1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/codeCacheExtensions.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "runtime/vm_version.hpp"
  62 #include "utilities/copy.hpp"
  63 #include "utilities/events.hpp"
  64 
  65 
  66 // Implementation of StubAssembler
  67 
  68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  69   _name = name;
  70   _must_gc_arguments = false;
  71   _frame_size = no_frame_size;
  72   _num_rt_args = 0;
  73   _stub_id = stub_id;
  74 }
  75 
  76 
  77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  78   _name = name;
  79   _must_gc_arguments = must_gc_arguments;
  80 }
  81 
  82 
  83 void StubAssembler::set_frame_size(int size) {
  84   if (_frame_size == no_frame_size) {
  85     _frame_size = size;
  86   }
  87   assert(_frame_size == size, "can't change the frame size");
  88 }
  89 
  90 
  91 void StubAssembler::set_num_rt_args(int args) {
  92   if (_num_rt_args == 0) {
  93     _num_rt_args = args;
  94   }
  95   assert(_num_rt_args == args, "can't change the number of args");
  96 }
  97 
  98 // Implementation of Runtime1
  99 
 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 101 const char *Runtime1::_blob_names[] = {
 102   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 103 };
 104 
 105 #ifndef PRODUCT
 106 // statistics
 107 int Runtime1::_generic_arraycopy_cnt = 0;
 108 int Runtime1::_primitive_arraycopy_cnt = 0;
 109 int Runtime1::_oop_arraycopy_cnt = 0;
 110 int Runtime1::_generic_arraycopystub_cnt = 0;
 111 int Runtime1::_arraycopy_slowcase_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_cnt = 0;
 113 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 114 int Runtime1::_new_type_array_slowcase_cnt = 0;
 115 int Runtime1::_new_object_array_slowcase_cnt = 0;
 116 int Runtime1::_new_instance_slowcase_cnt = 0;
 117 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 118 int Runtime1::_monitorenter_slowcase_cnt = 0;
 119 int Runtime1::_monitorexit_slowcase_cnt = 0;
 120 int Runtime1::_patch_code_slowcase_cnt = 0;
 121 int Runtime1::_throw_range_check_exception_count = 0;
 122 int Runtime1::_throw_index_exception_count = 0;
 123 int Runtime1::_throw_div0_exception_count = 0;
 124 int Runtime1::_throw_null_pointer_exception_count = 0;
 125 int Runtime1::_throw_class_cast_exception_count = 0;
 126 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 127 int Runtime1::_throw_array_store_exception_count = 0;
 128 int Runtime1::_throw_count = 0;
 129 
 130 static int _byte_arraycopy_stub_cnt = 0;
 131 static int _short_arraycopy_stub_cnt = 0;
 132 static int _int_arraycopy_stub_cnt = 0;
 133 static int _long_arraycopy_stub_cnt = 0;
 134 static int _oop_arraycopy_stub_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return NULL;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted() {
 161   JavaThread* thread = JavaThread::current();
 162   RegisterMap reg_map(thread, false);
 163   frame runtime_frame = thread->last_frame();
 164   frame caller_frame = runtime_frame.sender(&reg_map);
 165   assert(caller_frame.is_compiled_frame(), "must be compiled");
 166   return caller_frame.is_deoptimized_frame();
 167 }
 168 
 169 // Stress deoptimization
 170 static void deopt_caller() {
 171   if ( !caller_is_deopted()) {
 172     JavaThread* thread = JavaThread::current();
 173     RegisterMap reg_map(thread, false);
 174     frame runtime_frame = thread->last_frame();
 175     frame caller_frame = runtime_frame.sender(&reg_map);
 176     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 177     assert(caller_is_deopted(), "Must be deoptimized");
 178   }
 179 }
 180 
 181 
 182 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 183   assert(0 <= id && id < number_of_ids, "illegal stub id");
 184   ResourceMark rm;
 185   // create code buffer for code storage
 186   CodeBuffer code(buffer_blob);
 187 
 188   OopMapSet* oop_maps;
 189   int frame_size;
 190   bool must_gc_arguments;
 191 
 192   if (!CodeCacheExtensions::skip_compiler_support()) {
 193     // bypass useless code generation
 194     Compilation::setup_code_buffer(&code, 0);
 195 
 196     // create assembler for code generation
 197     StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 198     // generate code for runtime stub
 199     oop_maps = generate_code_for(id, sasm);
 200     assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 201            "if stub has an oop map it must have a valid frame size");
 202 
 203 #ifdef ASSERT
 204     // Make sure that stubs that need oopmaps have them
 205     switch (id) {
 206       // These stubs don't need to have an oopmap
 207     case dtrace_object_alloc_id:
 208     case g1_pre_barrier_slow_id:
 209     case g1_post_barrier_slow_id:
 210     case slow_subtype_check_id:
 211     case fpu2long_stub_id:
 212     case unwind_exception_id:
 213     case counter_overflow_id:
 214 #if defined(SPARC) || defined(PPC32)
 215     case handle_exception_nofpu_id:  // Unused on sparc
 216 #endif
 217       break;
 218 
 219       // All other stubs should have oopmaps
 220     default:
 221       assert(oop_maps != NULL, "must have an oopmap");
 222     }
 223 #endif
 224 
 225     // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226     sasm->align(BytesPerWord);
 227     // make sure all code is in code buffer
 228     sasm->flush();
 229 
 230     frame_size = sasm->frame_size();
 231     must_gc_arguments = sasm->must_gc_arguments();
 232   } else {
 233     /* ignored values */
 234     oop_maps = NULL;
 235     frame_size = 0;
 236     must_gc_arguments = false;
 237   }
 238   // create blob - distinguish a few special cases
 239   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 240                                                  &code,
 241                                                  CodeOffsets::frame_never_safe,
 242                                                  frame_size,
 243                                                  oop_maps,
 244                                                  must_gc_arguments);
 245   // install blob
 246   assert(blob != NULL, "blob must exist");
 247   _blobs[id] = blob;
 248 }
 249 
 250 
 251 void Runtime1::initialize(BufferBlob* blob) {
 252   // platform-dependent initialization
 253   initialize_pd();
 254   // generate stubs
 255   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 256   // printing
 257 #ifndef PRODUCT
 258   if (PrintSimpleStubs) {
 259     ResourceMark rm;
 260     for (int id = 0; id < number_of_ids; id++) {
 261       _blobs[id]->print();
 262       if (_blobs[id]->oop_maps() != NULL) {
 263         _blobs[id]->oop_maps()->print();
 264       }
 265     }
 266   }
 267 #endif
 268 }
 269 
 270 
 271 CodeBlob* Runtime1::blob_for(StubID id) {
 272   assert(0 <= id && id < number_of_ids, "illegal stub id");
 273   return _blobs[id];
 274 }
 275 
 276 
 277 const char* Runtime1::name_for(StubID id) {
 278   assert(0 <= id && id < number_of_ids, "illegal stub id");
 279   return _blob_names[id];
 280 }
 281 
 282 const char* Runtime1::name_for_address(address entry) {
 283   for (int id = 0; id < number_of_ids; id++) {
 284     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 285   }
 286 
 287 #define FUNCTION_CASE(a, f) \
 288   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 289 
 290   FUNCTION_CASE(entry, os::javaTimeMillis);
 291   FUNCTION_CASE(entry, os::javaTimeNanos);
 292   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 293   FUNCTION_CASE(entry, SharedRuntime::d2f);
 294   FUNCTION_CASE(entry, SharedRuntime::d2i);
 295   FUNCTION_CASE(entry, SharedRuntime::d2l);
 296   FUNCTION_CASE(entry, SharedRuntime::dcos);
 297   FUNCTION_CASE(entry, SharedRuntime::dexp);
 298   FUNCTION_CASE(entry, SharedRuntime::dlog);
 299   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 300   FUNCTION_CASE(entry, SharedRuntime::dpow);
 301   FUNCTION_CASE(entry, SharedRuntime::drem);
 302   FUNCTION_CASE(entry, SharedRuntime::dsin);
 303   FUNCTION_CASE(entry, SharedRuntime::dtan);
 304   FUNCTION_CASE(entry, SharedRuntime::f2i);
 305   FUNCTION_CASE(entry, SharedRuntime::f2l);
 306   FUNCTION_CASE(entry, SharedRuntime::frem);
 307   FUNCTION_CASE(entry, SharedRuntime::l2d);
 308   FUNCTION_CASE(entry, SharedRuntime::l2f);
 309   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 310   FUNCTION_CASE(entry, SharedRuntime::lmul);
 311   FUNCTION_CASE(entry, SharedRuntime::lrem);
 312   FUNCTION_CASE(entry, SharedRuntime::lrem);
 313   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 314   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 315   FUNCTION_CASE(entry, is_instance_of);
 316   FUNCTION_CASE(entry, is_primitive);
 317   FUNCTION_CASE(entry, trace_block_entry);
 318 #ifdef TRACE_HAVE_INTRINSICS
 319   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 320 #endif
 321   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 322   FUNCTION_CASE(entry, StubRoutines::dexp());
 323   FUNCTION_CASE(entry, StubRoutines::dlog());
 324   FUNCTION_CASE(entry, StubRoutines::dpow());
 325   FUNCTION_CASE(entry, StubRoutines::dsin());
 326   FUNCTION_CASE(entry, StubRoutines::dcos());
 327 
 328 #undef FUNCTION_CASE
 329 
 330   // Soft float adds more runtime names.
 331   return pd_name_for_address(entry);
 332 }
 333 
 334 
 335 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 336   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 337 
 338   assert(klass->is_klass(), "not a class");
 339   instanceKlassHandle h(thread, klass);
 340   h->check_valid_for_instantiation(true, CHECK);
 341   // make sure klass is initialized
 342   h->initialize(CHECK);
 343   // allocate instance and return via TLS
 344   oop obj = h->allocate_instance(CHECK);
 345   thread->set_vm_result(obj);
 346 JRT_END
 347 
 348 
 349 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 350   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 351   // Note: no handle for klass needed since they are not used
 352   //       anymore after new_typeArray() and no GC can happen before.
 353   //       (This may have to change if this code changes!)
 354   assert(klass->is_klass(), "not a class");
 355   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 356   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 357   thread->set_vm_result(obj);
 358   // This is pretty rare but this runtime patch is stressful to deoptimization
 359   // if we deoptimize here so force a deopt to stress the path.
 360   if (DeoptimizeALot) {
 361     deopt_caller();
 362   }
 363 
 364 JRT_END
 365 
 366 
 367 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 368   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 369 
 370   // Note: no handle for klass needed since they are not used
 371   //       anymore after new_objArray() and no GC can happen before.
 372   //       (This may have to change if this code changes!)
 373   assert(array_klass->is_klass(), "not a class");
 374   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 375   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 376   thread->set_vm_result(obj);
 377   // This is pretty rare but this runtime patch is stressful to deoptimization
 378   // if we deoptimize here so force a deopt to stress the path.
 379   if (DeoptimizeALot) {
 380     deopt_caller();
 381   }
 382 JRT_END
 383 
 384 
 385 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 386   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 387 
 388   assert(klass->is_klass(), "not a class");
 389   assert(rank >= 1, "rank must be nonzero");
 390   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 391   thread->set_vm_result(obj);
 392 JRT_END
 393 
 394 
 395 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 396   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 397 JRT_END
 398 
 399 
 400 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 401   ResourceMark rm(thread);
 402   const char* klass_name = obj->klass()->external_name();
 403   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 404 JRT_END
 405 
 406 
 407 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 408 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 409 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 410 // a constant.
 411 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 412   nmethod* osr_nm = NULL;
 413   methodHandle method(THREAD, m);
 414 
 415   RegisterMap map(THREAD, false);
 416   frame fr =  THREAD->last_frame().sender(&map);
 417   nmethod* nm = (nmethod*) fr.cb();
 418   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 419   methodHandle enclosing_method(THREAD, nm->method());
 420 
 421   CompLevel level = (CompLevel)nm->comp_level();
 422   int bci = InvocationEntryBci;
 423   if (branch_bci != InvocationEntryBci) {
 424     // Compute destination bci
 425     address pc = method()->code_base() + branch_bci;
 426     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 427     int offset = 0;
 428     switch (branch) {
 429       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 430       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 431       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 432       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 433       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 434       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 435       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 436         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 437         break;
 438       case Bytecodes::_goto_w:
 439         offset = Bytes::get_Java_u4(pc + 1);
 440         break;
 441       default: ;
 442     }
 443     bci = branch_bci + offset;
 444   }
 445   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 446   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 447   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 448   return osr_nm;
 449 }
 450 
 451 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 452   nmethod* osr_nm;
 453   JRT_BLOCK
 454     osr_nm = counter_overflow_helper(thread, bci, method);
 455     if (osr_nm != NULL) {
 456       RegisterMap map(thread, false);
 457       frame fr =  thread->last_frame().sender(&map);
 458       Deoptimization::deoptimize_frame(thread, fr.id());
 459     }
 460   JRT_BLOCK_END
 461   return NULL;
 462 JRT_END
 463 
 464 extern void vm_exit(int code);
 465 
 466 // Enter this method from compiled code handler below. This is where we transition
 467 // to VM mode. This is done as a helper routine so that the method called directly
 468 // from compiled code does not have to transition to VM. This allows the entry
 469 // method to see if the nmethod that we have just looked up a handler for has
 470 // been deoptimized while we were in the vm. This simplifies the assembly code
 471 // cpu directories.
 472 //
 473 // We are entering here from exception stub (via the entry method below)
 474 // If there is a compiled exception handler in this method, we will continue there;
 475 // otherwise we will unwind the stack and continue at the caller of top frame method
 476 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 477 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 478 // check to see if the handler we are going to return is now in a nmethod that has
 479 // been deoptimized. If that is the case we return the deopt blob
 480 // unpack_with_exception entry instead. This makes life for the exception blob easier
 481 // because making that same check and diverting is painful from assembly language.
 482 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 483   // Reset method handle flag.
 484   thread->set_is_method_handle_return(false);
 485 
 486   Handle exception(thread, ex);
 487   nm = CodeCache::find_nmethod(pc);
 488   assert(nm != NULL, "this is not an nmethod");
 489   // Adjust the pc as needed/
 490   if (nm->is_deopt_pc(pc)) {
 491     RegisterMap map(thread, false);
 492     frame exception_frame = thread->last_frame().sender(&map);
 493     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 494     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 495     pc = exception_frame.pc();
 496   }
 497 #ifdef ASSERT
 498   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 499   assert(exception->is_oop(), "just checking");
 500   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 501   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 502     if (ExitVMOnVerifyError) vm_exit(-1);
 503     ShouldNotReachHere();
 504   }
 505 #endif
 506 
 507   // Check the stack guard pages and reenable them if necessary and there is
 508   // enough space on the stack to do so.  Use fast exceptions only if the guard
 509   // pages are enabled.
 510   bool guard_pages_enabled = thread->stack_guards_enabled();
 511   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 512 
 513   if (JvmtiExport::can_post_on_exceptions()) {
 514     // To ensure correct notification of exception catches and throws
 515     // we have to deoptimize here.  If we attempted to notify the
 516     // catches and throws during this exception lookup it's possible
 517     // we could deoptimize on the way out of the VM and end back in
 518     // the interpreter at the throw site.  This would result in double
 519     // notifications since the interpreter would also notify about
 520     // these same catches and throws as it unwound the frame.
 521 
 522     RegisterMap reg_map(thread);
 523     frame stub_frame = thread->last_frame();
 524     frame caller_frame = stub_frame.sender(&reg_map);
 525 
 526     // We don't really want to deoptimize the nmethod itself since we
 527     // can actually continue in the exception handler ourselves but I
 528     // don't see an easy way to have the desired effect.
 529     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 530     assert(caller_is_deopted(), "Must be deoptimized");
 531 
 532     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 533   }
 534 
 535   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 536   if (guard_pages_enabled) {
 537     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 538     if (fast_continuation != NULL) {
 539       // Set flag if return address is a method handle call site.
 540       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 541       return fast_continuation;
 542     }
 543   }
 544 
 545   // If the stack guard pages are enabled, check whether there is a handler in
 546   // the current method.  Otherwise (guard pages disabled), force an unwind and
 547   // skip the exception cache update (i.e., just leave continuation==NULL).
 548   address continuation = NULL;
 549   if (guard_pages_enabled) {
 550 
 551     // New exception handling mechanism can support inlined methods
 552     // with exception handlers since the mappings are from PC to PC
 553 
 554     // debugging support
 555     // tracing
 556     if (log_is_enabled(Info, exceptions)) {
 557       ResourceMark rm;
 558       stringStream tempst;
 559       tempst.print("compiled method <%s>\n"
 560                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 561                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 562       Exceptions::log_exception(exception, tempst);
 563     }
 564     // for AbortVMOnException flag
 565     Exceptions::debug_check_abort(exception);
 566 
 567     // Clear out the exception oop and pc since looking up an
 568     // exception handler can cause class loading, which might throw an
 569     // exception and those fields are expected to be clear during
 570     // normal bytecode execution.
 571     thread->clear_exception_oop_and_pc();
 572 
 573     Handle original_exception(thread, exception());
 574 
 575     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 576     // If an exception was thrown during exception dispatch, the exception oop may have changed
 577     thread->set_exception_oop(exception());
 578     thread->set_exception_pc(pc);
 579 
 580     // the exception cache is used only by non-implicit exceptions
 581     // Update the exception cache only when there didn't happen
 582     // another exception during the computation of the compiled
 583     // exception handler.
 584     if (continuation != NULL && original_exception() == exception()) {
 585       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 586     }
 587   }
 588 
 589   thread->set_vm_result(exception());
 590   // Set flag if return address is a method handle call site.
 591   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 592 
 593   if (log_is_enabled(Info, exceptions)) {
 594     ResourceMark rm;
 595     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 596                          " for exception thrown at PC " PTR_FORMAT,
 597                          p2i(thread), p2i(continuation), p2i(pc));
 598   }
 599 
 600   return continuation;
 601 JRT_END
 602 
 603 // Enter this method from compiled code only if there is a Java exception handler
 604 // in the method handling the exception.
 605 // We are entering here from exception stub. We don't do a normal VM transition here.
 606 // We do it in a helper. This is so we can check to see if the nmethod we have just
 607 // searched for an exception handler has been deoptimized in the meantime.
 608 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 609   oop exception = thread->exception_oop();
 610   address pc = thread->exception_pc();
 611   // Still in Java mode
 612   DEBUG_ONLY(ResetNoHandleMark rnhm);
 613   nmethod* nm = NULL;
 614   address continuation = NULL;
 615   {
 616     // Enter VM mode by calling the helper
 617     ResetNoHandleMark rnhm;
 618     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 619   }
 620   // Back in JAVA, use no oops DON'T safepoint
 621 
 622   // Now check to see if the nmethod we were called from is now deoptimized.
 623   // If so we must return to the deopt blob and deoptimize the nmethod
 624   if (nm != NULL && caller_is_deopted()) {
 625     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 626   }
 627 
 628   assert(continuation != NULL, "no handler found");
 629   return continuation;
 630 }
 631 
 632 
 633 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 634   NOT_PRODUCT(_throw_range_check_exception_count++;)
 635   char message[jintAsStringSize];
 636   sprintf(message, "%d", index);
 637   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 638 JRT_END
 639 
 640 
 641 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 642   NOT_PRODUCT(_throw_index_exception_count++;)
 643   char message[16];
 644   sprintf(message, "%d", index);
 645   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 646 JRT_END
 647 
 648 
 649 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 650   NOT_PRODUCT(_throw_div0_exception_count++;)
 651   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 652 JRT_END
 653 
 654 
 655 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 656   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 657   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 658 JRT_END
 659 
 660 
 661 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 662   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 663   ResourceMark rm(thread);
 664   char* message = SharedRuntime::generate_class_cast_message(
 665     thread, object->klass()->external_name());
 666   SharedRuntime::throw_and_post_jvmti_exception(
 667     thread, vmSymbols::java_lang_ClassCastException(), message);
 668 JRT_END
 669 
 670 
 671 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 672   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 673   ResourceMark rm(thread);
 674   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 675 JRT_END
 676 
 677 
 678 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 679   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 680   if (PrintBiasedLockingStatistics) {
 681     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 682   }
 683   Handle h_obj(thread, obj);
 684   assert(h_obj()->is_oop(), "must be NULL or an object");
 685   if (UseBiasedLocking) {
 686     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 687     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 688   } else {
 689     if (UseFastLocking) {
 690       // When using fast locking, the compiled code has already tried the fast case
 691       assert(obj == lock->obj(), "must match");
 692       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 693     } else {
 694       lock->set_obj(obj);
 695       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 696     }
 697   }
 698 JRT_END
 699 
 700 
 701 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 702   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 703   assert(thread == JavaThread::current(), "threads must correspond");
 704   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 705   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 706   EXCEPTION_MARK;
 707 
 708   oop obj = lock->obj();
 709   assert(obj->is_oop(), "must be NULL or an object");
 710   if (UseFastLocking) {
 711     // When using fast locking, the compiled code has already tried the fast case
 712     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 713   } else {
 714     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 715   }
 716 JRT_END
 717 
 718 // Cf. OptoRuntime::deoptimize_caller_frame
 719 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 720   // Called from within the owner thread, so no need for safepoint
 721   RegisterMap reg_map(thread, false);
 722   frame stub_frame = thread->last_frame();
 723   assert(stub_frame.is_runtime_frame(), "Sanity check");
 724   frame caller_frame = stub_frame.sender(&reg_map);
 725   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 726   assert(nm != NULL, "Sanity check");
 727   methodHandle method(thread, nm->method());
 728   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 729   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 730   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 731 
 732   if (action == Deoptimization::Action_make_not_entrant) {
 733     if (nm->make_not_entrant()) {
 734       if (reason == Deoptimization::Reason_tenured) {
 735         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 736         if (trap_mdo != NULL) {
 737           trap_mdo->inc_tenure_traps();
 738         }
 739       }
 740     }
 741   }
 742 
 743   // Deoptimize the caller frame.
 744   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 745   // Return to the now deoptimized frame.
 746 JRT_END
 747 
 748 
 749 #ifndef DEOPTIMIZE_WHEN_PATCHING
 750 
 751 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 752   Bytecode_field field_access(caller, bci);
 753   // This can be static or non-static field access
 754   Bytecodes::Code code       = field_access.code();
 755 
 756   // We must load class, initialize class and resolvethe field
 757   fieldDescriptor result; // initialize class if needed
 758   constantPoolHandle constants(THREAD, caller->constants());
 759   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 760   return result.field_holder();
 761 }
 762 
 763 
 764 //
 765 // This routine patches sites where a class wasn't loaded or
 766 // initialized at the time the code was generated.  It handles
 767 // references to classes, fields and forcing of initialization.  Most
 768 // of the cases are straightforward and involving simply forcing
 769 // resolution of a class, rewriting the instruction stream with the
 770 // needed constant and replacing the call in this function with the
 771 // patched code.  The case for static field is more complicated since
 772 // the thread which is in the process of initializing a class can
 773 // access it's static fields but other threads can't so the code
 774 // either has to deoptimize when this case is detected or execute a
 775 // check that the current thread is the initializing thread.  The
 776 // current
 777 //
 778 // Patches basically look like this:
 779 //
 780 //
 781 // patch_site: jmp patch stub     ;; will be patched
 782 // continue:   ...
 783 //             ...
 784 //             ...
 785 //             ...
 786 //
 787 // They have a stub which looks like this:
 788 //
 789 //             ;; patch body
 790 //             movl <const>, reg           (for class constants)
 791 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 792 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 793 //             <being_init offset> <bytes to copy> <bytes to skip>
 794 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 795 //             jmp patch_site
 796 //
 797 //
 798 // A normal patch is done by rewriting the patch body, usually a move,
 799 // and then copying it into place over top of the jmp instruction
 800 // being careful to flush caches and doing it in an MP-safe way.  The
 801 // constants following the patch body are used to find various pieces
 802 // of the patch relative to the call site for Runtime1::patch_code.
 803 // The case for getstatic and putstatic is more complicated because
 804 // getstatic and putstatic have special semantics when executing while
 805 // the class is being initialized.  getstatic/putstatic on a class
 806 // which is being_initialized may be executed by the initializing
 807 // thread but other threads have to block when they execute it.  This
 808 // is accomplished in compiled code by executing a test of the current
 809 // thread against the initializing thread of the class.  It's emitted
 810 // as boilerplate in their stub which allows the patched code to be
 811 // executed before it's copied back into the main body of the nmethod.
 812 //
 813 // being_init: get_thread(<tmp reg>
 814 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 815 //             jne patch_stub
 816 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 817 //             movl reg, [reg1 + <const>]  (for field offsets)
 818 //             jmp continue
 819 //             <being_init offset> <bytes to copy> <bytes to skip>
 820 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 821 //             jmp patch_site
 822 //
 823 // If the class is being initialized the patch body is rewritten and
 824 // the patch site is rewritten to jump to being_init, instead of
 825 // patch_stub.  Whenever this code is executed it checks the current
 826 // thread against the intializing thread so other threads will enter
 827 // the runtime and end up blocked waiting the class to finish
 828 // initializing inside the calls to resolve_field below.  The
 829 // initializing class will continue on it's way.  Once the class is
 830 // fully_initialized, the intializing_thread of the class becomes
 831 // NULL, so the next thread to execute this code will fail the test,
 832 // call into patch_code and complete the patching process by copying
 833 // the patch body back into the main part of the nmethod and resume
 834 // executing.
 835 //
 836 //
 837 
 838 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 839   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 840 
 841   ResourceMark rm(thread);
 842   RegisterMap reg_map(thread, false);
 843   frame runtime_frame = thread->last_frame();
 844   frame caller_frame = runtime_frame.sender(&reg_map);
 845 
 846   // last java frame on stack
 847   vframeStream vfst(thread, true);
 848   assert(!vfst.at_end(), "Java frame must exist");
 849 
 850   methodHandle caller_method(THREAD, vfst.method());
 851   // Note that caller_method->code() may not be same as caller_code because of OSR's
 852   // Note also that in the presence of inlining it is not guaranteed
 853   // that caller_method() == caller_code->method()
 854 
 855   int bci = vfst.bci();
 856   Bytecodes::Code code = caller_method()->java_code_at(bci);
 857 
 858   // this is used by assertions in the access_field_patching_id
 859   BasicType patch_field_type = T_ILLEGAL;
 860   bool deoptimize_for_volatile = false;
 861   bool deoptimize_for_atomic = false;
 862   int patch_field_offset = -1;
 863   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 864   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 865   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 866   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 867   bool load_klass_or_mirror_patch_id =
 868     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 869 
 870   if (stub_id == Runtime1::access_field_patching_id) {
 871 
 872     Bytecode_field field_access(caller_method, bci);
 873     fieldDescriptor result; // initialize class if needed
 874     Bytecodes::Code code = field_access.code();
 875     constantPoolHandle constants(THREAD, caller_method->constants());
 876     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 877     patch_field_offset = result.offset();
 878 
 879     // If we're patching a field which is volatile then at compile it
 880     // must not have been know to be volatile, so the generated code
 881     // isn't correct for a volatile reference.  The nmethod has to be
 882     // deoptimized so that the code can be regenerated correctly.
 883     // This check is only needed for access_field_patching since this
 884     // is the path for patching field offsets.  load_klass is only
 885     // used for patching references to oops which don't need special
 886     // handling in the volatile case.
 887 
 888     deoptimize_for_volatile = result.access_flags().is_volatile();
 889 
 890     // If we are patching a field which should be atomic, then
 891     // the generated code is not correct either, force deoptimizing.
 892     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 893     // break access atomicity only for them.
 894 
 895     // Strictly speaking, the deoptimizaation on 64-bit platforms
 896     // is unnecessary, and T_LONG stores on 32-bit platforms need
 897     // to be handled by special patching code when AlwaysAtomicAccesses
 898     // becomes product feature. At this point, we are still going
 899     // for the deoptimization for consistency against volatile
 900     // accesses.
 901 
 902     patch_field_type = result.field_type();
 903     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 904 
 905   } else if (load_klass_or_mirror_patch_id) {
 906     Klass* k = NULL;
 907     switch (code) {
 908       case Bytecodes::_putstatic:
 909       case Bytecodes::_getstatic:
 910         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 911           init_klass = KlassHandle(THREAD, klass);
 912           mirror = Handle(THREAD, klass->java_mirror());
 913         }
 914         break;
 915       case Bytecodes::_new:
 916         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 917           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 918         }
 919         break;
 920       case Bytecodes::_multianewarray:
 921         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 922           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 923         }
 924         break;
 925       case Bytecodes::_instanceof:
 926         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 927           k = caller_method->constants()->klass_at(io.index(), CHECK);
 928         }
 929         break;
 930       case Bytecodes::_checkcast:
 931         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 932           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 933         }
 934         break;
 935       case Bytecodes::_anewarray:
 936         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 937           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 938           k = ek->array_klass(CHECK);
 939         }
 940         break;
 941       case Bytecodes::_ldc:
 942       case Bytecodes::_ldc_w:
 943         {
 944           Bytecode_loadconstant cc(caller_method, bci);
 945           oop m = cc.resolve_constant(CHECK);
 946           mirror = Handle(THREAD, m);
 947         }
 948         break;
 949       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 950     }
 951     // convert to handle
 952     load_klass = KlassHandle(THREAD, k);
 953   } else if (stub_id == load_appendix_patching_id) {
 954     Bytecode_invoke bytecode(caller_method, bci);
 955     Bytecodes::Code bc = bytecode.invoke_code();
 956 
 957     CallInfo info;
 958     constantPoolHandle pool(thread, caller_method->constants());
 959     int index = bytecode.index();
 960     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 961     switch (bc) {
 962       case Bytecodes::_invokehandle: {
 963         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 964         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 965         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 966         cpce->set_method_handle(pool, info);
 967         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 968         break;
 969       }
 970       case Bytecodes::_invokedynamic: {
 971         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 972         cpce->set_dynamic_call(pool, info);
 973         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 974         break;
 975       }
 976       default: fatal("unexpected bytecode for load_appendix_patching_id");
 977     }
 978   } else {
 979     ShouldNotReachHere();
 980   }
 981 
 982   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 983     // At compile time we assumed the field wasn't volatile/atomic but after
 984     // loading it turns out it was volatile/atomic so we have to throw the
 985     // compiled code out and let it be regenerated.
 986     if (TracePatching) {
 987       if (deoptimize_for_volatile) {
 988         tty->print_cr("Deoptimizing for patching volatile field reference");
 989       }
 990       if (deoptimize_for_atomic) {
 991         tty->print_cr("Deoptimizing for patching atomic field reference");
 992       }
 993     }
 994 
 995     // It's possible the nmethod was invalidated in the last
 996     // safepoint, but if it's still alive then make it not_entrant.
 997     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 998     if (nm != NULL) {
 999       nm->make_not_entrant();
1000     }
1001 
1002     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1003 
1004     // Return to the now deoptimized frame.
1005   }
1006 
1007   // Now copy code back
1008 
1009   {
1010     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1011     //
1012     // Deoptimization may have happened while we waited for the lock.
1013     // In that case we don't bother to do any patching we just return
1014     // and let the deopt happen
1015     if (!caller_is_deopted()) {
1016       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1017       address instr_pc = jump->jump_destination();
1018       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1019       if (ni->is_jump() ) {
1020         // the jump has not been patched yet
1021         // The jump destination is slow case and therefore not part of the stubs
1022         // (stubs are only for StaticCalls)
1023 
1024         // format of buffer
1025         //    ....
1026         //    instr byte 0     <-- copy_buff
1027         //    instr byte 1
1028         //    ..
1029         //    instr byte n-1
1030         //      n
1031         //    ....             <-- call destination
1032 
1033         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1034         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1035         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1036         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1037         address copy_buff = stub_location - *byte_skip - *byte_count;
1038         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1039         if (TracePatching) {
1040           ttyLocker ttyl;
1041           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1042                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1043           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1044           assert(caller_code != NULL, "nmethod not found");
1045 
1046           // NOTE we use pc() not original_pc() because we already know they are
1047           // identical otherwise we'd have never entered this block of code
1048 
1049           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1050           assert(map != NULL, "null check");
1051           map->print();
1052           tty->cr();
1053 
1054           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1055         }
1056         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1057         bool do_patch = true;
1058         if (stub_id == Runtime1::access_field_patching_id) {
1059           // The offset may not be correct if the class was not loaded at code generation time.
1060           // Set it now.
1061           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1062           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1063           assert(patch_field_offset >= 0, "illegal offset");
1064           n_move->add_offset_in_bytes(patch_field_offset);
1065         } else if (load_klass_or_mirror_patch_id) {
1066           // If a getstatic or putstatic is referencing a klass which
1067           // isn't fully initialized, the patch body isn't copied into
1068           // place until initialization is complete.  In this case the
1069           // patch site is setup so that any threads besides the
1070           // initializing thread are forced to come into the VM and
1071           // block.
1072           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1073                      InstanceKlass::cast(init_klass())->is_initialized();
1074           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1075           if (jump->jump_destination() == being_initialized_entry) {
1076             assert(do_patch == true, "initialization must be complete at this point");
1077           } else {
1078             // patch the instruction <move reg, klass>
1079             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1080 
1081             assert(n_copy->data() == 0 ||
1082                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1083                    "illegal init value");
1084             if (stub_id == Runtime1::load_klass_patching_id) {
1085               assert(load_klass() != NULL, "klass not set");
1086               n_copy->set_data((intx) (load_klass()));
1087             } else {
1088               assert(mirror() != NULL, "klass not set");
1089               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1090               n_copy->set_data(cast_from_oop<intx>(mirror()));
1091             }
1092 
1093             if (TracePatching) {
1094               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1095             }
1096           }
1097         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1098           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1099           assert(n_copy->data() == 0 ||
1100                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1101                  "illegal init value");
1102           n_copy->set_data(cast_from_oop<intx>(appendix()));
1103 
1104           if (TracePatching) {
1105             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1106           }
1107         } else {
1108           ShouldNotReachHere();
1109         }
1110 
1111 #if defined(SPARC) || defined(PPC32)
1112         if (load_klass_or_mirror_patch_id ||
1113             stub_id == Runtime1::load_appendix_patching_id) {
1114           // Update the location in the nmethod with the proper
1115           // metadata.  When the code was generated, a NULL was stuffed
1116           // in the metadata table and that table needs to be update to
1117           // have the right value.  On intel the value is kept
1118           // directly in the instruction instead of in the metadata
1119           // table, so set_data above effectively updated the value.
1120           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1121           assert(nm != NULL, "invalid nmethod_pc");
1122           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1123           bool found = false;
1124           while (mds.next() && !found) {
1125             if (mds.type() == relocInfo::oop_type) {
1126               assert(stub_id == Runtime1::load_mirror_patching_id ||
1127                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1128               oop_Relocation* r = mds.oop_reloc();
1129               oop* oop_adr = r->oop_addr();
1130               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1131               r->fix_oop_relocation();
1132               found = true;
1133             } else if (mds.type() == relocInfo::metadata_type) {
1134               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1135               metadata_Relocation* r = mds.metadata_reloc();
1136               Metadata** metadata_adr = r->metadata_addr();
1137               *metadata_adr = load_klass();
1138               r->fix_metadata_relocation();
1139               found = true;
1140             }
1141           }
1142           assert(found, "the metadata must exist!");
1143         }
1144 #endif
1145         if (do_patch) {
1146           // replace instructions
1147           // first replace the tail, then the call
1148 #ifdef ARM
1149           if((load_klass_or_mirror_patch_id ||
1150               stub_id == Runtime1::load_appendix_patching_id) &&
1151               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1152             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1153             address addr = NULL;
1154             assert(nm != NULL, "invalid nmethod_pc");
1155             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1156             while (mds.next()) {
1157               if (mds.type() == relocInfo::oop_type) {
1158                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1159                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1160                 oop_Relocation* r = mds.oop_reloc();
1161                 addr = (address)r->oop_addr();
1162                 break;
1163               } else if (mds.type() == relocInfo::metadata_type) {
1164                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1165                 metadata_Relocation* r = mds.metadata_reloc();
1166                 addr = (address)r->metadata_addr();
1167                 break;
1168               }
1169             }
1170             assert(addr != NULL, "metadata relocation must exist");
1171             copy_buff -= *byte_count;
1172             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1173             n_copy2->set_pc_relative_offset(addr, instr_pc);
1174           }
1175 #endif
1176 
1177           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1178             address ptr = copy_buff + i;
1179             int a_byte = (*ptr) & 0xFF;
1180             address dst = instr_pc + i;
1181             *(unsigned char*)dst = (unsigned char) a_byte;
1182           }
1183           ICache::invalidate_range(instr_pc, *byte_count);
1184           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1185 
1186           if (load_klass_or_mirror_patch_id ||
1187               stub_id == Runtime1::load_appendix_patching_id) {
1188             relocInfo::relocType rtype =
1189               (stub_id == Runtime1::load_klass_patching_id) ?
1190                                    relocInfo::metadata_type :
1191                                    relocInfo::oop_type;
1192             // update relocInfo to metadata
1193             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1194             assert(nm != NULL, "invalid nmethod_pc");
1195 
1196             // The old patch site is now a move instruction so update
1197             // the reloc info so that it will get updated during
1198             // future GCs.
1199             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1200             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1201                                                      relocInfo::none, rtype);
1202 #ifdef SPARC
1203             // Sparc takes two relocations for an metadata so update the second one.
1204             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1205             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1206             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1207                                                      relocInfo::none, rtype);
1208 #endif
1209 #ifdef PPC32
1210           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1211             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1212             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1213                                                      relocInfo::none, rtype);
1214           }
1215 #endif
1216           }
1217 
1218         } else {
1219           ICache::invalidate_range(copy_buff, *byte_count);
1220           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1221         }
1222       }
1223     }
1224   }
1225 
1226   // If we are patching in a non-perm oop, make sure the nmethod
1227   // is on the right list.
1228   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1229                               (appendix.not_null() && appendix->is_scavengable()))) {
1230     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1231     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1232     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1233     if (!nm->on_scavenge_root_list()) {
1234       CodeCache::add_scavenge_root_nmethod(nm);
1235     }
1236 
1237     // Since we've patched some oops in the nmethod,
1238     // (re)register it with the heap.
1239     Universe::heap()->register_nmethod(nm);
1240   }
1241 JRT_END
1242 
1243 #else // DEOPTIMIZE_WHEN_PATCHING
1244 
1245 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1246   RegisterMap reg_map(thread, false);
1247 
1248   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1249   if (TracePatching) {
1250     tty->print_cr("Deoptimizing because patch is needed");
1251   }
1252 
1253   frame runtime_frame = thread->last_frame();
1254   frame caller_frame = runtime_frame.sender(&reg_map);
1255 
1256   // It's possible the nmethod was invalidated in the last
1257   // safepoint, but if it's still alive then make it not_entrant.
1258   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1259   if (nm != NULL) {
1260     nm->make_not_entrant();
1261   }
1262 
1263   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1264 
1265   // Return to the now deoptimized frame.
1266 JRT_END
1267 
1268 #endif // DEOPTIMIZE_WHEN_PATCHING
1269 
1270 //
1271 // Entry point for compiled code. We want to patch a nmethod.
1272 // We don't do a normal VM transition here because we want to
1273 // know after the patching is complete and any safepoint(s) are taken
1274 // if the calling nmethod was deoptimized. We do this by calling a
1275 // helper method which does the normal VM transition and when it
1276 // completes we can check for deoptimization. This simplifies the
1277 // assembly code in the cpu directories.
1278 //
1279 int Runtime1::move_klass_patching(JavaThread* thread) {
1280 //
1281 // NOTE: we are still in Java
1282 //
1283   Thread* THREAD = thread;
1284   debug_only(NoHandleMark nhm;)
1285   {
1286     // Enter VM mode
1287 
1288     ResetNoHandleMark rnhm;
1289     patch_code(thread, load_klass_patching_id);
1290   }
1291   // Back in JAVA, use no oops DON'T safepoint
1292 
1293   // Return true if calling code is deoptimized
1294 
1295   return caller_is_deopted();
1296 }
1297 
1298 int Runtime1::move_mirror_patching(JavaThread* thread) {
1299 //
1300 // NOTE: we are still in Java
1301 //
1302   Thread* THREAD = thread;
1303   debug_only(NoHandleMark nhm;)
1304   {
1305     // Enter VM mode
1306 
1307     ResetNoHandleMark rnhm;
1308     patch_code(thread, load_mirror_patching_id);
1309   }
1310   // Back in JAVA, use no oops DON'T safepoint
1311 
1312   // Return true if calling code is deoptimized
1313 
1314   return caller_is_deopted();
1315 }
1316 
1317 int Runtime1::move_appendix_patching(JavaThread* thread) {
1318 //
1319 // NOTE: we are still in Java
1320 //
1321   Thread* THREAD = thread;
1322   debug_only(NoHandleMark nhm;)
1323   {
1324     // Enter VM mode
1325 
1326     ResetNoHandleMark rnhm;
1327     patch_code(thread, load_appendix_patching_id);
1328   }
1329   // Back in JAVA, use no oops DON'T safepoint
1330 
1331   // Return true if calling code is deoptimized
1332 
1333   return caller_is_deopted();
1334 }
1335 //
1336 // Entry point for compiled code. We want to patch a nmethod.
1337 // We don't do a normal VM transition here because we want to
1338 // know after the patching is complete and any safepoint(s) are taken
1339 // if the calling nmethod was deoptimized. We do this by calling a
1340 // helper method which does the normal VM transition and when it
1341 // completes we can check for deoptimization. This simplifies the
1342 // assembly code in the cpu directories.
1343 //
1344 
1345 int Runtime1::access_field_patching(JavaThread* thread) {
1346 //
1347 // NOTE: we are still in Java
1348 //
1349   Thread* THREAD = thread;
1350   debug_only(NoHandleMark nhm;)
1351   {
1352     // Enter VM mode
1353 
1354     ResetNoHandleMark rnhm;
1355     patch_code(thread, access_field_patching_id);
1356   }
1357   // Back in JAVA, use no oops DON'T safepoint
1358 
1359   // Return true if calling code is deoptimized
1360 
1361   return caller_is_deopted();
1362 JRT_END
1363 
1364 
1365 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1366   // for now we just print out the block id
1367   tty->print("%d ", block_id);
1368 JRT_END
1369 
1370 
1371 // Array copy return codes.
1372 enum {
1373   ac_failed = -1, // arraycopy failed
1374   ac_ok = 0       // arraycopy succeeded
1375 };
1376 
1377 
1378 // Below length is the # elements copied.
1379 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1380                                           oopDesc* dst, T* dst_addr,
1381                                           int length) {
1382 
1383   // For performance reasons, we assume we are using a card marking write
1384   // barrier. The assert will fail if this is not the case.
1385   // Note that we use the non-virtual inlineable variant of write_ref_array.
1386   BarrierSet* bs = Universe::heap()->barrier_set();
1387   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1388   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1389   if (src == dst) {
1390     // same object, no check
1391     bs->write_ref_array_pre(dst_addr, length);
1392     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1393     bs->write_ref_array((HeapWord*)dst_addr, length);
1394     return ac_ok;
1395   } else {
1396     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1397     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1398     if (stype == bound || stype->is_subtype_of(bound)) {
1399       // Elements are guaranteed to be subtypes, so no check necessary
1400       bs->write_ref_array_pre(dst_addr, length);
1401       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1402       bs->write_ref_array((HeapWord*)dst_addr, length);
1403       return ac_ok;
1404     }
1405   }
1406   return ac_failed;
1407 }
1408 
1409 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1410 // and we did not copy anything
1411 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1412 #ifndef PRODUCT
1413   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1414 #endif
1415 
1416   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1417   if (!dst->is_array() || !src->is_array()) return ac_failed;
1418   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1419   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1420 
1421   if (length == 0) return ac_ok;
1422   if (src->is_typeArray()) {
1423     Klass* klass_oop = src->klass();
1424     if (klass_oop != dst->klass()) return ac_failed;
1425     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1426     const int l2es = klass->log2_element_size();
1427     const int ihs = klass->array_header_in_bytes() / wordSize;
1428     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1429     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1430     // Potential problem: memmove is not guaranteed to be word atomic
1431     // Revisit in Merlin
1432     memmove(dst_addr, src_addr, length << l2es);
1433     return ac_ok;
1434   } else if (src->is_objArray() && dst->is_objArray()) {
1435     if (UseCompressedOops) {
1436       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1437       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1438       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1439     } else {
1440       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1441       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1442       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1443     }
1444   }
1445   return ac_failed;
1446 JRT_END
1447 
1448 
1449 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1450 #ifndef PRODUCT
1451   _primitive_arraycopy_cnt++;
1452 #endif
1453 
1454   if (length == 0) return;
1455   // Not guaranteed to be word atomic, but that doesn't matter
1456   // for anything but an oop array, which is covered by oop_arraycopy.
1457   Copy::conjoint_jbytes(src, dst, length);
1458 JRT_END
1459 
1460 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1461 #ifndef PRODUCT
1462   _oop_arraycopy_cnt++;
1463 #endif
1464 
1465   if (num == 0) return;
1466   BarrierSet* bs = Universe::heap()->barrier_set();
1467   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1468   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1469   if (UseCompressedOops) {
1470     bs->write_ref_array_pre((narrowOop*)dst, num);
1471     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1472   } else {
1473     bs->write_ref_array_pre((oop*)dst, num);
1474     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1475   }
1476   bs->write_ref_array(dst, num);
1477 JRT_END
1478 
1479 
1480 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1481   // had to return int instead of bool, otherwise there may be a mismatch
1482   // between the C calling convention and the Java one.
1483   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1484   // JVM takes the whole %eax as the return value, which may misinterpret
1485   // the return value as a boolean true.
1486 
1487   assert(mirror != NULL, "should null-check on mirror before calling");
1488   Klass* k = java_lang_Class::as_Klass(mirror);
1489   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1490 JRT_END
1491 
1492 JRT_LEAF(int, Runtime1::is_primitive(oopDesc* mirror))
1493   // had to return int instead of bool, otherwise there may be a mismatch
1494   // between the C calling convention and the Java one.
1495   assert(mirror != NULL, "should null-check on mirror before calling");
1496   return java_lang_Class::is_primitive(mirror);
1497 JRT_END
1498 
1499 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1500   ResourceMark rm;
1501 
1502   assert(!TieredCompilation, "incompatible with tiered compilation");
1503 
1504   RegisterMap reg_map(thread, false);
1505   frame runtime_frame = thread->last_frame();
1506   frame caller_frame = runtime_frame.sender(&reg_map);
1507 
1508   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1509   assert (nm != NULL, "no more nmethod?");
1510   nm->make_not_entrant();
1511 
1512   methodHandle m(nm->method());
1513   MethodData* mdo = m->method_data();
1514 
1515   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1516     // Build an MDO.  Ignore errors like OutOfMemory;
1517     // that simply means we won't have an MDO to update.
1518     Method::build_interpreter_method_data(m, THREAD);
1519     if (HAS_PENDING_EXCEPTION) {
1520       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1521       CLEAR_PENDING_EXCEPTION;
1522     }
1523     mdo = m->method_data();
1524   }
1525 
1526   if (mdo != NULL) {
1527     mdo->inc_trap_count(Deoptimization::Reason_none);
1528   }
1529 
1530   if (TracePredicateFailedTraps) {
1531     stringStream ss1, ss2;
1532     vframeStream vfst(thread);
1533     methodHandle inlinee = methodHandle(vfst.method());
1534     inlinee->print_short_name(&ss1);
1535     m->print_short_name(&ss2);
1536     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1537   }
1538 
1539 
1540   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1541 
1542 JRT_END
1543 
1544 #ifndef PRODUCT
1545 void Runtime1::print_statistics() {
1546   tty->print_cr("C1 Runtime statistics:");
1547   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1548   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1549   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1550   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1551   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1552   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1553   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1554   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1555   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1556   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1557   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1558   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1559   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1560   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1561   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1562   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1563   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1564 
1565   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1566   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1567   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1568   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1569   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1570   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1571   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1572 
1573   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1574   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1575   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1576   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1577   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1578   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1579   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1580   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1581 
1582   SharedRuntime::print_ic_miss_histogram();
1583   tty->cr();
1584 }
1585 #endif // PRODUCT