = new_register(T_INT);
2109       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2110     } else {
2111       assert(x->index()->type()->tag() == intTag, "must be");
2112     }
2113   }
2114   // At this point base and index should be all ints.
2115   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2116   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2117 #else
2118   if (x->has_index()) {
2119     if (index_op->type() == T_INT) {
2120       if (!index_op->is_constant()) {
2121         index_op = new_register(T_LONG);
2122         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2123       }
2124     } else {
2125       assert(index_op->type() == T_LONG, "must be");
2126       if (index_op->is_constant()) {
2127         index_op = new_register(T_LONG);
2128         __ move(idx.result(), index_op);
2129       }
2130     }
2131   }
2132   // At this point base is a long non-constant
2133   // Index is a long register or a int constant.
2134   // We allow the constant to stay an int because that would allow us a more compact encoding by
2135   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2136   // move it into a register first.
2137   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2138   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2139                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2140 #endif
2141 
2142   BasicType dst_type = x->basic_type();
2143 
2144   LIR_Address* addr;
2145   if (index_op->is_constant()) {
2146     assert(log2_scale == 0, "must not have a scale");
2147     assert(index_op->type() == T_INT, "only int constants supported");
2148     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2149   } else {
2150 #ifdef X86
2151     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2152 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2153     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2154 #else
2155     if (index_op->is_illegal() || log2_scale == 0) {
2156       addr = new LIR_Address(base_op, index_op, dst_type);
2157     } else {
2158       LIR_Opr tmp = new_pointer_register();
2159       __ shift_left(index_op, log2_scale, tmp);
2160       addr = new LIR_Address(base_op, tmp, dst_type);
2161     }
2162 #endif
2163   }
2164 
2165   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2166     __ unaligned_move(addr, reg);
2167   } else {
2168     if (dst_type == T_OBJECT && x->is_wide()) {
2169       __ move_wide(addr, reg);
2170     } else {
2171       __ move(addr, reg);
2172     }
2173   }
2174 }
2175 
2176 
2177 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2178   int  log2_scale = 0;
2179   BasicType type = x->basic_type();
2180 
2181   if (x->has_index()) {
2182     log2_scale = x->log2_scale();
2183   }
2184 
2185   LIRItem base(x->base(), this);
2186   LIRItem value(x->value(), this);
2187   LIRItem idx(this);
2188 
2189   base.load_item();
2190   if (x->has_index()) {
2191     idx.set_instruction(x->index());
2192     idx.load_item();
2193   }
2194 
2195   if (type == T_BYTE || type == T_BOOLEAN) {
2196     value.load_byte_item();
2197   } else {
2198     value.load_item();
2199   }
2200 
2201   set_no_result(x);
2202 
2203   LIR_Opr base_op = base.result();
2204   LIR_Opr index_op = idx.result();
2205 
2206 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2207   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2208 #else
2209 #ifndef _LP64
2210   if (base_op->type() == T_LONG) {
2211     base_op = new_register(T_INT);
2212     __ convert(Bytecodes::_l2i, base.result(), base_op);
2213   }
2214   if (x->has_index()) {
2215     if (index_op->type() == T_LONG) {
2216       index_op = new_register(T_INT);
2217       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2218     }
2219   }
2220   // At this point base and index should be all ints and not constants
2221   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2222   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2223 #else
2224   if (x->has_index()) {
2225     if (index_op->type() == T_INT) {
2226       index_op = new_register(T_LONG);
2227       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2228     }
2229   }
2230   // At this point base and index are long and non-constant
2231   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2232   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2233 #endif
2234 
2235   if (log2_scale != 0) {
2236     // temporary fix (platform dependent code without shift on Intel would be better)
2237     // TODO: ARM also allows embedded shift in the address
2238     LIR_Opr tmp = new_pointer_register();
2239     if (TwoOperandLIRForm) {
2240       __ move(index_op, tmp);
2241       index_op = tmp;
2242     }
2243     __ shift_left(index_op, log2_scale, tmp);
2244     if (!TwoOperandLIRForm) {
2245       index_op = tmp;
2246     }
2247   }
2248 
2249   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2250 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2251   __ move(value.result(), addr);
2252 }
2253 
2254 
2255 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2256   BasicType type = x->basic_type();
2257   LIRItem src(x->object(), this);
2258   LIRItem off(x->offset(), this);
2259 
2260   off.load_item();
2261   src.load_item();
2262 
2263   LIR_Opr value = rlock_result(x, x->basic_type());
2264 
2265   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2266     __ membar();
2267   }
2268 
2269   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2270 
2271 #if INCLUDE_ALL_GCS
2272   // We might be reading the value of the referent field of a
2273   // Reference object in order to attach it back to the live
2274   // object graph. If G1 is enabled then we need to record
2275   // the value that is being returned in an SATB log buffer.
2276   //
2277   // We need to generate code similar to the following...
2278   //
2279   // if (offset == java_lang_ref_Reference::referent_offset) {
2280   //   if (src != NULL) {
2281   //     if (klass(src)->reference_type() != REF_NONE) {
2282   //       pre_barrier(..., value, ...);
2283   //     }
2284   //   }
2285   // }
2286 
2287   if (UseG1GC && type == T_OBJECT) {
2288     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2289     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2290     bool gen_source_check = true;    // Assume we need to check the src object for null.
2291     bool gen_type_check = true;      // Assume we need to check the reference_type.
2292 
2293     if (off.is_constant()) {
2294       jlong off_con = (off.type()->is_int() ?
2295                         (jlong) off.get_jint_constant() :
2296                         off.get_jlong_constant());
2297 
2298 
2299       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2300         // The constant offset is something other than referent_offset.
2301         // We can skip generating/checking the remaining guards and
2302         // skip generation of the code stub.
2303         gen_pre_barrier = false;
2304       } else {
2305         // The constant offset is the same as referent_offset -
2306         // we do not need to generate a runtime offset check.
2307         gen_offset_check = false;
2308       }
2309     }
2310 
2311     // We don't need to generate stub if the source object is an array
2312     if (gen_pre_barrier && src.type()->is_array()) {
2313       gen_pre_barrier = false;
2314     }
2315 
2316     if (gen_pre_barrier) {
2317       // We still need to continue with the checks.
2318       if (src.is_constant()) {
2319         ciObject* src_con = src.get_jobject_constant();
2320         guarantee(src_con != NULL, "no source constant");
2321 
2322         if (src_con->is_null_object()) {
2323           // The constant src object is null - We can skip
2324           // generating the code stub.
2325           gen_pre_barrier = false;
2326         } else {
2327           // Non-null constant source object. We still have to generate
2328           // the slow stub - but we don't need to generate the runtime
2329           // null object check.
2330           gen_source_check = false;
2331         }
2332       }
2333     }
2334     if (gen_pre_barrier && !PatchALot) {
2335       // Can the klass of object be statically determined to be
2336       // a sub-class of Reference?
2337       ciType* type = src.value()->declared_type();
2338       if ((type != NULL) && type->is_loaded()) {
2339         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2340           gen_type_check = false;
2341         } else if (type->is_klass() &&
2342                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2343           // Not Reference and not Object klass.
2344           gen_pre_barrier = false;
2345         }
2346       }
2347     }
2348 
2349     if (gen_pre_barrier) {
2350       LabelObj* Lcont = new LabelObj();
2351 
2352       // We can have generate one runtime check here. Let's start with
2353       // the offset check.
2354       if (gen_offset_check) {
2355         // if (offset != referent_offset) -> continue
2356         // If offset is an int then we can do the comparison with the
2357         // referent_offset constant; otherwise we need to move
2358         // referent_offset into a temporary register and generate
2359         // a reg-reg compare.
2360 
2361         LIR_Opr referent_off;
2362 
2363         if (off.type()->is_int()) {
2364           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2365         } else {
2366           assert(off.type()->is_long(), "what else?");
2367           referent_off = new_register(T_LONG);
2368           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2369         }
2370         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2371         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2372       }
2373       if (gen_source_check) {
2374         // offset is a const and equals referent offset
2375         // if (source == null) -> continue
2376         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2377         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2378       }
2379       LIR_Opr src_klass = new_register(T_OBJECT);
2380       if (gen_type_check) {
2381         // We have determined that offset == referent_offset && src != null.
2382         // if (src->_klass->_reference_type == REF_NONE) -> continue
2383         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2384         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2385         LIR_Opr reference_type = new_register(T_INT);
2386         __ move(reference_type_addr, reference_type);
2387         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2388         __ branch(lir_cond_equal, T_INT, Lcont->label());
2389       }
2390       {
2391         // We have determined that src->_klass->_reference_type != REF_NONE
2392         // so register the value in the referent field with the pre-barrier.
2393         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2394                     value  /* pre_val */,
2395                     false  /* do_load */,
2396                     false  /* patch */,
2397                     NULL   /* info */);
2398       }
2399       __ branch_destination(Lcont->label());
2400     }
2401   }
2402 #endif // INCLUDE_ALL_GCS
2403 
2404   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2405 }
2406 
2407 
2408 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2409   BasicType type = x->basic_type();
2410   LIRItem src(x->object(), this);
2411   LIRItem off(x->offset(), this);
2412   LIRItem data(x->value(), this);
2413 
2414   src.load_item();
2415   if (type == T_BOOLEAN || type == T_BYTE) {
2416     data.load_byte_item();
2417   } else {
2418     data.load_item();
2419   }
2420   off.load_item();
2421 
2422   set_no_result(x);
2423 
2424   if (x->is_volatile() && os::is_MP()) __ membar_release();
2425   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2426   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2427 }
2428 
2429 
2430 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2431   int lng = x->length();
2432 
2433   for (int i = 0; i < lng; i++) {
2434     SwitchRange* one_range = x->at(i);
2435     int low_key = one_range->low_key();
2436     int high_key = one_range->high_key();
2437     BlockBegin* dest = one_range->sux();
2438     if (low_key == high_key) {
2439       __ cmp(lir_cond_equal, value, low_key);
2440       __ branch(lir_cond_equal, T_INT, dest);
2441     } else if (high_key - low_key == 1) {
2442       __ cmp(lir_cond_equal, value, low_key);
2443       __ branch(lir_cond_equal, T_INT, dest);
2444       __ cmp(lir_cond_equal, value, high_key);
2445       __ branch(lir_cond_equal, T_INT, dest);
2446     } else {
2447       LabelObj* L = new LabelObj();
2448       __ cmp(lir_cond_less, value, low_key);
2449       __ branch(lir_cond_less, T_INT, L->label());
2450       __ cmp(lir_cond_lessEqual, value, high_key);
2451       __ branch(lir_cond_lessEqual, T_INT, dest);
2452       __ branch_destination(L->label());
2453     }
2454   }
2455   __ jump(default_sux);
2456 }
2457 
2458 
2459 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2460   SwitchRangeList* res = new SwitchRangeList();
2461   int len = x->length();
2462   if (len > 0) {
2463     BlockBegin* sux = x->sux_at(0);
2464     int key = x->lo_key();
2465     BlockBegin* default_sux = x->default_sux();
2466     SwitchRange* range = new SwitchRange(key, sux);
2467     for (int i = 0; i < len; i++, key++) {
2468       BlockBegin* new_sux = x->sux_at(i);
2469       if (sux == new_sux) {
2470         // still in same range
2471         range->set_high_key(key);
2472       } else {
2473         // skip tests which explicitly dispatch to the default
2474         if (sux != default_sux) {
2475           res->append(range);
2476         }
2477         range = new SwitchRange(key, new_sux);
2478       }
2479       sux = new_sux;
2480     }
2481     if (res->length() == 0 || res->last() != range)  res->append(range);
2482   }
2483   return res;
2484 }
2485 
2486 
2487 // we expect the keys to be sorted by increasing value
2488 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2489   SwitchRangeList* res = new SwitchRangeList();
2490   int len = x->length();
2491   if (len > 0) {
2492     BlockBegin* default_sux = x->default_sux();
2493     int key = x->key_at(0);
2494     BlockBegin* sux = x->sux_at(0);
2495     SwitchRange* range = new SwitchRange(key, sux);
2496     for (int i = 1; i < len; i++) {
2497       int new_key = x->key_at(i);
2498       BlockBegin* new_sux = x->sux_at(i);
2499       if (key+1 == new_key && sux == new_sux) {
2500         // still in same range
2501         range->set_high_key(new_key);
2502       } else {
2503         // skip tests which explicitly dispatch to the default
2504         if (range->sux() != default_sux) {
2505           res->append(range);
2506         }
2507         range = new SwitchRange(new_key, new_sux);
2508       }
2509       key = new_key;
2510       sux = new_sux;
2511     }
2512     if (res->length() == 0 || res->last() != range)  res->append(range);
2513   }
2514   return res;
2515 }
2516 
2517 
2518 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2519   LIRItem tag(x->tag(), this);
2520   tag.load_item();
2521   set_no_result(x);
2522 
2523   if (x->is_safepoint()) {
2524     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2525   }
2526 
2527   // move values into phi locations
2528   move_to_phi(x->state());
2529 
2530   int lo_key = x->lo_key();
2531   int hi_key = x->hi_key();
2532   int len = x->length();
2533   LIR_Opr value = tag.result();
2534   if (UseTableRanges) {
2535     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2536   } else {
2537     for (int i = 0; i < len; i++) {
2538       __ cmp(lir_cond_equal, value, i + lo_key);
2539       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2540     }
2541     __ jump(x->default_sux());
2542   }
2543 }
2544 
2545 
2546 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2547   LIRItem tag(x->tag(), this);
2548   tag.load_item();
2549   set_no_result(x);
2550 
2551   if (x->is_safepoint()) {
2552     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2553   }
2554 
2555   // move values into phi locations
2556   move_to_phi(x->state());
2557 
2558   LIR_Opr value = tag.result();
2559   if (UseTableRanges) {
2560     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2561   } else {
2562     int len = x->length();
2563     for (int i = 0; i < len; i++) {
2564       __ cmp(lir_cond_equal, value, x->key_at(i));
2565       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2566     }
2567     __ jump(x->default_sux());
2568   }
2569 }
2570 
2571 
2572 void LIRGenerator::do_Goto(Goto* x) {
2573   set_no_result(x);
2574 
2575   if (block()->next()->as_OsrEntry()) {
2576     // need to free up storage used for OSR entry point
2577     LIR_Opr osrBuffer = block()->next()->operand();
2578     BasicTypeList signature;
2579     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2580     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2581     __ move(osrBuffer, cc->args()->at(0));
2582     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2583                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2584   }
2585 
2586   if (x->is_safepoint()) {
2587     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2588 
2589     // increment backedge counter if needed
2590     CodeEmitInfo* info = state_for(x, state);
2591     increment_backedge_counter(info, x->profiled_bci());
2592     CodeEmitInfo* safepoint_info = state_for(x, state);
2593     __ safepoint(safepoint_poll_register(), safepoint_info);
2594   }
2595 
2596   // Gotos can be folded Ifs, handle this case.
2597   if (x->should_profile()) {
2598     ciMethod* method = x->profiled_method();
2599     assert(method != NULL, "method should be set if branch is profiled");
2600     ciMethodData* md = method->method_data_or_null();
2601     assert(md != NULL, "Sanity");
2602     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2603     assert(data != NULL, "must have profiling data");
2604     int offset;
2605     if (x->direction() == Goto::taken) {
2606       assert(data->is_BranchData(), "need BranchData for two-way branches");
2607       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2608     } else if (x->direction() == Goto::not_taken) {
2609       assert(data->is_BranchData(), "need BranchData for two-way branches");
2610       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2611     } else {
2612       assert(data->is_JumpData(), "need JumpData for branches");
2613       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2614     }
2615     LIR_Opr md_reg = new_register(T_METADATA);
2616     __ metadata2reg(md->constant_encoding(), md_reg);
2617 
2618     increment_counter(new LIR_Address(md_reg, offset,
2619                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2620   }
2621 
2622   // emit phi-instruction move after safepoint since this simplifies
2623   // describing the state as the safepoint.
2624   move_to_phi(x->state());
2625 
2626   __ jump(x->default_sux());
2627 }
2628 
2629 /**
2630  * Emit profiling code if needed for arguments, parameters, return value types
2631  *
2632  * @param md                    MDO the code will update at runtime
2633  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2634  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2635  * @param profiled_k            current profile
2636  * @param obj                   IR node for the object to be profiled
2637  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2638  *                              Set once we find an update to make and use for next ones.
2639  * @param not_null              true if we know obj cannot be null
2640  * @param signature_at_call_k   signature at call for obj
2641  * @param callee_signature_k    signature of callee for obj
2642  *                              at call and callee signatures differ at method handle call
2643  * @return                      the only klass we know will ever be seen at this profile point
2644  */
2645 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2646                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2647                                     ciKlass* callee_signature_k) {
2648   ciKlass* result = NULL;
2649   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2650   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2651   // known not to be null or null bit already set and already set to
2652   // unknown: nothing we can do to improve profiling
2653   if (!do_null && !do_update) {
2654     return result;
2655   }
2656 
2657   ciKlass* exact_klass = NULL;
2658   Compilation* comp = Compilation::current();
2659   if (do_update) {
2660     // try to find exact type, using CHA if possible, so that loading
2661     // the klass from the object can be avoided
2662     ciType* type = obj->exact_type();
2663     if (type == NULL) {
2664       type = obj->declared_type();
2665       type = comp->cha_exact_type(type);
2666     }
2667     assert(type == NULL || type->is_klass(), "type should be class");
2668     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2669 
2670     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2671   }
2672 
2673   if (!do_null && !do_update) {
2674     return result;
2675   }
2676 
2677   ciKlass* exact_signature_k = NULL;
2678   if (do_update) {
2679     // Is the type from the signature exact (the only one possible)?
2680     exact_signature_k = signature_at_call_k->exact_klass();
2681     if (exact_signature_k == NULL) {
2682       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2683     } else {
2684       result = exact_signature_k;
2685       // Known statically. No need to emit any code: prevent
2686       // LIR_Assembler::emit_profile_type() from emitting useless code
2687       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2688     }
2689     // exact_klass and exact_signature_k can be both non NULL but
2690     // different if exact_klass is loaded after the ciObject for
2691     // exact_signature_k is created.
2692     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2693       // sometimes the type of the signature is better than the best type
2694       // the compiler has
2695       exact_klass = exact_signature_k;
2696     }
2697     if (callee_signature_k != NULL &&
2698         callee_signature_k != signature_at_call_k) {
2699       ciKlass* improved_klass = callee_signature_k->exact_klass();
2700       if (improved_klass == NULL) {
2701         improved_klass = comp->cha_exact_type(callee_signature_k);
2702       }
2703       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2704         exact_klass = exact_signature_k;
2705       }
2706     }
2707     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2708   }
2709 
2710   if (!do_null && !do_update) {
2711     return result;
2712   }
2713 
2714   if (mdp == LIR_OprFact::illegalOpr) {
2715     mdp = new_register(T_METADATA);
2716     __ metadata2reg(md->constant_encoding(), mdp);
2717     if (md_base_offset != 0) {
2718       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2719       mdp = new_pointer_register();
2720       __ leal(LIR_OprFact::address(base_type_address), mdp);
2721     }
2722   }
2723   LIRItem value(obj, this);
2724   value.load_item();
2725   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2726                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2727   return result;
2728 }
2729 
2730 // profile parameters on entry to the root of the compilation
2731 void LIRGenerator::profile_parameters(Base* x) {
2732   if (compilation()->profile_parameters()) {
2733     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2734     ciMethodData* md = scope()->method()->method_data_or_null();
2735     assert(md != NULL, "Sanity");
2736 
2737     if (md->parameters_type_data() != NULL) {
2738       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2739       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2740       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2741       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2742         LIR_Opr src = args->at(i);
2743         assert(!src->is_illegal(), "check");
2744         BasicType t = src->type();
2745         if (t == T_OBJECT || t == T_ARRAY) {
2746           intptr_t profiled_k = parameters->type(j);
2747           Local* local = x->state()->local_at(java_index)->as_Local();
2748           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2749                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2750                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2751           // If the profile is known statically set it once for all and do not emit any code
2752           if (exact != NULL) {
2753             md->set_parameter_type(j, exact);
2754           }
2755           j++;
2756         }
2757         java_index += type2size[t];
2758       }
2759     }
2760   }
2761 }
2762 
2763 void LIRGenerator::do_Base(Base* x) {
2764   __ std_entry(LIR_OprFact::illegalOpr);
2765   // Emit moves from physical registers / stack slots to virtual registers
2766   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2767   IRScope* irScope = compilation()->hir()->top_scope();
2768   int java_index = 0;
2769   for (int i = 0; i < args->length(); i++) {
2770     LIR_Opr src = args->at(i);
2771     assert(!src->is_illegal(), "check");
2772     BasicType t = src->type();
2773 
2774     // Types which are smaller than int are passed as int, so
2775     // correct the type which passed.
2776     switch (t) {
2777     case T_BYTE:
2778     case T_BOOLEAN:
2779     case T_SHORT:
2780     case T_CHAR:
2781       t = T_INT;
2782       break;
2783     }
2784 
2785     LIR_Opr dest = new_register(t);
2786     __ move(src, dest);
2787 
2788     // Assign new location to Local instruction for this local
2789     Local* local = x->state()->local_at(java_index)->as_Local();
2790     assert(local != NULL, "Locals for incoming arguments must have been created");
2791 #ifndef __SOFTFP__
2792     // The java calling convention passes double as long and float as int.
2793     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2794 #endif // __SOFTFP__
2795     local->set_operand(dest);
2796     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2797     java_index += type2size[t];
2798   }
2799 
2800   if (compilation()->env()->dtrace_method_probes()) {
2801     BasicTypeList signature;
2802     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2803     signature.append(T_METADATA); // Method*
2804     LIR_OprList* args = new LIR_OprList();
2805     args->append(getThreadPointer());
2806     LIR_Opr meth = new_register(T_METADATA);
2807     __ metadata2reg(method()->constant_encoding(), meth);
2808     args->append(meth);
2809     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2810   }
2811 
2812   if (method()->is_synchronized()) {
2813     LIR_Opr obj;
2814     if (method()->is_static()) {
2815       obj = new_register(T_OBJECT);
2816       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2817     } else {
2818       Local* receiver = x->state()->local_at(0)->as_Local();
2819       assert(receiver != NULL, "must already exist");
2820       obj = receiver->operand();
2821     }
2822     assert(obj->is_valid(), "must be valid");
2823 
2824     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2825       LIR_Opr lock = syncLockOpr();
2826       __ load_stack_address_monitor(0, lock);
2827 
2828       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2829       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2830 
2831       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2832       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2833     }
2834   }
2835   if (compilation()->age_code()) {
2836     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2837     decrement_age(info);
2838   }
2839   // increment invocation counters if needed
2840   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2841     profile_parameters(x);
2842     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2843     increment_invocation_counter(info);
2844   }
2845 
2846   // all blocks with a successor must end with an unconditional jump
2847   // to the successor even if they are consecutive
2848   __ jump(x->default_sux());
2849 }
2850 
2851 
2852 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2853   // construct our frame and model the production of incoming pointer
2854   // to the OSR buffer.
2855   __ osr_entry(LIR_Assembler::osrBufferPointer());
2856   LIR_Opr result = rlock_result(x);
2857   __ move(LIR_Assembler::osrBufferPointer(), result);
2858 }
2859 
2860 
2861 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2862   assert(args->length() == arg_list->length(),
2863          "args=%d, arg_list=%d", args->length(), arg_list->length());
2864   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2865     LIRItem* param = args->at(i);
2866     LIR_Opr loc = arg_list->at(i);
2867     if (loc->is_register()) {
2868       param->load_item_force(loc);
2869     } else {
2870       LIR_Address* addr = loc->as_address_ptr();
2871       param->load_for_store(addr->type());
2872       if (addr->type() == T_OBJECT) {
2873         __ move_wide(param->result(), addr);
2874       } else
2875         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2876           __ unaligned_move(param->result(), addr);
2877         } else {
2878           __ move(param->result(), addr);
2879         }
2880     }
2881   }
2882 
2883   if (x->has_receiver()) {
2884     LIRItem* receiver = args->at(0);
2885     LIR_Opr loc = arg_list->at(0);
2886     if (loc->is_register()) {
2887       receiver->load_item_force(loc);
2888     } else {
2889       assert(loc->is_address(), "just checking");
2890       receiver->load_for_store(T_OBJECT);
2891       __ move_wide(receiver->result(), loc->as_address_ptr());
2892     }
2893   }
2894 }
2895 
2896 
2897 // Visits all arguments, returns appropriate items without loading them
2898 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2899   LIRItemList* argument_items = new LIRItemList();
2900   if (x->has_receiver()) {
2901     LIRItem* receiver = new LIRItem(x->receiver(), this);
2902     argument_items->append(receiver);
2903   }
2904   for (int i = 0; i < x->number_of_arguments(); i++) {
2905     LIRItem* param = new LIRItem(x->argument_at(i), this);
2906     argument_items->append(param);
2907   }
2908   return argument_items;
2909 }
2910 
2911 
2912 // The invoke with receiver has following phases:
2913 //   a) traverse and load/lock receiver;
2914 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2915 //   c) push receiver on stack
2916 //   d) load each of the items and push on stack
2917 //   e) unlock receiver
2918 //   f) move receiver into receiver-register %o0
2919 //   g) lock result registers and emit call operation
2920 //
2921 // Before issuing a call, we must spill-save all values on stack
2922 // that are in caller-save register. "spill-save" moves those registers
2923 // either in a free callee-save register or spills them if no free
2924 // callee save register is available.
2925 //
2926 // The problem is where to invoke spill-save.
2927 // - if invoked between e) and f), we may lock callee save
2928 //   register in "spill-save" that destroys the receiver register
2929 //   before f) is executed
2930 // - if we rearrange f) to be earlier (by loading %o0) it
2931 //   may destroy a value on the stack that is currently in %o0
2932 //   and is waiting to be spilled
2933 // - if we keep the receiver locked while doing spill-save,
2934 //   we cannot spill it as it is spill-locked
2935 //
2936 void LIRGenerator::do_Invoke(Invoke* x) {
2937   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2938 
2939   LIR_OprList* arg_list = cc->args();
2940   LIRItemList* args = invoke_visit_arguments(x);
2941   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2942 
2943   // setup result register
2944   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2945   if (x->type() != voidType) {
2946     result_register = result_register_for(x->type());
2947   }
2948 
2949   CodeEmitInfo* info = state_for(x, x->state());
2950 
2951   invoke_load_arguments(x, args, arg_list);
2952 
2953   if (x->has_receiver()) {
2954     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2955     receiver = args->at(0)->result();
2956   }
2957 
2958   // emit invoke code
2959   bool optimized = x->target_is_loaded() && x->target_is_final();
2960   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2961 
2962   // JSR 292
2963   // Preserve the SP over MethodHandle call sites, if needed.
2964   ciMethod* target = x->target();
2965   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2966                                   target->is_method_handle_intrinsic() ||
2967                                   target->is_compiled_lambda_form());
2968   if (is_method_handle_invoke) {
2969     info->set_is_method_handle_invoke(true);
2970     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2971         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2972     }
2973   }
2974 
2975   switch (x->code()) {
2976     case Bytecodes::_invokestatic:
2977       __ call_static(target, result_register,
2978                      SharedRuntime::get_resolve_static_call_stub(),
2979                      arg_list, info);
2980       break;
2981     case Bytecodes::_invokespecial:
2982     case Bytecodes::_invokevirtual:
2983     case Bytecodes::_invokeinterface:
2984       // for final target we still produce an inline cache, in order
2985       // to be able to call mixed mode
2986       if (x->code() == Bytecodes::_invokespecial || optimized) {
2987         __ call_opt_virtual(target, receiver, result_register,
2988                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2989                             arg_list, info);
2990       } else if (x->vtable_index() < 0) {
2991         __ call_icvirtual(target, receiver, result_register,
2992                           SharedRuntime::get_resolve_virtual_call_stub(),
2993                           arg_list, info);
2994       } else {
2995         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2996         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2997         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2998       }
2999       break;
3000     case Bytecodes::_invokedynamic: {
3001       __ call_dynamic(target, receiver, result_register,
3002                       SharedRuntime::get_resolve_static_call_stub(),
3003                       arg_list, info);
3004       break;
3005     }
3006     default:
3007       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3008       break;
3009   }
3010 
3011   // JSR 292
3012   // Restore the SP after MethodHandle call sites, if needed.
3013   if (is_method_handle_invoke
3014       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3015     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3016   }
3017 
3018   if (x->type()->is_float() || x->type()->is_double()) {
3019     // Force rounding of results from non-strictfp when in strictfp
3020     // scope (or when we don't know the strictness of the callee, to
3021     // be safe.)
3022     if (method()->is_strict()) {
3023       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3024         result_register = round_item(result_register);
3025       }
3026     }
3027   }
3028 
3029   if (result_register->is_valid()) {
3030     LIR_Opr result = rlock_result(x);
3031     __ move(result_register, result);
3032   }
3033 }
3034 
3035 
3036 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3037   assert(x->number_of_arguments() == 1, "wrong type");
3038   LIRItem value       (x->argument_at(0), this);
3039   LIR_Opr reg = rlock_result(x);
3040   value.load_item();
3041   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3042   __ move(tmp, reg);
3043 }
3044 
3045 
3046 
3047 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3048 void LIRGenerator::do_IfOp(IfOp* x) {
3049 #ifdef ASSERT
3050   {
3051     ValueTag xtag = x->x()->type()->tag();
3052     ValueTag ttag = x->tval()->type()->tag();
3053     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3054     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3055     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3056   }
3057 #endif
3058 
3059   LIRItem left(x->x(), this);
3060   LIRItem right(x->y(), this);
3061   left.load_item();
3062   if (can_inline_as_constant(right.value())) {
3063     right.dont_load_item();
3064   } else {
3065     right.load_item();
3066   }
3067 
3068   LIRItem t_val(x->tval(), this);
3069   LIRItem f_val(x->fval(), this);
3070   t_val.dont_load_item();
3071   f_val.dont_load_item();
3072   LIR_Opr reg = rlock_result(x);
3073 
3074   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3075   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3076 }
3077 
3078 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3079   assert(x->number_of_arguments() == 0, "wrong type");
3080   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3081   BasicTypeList signature;
3082   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3083   LIR_Opr reg = result_register_for(x->type());
3084   __ call_runtime_leaf(routine, getThreadTemp(),
3085                        reg, new LIR_OprList());
3086   LIR_Opr result = rlock_result(x);
3087   __ move(reg, result);
3088 }
3089 
3090 #ifdef TRACE_HAVE_INTRINSICS
3091 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3092     LIR_Opr thread = getThreadPointer();
3093     LIR_Opr osthread = new_pointer_register();
3094     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3095     size_t thread_id_size = OSThread::thread_id_size();
3096     if (thread_id_size == (size_t) BytesPerLong) {
3097       LIR_Opr id = new_register(T_LONG);
3098       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3099       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3100     } else if (thread_id_size == (size_t) BytesPerInt) {
3101       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3102     } else {
3103       ShouldNotReachHere();
3104     }
3105 }
3106 
3107 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3108     CodeEmitInfo* info = state_for(x);
3109     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3110     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3111     assert(info != NULL, "must have info");
3112     LIRItem arg(x->argument_at(1), this);
3113     arg.load_item();
3114     LIR_Opr klass = new_pointer_register();
3115     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3116     LIR_Opr id = new_register(T_LONG);
3117     ByteSize offset = TRACE_ID_OFFSET;
3118     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3119     __ move(trace_id_addr, id);
3120     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3121     __ store(id, trace_id_addr);
3122     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3123     __ move(id, rlock_result(x));
3124 }
3125 #endif
3126 
3127 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3128   switch (x->id()) {
3129   case vmIntrinsics::_intBitsToFloat      :
3130   case vmIntrinsics::_doubleToRawLongBits :
3131   case vmIntrinsics::_longBitsToDouble    :
3132   case vmIntrinsics::_floatToRawIntBits   : {
3133     do_FPIntrinsics(x);
3134     break;
3135   }
3136 
3137 #ifdef TRACE_HAVE_INTRINSICS
3138   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3139   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3140   case vmIntrinsics::_counterTime:
3141     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3142     break;
3143 #endif
3144 
3145   case vmIntrinsics::_currentTimeMillis:
3146     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3147     break;
3148 
3149   case vmIntrinsics::_nanoTime:
3150     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3151     break;
3152 
3153   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3154   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3155   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3156   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3157   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3158 
3159   case vmIntrinsics::_dlog:           // fall through
3160   case vmIntrinsics::_dlog10:         // fall through
3161   case vmIntrinsics::_dabs:           // fall through
3162   case vmIntrinsics::_dsqrt:          // fall through
3163   case vmIntrinsics::_dtan:           // fall through
3164   case vmIntrinsics::_dsin :          // fall through
3165   case vmIntrinsics::_dcos :          // fall through
3166   case vmIntrinsics::_dexp :          // fall through
3167   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3168   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3169 
3170   // java.nio.Buffer.checkIndex
3171   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3172 
3173   case vmIntrinsics::_compareAndSwapObject:
3174     do_CompareAndSwap(x, objectType);
3175     break;
3176   case vmIntrinsics::_compareAndSwapInt:
3177     do_CompareAndSwap(x, intType);
3178     break;
3179   case vmIntrinsics::_compareAndSwapLong:
3180     do_CompareAndSwap(x, longType);
3181     break;
3182 
3183   case vmIntrinsics::_loadFence :
3184     if (os::is_MP()) __ membar_acquire();
3185     break;
3186   case vmIntrinsics::_storeFence:
3187     if (os::is_MP()) __ membar_release();
3188     break;
3189   case vmIntrinsics::_fullFence :
3190     if (os::is_MP()) __ membar();
3191     break;
3192 
3193   case vmIntrinsics::_Reference_get:
3194     do_Reference_get(x);
3195     break;
3196 
3197   case vmIntrinsics::_updateCRC32:
3198   case vmIntrinsics::_updateBytesCRC32:
3199   case vmIntrinsics::_updateByteBufferCRC32:
3200     do_update_CRC32(x);
3201     break;
3202 
3203   default: ShouldNotReachHere(); break;
3204   }
3205 }
3206 
3207 void LIRGenerator::profile_arguments(ProfileCall* x) {
3208   if (compilation()->profile_arguments()) {
3209     int bci = x->bci_of_invoke();
3210     ciMethodData* md = x->method()->method_data_or_null();
3211     ciProfileData* data = md->bci_to_data(bci);
3212     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3213         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3214       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3215       int base_offset = md->byte_offset_of_slot(data, extra);
3216       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3217       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3218 
3219       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3220       int start = 0;
3221       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3222       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3223         // first argument is not profiled at call (method handle invoke)
3224         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3225         start = 1;
3226       }
3227       ciSignature* callee_signature = x->callee()->signature();
3228       // method handle call to virtual method
3229       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3230       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3231 
3232       bool ignored_will_link;
3233       ciSignature* signature_at_call = NULL;
3234       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3235       ciSignatureStream signature_at_call_stream(signature_at_call);
3236 
3237       // if called through method handle invoke, some arguments may have been popped
3238       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3239         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3240         ciKlass* exact = profile_type(md, base_offset, off,
3241                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3242                                       !x->arg_needs_null_check(i+start),
3243                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3244         if (exact != NULL) {
3245           md->set_argument_type(bci, i, exact);
3246         }
3247       }
3248     } else {
3249 #ifdef ASSERT
3250       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3251       int n = x->nb_profiled_args();
3252       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3253                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3254              "only at JSR292 bytecodes");
3255 #endif
3256     }
3257   }
3258 }
3259 
3260 // profile parameters on entry to an inlined method
3261 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3262   if (compilation()->profile_parameters() && x->inlined()) {
3263     ciMethodData* md = x->callee()->method_data_or_null();
3264     if (md != NULL) {
3265       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3266       if (parameters_type_data != NULL) {
3267         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3268         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3269         bool has_receiver = !x->callee()->is_static();
3270         ciSignature* sig = x->callee()->signature();
3271         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3272         int i = 0; // to iterate on the Instructions
3273         Value arg = x->recv();
3274         bool not_null = false;
3275         int bci = x->bci_of_invoke();
3276         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3277         // The first parameter is the receiver so that's what we start
3278         // with if it exists. One exception is method handle call to
3279         // virtual method: the receiver is in the args list
3280         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3281           i = 1;
3282           arg = x->profiled_arg_at(0);
3283           not_null = !x->arg_needs_null_check(0);
3284         }
3285         int k = 0; // to iterate on the profile data
3286         for (;;) {
3287           intptr_t profiled_k = parameters->type(k);
3288           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3289                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3290                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3291           // If the profile is known statically set it once for all and do not emit any code
3292           if (exact != NULL) {
3293             md->set_parameter_type(k, exact);
3294           }
3295           k++;
3296           if (k >= parameters_type_data->number_of_parameters()) {
3297 #ifdef ASSERT
3298             int extra = 0;
3299             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3300                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3301                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3302               extra += 1;
3303             }
3304             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3305 #endif
3306             break;
3307           }
3308           arg = x->profiled_arg_at(i);
3309           not_null = !x->arg_needs_null_check(i);
3310           i++;
3311         }
3312       }
3313     }
3314   }
3315 }
3316 
3317 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3318   // Need recv in a temporary register so it interferes with the other temporaries
3319   LIR_Opr recv = LIR_OprFact::illegalOpr;
3320   LIR_Opr mdo = new_register(T_OBJECT);
3321   // tmp is used to hold the counters on SPARC
3322   LIR_Opr tmp = new_pointer_register();
3323 
3324   if (x->nb_profiled_args() > 0) {
3325     profile_arguments(x);
3326   }
3327 
3328   // profile parameters on inlined method entry including receiver
3329   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3330     profile_parameters_at_call(x);
3331   }
3332 
3333   if (x->recv() != NULL) {
3334     LIRItem value(x->recv(), this);
3335     value.load_item();
3336     recv = new_register(T_OBJECT);
3337     __ move(value.result(), recv);
3338   }
3339   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3340 }
3341 
3342 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3343   int bci = x->bci_of_invoke();
3344   ciMethodData* md = x->method()->method_data_or_null();
3345   ciProfileData* data = md->bci_to_data(bci);
3346   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3347   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3348   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3349 
3350   bool ignored_will_link;
3351   ciSignature* signature_at_call = NULL;
3352   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3353 
3354   // The offset within the MDO of the entry to update may be too large
3355   // to be used in load/store instructions on some platforms. So have
3356   // profile_type() compute the address of the profile in a register.
3357   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3358                                 ret->type(), x->ret(), mdp,
3359                                 !x->needs_null_check(),
3360                                 signature_at_call->return_type()->as_klass(),
3361                                 x->callee()->signature()->return_type()->as_klass());
3362   if (exact != NULL) {
3363     md->set_return_type(bci, exact);
3364   }
3365 }
3366 
3367 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3368   // We can safely ignore accessors here, since c2 will inline them anyway,
3369   // accessors are also always mature.
3370   if (!x->inlinee()->is_accessor()) {
3371     CodeEmitInfo* info = state_for(x, x->state(), true);
3372     // Notify the runtime very infrequently only to take care of counter overflows
3373     int freq_log = Tier23InlineeNotifyFreqLog;
3374     double scale;
3375     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3376       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3377     }
3378     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3379   }
3380 }
3381 
3382 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3383   int freq_log = 0;
3384   int level = compilation()->env()->comp_level();
3385   if (level == CompLevel_limited_profile) {
3386     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3387   } else if (level == CompLevel_full_profile) {
3388     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3389   } else {
3390     ShouldNotReachHere();
3391   }
3392   // Increment the appropriate invocation/backedge counter and notify the runtime.
3393   double scale;
3394   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3395     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3396   }
3397   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3398 }
3399 
3400 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3401   ciMethod* method = info->scope()->method();
3402   MethodCounters* mc_adr = method->ensure_method_counters();
3403   if (mc_adr != NULL) {
3404     LIR_Opr mc = new_pointer_register();
3405     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3406     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3407     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3408     LIR_Opr result = new_register(T_INT);
3409     __ load(counter, result);
3410     __ sub(result, LIR_OprFact::intConst(1), result);
3411     __ store(result, counter);
3412     // DeoptimizeStub will reexecute from the current state in code info.
3413     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3414                                          Deoptimization::Action_make_not_entrant);
3415     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3416     __ branch(lir_cond_lessEqual, T_INT, deopt);
3417   }
3418 }
3419 
3420 
3421 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3422                                                 ciMethod *method, int frequency,
3423                                                 int bci, bool backedge, bool notify) {
3424   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3425   int level = _compilation->env()->comp_level();
3426   assert(level > CompLevel_simple, "Shouldn't be here");
3427 
3428   int offset = -1;
3429   LIR_Opr counter_holder = NULL;
3430   if (level == CompLevel_limited_profile) {
3431     MethodCounters* counters_adr = method->ensure_method_counters();
3432     if (counters_adr == NULL) {
3433       bailout("method counters allocation failed");
3434       return;
3435     }
3436     counter_holder = new_pointer_register();
3437     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3438     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3439                                  MethodCounters::invocation_counter_offset());
3440   } else if (level == CompLevel_full_profile) {
3441     counter_holder = new_register(T_METADATA);
3442     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3443                                  MethodData::invocation_counter_offset());
3444     ciMethodData* md = method->method_data_or_null();
3445     assert(md != NULL, "Sanity");
3446     __ metadata2reg(md->constant_encoding(), counter_holder);
3447   } else {
3448     ShouldNotReachHere();
3449   }
3450   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3451   LIR_Opr result = new_register(T_INT);
3452   __ load(counter, result);
3453   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3454   __ store(result, counter);
3455   if (notify) {
3456     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3457     // The bci for info can point to cmp for if's we want the if bci
3458     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3459     int freq = frequency << InvocationCounter::count_shift;
3460     if (freq == 0) {
3461       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3462     } else {
3463       LIR_Opr mask = load_immediate(freq, T_INT);
3464       __ logical_and(result, mask, result);
3465       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3466       __ branch(lir_cond_equal, T_INT, overflow);
3467     }
3468     __ branch_destination(overflow->continuation());
3469   }
3470 }
3471 
3472 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3473   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3474   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3475 
3476   if (x->pass_thread()) {
3477     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3478     args->append(getThreadPointer());
3479   }
3480 
3481   for (int i = 0; i < x->number_of_arguments(); i++) {
3482     Value a = x->argument_at(i);
3483     LIRItem* item = new LIRItem(a, this);
3484     item->load_item();
3485     args->append(item->result());
3486     signature->append(as_BasicType(a->type()));
3487   }
3488 
3489   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3490   if (x->type() == voidType) {
3491     set_no_result(x);
3492   } else {
3493     __ move(result, rlock_result(x));
3494   }
3495 }
3496 
3497 #ifdef ASSERT
3498 void LIRGenerator::do_Assert(Assert *x) {
3499   ValueTag tag = x->x()->type()->tag();
3500   If::Condition cond = x->cond();
3501 
3502   LIRItem xitem(x->x(), this);
3503   LIRItem yitem(x->y(), this);
3504   LIRItem* xin = &xitem;
3505   LIRItem* yin = &yitem;
3506 
3507   assert(tag == intTag, "Only integer assertions are valid!");
3508 
3509   xin->load_item();
3510   yin->dont_load_item();
3511 
3512   set_no_result(x);
3513 
3514   LIR_Opr left = xin->result();
3515   LIR_Opr right = yin->result();
3516 
3517   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3518 }
3519 #endif
3520 
3521 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3522 
3523 
3524   Instruction *a = x->x();
3525   Instruction *b = x->y();
3526   if (!a || StressRangeCheckElimination) {
3527     assert(!b || StressRangeCheckElimination, "B must also be null");
3528 
3529     CodeEmitInfo *info = state_for(x, x->state());
3530     CodeStub* stub = new PredicateFailedStub(info);
3531 
3532     __ jump(stub);
3533   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3534     int a_int = a->type()->as_IntConstant()->value();
3535     int b_int = b->type()->as_IntConstant()->value();
3536 
3537     bool ok = false;
3538 
3539     switch(x->cond()) {
3540       case Instruction::eql: ok = (a_int == b_int); break;
3541       case Instruction::neq: ok = (a_int != b_int); break;
3542       case Instruction::lss: ok = (a_int < b_int); break;
3543       case Instruction::leq: ok = (a_int <= b_int); break;
3544       case Instruction::gtr: ok = (a_int > b_int); break;
3545       case Instruction::geq: ok = (a_int >= b_int); break;
3546       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3547       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3548       default: ShouldNotReachHere();
3549     }
3550 
3551     if (ok) {
3552 
3553       CodeEmitInfo *info = state_for(x, x->state());
3554       CodeStub* stub = new PredicateFailedStub(info);
3555 
3556       __ jump(stub);
3557     }
3558   } else {
3559 
3560     ValueTag tag = x->x()->type()->tag();
3561     If::Condition cond = x->cond();
3562     LIRItem xitem(x->x(), this);
3563     LIRItem yitem(x->y(), this);
3564     LIRItem* xin = &xitem;
3565     LIRItem* yin = &yitem;
3566 
3567     assert(tag == intTag, "Only integer deoptimizations are valid!");
3568 
3569     xin->load_item();
3570     yin->dont_load_item();
3571     set_no_result(x);
3572 
3573     LIR_Opr left = xin->result();
3574     LIR_Opr right = yin->result();
3575 
3576     CodeEmitInfo *info = state_for(x, x->state());
3577     CodeStub* stub = new PredicateFailedStub(info);
3578 
3579     __ cmp(lir_cond(cond), left, right);
3580     __ branch(lir_cond(cond), right->type(), stub);
3581   }
3582 }
3583 
3584 
3585 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3586   LIRItemList args(1);
3587   LIRItem value(arg1, this);
3588   args.append(&value);
3589   BasicTypeList signature;
3590   signature.append(as_BasicType(arg1->type()));
3591 
3592   return call_runtime(&signature, &args, entry, result_type, info);
3593 }
3594 
3595 
3596 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3597   LIRItemList args(2);
3598   LIRItem value1(arg1, this);
3599   LIRItem value2(arg2, this);
3600   args.append(&value1);
3601   args.append(&value2);
3602   BasicTypeList signature;
3603   signature.append(as_BasicType(arg1->type()));
3604   signature.append(as_BasicType(arg2->type()));
3605 
3606   return call_runtime(&signature, &args, entry, result_type, info);
3607 }
3608 
3609 
3610 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3611                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3612   // get a result register
3613   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3614   LIR_Opr result = LIR_OprFact::illegalOpr;
3615   if (result_type->tag() != voidTag) {
3616     result = new_register(result_type);
3617     phys_reg = result_register_for(result_type);
3618   }
3619 
3620   // move the arguments into the correct location
3621   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3622   assert(cc->length() == args->length(), "argument mismatch");
3623   for (int i = 0; i < args->length(); i++) {
3624     LIR_Opr arg = args->at(i);
3625     LIR_Opr loc = cc->at(i);
3626     if (loc->is_register()) {
3627       __ move(arg, loc);
3628     } else {
3629       LIR_Address* addr = loc->as_address_ptr();
3630 //           if (!can_store_as_constant(arg)) {
3631 //             LIR_Opr tmp = new_register(arg->type());
3632 //             __ move(arg, tmp);
3633 //             arg = tmp;
3634 //           }
3635       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3636         __ unaligned_move(arg, addr);
3637       } else {
3638         __ move(arg, addr);
3639       }
3640     }
3641   }
3642 
3643   if (info) {
3644     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3645   } else {
3646     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3647   }
3648   if (result->is_valid()) {
3649     __ move(phys_reg, result);
3650   }
3651   return result;
3652 }
3653 
3654 
3655 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3656                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3657   // get a result register
3658   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3659   LIR_Opr result = LIR_OprFact::illegalOpr;
3660   if (result_type->tag() != voidTag) {
3661     result = new_register(result_type);
3662     phys_reg = result_register_for(result_type);
3663   }
3664 
3665   // move the arguments into the correct location
3666   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3667 
3668   assert(cc->length() == args->length(), "argument mismatch");
3669   for (int i = 0; i < args->length(); i++) {
3670     LIRItem* arg = args->at(i);
3671     LIR_Opr loc = cc->at(i);
3672     if (loc->is_register()) {
3673       arg->load_item_force(loc);
3674     } else {
3675       LIR_Address* addr = loc->as_address_ptr();
3676       arg->load_for_store(addr->type());
3677       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3678         __ unaligned_move(arg->result(), addr);
3679       } else {
3680         __ move(arg->result(), addr);
3681       }
3682     }
3683   }
3684 
3685   if (info) {
3686     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3687   } else {
3688     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3689   }
3690   if (result->is_valid()) {
3691     __ move(phys_reg, result);
3692   }
3693   return result;
3694 }
3695 
3696 void LIRGenerator::do_MemBar(MemBar* x) {
3697   if (os::is_MP()) {
3698     LIR_Code code = x->code();
3699     switch(code) {
3700       case lir_membar_acquire   : __ membar_acquire(); break;
3701       case lir_membar_release   : __ membar_release(); break;
3702       case lir_membar           : __ membar(); break;
3703       case lir_membar_loadload  : __ membar_loadload(); break;
3704       case lir_membar_storestore: __ membar_storestore(); break;
3705       case lir_membar_loadstore : __ membar_loadstore(); break;
3706       case lir_membar_storeload : __ membar_storeload(); break;
3707       default                   : ShouldNotReachHere(); break;
3708     }
3709   }
3710 }