1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "prims/unsafe.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #ifdef TRACE_HAVE_INTRINSICS
  55 #include "trace/traceMacros.hpp"
  56 #endif
  57 
  58 class LibraryIntrinsic : public InlineCallGenerator {
  59   // Extend the set of intrinsics known to the runtime:
  60  public:
  61  private:
  62   bool             _is_virtual;
  63   bool             _does_virtual_dispatch;
  64   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  65   int8_t           _last_predicate; // Last generated predicate
  66   vmIntrinsics::ID _intrinsic_id;
  67 
  68  public:
  69   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  70     : InlineCallGenerator(m),
  71       _is_virtual(is_virtual),
  72       _does_virtual_dispatch(does_virtual_dispatch),
  73       _predicates_count((int8_t)predicates_count),
  74       _last_predicate((int8_t)-1),
  75       _intrinsic_id(id)
  76   {
  77   }
  78   virtual bool is_intrinsic() const { return true; }
  79   virtual bool is_virtual()   const { return _is_virtual; }
  80   virtual bool is_predicated() const { return _predicates_count > 0; }
  81   virtual int  predicates_count() const { return _predicates_count; }
  82   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  83   virtual JVMState* generate(JVMState* jvms);
  84   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  85   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  86 };
  87 
  88 
  89 // Local helper class for LibraryIntrinsic:
  90 class LibraryCallKit : public GraphKit {
  91  private:
  92   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  93   Node*             _result;        // the result node, if any
  94   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  95 
  96   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  97 
  98  public:
  99   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 100     : GraphKit(jvms),
 101       _intrinsic(intrinsic),
 102       _result(NULL)
 103   {
 104     // Check if this is a root compile.  In that case we don't have a caller.
 105     if (!jvms->has_method()) {
 106       _reexecute_sp = sp();
 107     } else {
 108       // Find out how many arguments the interpreter needs when deoptimizing
 109       // and save the stack pointer value so it can used by uncommon_trap.
 110       // We find the argument count by looking at the declared signature.
 111       bool ignored_will_link;
 112       ciSignature* declared_signature = NULL;
 113       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 114       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 115       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 116     }
 117   }
 118 
 119   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 120 
 121   ciMethod*         caller()    const    { return jvms()->method(); }
 122   int               bci()       const    { return jvms()->bci(); }
 123   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 124   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 125   ciMethod*         callee()    const    { return _intrinsic->method(); }
 126 
 127   bool  try_to_inline(int predicate);
 128   Node* try_to_predicate(int predicate);
 129 
 130   void push_result() {
 131     // Push the result onto the stack.
 132     if (!stopped() && result() != NULL) {
 133       BasicType bt = result()->bottom_type()->basic_type();
 134       push_node(bt, result());
 135     }
 136   }
 137 
 138  private:
 139   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 140     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 141   }
 142 
 143   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 144   void  set_result(RegionNode* region, PhiNode* value);
 145   Node*     result() { return _result; }
 146 
 147   virtual int reexecute_sp() { return _reexecute_sp; }
 148 
 149   // Helper functions to inline natives
 150   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 151   Node* generate_slow_guard(Node* test, RegionNode* region);
 152   Node* generate_fair_guard(Node* test, RegionNode* region);
 153   Node* generate_negative_guard(Node* index, RegionNode* region,
 154                                 // resulting CastII of index:
 155                                 Node* *pos_index = NULL);
 156   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 157                              Node* array_length,
 158                              RegionNode* region);
 159   void  generate_string_range_check(Node* array, Node* offset,
 160                                     Node* length, bool char_count);
 161   Node* generate_current_thread(Node* &tls_output);
 162   Node* load_mirror_from_klass(Node* klass);
 163   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 164                                       RegionNode* region, int null_path,
 165                                       int offset);
 166   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 174                                      RegionNode* region, int null_path) {
 175     int offset = java_lang_Class::array_klass_offset_in_bytes();
 176     return load_klass_from_mirror_common(mirror, never_see_null,
 177                                          region, null_path,
 178                                          offset);
 179   }
 180   Node* generate_access_flags_guard(Node* kls,
 181                                     int modifier_mask, int modifier_bits,
 182                                     RegionNode* region);
 183   Node* generate_interface_guard(Node* kls, RegionNode* region);
 184   Node* generate_array_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, false, false);
 186   }
 187   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, false, true);
 189   }
 190   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 191     return generate_array_guard_common(kls, region, true, false);
 192   }
 193   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 194     return generate_array_guard_common(kls, region, true, true);
 195   }
 196   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 197                                     bool obj_array, bool not_array);
 198   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 199   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 200                                      bool is_virtual = false, bool is_static = false);
 201   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 202     return generate_method_call(method_id, false, true);
 203   }
 204   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 205     return generate_method_call(method_id, true, false);
 206   }
 207   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209 
 210   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 214   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 215                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_indexOfChar();
 217   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_toBytesU();
 219   bool inline_string_getCharsU();
 220   bool inline_string_copy(bool compress);
 221   bool inline_string_char_access(bool is_store);
 222   Node* round_double_node(Node* n);
 223   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_math_native(vmIntrinsics::ID id);
 225   bool inline_trig(vmIntrinsics::ID id);
 226   bool inline_math(vmIntrinsics::ID id);
 227   template <typename OverflowOp>
 228   bool inline_math_overflow(Node* arg1, Node* arg2);
 229   void inline_math_mathExact(Node* math, Node* test);
 230   bool inline_math_addExactI(bool is_increment);
 231   bool inline_math_addExactL(bool is_increment);
 232   bool inline_math_multiplyExactI();
 233   bool inline_math_multiplyExactL();
 234   bool inline_math_negateExactI();
 235   bool inline_math_negateExactL();
 236   bool inline_math_subtractExactI(bool is_decrement);
 237   bool inline_math_subtractExactL(bool is_decrement);
 238   bool inline_min_max(vmIntrinsics::ID id);
 239   bool inline_notify(vmIntrinsics::ID id);
 240   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 241   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 242   int classify_unsafe_addr(Node* &base, Node* &offset);
 243   Node* make_unsafe_address(Node* base, Node* offset);
 244   // Helper for inline_unsafe_access.
 245   // Generates the guards that check whether the result of
 246   // Unsafe.getObject should be recorded in an SATB log buffer.
 247   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 248 
 249   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 250   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 251   static bool klass_needs_init_guard(Node* kls);
 252   bool inline_unsafe_allocate();
 253   bool inline_unsafe_newArray(bool uninitialized);
 254   bool inline_unsafe_copyMemory();
 255   bool inline_native_currentThread();
 256 
 257   bool inline_native_time_funcs(address method, const char* funcName);
 258   bool inline_native_isInterrupted();
 259   bool inline_native_Class_query(vmIntrinsics::ID id);
 260   bool inline_native_subtype_check();
 261   bool inline_native_getLength();
 262   bool inline_array_copyOf(bool is_copyOfRange);
 263   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 264   bool inline_objects_checkIndex();
 265   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 266   bool inline_native_clone(bool is_virtual);
 267   bool inline_native_Reflection_getCallerClass();
 268   // Helper function for inlining native object hash method
 269   bool inline_native_hashcode(bool is_virtual, bool is_static);
 270   bool inline_native_getClass();
 271 
 272   // Helper functions for inlining arraycopy
 273   bool inline_arraycopy();
 274   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 275                                                 RegionNode* slow_region);
 276   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 277   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 278 
 279   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 280   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 281   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 282   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 283   bool inline_unsafe_fence(vmIntrinsics::ID id);
 284   bool inline_onspinwait();
 285   bool inline_fp_conversions(vmIntrinsics::ID id);
 286   bool inline_number_methods(vmIntrinsics::ID id);
 287   bool inline_reference_get();
 288   bool inline_Class_cast();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 292   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 293   Node* inline_counterMode_AESCrypt_predicate();
 294   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 295   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 296   bool inline_ghash_processBlocks();
 297   bool inline_sha_implCompress(vmIntrinsics::ID id);
 298   bool inline_digestBase_implCompressMB(int predicate);
 299   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 300                                  bool long_state, address stubAddr, const char *stubName,
 301                                  Node* src_start, Node* ofs, Node* limit);
 302   Node* get_state_from_sha_object(Node *sha_object);
 303   Node* get_state_from_sha5_object(Node *sha_object);
 304   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 305   bool inline_encodeISOArray();
 306   bool inline_updateCRC32();
 307   bool inline_updateBytesCRC32();
 308   bool inline_updateByteBufferCRC32();
 309   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 310   bool inline_updateBytesCRC32C();
 311   bool inline_updateDirectByteBufferCRC32C();
 312   bool inline_updateBytesAdler32();
 313   bool inline_updateByteBufferAdler32();
 314   bool inline_multiplyToLen();
 315   bool inline_hasNegatives();
 316   bool inline_squareToLen();
 317   bool inline_mulAdd();
 318   bool inline_montgomeryMultiply();
 319   bool inline_montgomerySquare();
 320   bool inline_vectorizedMismatch();
 321 
 322   bool inline_profileBoolean();
 323   bool inline_isCompileConstant();
 324 };
 325 
 326 //---------------------------make_vm_intrinsic----------------------------
 327 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 328   vmIntrinsics::ID id = m->intrinsic_id();
 329   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 330 
 331   if (!m->is_loaded()) {
 332     // Do not attempt to inline unloaded methods.
 333     return NULL;
 334   }
 335 
 336   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 337   bool is_available = false;
 338 
 339   {
 340     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 341     // the compiler must transition to '_thread_in_vm' state because both
 342     // methods access VM-internal data.
 343     VM_ENTRY_MARK;
 344     methodHandle mh(THREAD, m->get_Method());
 345     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 346                    !C->directive()->is_intrinsic_disabled(mh) &&
 347                    !vmIntrinsics::is_disabled_by_flags(mh);
 348 
 349   }
 350 
 351   if (is_available) {
 352     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 353     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 354     return new LibraryIntrinsic(m, is_virtual,
 355                                 vmIntrinsics::predicates_needed(id),
 356                                 vmIntrinsics::does_virtual_dispatch(id),
 357                                 (vmIntrinsics::ID) id);
 358   } else {
 359     return NULL;
 360   }
 361 }
 362 
 363 //----------------------register_library_intrinsics-----------------------
 364 // Initialize this file's data structures, for each Compile instance.
 365 void Compile::register_library_intrinsics() {
 366   // Nothing to do here.
 367 }
 368 
 369 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 370   LibraryCallKit kit(jvms, this);
 371   Compile* C = kit.C;
 372   int nodes = C->unique();
 373 #ifndef PRODUCT
 374   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 375     char buf[1000];
 376     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 377     tty->print_cr("Intrinsic %s", str);
 378   }
 379 #endif
 380   ciMethod* callee = kit.callee();
 381   const int bci    = kit.bci();
 382 
 383   // Try to inline the intrinsic.
 384   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 385       kit.try_to_inline(_last_predicate)) {
 386     if (C->print_intrinsics() || C->print_inlining()) {
 387       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 388     }
 389     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 390     if (C->log()) {
 391       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 392                      vmIntrinsics::name_at(intrinsic_id()),
 393                      (is_virtual() ? " virtual='1'" : ""),
 394                      C->unique() - nodes);
 395     }
 396     // Push the result from the inlined method onto the stack.
 397     kit.push_result();
 398     C->print_inlining_update(this);
 399     return kit.transfer_exceptions_into_jvms();
 400   }
 401 
 402   // The intrinsic bailed out
 403   if (C->print_intrinsics() || C->print_inlining()) {
 404     if (jvms->has_method()) {
 405       // Not a root compile.
 406       const char* msg;
 407       if (callee->intrinsic_candidate()) {
 408         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 409       } else {
 410         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 411                            : "failed to inline (intrinsic), method not annotated";
 412       }
 413       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 414     } else {
 415       // Root compile
 416       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 417                vmIntrinsics::name_at(intrinsic_id()),
 418                (is_virtual() ? " (virtual)" : ""), bci);
 419     }
 420   }
 421   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 422   C->print_inlining_update(this);
 423   return NULL;
 424 }
 425 
 426 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 427   LibraryCallKit kit(jvms, this);
 428   Compile* C = kit.C;
 429   int nodes = C->unique();
 430   _last_predicate = predicate;
 431 #ifndef PRODUCT
 432   assert(is_predicated() && predicate < predicates_count(), "sanity");
 433   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 434     char buf[1000];
 435     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 436     tty->print_cr("Predicate for intrinsic %s", str);
 437   }
 438 #endif
 439   ciMethod* callee = kit.callee();
 440   const int bci    = kit.bci();
 441 
 442   Node* slow_ctl = kit.try_to_predicate(predicate);
 443   if (!kit.failing()) {
 444     if (C->print_intrinsics() || C->print_inlining()) {
 445       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 446     }
 447     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 448     if (C->log()) {
 449       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 450                      vmIntrinsics::name_at(intrinsic_id()),
 451                      (is_virtual() ? " virtual='1'" : ""),
 452                      C->unique() - nodes);
 453     }
 454     return slow_ctl; // Could be NULL if the check folds.
 455   }
 456 
 457   // The intrinsic bailed out
 458   if (C->print_intrinsics() || C->print_inlining()) {
 459     if (jvms->has_method()) {
 460       // Not a root compile.
 461       const char* msg = "failed to generate predicate for intrinsic";
 462       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 463     } else {
 464       // Root compile
 465       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 466                                         vmIntrinsics::name_at(intrinsic_id()),
 467                                         (is_virtual() ? " (virtual)" : ""), bci);
 468     }
 469   }
 470   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 471   return NULL;
 472 }
 473 
 474 bool LibraryCallKit::try_to_inline(int predicate) {
 475   // Handle symbolic names for otherwise undistinguished boolean switches:
 476   const bool is_store       = true;
 477   const bool is_compress    = true;
 478   const bool is_native_ptr  = true;
 479   const bool is_static      = true;
 480   const bool is_volatile    = true;
 481 
 482   if (!jvms()->has_method()) {
 483     // Root JVMState has a null method.
 484     assert(map()->memory()->Opcode() == Op_Parm, "");
 485     // Insert the memory aliasing node
 486     set_all_memory(reset_memory());
 487   }
 488   assert(merged_memory(), "");
 489 
 490 
 491   switch (intrinsic_id()) {
 492   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 493   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 494   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 495 
 496   case vmIntrinsics::_dsin:
 497   case vmIntrinsics::_dcos:
 498   case vmIntrinsics::_dtan:
 499   case vmIntrinsics::_dabs:
 500   case vmIntrinsics::_datan2:
 501   case vmIntrinsics::_dsqrt:
 502   case vmIntrinsics::_dexp:
 503   case vmIntrinsics::_dlog:
 504   case vmIntrinsics::_dlog10:
 505   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 506 
 507   case vmIntrinsics::_min:
 508   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 509 
 510   case vmIntrinsics::_notify:
 511   case vmIntrinsics::_notifyAll:
 512     if (InlineNotify) {
 513       return inline_notify(intrinsic_id());
 514     }
 515     return false;
 516 
 517   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 518   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 519   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 520   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 521   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 522   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 523   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 524   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 525   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 526   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 527   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 528   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 529 
 530   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 531 
 532   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 533   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 534   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 535   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 536 
 537   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 538   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 539   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 540   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 541   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 542   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 543   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 544 
 545   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 546   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 547 
 548   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 549   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 550   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 551   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 552 
 553   case vmIntrinsics::_compressStringC:
 554   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 555   case vmIntrinsics::_inflateStringC:
 556   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 557 
 558   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Relaxed, false);
 559   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Relaxed, false);
 560   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 561   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 562   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 563   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, false);
 564   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 565   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 566   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 567 
 568   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Relaxed, false);
 569   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Relaxed, false);
 570   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 571   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 572   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 573   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, false);
 574   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 575   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 576   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 577 
 578   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 579   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 580   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 581   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,      Relaxed, false);
 582   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 583   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 584   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 585   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS,  Relaxed, false);
 586 
 587   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 588   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 589   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 590   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,      Relaxed, false);
 591   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 592   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 593   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 594   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS,  Relaxed, false);
 595 
 596   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Volatile, false);
 597   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Volatile, false);
 598   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Volatile, false);
 599   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Volatile, false);
 600   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Volatile, false);
 601   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Volatile, false);
 602   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Volatile, false);
 603   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Volatile, false);
 604   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Volatile, false);
 605 
 606   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Volatile, false);
 607   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Volatile, false);
 608   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Volatile, false);
 609   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Volatile, false);
 610   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Volatile, false);
 611   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Volatile, false);
 612   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Volatile, false);
 613   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Volatile, false);
 614   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Volatile, false);
 615 
 616   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, true);
 617   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, true);
 618   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, true);
 619   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, true);
 620 
 621   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, true);
 622   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, true);
 623   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, true);
 624   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, true);
 625 
 626   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Acquire, false);
 627   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Acquire, false);
 628   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Acquire, false);
 629   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Acquire, false);
 630   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Acquire, false);
 631   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Acquire, false);
 632   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Acquire, false);
 633   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Acquire, false);
 634   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Acquire, false);
 635 
 636   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 637   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Release, false);
 638   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Release, false);
 639   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Release, false);
 640   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Release, false);
 641   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 642   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 643   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Release, false);
 644   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Release, false);
 645 
 646   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Opaque, false);
 647   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Opaque, false);
 648   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Opaque, false);
 649   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Opaque, false);
 650   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Opaque, false);
 651   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Opaque, false);
 652   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Opaque, false);
 653   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Opaque, false);
 654   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Opaque, false);
 655 
 656   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Opaque, false);
 657   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Opaque, false);
 658   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Opaque, false);
 659   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Opaque, false);
 660   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Opaque, false);
 661   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Opaque, false);
 662   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Opaque, false);
 663   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Opaque, false);
 664   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Opaque, false);
 665 
 666   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 667   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 668   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 669 
 670   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 671   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 672   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 673   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 674   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 675   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 676   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 677   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 678   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 679 
 680   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 681   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 682   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 683   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 684   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 685   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 686   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 687   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 688   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 689 
 690   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 691   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 692   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 693   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 694   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 695 
 696   case vmIntrinsics::_loadFence:
 697   case vmIntrinsics::_storeFence:
 698   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 699 
 700   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 701 
 702   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 703   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 704 
 705 #ifdef TRACE_HAVE_INTRINSICS
 706   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 707 #endif
 708   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 709   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 710   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 711   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 712   case vmIntrinsics::_getLength:                return inline_native_getLength();
 713   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 714   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 715   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 716   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 717   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 718   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 719 
 720   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 721   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 722 
 723   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 724 
 725   case vmIntrinsics::_isInstance:
 726   case vmIntrinsics::_getModifiers:
 727   case vmIntrinsics::_isInterface:
 728   case vmIntrinsics::_isArray:
 729   case vmIntrinsics::_isPrimitive:
 730   case vmIntrinsics::_getSuperclass:
 731   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 732 
 733   case vmIntrinsics::_floatToRawIntBits:
 734   case vmIntrinsics::_floatToIntBits:
 735   case vmIntrinsics::_intBitsToFloat:
 736   case vmIntrinsics::_doubleToRawLongBits:
 737   case vmIntrinsics::_doubleToLongBits:
 738   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 739 
 740   case vmIntrinsics::_numberOfLeadingZeros_i:
 741   case vmIntrinsics::_numberOfLeadingZeros_l:
 742   case vmIntrinsics::_numberOfTrailingZeros_i:
 743   case vmIntrinsics::_numberOfTrailingZeros_l:
 744   case vmIntrinsics::_bitCount_i:
 745   case vmIntrinsics::_bitCount_l:
 746   case vmIntrinsics::_reverseBytes_i:
 747   case vmIntrinsics::_reverseBytes_l:
 748   case vmIntrinsics::_reverseBytes_s:
 749   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 750 
 751   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 752 
 753   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 754 
 755   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 756 
 757   case vmIntrinsics::_aescrypt_encryptBlock:
 758   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 759 
 760   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 761   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 762     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 763 
 764   case vmIntrinsics::_counterMode_AESCrypt:
 765     return inline_counterMode_AESCrypt(intrinsic_id());
 766 
 767   case vmIntrinsics::_sha_implCompress:
 768   case vmIntrinsics::_sha2_implCompress:
 769   case vmIntrinsics::_sha5_implCompress:
 770     return inline_sha_implCompress(intrinsic_id());
 771 
 772   case vmIntrinsics::_digestBase_implCompressMB:
 773     return inline_digestBase_implCompressMB(predicate);
 774 
 775   case vmIntrinsics::_multiplyToLen:
 776     return inline_multiplyToLen();
 777 
 778   case vmIntrinsics::_squareToLen:
 779     return inline_squareToLen();
 780 
 781   case vmIntrinsics::_mulAdd:
 782     return inline_mulAdd();
 783 
 784   case vmIntrinsics::_montgomeryMultiply:
 785     return inline_montgomeryMultiply();
 786   case vmIntrinsics::_montgomerySquare:
 787     return inline_montgomerySquare();
 788 
 789   case vmIntrinsics::_vectorizedMismatch:
 790     return inline_vectorizedMismatch();
 791 
 792   case vmIntrinsics::_ghash_processBlocks:
 793     return inline_ghash_processBlocks();
 794 
 795   case vmIntrinsics::_encodeISOArray:
 796   case vmIntrinsics::_encodeByteISOArray:
 797     return inline_encodeISOArray();
 798 
 799   case vmIntrinsics::_updateCRC32:
 800     return inline_updateCRC32();
 801   case vmIntrinsics::_updateBytesCRC32:
 802     return inline_updateBytesCRC32();
 803   case vmIntrinsics::_updateByteBufferCRC32:
 804     return inline_updateByteBufferCRC32();
 805 
 806   case vmIntrinsics::_updateBytesCRC32C:
 807     return inline_updateBytesCRC32C();
 808   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 809     return inline_updateDirectByteBufferCRC32C();
 810 
 811   case vmIntrinsics::_updateBytesAdler32:
 812     return inline_updateBytesAdler32();
 813   case vmIntrinsics::_updateByteBufferAdler32:
 814     return inline_updateByteBufferAdler32();
 815 
 816   case vmIntrinsics::_profileBoolean:
 817     return inline_profileBoolean();
 818   case vmIntrinsics::_isCompileConstant:
 819     return inline_isCompileConstant();
 820 
 821   case vmIntrinsics::_hasNegatives:
 822     return inline_hasNegatives();
 823 
 824   default:
 825     // If you get here, it may be that someone has added a new intrinsic
 826     // to the list in vmSymbols.hpp without implementing it here.
 827 #ifndef PRODUCT
 828     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 829       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 830                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 831     }
 832 #endif
 833     return false;
 834   }
 835 }
 836 
 837 Node* LibraryCallKit::try_to_predicate(int predicate) {
 838   if (!jvms()->has_method()) {
 839     // Root JVMState has a null method.
 840     assert(map()->memory()->Opcode() == Op_Parm, "");
 841     // Insert the memory aliasing node
 842     set_all_memory(reset_memory());
 843   }
 844   assert(merged_memory(), "");
 845 
 846   switch (intrinsic_id()) {
 847   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 848     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 849   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 850     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 851   case vmIntrinsics::_counterMode_AESCrypt:
 852     return inline_counterMode_AESCrypt_predicate();
 853   case vmIntrinsics::_digestBase_implCompressMB:
 854     return inline_digestBase_implCompressMB_predicate(predicate);
 855 
 856   default:
 857     // If you get here, it may be that someone has added a new intrinsic
 858     // to the list in vmSymbols.hpp without implementing it here.
 859 #ifndef PRODUCT
 860     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 861       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 862                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 863     }
 864 #endif
 865     Node* slow_ctl = control();
 866     set_control(top()); // No fast path instrinsic
 867     return slow_ctl;
 868   }
 869 }
 870 
 871 //------------------------------set_result-------------------------------
 872 // Helper function for finishing intrinsics.
 873 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 874   record_for_igvn(region);
 875   set_control(_gvn.transform(region));
 876   set_result( _gvn.transform(value));
 877   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 878 }
 879 
 880 //------------------------------generate_guard---------------------------
 881 // Helper function for generating guarded fast-slow graph structures.
 882 // The given 'test', if true, guards a slow path.  If the test fails
 883 // then a fast path can be taken.  (We generally hope it fails.)
 884 // In all cases, GraphKit::control() is updated to the fast path.
 885 // The returned value represents the control for the slow path.
 886 // The return value is never 'top'; it is either a valid control
 887 // or NULL if it is obvious that the slow path can never be taken.
 888 // Also, if region and the slow control are not NULL, the slow edge
 889 // is appended to the region.
 890 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 891   if (stopped()) {
 892     // Already short circuited.
 893     return NULL;
 894   }
 895 
 896   // Build an if node and its projections.
 897   // If test is true we take the slow path, which we assume is uncommon.
 898   if (_gvn.type(test) == TypeInt::ZERO) {
 899     // The slow branch is never taken.  No need to build this guard.
 900     return NULL;
 901   }
 902 
 903   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 904 
 905   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 906   if (if_slow == top()) {
 907     // The slow branch is never taken.  No need to build this guard.
 908     return NULL;
 909   }
 910 
 911   if (region != NULL)
 912     region->add_req(if_slow);
 913 
 914   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 915   set_control(if_fast);
 916 
 917   return if_slow;
 918 }
 919 
 920 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 921   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 922 }
 923 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 924   return generate_guard(test, region, PROB_FAIR);
 925 }
 926 
 927 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 928                                                      Node* *pos_index) {
 929   if (stopped())
 930     return NULL;                // already stopped
 931   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 932     return NULL;                // index is already adequately typed
 933   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 934   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 935   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 936   if (is_neg != NULL && pos_index != NULL) {
 937     // Emulate effect of Parse::adjust_map_after_if.
 938     Node* ccast = new CastIINode(index, TypeInt::POS);
 939     ccast->set_req(0, control());
 940     (*pos_index) = _gvn.transform(ccast);
 941   }
 942   return is_neg;
 943 }
 944 
 945 // Make sure that 'position' is a valid limit index, in [0..length].
 946 // There are two equivalent plans for checking this:
 947 //   A. (offset + copyLength)  unsigned<=  arrayLength
 948 //   B. offset  <=  (arrayLength - copyLength)
 949 // We require that all of the values above, except for the sum and
 950 // difference, are already known to be non-negative.
 951 // Plan A is robust in the face of overflow, if offset and copyLength
 952 // are both hugely positive.
 953 //
 954 // Plan B is less direct and intuitive, but it does not overflow at
 955 // all, since the difference of two non-negatives is always
 956 // representable.  Whenever Java methods must perform the equivalent
 957 // check they generally use Plan B instead of Plan A.
 958 // For the moment we use Plan A.
 959 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 960                                                   Node* subseq_length,
 961                                                   Node* array_length,
 962                                                   RegionNode* region) {
 963   if (stopped())
 964     return NULL;                // already stopped
 965   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 966   if (zero_offset && subseq_length->eqv_uncast(array_length))
 967     return NULL;                // common case of whole-array copy
 968   Node* last = subseq_length;
 969   if (!zero_offset)             // last += offset
 970     last = _gvn.transform(new AddINode(last, offset));
 971   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 972   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 973   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 974   return is_over;
 975 }
 976 
 977 // Emit range checks for the given String.value byte array
 978 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 979   if (stopped()) {
 980     return; // already stopped
 981   }
 982   RegionNode* bailout = new RegionNode(1);
 983   record_for_igvn(bailout);
 984   if (char_count) {
 985     // Convert char count to byte count
 986     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 987   }
 988 
 989   // Offset and count must not be negative
 990   generate_negative_guard(offset, bailout);
 991   generate_negative_guard(count, bailout);
 992   // Offset + count must not exceed length of array
 993   generate_limit_guard(offset, count, load_array_length(array), bailout);
 994 
 995   if (bailout->req() > 1) {
 996     PreserveJVMState pjvms(this);
 997     set_control(_gvn.transform(bailout));
 998     uncommon_trap(Deoptimization::Reason_intrinsic,
 999                   Deoptimization::Action_maybe_recompile);
1000   }
1001 }
1002 
1003 //--------------------------generate_current_thread--------------------
1004 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1005   ciKlass*    thread_klass = env()->Thread_klass();
1006   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1007   Node* thread = _gvn.transform(new ThreadLocalNode());
1008   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1009   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1010   tls_output = thread;
1011   return threadObj;
1012 }
1013 
1014 
1015 //------------------------------make_string_method_node------------------------
1016 // Helper method for String intrinsic functions. This version is called with
1017 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1018 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1019 // containing the lengths of str1 and str2.
1020 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1021   Node* result = NULL;
1022   switch (opcode) {
1023   case Op_StrIndexOf:
1024     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1025                                 str1_start, cnt1, str2_start, cnt2, ae);
1026     break;
1027   case Op_StrComp:
1028     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1029                              str1_start, cnt1, str2_start, cnt2, ae);
1030     break;
1031   case Op_StrEquals:
1032     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1033     // Use the constant length if there is one because optimized match rule may exist.
1034     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1035                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1036     break;
1037   default:
1038     ShouldNotReachHere();
1039     return NULL;
1040   }
1041 
1042   // All these intrinsics have checks.
1043   C->set_has_split_ifs(true); // Has chance for split-if optimization
1044 
1045   return _gvn.transform(result);
1046 }
1047 
1048 //------------------------------inline_string_compareTo------------------------
1049 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1050   Node* arg1 = argument(0);
1051   Node* arg2 = argument(1);
1052 
1053   // Get start addr and length of first argument
1054   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1055   Node* arg1_cnt    = load_array_length(arg1);
1056 
1057   // Get start addr and length of second argument
1058   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1059   Node* arg2_cnt    = load_array_length(arg2);
1060 
1061   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1062   set_result(result);
1063   return true;
1064 }
1065 
1066 //------------------------------inline_string_equals------------------------
1067 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1068   Node* arg1 = argument(0);
1069   Node* arg2 = argument(1);
1070 
1071   // paths (plus control) merge
1072   RegionNode* region = new RegionNode(3);
1073   Node* phi = new PhiNode(region, TypeInt::BOOL);
1074 
1075   if (!stopped()) {
1076     // Get start addr and length of first argument
1077     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1078     Node* arg1_cnt    = load_array_length(arg1);
1079 
1080     // Get start addr and length of second argument
1081     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1082     Node* arg2_cnt    = load_array_length(arg2);
1083 
1084     // Check for arg1_cnt != arg2_cnt
1085     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1086     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1087     Node* if_ne = generate_slow_guard(bol, NULL);
1088     if (if_ne != NULL) {
1089       phi->init_req(2, intcon(0));
1090       region->init_req(2, if_ne);
1091     }
1092 
1093     // Check for count == 0 is done by assembler code for StrEquals.
1094 
1095     if (!stopped()) {
1096       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1097       phi->init_req(1, equals);
1098       region->init_req(1, control());
1099     }
1100   }
1101 
1102   // post merge
1103   set_control(_gvn.transform(region));
1104   record_for_igvn(region);
1105 
1106   set_result(_gvn.transform(phi));
1107   return true;
1108 }
1109 
1110 //------------------------------inline_array_equals----------------------------
1111 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1112   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1113   Node* arg1 = argument(0);
1114   Node* arg2 = argument(1);
1115 
1116   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1117   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1118   return true;
1119 }
1120 
1121 //------------------------------inline_hasNegatives------------------------------
1122 bool LibraryCallKit::inline_hasNegatives() {
1123   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1124     return false;
1125   }
1126 
1127   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1128   // no receiver since it is static method
1129   Node* ba         = argument(0);
1130   Node* offset     = argument(1);
1131   Node* len        = argument(2);
1132 
1133   // Range checks
1134   generate_string_range_check(ba, offset, len, false);
1135   if (stopped()) {
1136     return true;
1137   }
1138   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1139   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1140   set_result(_gvn.transform(result));
1141   return true;
1142 }
1143 
1144 bool LibraryCallKit::inline_objects_checkIndex() {
1145   Node* index = argument(0);
1146   Node* length = argument(1);
1147   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1148     return false;
1149   }
1150 
1151   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1152   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1153 
1154   {
1155     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1156     uncommon_trap(Deoptimization::Reason_intrinsic,
1157                   Deoptimization::Action_make_not_entrant);
1158   }
1159 
1160   if (stopped()) {
1161     return false;
1162   }
1163 
1164   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1165   BoolTest::mask btest = BoolTest::lt;
1166   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1167   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1168   _gvn.set_type(rc, rc->Value(&_gvn));
1169   if (!rc_bool->is_Con()) {
1170     record_for_igvn(rc);
1171   }
1172   set_control(_gvn.transform(new IfTrueNode(rc)));
1173   {
1174     PreserveJVMState pjvms(this);
1175     set_control(_gvn.transform(new IfFalseNode(rc)));
1176     uncommon_trap(Deoptimization::Reason_range_check,
1177                   Deoptimization::Action_make_not_entrant);
1178   }
1179 
1180   if (stopped()) {
1181     return false;
1182   }
1183 
1184   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1185   result->set_req(0, control());
1186   result = _gvn.transform(result);
1187   set_result(result);
1188   replace_in_map(index, result);
1189   return true;
1190 }
1191 
1192 //------------------------------inline_string_indexOf------------------------
1193 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1194   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1195     return false;
1196   }
1197   Node* src = argument(0);
1198   Node* tgt = argument(1);
1199 
1200   // Make the merge point
1201   RegionNode* result_rgn = new RegionNode(4);
1202   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1203 
1204   // Get start addr and length of source string
1205   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1206   Node* src_count = load_array_length(src);
1207 
1208   // Get start addr and length of substring
1209   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1210   Node* tgt_count = load_array_length(tgt);
1211 
1212   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1213     // Divide src size by 2 if String is UTF16 encoded
1214     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1215   }
1216   if (ae == StrIntrinsicNode::UU) {
1217     // Divide substring size by 2 if String is UTF16 encoded
1218     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1219   }
1220 
1221   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1222   if (result != NULL) {
1223     result_phi->init_req(3, result);
1224     result_rgn->init_req(3, control());
1225   }
1226   set_control(_gvn.transform(result_rgn));
1227   record_for_igvn(result_rgn);
1228   set_result(_gvn.transform(result_phi));
1229 
1230   return true;
1231 }
1232 
1233 //-----------------------------inline_string_indexOf-----------------------
1234 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1235   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1236     return false;
1237   }
1238   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1239     return false;
1240   }
1241   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1242   Node* src         = argument(0); // byte[]
1243   Node* src_count   = argument(1); // char count
1244   Node* tgt         = argument(2); // byte[]
1245   Node* tgt_count   = argument(3); // char count
1246   Node* from_index  = argument(4); // char index
1247 
1248   // Multiply byte array index by 2 if String is UTF16 encoded
1249   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1250   src_count = _gvn.transform(new SubINode(src_count, from_index));
1251   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1252   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1253 
1254   // Range checks
1255   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1256   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1257   if (stopped()) {
1258     return true;
1259   }
1260 
1261   RegionNode* region = new RegionNode(5);
1262   Node* phi = new PhiNode(region, TypeInt::INT);
1263 
1264   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1265   if (result != NULL) {
1266     // The result is index relative to from_index if substring was found, -1 otherwise.
1267     // Generate code which will fold into cmove.
1268     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1269     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1270 
1271     Node* if_lt = generate_slow_guard(bol, NULL);
1272     if (if_lt != NULL) {
1273       // result == -1
1274       phi->init_req(3, result);
1275       region->init_req(3, if_lt);
1276     }
1277     if (!stopped()) {
1278       result = _gvn.transform(new AddINode(result, from_index));
1279       phi->init_req(4, result);
1280       region->init_req(4, control());
1281     }
1282   }
1283 
1284   set_control(_gvn.transform(region));
1285   record_for_igvn(region);
1286   set_result(_gvn.transform(phi));
1287 
1288   return true;
1289 }
1290 
1291 // Create StrIndexOfNode with fast path checks
1292 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1293                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1294   // Check for substr count > string count
1295   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1296   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1297   Node* if_gt = generate_slow_guard(bol, NULL);
1298   if (if_gt != NULL) {
1299     phi->init_req(1, intcon(-1));
1300     region->init_req(1, if_gt);
1301   }
1302   if (!stopped()) {
1303     // Check for substr count == 0
1304     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1305     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1306     Node* if_zero = generate_slow_guard(bol, NULL);
1307     if (if_zero != NULL) {
1308       phi->init_req(2, intcon(0));
1309       region->init_req(2, if_zero);
1310     }
1311   }
1312   if (!stopped()) {
1313     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1314   }
1315   return NULL;
1316 }
1317 
1318 //-----------------------------inline_string_indexOfChar-----------------------
1319 bool LibraryCallKit::inline_string_indexOfChar() {
1320   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1321     return false;
1322   }
1323   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1324     return false;
1325   }
1326   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1327   Node* src         = argument(0); // byte[]
1328   Node* tgt         = argument(1); // tgt is int ch
1329   Node* from_index  = argument(2);
1330   Node* max         = argument(3);
1331 
1332   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1333   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1334   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1335 
1336   // Range checks
1337   generate_string_range_check(src, src_offset, src_count, true);
1338   if (stopped()) {
1339     return true;
1340   }
1341 
1342   RegionNode* region = new RegionNode(3);
1343   Node* phi = new PhiNode(region, TypeInt::INT);
1344 
1345   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1346   C->set_has_split_ifs(true); // Has chance for split-if optimization
1347   _gvn.transform(result);
1348 
1349   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1350   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1351 
1352   Node* if_lt = generate_slow_guard(bol, NULL);
1353   if (if_lt != NULL) {
1354     // result == -1
1355     phi->init_req(2, result);
1356     region->init_req(2, if_lt);
1357   }
1358   if (!stopped()) {
1359     result = _gvn.transform(new AddINode(result, from_index));
1360     phi->init_req(1, result);
1361     region->init_req(1, control());
1362   }
1363   set_control(_gvn.transform(region));
1364   record_for_igvn(region);
1365   set_result(_gvn.transform(phi));
1366 
1367   return true;
1368 }
1369 //---------------------------inline_string_copy---------------------
1370 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1371 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1372 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1373 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1374 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1375 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1376 bool LibraryCallKit::inline_string_copy(bool compress) {
1377   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1378     return false;
1379   }
1380   int nargs = 5;  // 2 oops, 3 ints
1381   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1382 
1383   Node* src         = argument(0);
1384   Node* src_offset  = argument(1);
1385   Node* dst         = argument(2);
1386   Node* dst_offset  = argument(3);
1387   Node* length      = argument(4);
1388 
1389   // Check for allocation before we add nodes that would confuse
1390   // tightly_coupled_allocation()
1391   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1392 
1393   // Figure out the size and type of the elements we will be copying.
1394   const Type* src_type = src->Value(&_gvn);
1395   const Type* dst_type = dst->Value(&_gvn);
1396   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1397   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1398   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1399          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1400          "Unsupported array types for inline_string_copy");
1401 
1402   // Range checks
1403   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1404   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1405   if (stopped()) {
1406     return true;
1407   }
1408 
1409   // Convert char[] offsets to byte[] offsets
1410   if (compress && src_elem == T_BYTE) {
1411     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1412   } else if (!compress && dst_elem == T_BYTE) {
1413     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1414   }
1415 
1416   Node* src_start = array_element_address(src, src_offset, src_elem);
1417   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1418   // 'src_start' points to src array + scaled offset
1419   // 'dst_start' points to dst array + scaled offset
1420   Node* count = NULL;
1421   if (compress) {
1422     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1423   } else {
1424     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1425   }
1426 
1427   if (alloc != NULL) {
1428     if (alloc->maybe_set_complete(&_gvn)) {
1429       // "You break it, you buy it."
1430       InitializeNode* init = alloc->initialization();
1431       assert(init->is_complete(), "we just did this");
1432       init->set_complete_with_arraycopy();
1433       assert(dst->is_CheckCastPP(), "sanity");
1434       assert(dst->in(0)->in(0) == init, "dest pinned");
1435     }
1436     // Do not let stores that initialize this object be reordered with
1437     // a subsequent store that would make this object accessible by
1438     // other threads.
1439     // Record what AllocateNode this StoreStore protects so that
1440     // escape analysis can go from the MemBarStoreStoreNode to the
1441     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1442     // based on the escape status of the AllocateNode.
1443     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1444   }
1445   if (compress) {
1446     set_result(_gvn.transform(count));
1447   }
1448   return true;
1449 }
1450 
1451 #ifdef _LP64
1452 #define XTOP ,top() /*additional argument*/
1453 #else  //_LP64
1454 #define XTOP        /*no additional argument*/
1455 #endif //_LP64
1456 
1457 //------------------------inline_string_toBytesU--------------------------
1458 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1459 bool LibraryCallKit::inline_string_toBytesU() {
1460   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1461     return false;
1462   }
1463   // Get the arguments.
1464   Node* value     = argument(0);
1465   Node* offset    = argument(1);
1466   Node* length    = argument(2);
1467 
1468   Node* newcopy = NULL;
1469 
1470   // Set the original stack and the reexecute bit for the interpreter to reexecute
1471   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1472   { PreserveReexecuteState preexecs(this);
1473     jvms()->set_should_reexecute(true);
1474 
1475     // Check if a null path was taken unconditionally.
1476     value = null_check(value);
1477 
1478     RegionNode* bailout = new RegionNode(1);
1479     record_for_igvn(bailout);
1480 
1481     // Range checks
1482     generate_negative_guard(offset, bailout);
1483     generate_negative_guard(length, bailout);
1484     generate_limit_guard(offset, length, load_array_length(value), bailout);
1485     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1486     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1487 
1488     if (bailout->req() > 1) {
1489       PreserveJVMState pjvms(this);
1490       set_control(_gvn.transform(bailout));
1491       uncommon_trap(Deoptimization::Reason_intrinsic,
1492                     Deoptimization::Action_maybe_recompile);
1493     }
1494     if (stopped()) {
1495       return true;
1496     }
1497 
1498     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1499     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1500     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1501     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1502 
1503     // Calculate starting addresses.
1504     Node* src_start = array_element_address(value, offset, T_CHAR);
1505     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1506 
1507     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1508     const TypeInt* toffset = gvn().type(offset)->is_int();
1509     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1510 
1511     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1512     const char* copyfunc_name = "arraycopy";
1513     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1514     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1515                       OptoRuntime::fast_arraycopy_Type(),
1516                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1517                       src_start, dst_start, ConvI2X(length) XTOP);
1518     // Do not let reads from the cloned object float above the arraycopy.
1519     if (alloc != NULL) {
1520       if (alloc->maybe_set_complete(&_gvn)) {
1521         // "You break it, you buy it."
1522         InitializeNode* init = alloc->initialization();
1523         assert(init->is_complete(), "we just did this");
1524         init->set_complete_with_arraycopy();
1525         assert(newcopy->is_CheckCastPP(), "sanity");
1526         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1527       }
1528       // Do not let stores that initialize this object be reordered with
1529       // a subsequent store that would make this object accessible by
1530       // other threads.
1531       // Record what AllocateNode this StoreStore protects so that
1532       // escape analysis can go from the MemBarStoreStoreNode to the
1533       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1534       // based on the escape status of the AllocateNode.
1535       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1536     } else {
1537       insert_mem_bar(Op_MemBarCPUOrder);
1538     }
1539   } // original reexecute is set back here
1540 
1541   C->set_has_split_ifs(true); // Has chance for split-if optimization
1542   if (!stopped()) {
1543     set_result(newcopy);
1544   }
1545   return true;
1546 }
1547 
1548 //------------------------inline_string_getCharsU--------------------------
1549 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1550 bool LibraryCallKit::inline_string_getCharsU() {
1551   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1552     return false;
1553   }
1554 
1555   // Get the arguments.
1556   Node* src       = argument(0);
1557   Node* src_begin = argument(1);
1558   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1559   Node* dst       = argument(3);
1560   Node* dst_begin = argument(4);
1561 
1562   // Check for allocation before we add nodes that would confuse
1563   // tightly_coupled_allocation()
1564   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1565 
1566   // Check if a null path was taken unconditionally.
1567   src = null_check(src);
1568   dst = null_check(dst);
1569   if (stopped()) {
1570     return true;
1571   }
1572 
1573   // Get length and convert char[] offset to byte[] offset
1574   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1575   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1576 
1577   // Range checks
1578   generate_string_range_check(src, src_begin, length, true);
1579   generate_string_range_check(dst, dst_begin, length, false);
1580   if (stopped()) {
1581     return true;
1582   }
1583 
1584   if (!stopped()) {
1585     // Calculate starting addresses.
1586     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1587     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1588 
1589     // Check if array addresses are aligned to HeapWordSize
1590     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1591     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1592     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1593                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1594 
1595     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1596     const char* copyfunc_name = "arraycopy";
1597     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1598     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1599                       OptoRuntime::fast_arraycopy_Type(),
1600                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1601                       src_start, dst_start, ConvI2X(length) XTOP);
1602     // Do not let reads from the cloned object float above the arraycopy.
1603     if (alloc != NULL) {
1604       if (alloc->maybe_set_complete(&_gvn)) {
1605         // "You break it, you buy it."
1606         InitializeNode* init = alloc->initialization();
1607         assert(init->is_complete(), "we just did this");
1608         init->set_complete_with_arraycopy();
1609         assert(dst->is_CheckCastPP(), "sanity");
1610         assert(dst->in(0)->in(0) == init, "dest pinned");
1611       }
1612       // Do not let stores that initialize this object be reordered with
1613       // a subsequent store that would make this object accessible by
1614       // other threads.
1615       // Record what AllocateNode this StoreStore protects so that
1616       // escape analysis can go from the MemBarStoreStoreNode to the
1617       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1618       // based on the escape status of the AllocateNode.
1619       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1620     } else {
1621       insert_mem_bar(Op_MemBarCPUOrder);
1622     }
1623   }
1624 
1625   C->set_has_split_ifs(true); // Has chance for split-if optimization
1626   return true;
1627 }
1628 
1629 //----------------------inline_string_char_access----------------------------
1630 // Store/Load char to/from byte[] array.
1631 // static void StringUTF16.putChar(byte[] val, int index, int c)
1632 // static char StringUTF16.getChar(byte[] val, int index)
1633 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1634   Node* value  = argument(0);
1635   Node* index  = argument(1);
1636   Node* ch = is_store ? argument(2) : NULL;
1637 
1638   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1639   // correctly requires matched array shapes.
1640   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1641           "sanity: byte[] and char[] bases agree");
1642   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1643           "sanity: byte[] and char[] scales agree");
1644 
1645   // Bail when getChar over constants is requested: constant folding would
1646   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1647   // Java method would constant fold nicely instead.
1648   if (!is_store && value->is_Con() && index->is_Con()) {
1649     return false;
1650   }
1651 
1652   Node* adr = array_element_address(value, index, T_CHAR);
1653   if (is_store) {
1654     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1655                            false, false, true /* mismatched */);
1656   } else {
1657     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1658                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1659     set_result(ch);
1660   }
1661   return true;
1662 }
1663 
1664 //--------------------------round_double_node--------------------------------
1665 // Round a double node if necessary.
1666 Node* LibraryCallKit::round_double_node(Node* n) {
1667   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1668     n = _gvn.transform(new RoundDoubleNode(0, n));
1669   return n;
1670 }
1671 
1672 //------------------------------inline_math-----------------------------------
1673 // public static double Math.abs(double)
1674 // public static double Math.sqrt(double)
1675 // public static double Math.log(double)
1676 // public static double Math.log10(double)
1677 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1678   Node* arg = round_double_node(argument(0));
1679   Node* n = NULL;
1680   switch (id) {
1681   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1682   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1683   default:  fatal_unexpected_iid(id);  break;
1684   }
1685   set_result(_gvn.transform(n));
1686   return true;
1687 }
1688 
1689 //------------------------------inline_trig----------------------------------
1690 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1691 // argument reduction which will turn into a fast/slow diamond.
1692 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1693   Node* arg = round_double_node(argument(0));
1694   Node* n = NULL;
1695 
1696   n = _gvn.transform(n);
1697 
1698   // Rounding required?  Check for argument reduction!
1699   if (Matcher::strict_fp_requires_explicit_rounding) {
1700     static const double     pi_4 =  0.7853981633974483;
1701     static const double neg_pi_4 = -0.7853981633974483;
1702     // pi/2 in 80-bit extended precision
1703     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1704     // -pi/2 in 80-bit extended precision
1705     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1706     // Cutoff value for using this argument reduction technique
1707     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1708     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1709 
1710     // Pseudocode for sin:
1711     // if (x <= Math.PI / 4.0) {
1712     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1713     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1714     // } else {
1715     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1716     // }
1717     // return StrictMath.sin(x);
1718 
1719     // Pseudocode for cos:
1720     // if (x <= Math.PI / 4.0) {
1721     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1722     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1723     // } else {
1724     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1725     // }
1726     // return StrictMath.cos(x);
1727 
1728     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1729     // requires a special machine instruction to load it.  Instead we'll try
1730     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1731     // probably do the math inside the SIN encoding.
1732 
1733     // Make the merge point
1734     RegionNode* r = new RegionNode(3);
1735     Node* phi = new PhiNode(r, Type::DOUBLE);
1736 
1737     // Flatten arg so we need only 1 test
1738     Node *abs = _gvn.transform(new AbsDNode(arg));
1739     // Node for PI/4 constant
1740     Node *pi4 = makecon(TypeD::make(pi_4));
1741     // Check PI/4 : abs(arg)
1742     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1743     // Check: If PI/4 < abs(arg) then go slow
1744     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1745     // Branch either way
1746     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1747     set_control(opt_iff(r,iff));
1748 
1749     // Set fast path result
1750     phi->init_req(2, n);
1751 
1752     // Slow path - non-blocking leaf call
1753     Node* call = NULL;
1754     switch (id) {
1755     case vmIntrinsics::_dtan:
1756       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1757                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1758                                "Tan", NULL, arg, top());
1759       break;
1760     }
1761     assert(control()->in(0) == call, "");
1762     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1763     r->init_req(1, control());
1764     phi->init_req(1, slow_result);
1765 
1766     // Post-merge
1767     set_control(_gvn.transform(r));
1768     record_for_igvn(r);
1769     n = _gvn.transform(phi);
1770 
1771     C->set_has_split_ifs(true); // Has chance for split-if optimization
1772   }
1773   set_result(n);
1774   return true;
1775 }
1776 
1777 //------------------------------runtime_math-----------------------------
1778 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1779   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1780          "must be (DD)D or (D)D type");
1781 
1782   // Inputs
1783   Node* a = round_double_node(argument(0));
1784   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1785 
1786   const TypePtr* no_memory_effects = NULL;
1787   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1788                                  no_memory_effects,
1789                                  a, top(), b, b ? top() : NULL);
1790   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1791 #ifdef ASSERT
1792   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1793   assert(value_top == top(), "second value must be top");
1794 #endif
1795 
1796   set_result(value);
1797   return true;
1798 }
1799 
1800 //------------------------------inline_math_native-----------------------------
1801 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1802 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1803   switch (id) {
1804     // These intrinsics are not properly supported on all hardware
1805   case vmIntrinsics::_dsin:
1806     return StubRoutines::dsin() != NULL ?
1807       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1808       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1809   case vmIntrinsics::_dcos:
1810     return StubRoutines::dcos() != NULL ?
1811       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1812       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1813   case vmIntrinsics::_dtan:
1814     return StubRoutines::dtan() != NULL ?
1815       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1816       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1817   case vmIntrinsics::_dlog:
1818     return StubRoutines::dlog() != NULL ?
1819       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1820       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1821   case vmIntrinsics::_dlog10:
1822     return StubRoutines::dlog10() != NULL ?
1823       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1824       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1825 
1826     // These intrinsics are supported on all hardware
1827   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1828   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1829 
1830   case vmIntrinsics::_dexp:
1831     return StubRoutines::dexp() != NULL ?
1832       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1833       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1834   case vmIntrinsics::_dpow:
1835     return StubRoutines::dpow() != NULL ?
1836       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1837       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1838 #undef FN_PTR
1839 
1840    // These intrinsics are not yet correctly implemented
1841   case vmIntrinsics::_datan2:
1842     return false;
1843 
1844   default:
1845     fatal_unexpected_iid(id);
1846     return false;
1847   }
1848 }
1849 
1850 static bool is_simple_name(Node* n) {
1851   return (n->req() == 1         // constant
1852           || (n->is_Type() && n->as_Type()->type()->singleton())
1853           || n->is_Proj()       // parameter or return value
1854           || n->is_Phi()        // local of some sort
1855           );
1856 }
1857 
1858 //----------------------------inline_notify-----------------------------------*
1859 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1860   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1861   address func;
1862   if (id == vmIntrinsics::_notify) {
1863     func = OptoRuntime::monitor_notify_Java();
1864   } else {
1865     func = OptoRuntime::monitor_notifyAll_Java();
1866   }
1867   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1868   make_slow_call_ex(call, env()->Throwable_klass(), false);
1869   return true;
1870 }
1871 
1872 
1873 //----------------------------inline_min_max-----------------------------------
1874 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1875   set_result(generate_min_max(id, argument(0), argument(1)));
1876   return true;
1877 }
1878 
1879 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1880   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1881   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1882   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1883   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1884 
1885   {
1886     PreserveJVMState pjvms(this);
1887     PreserveReexecuteState preexecs(this);
1888     jvms()->set_should_reexecute(true);
1889 
1890     set_control(slow_path);
1891     set_i_o(i_o());
1892 
1893     uncommon_trap(Deoptimization::Reason_intrinsic,
1894                   Deoptimization::Action_none);
1895   }
1896 
1897   set_control(fast_path);
1898   set_result(math);
1899 }
1900 
1901 template <typename OverflowOp>
1902 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1903   typedef typename OverflowOp::MathOp MathOp;
1904 
1905   MathOp* mathOp = new MathOp(arg1, arg2);
1906   Node* operation = _gvn.transform( mathOp );
1907   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1908   inline_math_mathExact(operation, ofcheck);
1909   return true;
1910 }
1911 
1912 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1913   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1914 }
1915 
1916 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1917   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1918 }
1919 
1920 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1921   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1922 }
1923 
1924 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1925   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1926 }
1927 
1928 bool LibraryCallKit::inline_math_negateExactI() {
1929   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1930 }
1931 
1932 bool LibraryCallKit::inline_math_negateExactL() {
1933   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1934 }
1935 
1936 bool LibraryCallKit::inline_math_multiplyExactI() {
1937   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1938 }
1939 
1940 bool LibraryCallKit::inline_math_multiplyExactL() {
1941   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1942 }
1943 
1944 Node*
1945 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1946   // These are the candidate return value:
1947   Node* xvalue = x0;
1948   Node* yvalue = y0;
1949 
1950   if (xvalue == yvalue) {
1951     return xvalue;
1952   }
1953 
1954   bool want_max = (id == vmIntrinsics::_max);
1955 
1956   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1957   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1958   if (txvalue == NULL || tyvalue == NULL)  return top();
1959   // This is not really necessary, but it is consistent with a
1960   // hypothetical MaxINode::Value method:
1961   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1962 
1963   // %%% This folding logic should (ideally) be in a different place.
1964   // Some should be inside IfNode, and there to be a more reliable
1965   // transformation of ?: style patterns into cmoves.  We also want
1966   // more powerful optimizations around cmove and min/max.
1967 
1968   // Try to find a dominating comparison of these guys.
1969   // It can simplify the index computation for Arrays.copyOf
1970   // and similar uses of System.arraycopy.
1971   // First, compute the normalized version of CmpI(x, y).
1972   int   cmp_op = Op_CmpI;
1973   Node* xkey = xvalue;
1974   Node* ykey = yvalue;
1975   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1976   if (ideal_cmpxy->is_Cmp()) {
1977     // E.g., if we have CmpI(length - offset, count),
1978     // it might idealize to CmpI(length, count + offset)
1979     cmp_op = ideal_cmpxy->Opcode();
1980     xkey = ideal_cmpxy->in(1);
1981     ykey = ideal_cmpxy->in(2);
1982   }
1983 
1984   // Start by locating any relevant comparisons.
1985   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1986   Node* cmpxy = NULL;
1987   Node* cmpyx = NULL;
1988   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1989     Node* cmp = start_from->fast_out(k);
1990     if (cmp->outcnt() > 0 &&            // must have prior uses
1991         cmp->in(0) == NULL &&           // must be context-independent
1992         cmp->Opcode() == cmp_op) {      // right kind of compare
1993       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1994       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1995     }
1996   }
1997 
1998   const int NCMPS = 2;
1999   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2000   int cmpn;
2001   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2002     if (cmps[cmpn] != NULL)  break;     // find a result
2003   }
2004   if (cmpn < NCMPS) {
2005     // Look for a dominating test that tells us the min and max.
2006     int depth = 0;                // Limit search depth for speed
2007     Node* dom = control();
2008     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2009       if (++depth >= 100)  break;
2010       Node* ifproj = dom;
2011       if (!ifproj->is_Proj())  continue;
2012       Node* iff = ifproj->in(0);
2013       if (!iff->is_If())  continue;
2014       Node* bol = iff->in(1);
2015       if (!bol->is_Bool())  continue;
2016       Node* cmp = bol->in(1);
2017       if (cmp == NULL)  continue;
2018       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2019         if (cmps[cmpn] == cmp)  break;
2020       if (cmpn == NCMPS)  continue;
2021       BoolTest::mask btest = bol->as_Bool()->_test._test;
2022       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2023       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2024       // At this point, we know that 'x btest y' is true.
2025       switch (btest) {
2026       case BoolTest::eq:
2027         // They are proven equal, so we can collapse the min/max.
2028         // Either value is the answer.  Choose the simpler.
2029         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2030           return yvalue;
2031         return xvalue;
2032       case BoolTest::lt:          // x < y
2033       case BoolTest::le:          // x <= y
2034         return (want_max ? yvalue : xvalue);
2035       case BoolTest::gt:          // x > y
2036       case BoolTest::ge:          // x >= y
2037         return (want_max ? xvalue : yvalue);
2038       }
2039     }
2040   }
2041 
2042   // We failed to find a dominating test.
2043   // Let's pick a test that might GVN with prior tests.
2044   Node*          best_bol   = NULL;
2045   BoolTest::mask best_btest = BoolTest::illegal;
2046   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2047     Node* cmp = cmps[cmpn];
2048     if (cmp == NULL)  continue;
2049     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2050       Node* bol = cmp->fast_out(j);
2051       if (!bol->is_Bool())  continue;
2052       BoolTest::mask btest = bol->as_Bool()->_test._test;
2053       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2054       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2055       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2056         best_bol   = bol->as_Bool();
2057         best_btest = btest;
2058       }
2059     }
2060   }
2061 
2062   Node* answer_if_true  = NULL;
2063   Node* answer_if_false = NULL;
2064   switch (best_btest) {
2065   default:
2066     if (cmpxy == NULL)
2067       cmpxy = ideal_cmpxy;
2068     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2069     // and fall through:
2070   case BoolTest::lt:          // x < y
2071   case BoolTest::le:          // x <= y
2072     answer_if_true  = (want_max ? yvalue : xvalue);
2073     answer_if_false = (want_max ? xvalue : yvalue);
2074     break;
2075   case BoolTest::gt:          // x > y
2076   case BoolTest::ge:          // x >= y
2077     answer_if_true  = (want_max ? xvalue : yvalue);
2078     answer_if_false = (want_max ? yvalue : xvalue);
2079     break;
2080   }
2081 
2082   jint hi, lo;
2083   if (want_max) {
2084     // We can sharpen the minimum.
2085     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2086     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2087   } else {
2088     // We can sharpen the maximum.
2089     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2090     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2091   }
2092 
2093   // Use a flow-free graph structure, to avoid creating excess control edges
2094   // which could hinder other optimizations.
2095   // Since Math.min/max is often used with arraycopy, we want
2096   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2097   Node* cmov = CMoveNode::make(NULL, best_bol,
2098                                answer_if_false, answer_if_true,
2099                                TypeInt::make(lo, hi, widen));
2100 
2101   return _gvn.transform(cmov);
2102 
2103   /*
2104   // This is not as desirable as it may seem, since Min and Max
2105   // nodes do not have a full set of optimizations.
2106   // And they would interfere, anyway, with 'if' optimizations
2107   // and with CMoveI canonical forms.
2108   switch (id) {
2109   case vmIntrinsics::_min:
2110     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2111   case vmIntrinsics::_max:
2112     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2113   default:
2114     ShouldNotReachHere();
2115   }
2116   */
2117 }
2118 
2119 inline int
2120 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2121   const TypePtr* base_type = TypePtr::NULL_PTR;
2122   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2123   if (base_type == NULL) {
2124     // Unknown type.
2125     return Type::AnyPtr;
2126   } else if (base_type == TypePtr::NULL_PTR) {
2127     // Since this is a NULL+long form, we have to switch to a rawptr.
2128     base   = _gvn.transform(new CastX2PNode(offset));
2129     offset = MakeConX(0);
2130     return Type::RawPtr;
2131   } else if (base_type->base() == Type::RawPtr) {
2132     return Type::RawPtr;
2133   } else if (base_type->isa_oopptr()) {
2134     // Base is never null => always a heap address.
2135     if (base_type->ptr() == TypePtr::NotNull) {
2136       return Type::OopPtr;
2137     }
2138     // Offset is small => always a heap address.
2139     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2140     if (offset_type != NULL &&
2141         base_type->offset() == 0 &&     // (should always be?)
2142         offset_type->_lo >= 0 &&
2143         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2144       return Type::OopPtr;
2145     }
2146     // Otherwise, it might either be oop+off or NULL+addr.
2147     return Type::AnyPtr;
2148   } else {
2149     // No information:
2150     return Type::AnyPtr;
2151   }
2152 }
2153 
2154 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2155   int kind = classify_unsafe_addr(base, offset);
2156   if (kind == Type::RawPtr) {
2157     return basic_plus_adr(top(), base, offset);
2158   } else {
2159     return basic_plus_adr(base, offset);
2160   }
2161 }
2162 
2163 //--------------------------inline_number_methods-----------------------------
2164 // inline int     Integer.numberOfLeadingZeros(int)
2165 // inline int        Long.numberOfLeadingZeros(long)
2166 //
2167 // inline int     Integer.numberOfTrailingZeros(int)
2168 // inline int        Long.numberOfTrailingZeros(long)
2169 //
2170 // inline int     Integer.bitCount(int)
2171 // inline int        Long.bitCount(long)
2172 //
2173 // inline char  Character.reverseBytes(char)
2174 // inline short     Short.reverseBytes(short)
2175 // inline int     Integer.reverseBytes(int)
2176 // inline long       Long.reverseBytes(long)
2177 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2178   Node* arg = argument(0);
2179   Node* n = NULL;
2180   switch (id) {
2181   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2182   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2183   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2184   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2185   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2186   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2187   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2188   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2189   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2190   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2191   default:  fatal_unexpected_iid(id);  break;
2192   }
2193   set_result(_gvn.transform(n));
2194   return true;
2195 }
2196 
2197 //----------------------------inline_unsafe_access----------------------------
2198 
2199 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2200 
2201 // Helper that guards and inserts a pre-barrier.
2202 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2203                                         Node* pre_val, bool need_mem_bar) {
2204   // We could be accessing the referent field of a reference object. If so, when G1
2205   // is enabled, we need to log the value in the referent field in an SATB buffer.
2206   // This routine performs some compile time filters and generates suitable
2207   // runtime filters that guard the pre-barrier code.
2208   // Also add memory barrier for non volatile load from the referent field
2209   // to prevent commoning of loads across safepoint.
2210   if (!UseG1GC && !need_mem_bar)
2211     return;
2212 
2213   // Some compile time checks.
2214 
2215   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2216   const TypeX* otype = offset->find_intptr_t_type();
2217   if (otype != NULL && otype->is_con() &&
2218       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2219     // Constant offset but not the reference_offset so just return
2220     return;
2221   }
2222 
2223   // We only need to generate the runtime guards for instances.
2224   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2225   if (btype != NULL) {
2226     if (btype->isa_aryptr()) {
2227       // Array type so nothing to do
2228       return;
2229     }
2230 
2231     const TypeInstPtr* itype = btype->isa_instptr();
2232     if (itype != NULL) {
2233       // Can the klass of base_oop be statically determined to be
2234       // _not_ a sub-class of Reference and _not_ Object?
2235       ciKlass* klass = itype->klass();
2236       if ( klass->is_loaded() &&
2237           !klass->is_subtype_of(env()->Reference_klass()) &&
2238           !env()->Object_klass()->is_subtype_of(klass)) {
2239         return;
2240       }
2241     }
2242   }
2243 
2244   // The compile time filters did not reject base_oop/offset so
2245   // we need to generate the following runtime filters
2246   //
2247   // if (offset == java_lang_ref_Reference::_reference_offset) {
2248   //   if (instance_of(base, java.lang.ref.Reference)) {
2249   //     pre_barrier(_, pre_val, ...);
2250   //   }
2251   // }
2252 
2253   float likely   = PROB_LIKELY(  0.999);
2254   float unlikely = PROB_UNLIKELY(0.999);
2255 
2256   IdealKit ideal(this);
2257 #define __ ideal.
2258 
2259   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2260 
2261   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2262       // Update graphKit memory and control from IdealKit.
2263       sync_kit(ideal);
2264 
2265       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2266       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2267 
2268       // Update IdealKit memory and control from graphKit.
2269       __ sync_kit(this);
2270 
2271       Node* one = __ ConI(1);
2272       // is_instof == 0 if base_oop == NULL
2273       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2274 
2275         // Update graphKit from IdeakKit.
2276         sync_kit(ideal);
2277 
2278         // Use the pre-barrier to record the value in the referent field
2279         pre_barrier(false /* do_load */,
2280                     __ ctrl(),
2281                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2282                     pre_val /* pre_val */,
2283                     T_OBJECT);
2284         if (need_mem_bar) {
2285           // Add memory barrier to prevent commoning reads from this field
2286           // across safepoint since GC can change its value.
2287           insert_mem_bar(Op_MemBarCPUOrder);
2288         }
2289         // Update IdealKit from graphKit.
2290         __ sync_kit(this);
2291 
2292       } __ end_if(); // _ref_type != ref_none
2293   } __ end_if(); // offset == referent_offset
2294 
2295   // Final sync IdealKit and GraphKit.
2296   final_sync(ideal);
2297 #undef __
2298 }
2299 
2300 
2301 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2302   // Attempt to infer a sharper value type from the offset and base type.
2303   ciKlass* sharpened_klass = NULL;
2304 
2305   // See if it is an instance field, with an object type.
2306   if (alias_type->field() != NULL) {
2307     assert(!is_native_ptr, "native pointer op cannot use a java address");
2308     if (alias_type->field()->type()->is_klass()) {
2309       sharpened_klass = alias_type->field()->type()->as_klass();
2310     }
2311   }
2312 
2313   // See if it is a narrow oop array.
2314   if (adr_type->isa_aryptr()) {
2315     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2316       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2317       if (elem_type != NULL) {
2318         sharpened_klass = elem_type->klass();
2319       }
2320     }
2321   }
2322 
2323   // The sharpened class might be unloaded if there is no class loader
2324   // contraint in place.
2325   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2326     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2327 
2328 #ifndef PRODUCT
2329     if (C->print_intrinsics() || C->print_inlining()) {
2330       tty->print("  from base type: ");  adr_type->dump();
2331       tty->print("  sharpened value: ");  tjp->dump();
2332     }
2333 #endif
2334     // Sharpen the value type.
2335     return tjp;
2336   }
2337   return NULL;
2338 }
2339 
2340 bool LibraryCallKit::inline_unsafe_access(const bool is_native_ptr, bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2341   if (callee()->is_static())  return false;  // caller must have the capability!
2342   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2343   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2344   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2345 
2346 #ifndef PRODUCT
2347   {
2348     ResourceMark rm;
2349     // Check the signatures.
2350     ciSignature* sig = callee()->signature();
2351 #ifdef ASSERT
2352     if (!is_store) {
2353       // Object getObject(Object base, int/long offset), etc.
2354       BasicType rtype = sig->return_type()->basic_type();
2355       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2356           rtype = T_ADDRESS;  // it is really a C void*
2357       assert(rtype == type, "getter must return the expected value");
2358       if (!is_native_ptr) {
2359         assert(sig->count() == 2, "oop getter has 2 arguments");
2360         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2361         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2362       } else {
2363         assert(sig->count() == 1, "native getter has 1 argument");
2364         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2365       }
2366     } else {
2367       // void putObject(Object base, int/long offset, Object x), etc.
2368       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2369       if (!is_native_ptr) {
2370         assert(sig->count() == 3, "oop putter has 3 arguments");
2371         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2372         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2373       } else {
2374         assert(sig->count() == 2, "native putter has 2 arguments");
2375         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2376       }
2377       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2378       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2379         vtype = T_ADDRESS;  // it is really a C void*
2380       assert(vtype == type, "putter must accept the expected value");
2381     }
2382 #endif // ASSERT
2383  }
2384 #endif //PRODUCT
2385 
2386   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2387 
2388   Node* receiver = argument(0);  // type: oop
2389 
2390   // Build address expression.
2391   Node* adr;
2392   Node* heap_base_oop = top();
2393   Node* offset = top();
2394   Node* val;
2395 
2396   if (!is_native_ptr) {
2397     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2398     Node* base = argument(1);  // type: oop
2399     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2400     offset = argument(2);  // type: long
2401     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2402     // to be plain byte offsets, which are also the same as those accepted
2403     // by oopDesc::field_base.
2404     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2405            "fieldOffset must be byte-scaled");
2406     // 32-bit machines ignore the high half!
2407     offset = ConvL2X(offset);
2408     adr = make_unsafe_address(base, offset);
2409     heap_base_oop = base;
2410     val = is_store ? argument(4) : NULL;
2411   } else {
2412     Node* ptr = argument(1);  // type: long
2413     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2414     adr = make_unsafe_address(NULL, ptr);
2415     val = is_store ? argument(3) : NULL;
2416   }
2417 
2418   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2419 
2420   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2421   // there was not enough information to nail it down.
2422   Compile::AliasType* alias_type = C->alias_type(adr_type);
2423   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2424 
2425   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2426          alias_type->basic_type() != T_ILLEGAL, "field, array element or unknown");
2427   bool mismatched = false;
2428   BasicType bt = alias_type->basic_type();
2429   if (bt != T_ILLEGAL) {
2430     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2431       // Alias type doesn't differentiate between byte[] and boolean[]).
2432       // Use address type to get the element type.
2433       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2434     }
2435     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2436       // accessing an array field with getObject is not a mismatch
2437       bt = T_OBJECT;
2438     }
2439     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2440       // Don't intrinsify mismatched object accesses
2441       return false;
2442     }
2443     mismatched = (bt != type);
2444   }
2445 
2446   // First guess at the value type.
2447   const Type *value_type = Type::get_const_basic_type(type);
2448 
2449   // We will need memory barriers unless we can determine a unique
2450   // alias category for this reference.  (Note:  If for some reason
2451   // the barriers get omitted and the unsafe reference begins to "pollute"
2452   // the alias analysis of the rest of the graph, either Compile::can_alias
2453   // or Compile::must_alias will throw a diagnostic assert.)
2454   bool need_mem_bar;
2455   switch (kind) {
2456       case Relaxed:
2457           need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2458           break;
2459       case Opaque:
2460           // Opaque uses CPUOrder membars for protection against code movement.
2461       case Acquire:
2462       case Release:
2463       case Volatile:
2464           need_mem_bar = true;
2465           break;
2466       default:
2467           ShouldNotReachHere();
2468   }
2469 
2470   // Some accesses require access atomicity for all types, notably longs and doubles.
2471   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2472   bool requires_atomic_access = false;
2473   switch (kind) {
2474       case Relaxed:
2475           requires_atomic_access = AlwaysAtomicAccesses;
2476           break;
2477       case Opaque:
2478           // Opaque accesses are atomic.
2479       case Acquire:
2480       case Release:
2481       case Volatile:
2482           requires_atomic_access = true;
2483           break;
2484       default:
2485           ShouldNotReachHere();
2486   }
2487 
2488   // Figure out the memory ordering.
2489   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2490   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2491 
2492   // If we are reading the value of the referent field of a Reference
2493   // object (either by using Unsafe directly or through reflection)
2494   // then, if G1 is enabled, we need to record the referent in an
2495   // SATB log buffer using the pre-barrier mechanism.
2496   // Also we need to add memory barrier to prevent commoning reads
2497   // from this field across safepoint since GC can change its value.
2498   bool need_read_barrier = !is_native_ptr && !is_store &&
2499                            offset != top() && heap_base_oop != top();
2500 
2501   if (!is_store && type == T_OBJECT) {
2502     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2503     if (tjp != NULL) {
2504       value_type = tjp;
2505     }
2506   }
2507 
2508   receiver = null_check(receiver);
2509   if (stopped()) {
2510     return true;
2511   }
2512   // Heap pointers get a null-check from the interpreter,
2513   // as a courtesy.  However, this is not guaranteed by Unsafe,
2514   // and it is not possible to fully distinguish unintended nulls
2515   // from intended ones in this API.
2516 
2517   // We need to emit leading and trailing CPU membars (see below) in
2518   // addition to memory membars for special access modes. This is a little
2519   // too strong, but avoids the need to insert per-alias-type
2520   // volatile membars (for stores; compare Parse::do_put_xxx), which
2521   // we cannot do effectively here because we probably only have a
2522   // rough approximation of type.
2523 
2524   switch(kind) {
2525     case Relaxed:
2526     case Opaque:
2527     case Acquire:
2528       break;
2529     case Release:
2530     case Volatile:
2531       if (is_store) {
2532         insert_mem_bar(Op_MemBarRelease);
2533       } else {
2534         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2535           insert_mem_bar(Op_MemBarVolatile);
2536         }
2537       }
2538       break;
2539     default:
2540       ShouldNotReachHere();
2541   }
2542 
2543   // Memory barrier to prevent normal and 'unsafe' accesses from
2544   // bypassing each other.  Happens after null checks, so the
2545   // exception paths do not take memory state from the memory barrier,
2546   // so there's no problems making a strong assert about mixing users
2547   // of safe & unsafe memory.
2548   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2549 
2550   if (!is_store) {
2551     Node* p = NULL;
2552     // Try to constant fold a load from a constant field
2553     ciField* field = alias_type->field();
2554     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2555       // final or stable field
2556       p = make_constant_from_field(field, heap_base_oop);
2557     }
2558     if (p == NULL) {
2559       // To be valid, unsafe loads may depend on other conditions than
2560       // the one that guards them: pin the Load node
2561       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2562       // load value
2563       switch (type) {
2564       case T_BOOLEAN:
2565       case T_CHAR:
2566       case T_BYTE:
2567       case T_SHORT:
2568       case T_INT:
2569       case T_LONG:
2570       case T_FLOAT:
2571       case T_DOUBLE:
2572         break;
2573       case T_OBJECT:
2574         if (need_read_barrier) {
2575           // We do not require a mem bar inside pre_barrier if need_mem_bar
2576           // is set: the barriers would be emitted by us.
2577           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2578         }
2579         break;
2580       case T_ADDRESS:
2581         // Cast to an int type.
2582         p = _gvn.transform(new CastP2XNode(NULL, p));
2583         p = ConvX2UL(p);
2584         break;
2585       default:
2586         fatal("unexpected type %d: %s", type, type2name(type));
2587         break;
2588       }
2589     }
2590     // The load node has the control of the preceding MemBarCPUOrder.  All
2591     // following nodes will have the control of the MemBarCPUOrder inserted at
2592     // the end of this method.  So, pushing the load onto the stack at a later
2593     // point is fine.
2594     set_result(p);
2595   } else {
2596     // place effect of store into memory
2597     switch (type) {
2598     case T_DOUBLE:
2599       val = dstore_rounding(val);
2600       break;
2601     case T_ADDRESS:
2602       // Repackage the long as a pointer.
2603       val = ConvL2X(val);
2604       val = _gvn.transform(new CastX2PNode(val));
2605       break;
2606     }
2607 
2608     if (type != T_OBJECT) {
2609       (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2610     } else {
2611       // Possibly an oop being stored to Java heap or native memory
2612       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2613         // oop to Java heap.
2614         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2615       } else {
2616         // We can't tell at compile time if we are storing in the Java heap or outside
2617         // of it. So we need to emit code to conditionally do the proper type of
2618         // store.
2619 
2620         IdealKit ideal(this);
2621 #define __ ideal.
2622         // QQQ who knows what probability is here??
2623         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2624           // Sync IdealKit and graphKit.
2625           sync_kit(ideal);
2626           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2627           // Update IdealKit memory.
2628           __ sync_kit(this);
2629         } __ else_(); {
2630           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2631         } __ end_if();
2632         // Final sync IdealKit and GraphKit.
2633         final_sync(ideal);
2634 #undef __
2635       }
2636     }
2637   }
2638 
2639   switch(kind) {
2640     case Relaxed:
2641     case Opaque:
2642     case Release:
2643       break;
2644     case Acquire:
2645     case Volatile:
2646       if (!is_store) {
2647         insert_mem_bar(Op_MemBarAcquire);
2648       } else {
2649         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2650           insert_mem_bar(Op_MemBarVolatile);
2651         }
2652       }
2653       break;
2654     default:
2655       ShouldNotReachHere();
2656   }
2657 
2658   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2659 
2660   return true;
2661 }
2662 
2663 //----------------------------inline_unsafe_load_store----------------------------
2664 // This method serves a couple of different customers (depending on LoadStoreKind):
2665 //
2666 // LS_cmp_swap:
2667 //
2668 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2669 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2670 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2671 //
2672 // LS_cmp_swap_weak:
2673 //
2674 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2675 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2676 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2677 //
2678 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2679 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2680 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2681 //
2682 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2683 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2684 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2685 //
2686 // LS_cmp_exchange:
2687 //
2688 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2689 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2690 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2691 //
2692 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2693 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2694 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2695 //
2696 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2697 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2698 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2699 //
2700 // LS_get_add:
2701 //
2702 //   int  getAndAddInt( Object o, long offset, int  delta)
2703 //   long getAndAddLong(Object o, long offset, long delta)
2704 //
2705 // LS_get_set:
2706 //
2707 //   int    getAndSet(Object o, long offset, int    newValue)
2708 //   long   getAndSet(Object o, long offset, long   newValue)
2709 //   Object getAndSet(Object o, long offset, Object newValue)
2710 //
2711 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2712   // This basic scheme here is the same as inline_unsafe_access, but
2713   // differs in enough details that combining them would make the code
2714   // overly confusing.  (This is a true fact! I originally combined
2715   // them, but even I was confused by it!) As much code/comments as
2716   // possible are retained from inline_unsafe_access though to make
2717   // the correspondences clearer. - dl
2718 
2719   if (callee()->is_static())  return false;  // caller must have the capability!
2720 
2721 #ifndef PRODUCT
2722   BasicType rtype;
2723   {
2724     ResourceMark rm;
2725     // Check the signatures.
2726     ciSignature* sig = callee()->signature();
2727     rtype = sig->return_type()->basic_type();
2728     switch(kind) {
2729       case LS_get_add:
2730       case LS_get_set: {
2731       // Check the signatures.
2732 #ifdef ASSERT
2733       assert(rtype == type, "get and set must return the expected type");
2734       assert(sig->count() == 3, "get and set has 3 arguments");
2735       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2736       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2737       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2738 #endif // ASSERT
2739         break;
2740       }
2741       case LS_cmp_swap:
2742       case LS_cmp_swap_weak: {
2743       // Check the signatures.
2744 #ifdef ASSERT
2745       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2746       assert(sig->count() == 4, "CAS has 4 arguments");
2747       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2748       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2749 #endif // ASSERT
2750         break;
2751       }
2752       case LS_cmp_exchange: {
2753       // Check the signatures.
2754 #ifdef ASSERT
2755       assert(rtype == type, "CAS must return the expected type");
2756       assert(sig->count() == 4, "CAS has 4 arguments");
2757       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2758       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2759 #endif // ASSERT
2760         break;
2761       }
2762       default:
2763         ShouldNotReachHere();
2764     }
2765   }
2766 #endif //PRODUCT
2767 
2768   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2769 
2770   // Get arguments:
2771   Node* receiver = NULL;
2772   Node* base     = NULL;
2773   Node* offset   = NULL;
2774   Node* oldval   = NULL;
2775   Node* newval   = NULL;
2776   switch(kind) {
2777     case LS_cmp_swap:
2778     case LS_cmp_swap_weak:
2779     case LS_cmp_exchange: {
2780       const bool two_slot_type = type2size[type] == 2;
2781       receiver = argument(0);  // type: oop
2782       base     = argument(1);  // type: oop
2783       offset   = argument(2);  // type: long
2784       oldval   = argument(4);  // type: oop, int, or long
2785       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2786       break;
2787     }
2788     case LS_get_add:
2789     case LS_get_set: {
2790       receiver = argument(0);  // type: oop
2791       base     = argument(1);  // type: oop
2792       offset   = argument(2);  // type: long
2793       oldval   = NULL;
2794       newval   = argument(4);  // type: oop, int, or long
2795       break;
2796     }
2797     default:
2798       ShouldNotReachHere();
2799   }
2800 
2801   // Null check receiver.
2802   receiver = null_check(receiver);
2803   if (stopped()) {
2804     return true;
2805   }
2806 
2807   // Build field offset expression.
2808   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2809   // to be plain byte offsets, which are also the same as those accepted
2810   // by oopDesc::field_base.
2811   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2812   // 32-bit machines ignore the high half of long offsets
2813   offset = ConvL2X(offset);
2814   Node* adr = make_unsafe_address(base, offset);
2815   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2816 
2817   Compile::AliasType* alias_type = C->alias_type(adr_type);
2818   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2819          alias_type->basic_type() != T_ILLEGAL, "field, array element or unknown");
2820   BasicType bt = alias_type->basic_type();
2821   if (bt != T_ILLEGAL &&
2822       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2823     // Don't intrinsify mismatched object accesses.
2824     return false;
2825   }
2826 
2827   // For CAS, unlike inline_unsafe_access, there seems no point in
2828   // trying to refine types. Just use the coarse types here.
2829   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2830   const Type *value_type = Type::get_const_basic_type(type);
2831 
2832   switch (kind) {
2833     case LS_get_set:
2834     case LS_cmp_exchange: {
2835       if (type == T_OBJECT) {
2836         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2837         if (tjp != NULL) {
2838           value_type = tjp;
2839         }
2840       }
2841       break;
2842     }
2843     case LS_cmp_swap:
2844     case LS_cmp_swap_weak:
2845     case LS_get_add:
2846       break;
2847     default:
2848       ShouldNotReachHere();
2849   }
2850 
2851   int alias_idx = C->get_alias_index(adr_type);
2852 
2853   // Memory-model-wise, a LoadStore acts like a little synchronized
2854   // block, so needs barriers on each side.  These don't translate
2855   // into actual barriers on most machines, but we still need rest of
2856   // compiler to respect ordering.
2857 
2858   switch (access_kind) {
2859     case Relaxed:
2860     case Acquire:
2861       break;
2862     case Release:
2863     case Volatile:
2864       insert_mem_bar(Op_MemBarRelease);
2865       break;
2866     default:
2867       ShouldNotReachHere();
2868   }
2869   insert_mem_bar(Op_MemBarCPUOrder);
2870 
2871   // Figure out the memory ordering.
2872   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2873 
2874   // 4984716: MemBars must be inserted before this
2875   //          memory node in order to avoid a false
2876   //          dependency which will confuse the scheduler.
2877   Node *mem = memory(alias_idx);
2878 
2879   // For now, we handle only those cases that actually exist: ints,
2880   // longs, and Object. Adding others should be straightforward.
2881   Node* load_store = NULL;
2882   switch(type) {
2883   case T_INT:
2884     switch(kind) {
2885       case LS_get_add:
2886         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2887         break;
2888       case LS_get_set:
2889         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2890         break;
2891       case LS_cmp_swap_weak:
2892         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2893         break;
2894       case LS_cmp_swap:
2895         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2896         break;
2897       case LS_cmp_exchange:
2898         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2899         break;
2900       default:
2901         ShouldNotReachHere();
2902     }
2903     break;
2904   case T_LONG:
2905     switch(kind) {
2906       case LS_get_add:
2907         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2908         break;
2909       case LS_get_set:
2910         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2911         break;
2912       case LS_cmp_swap_weak:
2913         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2914         break;
2915       case LS_cmp_swap:
2916         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2917         break;
2918       case LS_cmp_exchange:
2919         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2920         break;
2921       default:
2922         ShouldNotReachHere();
2923     }
2924     break;
2925   case T_OBJECT:
2926     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2927     // could be delayed during Parse (for example, in adjust_map_after_if()).
2928     // Execute transformation here to avoid barrier generation in such case.
2929     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2930       newval = _gvn.makecon(TypePtr::NULL_PTR);
2931 
2932     // Reference stores need a store barrier.
2933     switch(kind) {
2934       case LS_get_set: {
2935         // If pre-barrier must execute before the oop store, old value will require do_load here.
2936         if (!can_move_pre_barrier()) {
2937           pre_barrier(true /* do_load*/,
2938                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2939                       NULL /* pre_val*/,
2940                       T_OBJECT);
2941         } // Else move pre_barrier to use load_store value, see below.
2942         break;
2943       }
2944       case LS_cmp_swap_weak:
2945       case LS_cmp_swap:
2946       case LS_cmp_exchange: {
2947         // Same as for newval above:
2948         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2949           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2950         }
2951         // The only known value which might get overwritten is oldval.
2952         pre_barrier(false /* do_load */,
2953                     control(), NULL, NULL, max_juint, NULL, NULL,
2954                     oldval /* pre_val */,
2955                     T_OBJECT);
2956         break;
2957       }
2958       default:
2959         ShouldNotReachHere();
2960     }
2961 
2962 #ifdef _LP64
2963     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2964       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2965 
2966       switch(kind) {
2967         case LS_get_set:
2968           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2969           break;
2970         case LS_cmp_swap_weak: {
2971           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2972           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2973           break;
2974         }
2975         case LS_cmp_swap: {
2976           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2977           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2978           break;
2979         }
2980         case LS_cmp_exchange: {
2981           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2982           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2983           break;
2984         }
2985         default:
2986           ShouldNotReachHere();
2987       }
2988     } else
2989 #endif
2990     switch (kind) {
2991       case LS_get_set:
2992         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2993         break;
2994       case LS_cmp_swap_weak:
2995         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2996         break;
2997       case LS_cmp_swap:
2998         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2999         break;
3000       case LS_cmp_exchange:
3001         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3002         break;
3003       default:
3004         ShouldNotReachHere();
3005     }
3006 
3007     // Emit the post barrier only when the actual store happened. This makes sense
3008     // to check only for LS_cmp_* that can fail to set the value.
3009     // LS_cmp_exchange does not produce any branches by default, so there is no
3010     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3011     // CompareAndExchange and move branches here, it would make sense to conditionalize
3012     // post_barriers for LS_cmp_exchange as well.
3013     //
3014     // CAS success path is marked more likely since we anticipate this is a performance
3015     // critical path, while CAS failure path can use the penalty for going through unlikely
3016     // path as backoff. Which is still better than doing a store barrier there.
3017     switch (kind) {
3018       case LS_get_set:
3019       case LS_cmp_exchange: {
3020         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3021         break;
3022       }
3023       case LS_cmp_swap_weak:
3024       case LS_cmp_swap: {
3025         IdealKit ideal(this);
3026         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3027           sync_kit(ideal);
3028           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3029           ideal.sync_kit(this);
3030         } ideal.end_if();
3031         final_sync(ideal);
3032         break;
3033       }
3034       default:
3035         ShouldNotReachHere();
3036     }
3037     break;
3038   default:
3039     fatal("unexpected type %d: %s", type, type2name(type));
3040     break;
3041   }
3042 
3043   // SCMemProjNodes represent the memory state of a LoadStore. Their
3044   // main role is to prevent LoadStore nodes from being optimized away
3045   // when their results aren't used.
3046   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3047   set_memory(proj, alias_idx);
3048 
3049   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3050 #ifdef _LP64
3051     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3052       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3053     }
3054 #endif
3055     if (can_move_pre_barrier()) {
3056       // Don't need to load pre_val. The old value is returned by load_store.
3057       // The pre_barrier can execute after the xchg as long as no safepoint
3058       // gets inserted between them.
3059       pre_barrier(false /* do_load */,
3060                   control(), NULL, NULL, max_juint, NULL, NULL,
3061                   load_store /* pre_val */,
3062                   T_OBJECT);
3063     }
3064   }
3065 
3066   // Add the trailing membar surrounding the access
3067   insert_mem_bar(Op_MemBarCPUOrder);
3068 
3069   switch (access_kind) {
3070     case Relaxed:
3071     case Release:
3072       break; // do nothing
3073     case Acquire:
3074     case Volatile:
3075       insert_mem_bar(Op_MemBarAcquire);
3076       break;
3077     default:
3078       ShouldNotReachHere();
3079   }
3080 
3081   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3082   set_result(load_store);
3083   return true;
3084 }
3085 
3086 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3087   MemNode::MemOrd mo = MemNode::unset;
3088   switch(kind) {
3089     case Opaque:
3090     case Relaxed:  mo = MemNode::unordered; break;
3091     case Acquire:  mo = MemNode::acquire;   break;
3092     case Release:  mo = MemNode::release;   break;
3093     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3094     default:
3095       ShouldNotReachHere();
3096   }
3097   guarantee(mo != MemNode::unset, "Should select memory ordering");
3098   return mo;
3099 }
3100 
3101 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3102   MemNode::MemOrd mo = MemNode::unset;
3103   switch(kind) {
3104     case Opaque:
3105     case Relaxed:  mo = MemNode::unordered; break;
3106     case Acquire:  mo = MemNode::acquire;   break;
3107     case Release:  mo = MemNode::release;   break;
3108     case Volatile: mo = MemNode::seqcst;    break;
3109     default:
3110       ShouldNotReachHere();
3111   }
3112   guarantee(mo != MemNode::unset, "Should select memory ordering");
3113   return mo;
3114 }
3115 
3116 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3117   // Regardless of form, don't allow previous ld/st to move down,
3118   // then issue acquire, release, or volatile mem_bar.
3119   insert_mem_bar(Op_MemBarCPUOrder);
3120   switch(id) {
3121     case vmIntrinsics::_loadFence:
3122       insert_mem_bar(Op_LoadFence);
3123       return true;
3124     case vmIntrinsics::_storeFence:
3125       insert_mem_bar(Op_StoreFence);
3126       return true;
3127     case vmIntrinsics::_fullFence:
3128       insert_mem_bar(Op_MemBarVolatile);
3129       return true;
3130     default:
3131       fatal_unexpected_iid(id);
3132       return false;
3133   }
3134 }
3135 
3136 bool LibraryCallKit::inline_onspinwait() {
3137   insert_mem_bar(Op_OnSpinWait);
3138   return true;
3139 }
3140 
3141 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3142   if (!kls->is_Con()) {
3143     return true;
3144   }
3145   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3146   if (klsptr == NULL) {
3147     return true;
3148   }
3149   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3150   // don't need a guard for a klass that is already initialized
3151   return !ik->is_initialized();
3152 }
3153 
3154 //----------------------------inline_unsafe_allocate---------------------------
3155 // public native Object Unsafe.allocateInstance(Class<?> cls);
3156 bool LibraryCallKit::inline_unsafe_allocate() {
3157   if (callee()->is_static())  return false;  // caller must have the capability!
3158 
3159   null_check_receiver();  // null-check, then ignore
3160   Node* cls = null_check(argument(1));
3161   if (stopped())  return true;
3162 
3163   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3164   kls = null_check(kls);
3165   if (stopped())  return true;  // argument was like int.class
3166 
3167   Node* test = NULL;
3168   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3169     // Note:  The argument might still be an illegal value like
3170     // Serializable.class or Object[].class.   The runtime will handle it.
3171     // But we must make an explicit check for initialization.
3172     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3173     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3174     // can generate code to load it as unsigned byte.
3175     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3176     Node* bits = intcon(InstanceKlass::fully_initialized);
3177     test = _gvn.transform(new SubINode(inst, bits));
3178     // The 'test' is non-zero if we need to take a slow path.
3179   }
3180 
3181   Node* obj = new_instance(kls, test);
3182   set_result(obj);
3183   return true;
3184 }
3185 
3186 //------------------------inline_native_time_funcs--------------
3187 // inline code for System.currentTimeMillis() and System.nanoTime()
3188 // these have the same type and signature
3189 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3190   const TypeFunc* tf = OptoRuntime::void_long_Type();
3191   const TypePtr* no_memory_effects = NULL;
3192   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3193   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3194 #ifdef ASSERT
3195   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3196   assert(value_top == top(), "second value must be top");
3197 #endif
3198   set_result(value);
3199   return true;
3200 }
3201 
3202 //------------------------inline_native_currentThread------------------
3203 bool LibraryCallKit::inline_native_currentThread() {
3204   Node* junk = NULL;
3205   set_result(generate_current_thread(junk));
3206   return true;
3207 }
3208 
3209 //------------------------inline_native_isInterrupted------------------
3210 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3211 bool LibraryCallKit::inline_native_isInterrupted() {
3212   // Add a fast path to t.isInterrupted(clear_int):
3213   //   (t == Thread.current() &&
3214   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3215   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3216   // So, in the common case that the interrupt bit is false,
3217   // we avoid making a call into the VM.  Even if the interrupt bit
3218   // is true, if the clear_int argument is false, we avoid the VM call.
3219   // However, if the receiver is not currentThread, we must call the VM,
3220   // because there must be some locking done around the operation.
3221 
3222   // We only go to the fast case code if we pass two guards.
3223   // Paths which do not pass are accumulated in the slow_region.
3224 
3225   enum {
3226     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3227     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3228     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3229     PATH_LIMIT
3230   };
3231 
3232   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3233   // out of the function.
3234   insert_mem_bar(Op_MemBarCPUOrder);
3235 
3236   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3237   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3238 
3239   RegionNode* slow_region = new RegionNode(1);
3240   record_for_igvn(slow_region);
3241 
3242   // (a) Receiving thread must be the current thread.
3243   Node* rec_thr = argument(0);
3244   Node* tls_ptr = NULL;
3245   Node* cur_thr = generate_current_thread(tls_ptr);
3246   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3247   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3248 
3249   generate_slow_guard(bol_thr, slow_region);
3250 
3251   // (b) Interrupt bit on TLS must be false.
3252   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3253   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3254   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3255 
3256   // Set the control input on the field _interrupted read to prevent it floating up.
3257   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3258   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3259   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3260 
3261   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3262 
3263   // First fast path:  if (!TLS._interrupted) return false;
3264   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3265   result_rgn->init_req(no_int_result_path, false_bit);
3266   result_val->init_req(no_int_result_path, intcon(0));
3267 
3268   // drop through to next case
3269   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3270 
3271 #ifndef TARGET_OS_FAMILY_windows
3272   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3273   Node* clr_arg = argument(1);
3274   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3275   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3276   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3277 
3278   // Second fast path:  ... else if (!clear_int) return true;
3279   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3280   result_rgn->init_req(no_clear_result_path, false_arg);
3281   result_val->init_req(no_clear_result_path, intcon(1));
3282 
3283   // drop through to next case
3284   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3285 #else
3286   // To return true on Windows you must read the _interrupted field
3287   // and check the event state i.e. take the slow path.
3288 #endif // TARGET_OS_FAMILY_windows
3289 
3290   // (d) Otherwise, go to the slow path.
3291   slow_region->add_req(control());
3292   set_control( _gvn.transform(slow_region));
3293 
3294   if (stopped()) {
3295     // There is no slow path.
3296     result_rgn->init_req(slow_result_path, top());
3297     result_val->init_req(slow_result_path, top());
3298   } else {
3299     // non-virtual because it is a private non-static
3300     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3301 
3302     Node* slow_val = set_results_for_java_call(slow_call);
3303     // this->control() comes from set_results_for_java_call
3304 
3305     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3306     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3307 
3308     // These two phis are pre-filled with copies of of the fast IO and Memory
3309     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3310     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3311 
3312     result_rgn->init_req(slow_result_path, control());
3313     result_io ->init_req(slow_result_path, i_o());
3314     result_mem->init_req(slow_result_path, reset_memory());
3315     result_val->init_req(slow_result_path, slow_val);
3316 
3317     set_all_memory(_gvn.transform(result_mem));
3318     set_i_o(       _gvn.transform(result_io));
3319   }
3320 
3321   C->set_has_split_ifs(true); // Has chance for split-if optimization
3322   set_result(result_rgn, result_val);
3323   return true;
3324 }
3325 
3326 //---------------------------load_mirror_from_klass----------------------------
3327 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3328 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3329   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3330   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3331 }
3332 
3333 //-----------------------load_klass_from_mirror_common-------------------------
3334 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3335 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3336 // and branch to the given path on the region.
3337 // If never_see_null, take an uncommon trap on null, so we can optimistically
3338 // compile for the non-null case.
3339 // If the region is NULL, force never_see_null = true.
3340 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3341                                                     bool never_see_null,
3342                                                     RegionNode* region,
3343                                                     int null_path,
3344                                                     int offset) {
3345   if (region == NULL)  never_see_null = true;
3346   Node* p = basic_plus_adr(mirror, offset);
3347   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3348   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3349   Node* null_ctl = top();
3350   kls = null_check_oop(kls, &null_ctl, never_see_null);
3351   if (region != NULL) {
3352     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3353     region->init_req(null_path, null_ctl);
3354   } else {
3355     assert(null_ctl == top(), "no loose ends");
3356   }
3357   return kls;
3358 }
3359 
3360 //--------------------(inline_native_Class_query helpers)---------------------
3361 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3362 // Fall through if (mods & mask) == bits, take the guard otherwise.
3363 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3364   // Branch around if the given klass has the given modifier bit set.
3365   // Like generate_guard, adds a new path onto the region.
3366   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3367   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3368   Node* mask = intcon(modifier_mask);
3369   Node* bits = intcon(modifier_bits);
3370   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3371   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3372   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3373   return generate_fair_guard(bol, region);
3374 }
3375 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3376   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3377 }
3378 
3379 //-------------------------inline_native_Class_query-------------------
3380 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3381   const Type* return_type = TypeInt::BOOL;
3382   Node* prim_return_value = top();  // what happens if it's a primitive class?
3383   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3384   bool expect_prim = false;     // most of these guys expect to work on refs
3385 
3386   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3387 
3388   Node* mirror = argument(0);
3389   Node* obj    = top();
3390 
3391   switch (id) {
3392   case vmIntrinsics::_isInstance:
3393     // nothing is an instance of a primitive type
3394     prim_return_value = intcon(0);
3395     obj = argument(1);
3396     break;
3397   case vmIntrinsics::_getModifiers:
3398     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3399     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3400     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3401     break;
3402   case vmIntrinsics::_isInterface:
3403     prim_return_value = intcon(0);
3404     break;
3405   case vmIntrinsics::_isArray:
3406     prim_return_value = intcon(0);
3407     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3408     break;
3409   case vmIntrinsics::_isPrimitive:
3410     prim_return_value = intcon(1);
3411     expect_prim = true;  // obviously
3412     break;
3413   case vmIntrinsics::_getSuperclass:
3414     prim_return_value = null();
3415     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3416     break;
3417   case vmIntrinsics::_getClassAccessFlags:
3418     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3419     return_type = TypeInt::INT;  // not bool!  6297094
3420     break;
3421   default:
3422     fatal_unexpected_iid(id);
3423     break;
3424   }
3425 
3426   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3427   if (mirror_con == NULL)  return false;  // cannot happen?
3428 
3429 #ifndef PRODUCT
3430   if (C->print_intrinsics() || C->print_inlining()) {
3431     ciType* k = mirror_con->java_mirror_type();
3432     if (k) {
3433       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3434       k->print_name();
3435       tty->cr();
3436     }
3437   }
3438 #endif
3439 
3440   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3441   RegionNode* region = new RegionNode(PATH_LIMIT);
3442   record_for_igvn(region);
3443   PhiNode* phi = new PhiNode(region, return_type);
3444 
3445   // The mirror will never be null of Reflection.getClassAccessFlags, however
3446   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3447   // if it is. See bug 4774291.
3448 
3449   // For Reflection.getClassAccessFlags(), the null check occurs in
3450   // the wrong place; see inline_unsafe_access(), above, for a similar
3451   // situation.
3452   mirror = null_check(mirror);
3453   // If mirror or obj is dead, only null-path is taken.
3454   if (stopped())  return true;
3455 
3456   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3457 
3458   // Now load the mirror's klass metaobject, and null-check it.
3459   // Side-effects region with the control path if the klass is null.
3460   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3461   // If kls is null, we have a primitive mirror.
3462   phi->init_req(_prim_path, prim_return_value);
3463   if (stopped()) { set_result(region, phi); return true; }
3464   bool safe_for_replace = (region->in(_prim_path) == top());
3465 
3466   Node* p;  // handy temp
3467   Node* null_ctl;
3468 
3469   // Now that we have the non-null klass, we can perform the real query.
3470   // For constant classes, the query will constant-fold in LoadNode::Value.
3471   Node* query_value = top();
3472   switch (id) {
3473   case vmIntrinsics::_isInstance:
3474     // nothing is an instance of a primitive type
3475     query_value = gen_instanceof(obj, kls, safe_for_replace);
3476     break;
3477 
3478   case vmIntrinsics::_getModifiers:
3479     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3480     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3481     break;
3482 
3483   case vmIntrinsics::_isInterface:
3484     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3485     if (generate_interface_guard(kls, region) != NULL)
3486       // A guard was added.  If the guard is taken, it was an interface.
3487       phi->add_req(intcon(1));
3488     // If we fall through, it's a plain class.
3489     query_value = intcon(0);
3490     break;
3491 
3492   case vmIntrinsics::_isArray:
3493     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3494     if (generate_array_guard(kls, region) != NULL)
3495       // A guard was added.  If the guard is taken, it was an array.
3496       phi->add_req(intcon(1));
3497     // If we fall through, it's a plain class.
3498     query_value = intcon(0);
3499     break;
3500 
3501   case vmIntrinsics::_isPrimitive:
3502     query_value = intcon(0); // "normal" path produces false
3503     break;
3504 
3505   case vmIntrinsics::_getSuperclass:
3506     // The rules here are somewhat unfortunate, but we can still do better
3507     // with random logic than with a JNI call.
3508     // Interfaces store null or Object as _super, but must report null.
3509     // Arrays store an intermediate super as _super, but must report Object.
3510     // Other types can report the actual _super.
3511     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3512     if (generate_interface_guard(kls, region) != NULL)
3513       // A guard was added.  If the guard is taken, it was an interface.
3514       phi->add_req(null());
3515     if (generate_array_guard(kls, region) != NULL)
3516       // A guard was added.  If the guard is taken, it was an array.
3517       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3518     // If we fall through, it's a plain class.  Get its _super.
3519     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3520     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3521     null_ctl = top();
3522     kls = null_check_oop(kls, &null_ctl);
3523     if (null_ctl != top()) {
3524       // If the guard is taken, Object.superClass is null (both klass and mirror).
3525       region->add_req(null_ctl);
3526       phi   ->add_req(null());
3527     }
3528     if (!stopped()) {
3529       query_value = load_mirror_from_klass(kls);
3530     }
3531     break;
3532 
3533   case vmIntrinsics::_getClassAccessFlags:
3534     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3535     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3536     break;
3537 
3538   default:
3539     fatal_unexpected_iid(id);
3540     break;
3541   }
3542 
3543   // Fall-through is the normal case of a query to a real class.
3544   phi->init_req(1, query_value);
3545   region->init_req(1, control());
3546 
3547   C->set_has_split_ifs(true); // Has chance for split-if optimization
3548   set_result(region, phi);
3549   return true;
3550 }
3551 
3552 //-------------------------inline_Class_cast-------------------
3553 bool LibraryCallKit::inline_Class_cast() {
3554   Node* mirror = argument(0); // Class
3555   Node* obj    = argument(1);
3556   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3557   if (mirror_con == NULL) {
3558     return false;  // dead path (mirror->is_top()).
3559   }
3560   if (obj == NULL || obj->is_top()) {
3561     return false;  // dead path
3562   }
3563   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3564 
3565   // First, see if Class.cast() can be folded statically.
3566   // java_mirror_type() returns non-null for compile-time Class constants.
3567   ciType* tm = mirror_con->java_mirror_type();
3568   if (tm != NULL && tm->is_klass() &&
3569       tp != NULL && tp->klass() != NULL) {
3570     if (!tp->klass()->is_loaded()) {
3571       // Don't use intrinsic when class is not loaded.
3572       return false;
3573     } else {
3574       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3575       if (static_res == Compile::SSC_always_true) {
3576         // isInstance() is true - fold the code.
3577         set_result(obj);
3578         return true;
3579       } else if (static_res == Compile::SSC_always_false) {
3580         // Don't use intrinsic, have to throw ClassCastException.
3581         // If the reference is null, the non-intrinsic bytecode will
3582         // be optimized appropriately.
3583         return false;
3584       }
3585     }
3586   }
3587 
3588   // Bailout intrinsic and do normal inlining if exception path is frequent.
3589   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3590     return false;
3591   }
3592 
3593   // Generate dynamic checks.
3594   // Class.cast() is java implementation of _checkcast bytecode.
3595   // Do checkcast (Parse::do_checkcast()) optimizations here.
3596 
3597   mirror = null_check(mirror);
3598   // If mirror is dead, only null-path is taken.
3599   if (stopped()) {
3600     return true;
3601   }
3602 
3603   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3604   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3605   RegionNode* region = new RegionNode(PATH_LIMIT);
3606   record_for_igvn(region);
3607 
3608   // Now load the mirror's klass metaobject, and null-check it.
3609   // If kls is null, we have a primitive mirror and
3610   // nothing is an instance of a primitive type.
3611   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3612 
3613   Node* res = top();
3614   if (!stopped()) {
3615     Node* bad_type_ctrl = top();
3616     // Do checkcast optimizations.
3617     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3618     region->init_req(_bad_type_path, bad_type_ctrl);
3619   }
3620   if (region->in(_prim_path) != top() ||
3621       region->in(_bad_type_path) != top()) {
3622     // Let Interpreter throw ClassCastException.
3623     PreserveJVMState pjvms(this);
3624     set_control(_gvn.transform(region));
3625     uncommon_trap(Deoptimization::Reason_intrinsic,
3626                   Deoptimization::Action_maybe_recompile);
3627   }
3628   if (!stopped()) {
3629     set_result(res);
3630   }
3631   return true;
3632 }
3633 
3634 
3635 //--------------------------inline_native_subtype_check------------------------
3636 // This intrinsic takes the JNI calls out of the heart of
3637 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3638 bool LibraryCallKit::inline_native_subtype_check() {
3639   // Pull both arguments off the stack.
3640   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3641   args[0] = argument(0);
3642   args[1] = argument(1);
3643   Node* klasses[2];             // corresponding Klasses: superk, subk
3644   klasses[0] = klasses[1] = top();
3645 
3646   enum {
3647     // A full decision tree on {superc is prim, subc is prim}:
3648     _prim_0_path = 1,           // {P,N} => false
3649                                 // {P,P} & superc!=subc => false
3650     _prim_same_path,            // {P,P} & superc==subc => true
3651     _prim_1_path,               // {N,P} => false
3652     _ref_subtype_path,          // {N,N} & subtype check wins => true
3653     _both_ref_path,             // {N,N} & subtype check loses => false
3654     PATH_LIMIT
3655   };
3656 
3657   RegionNode* region = new RegionNode(PATH_LIMIT);
3658   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3659   record_for_igvn(region);
3660 
3661   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3662   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3663   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3664 
3665   // First null-check both mirrors and load each mirror's klass metaobject.
3666   int which_arg;
3667   for (which_arg = 0; which_arg <= 1; which_arg++) {
3668     Node* arg = args[which_arg];
3669     arg = null_check(arg);
3670     if (stopped())  break;
3671     args[which_arg] = arg;
3672 
3673     Node* p = basic_plus_adr(arg, class_klass_offset);
3674     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3675     klasses[which_arg] = _gvn.transform(kls);
3676   }
3677 
3678   // Having loaded both klasses, test each for null.
3679   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3680   for (which_arg = 0; which_arg <= 1; which_arg++) {
3681     Node* kls = klasses[which_arg];
3682     Node* null_ctl = top();
3683     kls = null_check_oop(kls, &null_ctl, never_see_null);
3684     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3685     region->init_req(prim_path, null_ctl);
3686     if (stopped())  break;
3687     klasses[which_arg] = kls;
3688   }
3689 
3690   if (!stopped()) {
3691     // now we have two reference types, in klasses[0..1]
3692     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3693     Node* superk = klasses[0];  // the receiver
3694     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3695     // now we have a successful reference subtype check
3696     region->set_req(_ref_subtype_path, control());
3697   }
3698 
3699   // If both operands are primitive (both klasses null), then
3700   // we must return true when they are identical primitives.
3701   // It is convenient to test this after the first null klass check.
3702   set_control(region->in(_prim_0_path)); // go back to first null check
3703   if (!stopped()) {
3704     // Since superc is primitive, make a guard for the superc==subc case.
3705     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3706     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3707     generate_guard(bol_eq, region, PROB_FAIR);
3708     if (region->req() == PATH_LIMIT+1) {
3709       // A guard was added.  If the added guard is taken, superc==subc.
3710       region->swap_edges(PATH_LIMIT, _prim_same_path);
3711       region->del_req(PATH_LIMIT);
3712     }
3713     region->set_req(_prim_0_path, control()); // Not equal after all.
3714   }
3715 
3716   // these are the only paths that produce 'true':
3717   phi->set_req(_prim_same_path,   intcon(1));
3718   phi->set_req(_ref_subtype_path, intcon(1));
3719 
3720   // pull together the cases:
3721   assert(region->req() == PATH_LIMIT, "sane region");
3722   for (uint i = 1; i < region->req(); i++) {
3723     Node* ctl = region->in(i);
3724     if (ctl == NULL || ctl == top()) {
3725       region->set_req(i, top());
3726       phi   ->set_req(i, top());
3727     } else if (phi->in(i) == NULL) {
3728       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3729     }
3730   }
3731 
3732   set_control(_gvn.transform(region));
3733   set_result(_gvn.transform(phi));
3734   return true;
3735 }
3736 
3737 //---------------------generate_array_guard_common------------------------
3738 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3739                                                   bool obj_array, bool not_array) {
3740 
3741   if (stopped()) {
3742     return NULL;
3743   }
3744 
3745   // If obj_array/non_array==false/false:
3746   // Branch around if the given klass is in fact an array (either obj or prim).
3747   // If obj_array/non_array==false/true:
3748   // Branch around if the given klass is not an array klass of any kind.
3749   // If obj_array/non_array==true/true:
3750   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3751   // If obj_array/non_array==true/false:
3752   // Branch around if the kls is an oop array (Object[] or subtype)
3753   //
3754   // Like generate_guard, adds a new path onto the region.
3755   jint  layout_con = 0;
3756   Node* layout_val = get_layout_helper(kls, layout_con);
3757   if (layout_val == NULL) {
3758     bool query = (obj_array
3759                   ? Klass::layout_helper_is_objArray(layout_con)
3760                   : Klass::layout_helper_is_array(layout_con));
3761     if (query == not_array) {
3762       return NULL;                       // never a branch
3763     } else {                             // always a branch
3764       Node* always_branch = control();
3765       if (region != NULL)
3766         region->add_req(always_branch);
3767       set_control(top());
3768       return always_branch;
3769     }
3770   }
3771   // Now test the correct condition.
3772   jint  nval = (obj_array
3773                 ? ((jint)Klass::_lh_array_tag_type_value
3774                    <<    Klass::_lh_array_tag_shift)
3775                 : Klass::_lh_neutral_value);
3776   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3777   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3778   // invert the test if we are looking for a non-array
3779   if (not_array)  btest = BoolTest(btest).negate();
3780   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3781   return generate_fair_guard(bol, region);
3782 }
3783 
3784 
3785 //-----------------------inline_native_newArray--------------------------
3786 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3787 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3788 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3789   Node* mirror;
3790   Node* count_val;
3791   if (uninitialized) {
3792     mirror    = argument(1);
3793     count_val = argument(2);
3794   } else {
3795     mirror    = argument(0);
3796     count_val = argument(1);
3797   }
3798 
3799   mirror = null_check(mirror);
3800   // If mirror or obj is dead, only null-path is taken.
3801   if (stopped())  return true;
3802 
3803   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3804   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3805   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3806   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3807   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3808 
3809   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3810   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3811                                                   result_reg, _slow_path);
3812   Node* normal_ctl   = control();
3813   Node* no_array_ctl = result_reg->in(_slow_path);
3814 
3815   // Generate code for the slow case.  We make a call to newArray().
3816   set_control(no_array_ctl);
3817   if (!stopped()) {
3818     // Either the input type is void.class, or else the
3819     // array klass has not yet been cached.  Either the
3820     // ensuing call will throw an exception, or else it
3821     // will cache the array klass for next time.
3822     PreserveJVMState pjvms(this);
3823     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3824     Node* slow_result = set_results_for_java_call(slow_call);
3825     // this->control() comes from set_results_for_java_call
3826     result_reg->set_req(_slow_path, control());
3827     result_val->set_req(_slow_path, slow_result);
3828     result_io ->set_req(_slow_path, i_o());
3829     result_mem->set_req(_slow_path, reset_memory());
3830   }
3831 
3832   set_control(normal_ctl);
3833   if (!stopped()) {
3834     // Normal case:  The array type has been cached in the java.lang.Class.
3835     // The following call works fine even if the array type is polymorphic.
3836     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3837     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3838     result_reg->init_req(_normal_path, control());
3839     result_val->init_req(_normal_path, obj);
3840     result_io ->init_req(_normal_path, i_o());
3841     result_mem->init_req(_normal_path, reset_memory());
3842 
3843     if (uninitialized) {
3844       // Mark the allocation so that zeroing is skipped
3845       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3846       alloc->maybe_set_complete(&_gvn);
3847     }
3848   }
3849 
3850   // Return the combined state.
3851   set_i_o(        _gvn.transform(result_io)  );
3852   set_all_memory( _gvn.transform(result_mem));
3853 
3854   C->set_has_split_ifs(true); // Has chance for split-if optimization
3855   set_result(result_reg, result_val);
3856   return true;
3857 }
3858 
3859 //----------------------inline_native_getLength--------------------------
3860 // public static native int java.lang.reflect.Array.getLength(Object array);
3861 bool LibraryCallKit::inline_native_getLength() {
3862   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3863 
3864   Node* array = null_check(argument(0));
3865   // If array is dead, only null-path is taken.
3866   if (stopped())  return true;
3867 
3868   // Deoptimize if it is a non-array.
3869   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3870 
3871   if (non_array != NULL) {
3872     PreserveJVMState pjvms(this);
3873     set_control(non_array);
3874     uncommon_trap(Deoptimization::Reason_intrinsic,
3875                   Deoptimization::Action_maybe_recompile);
3876   }
3877 
3878   // If control is dead, only non-array-path is taken.
3879   if (stopped())  return true;
3880 
3881   // The works fine even if the array type is polymorphic.
3882   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3883   Node* result = load_array_length(array);
3884 
3885   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3886   set_result(result);
3887   return true;
3888 }
3889 
3890 //------------------------inline_array_copyOf----------------------------
3891 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3892 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3893 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3894   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3895 
3896   // Get the arguments.
3897   Node* original          = argument(0);
3898   Node* start             = is_copyOfRange? argument(1): intcon(0);
3899   Node* end               = is_copyOfRange? argument(2): argument(1);
3900   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3901 
3902   Node* newcopy = NULL;
3903 
3904   // Set the original stack and the reexecute bit for the interpreter to reexecute
3905   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3906   { PreserveReexecuteState preexecs(this);
3907     jvms()->set_should_reexecute(true);
3908 
3909     array_type_mirror = null_check(array_type_mirror);
3910     original          = null_check(original);
3911 
3912     // Check if a null path was taken unconditionally.
3913     if (stopped())  return true;
3914 
3915     Node* orig_length = load_array_length(original);
3916 
3917     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3918     klass_node = null_check(klass_node);
3919 
3920     RegionNode* bailout = new RegionNode(1);
3921     record_for_igvn(bailout);
3922 
3923     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3924     // Bail out if that is so.
3925     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3926     if (not_objArray != NULL) {
3927       // Improve the klass node's type from the new optimistic assumption:
3928       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3929       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3930       Node* cast = new CastPPNode(klass_node, akls);
3931       cast->init_req(0, control());
3932       klass_node = _gvn.transform(cast);
3933     }
3934 
3935     // Bail out if either start or end is negative.
3936     generate_negative_guard(start, bailout, &start);
3937     generate_negative_guard(end,   bailout, &end);
3938 
3939     Node* length = end;
3940     if (_gvn.type(start) != TypeInt::ZERO) {
3941       length = _gvn.transform(new SubINode(end, start));
3942     }
3943 
3944     // Bail out if length is negative.
3945     // Without this the new_array would throw
3946     // NegativeArraySizeException but IllegalArgumentException is what
3947     // should be thrown
3948     generate_negative_guard(length, bailout, &length);
3949 
3950     if (bailout->req() > 1) {
3951       PreserveJVMState pjvms(this);
3952       set_control(_gvn.transform(bailout));
3953       uncommon_trap(Deoptimization::Reason_intrinsic,
3954                     Deoptimization::Action_maybe_recompile);
3955     }
3956 
3957     if (!stopped()) {
3958       // How many elements will we copy from the original?
3959       // The answer is MinI(orig_length - start, length).
3960       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3961       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3962 
3963       // Generate a direct call to the right arraycopy function(s).
3964       // We know the copy is disjoint but we might not know if the
3965       // oop stores need checking.
3966       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3967       // This will fail a store-check if x contains any non-nulls.
3968 
3969       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3970       // loads/stores but it is legal only if we're sure the
3971       // Arrays.copyOf would succeed. So we need all input arguments
3972       // to the copyOf to be validated, including that the copy to the
3973       // new array won't trigger an ArrayStoreException. That subtype
3974       // check can be optimized if we know something on the type of
3975       // the input array from type speculation.
3976       if (_gvn.type(klass_node)->singleton()) {
3977         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3978         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3979 
3980         int test = C->static_subtype_check(superk, subk);
3981         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3982           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3983           if (t_original->speculative_type() != NULL) {
3984             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3985           }
3986         }
3987       }
3988 
3989       bool validated = false;
3990       // Reason_class_check rather than Reason_intrinsic because we
3991       // want to intrinsify even if this traps.
3992       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3993         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3994                                                    klass_node);
3995 
3996         if (not_subtype_ctrl != top()) {
3997           PreserveJVMState pjvms(this);
3998           set_control(not_subtype_ctrl);
3999           uncommon_trap(Deoptimization::Reason_class_check,
4000                         Deoptimization::Action_make_not_entrant);
4001           assert(stopped(), "Should be stopped");
4002         }
4003         validated = true;
4004       }
4005 
4006       if (!stopped()) {
4007         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4008 
4009         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
4010                                                 load_object_klass(original), klass_node);
4011         if (!is_copyOfRange) {
4012           ac->set_copyof(validated);
4013         } else {
4014           ac->set_copyofrange(validated);
4015         }
4016         Node* n = _gvn.transform(ac);
4017         if (n == ac) {
4018           ac->connect_outputs(this);
4019         } else {
4020           assert(validated, "shouldn't transform if all arguments not validated");
4021           set_all_memory(n);
4022         }
4023       }
4024     }
4025   } // original reexecute is set back here
4026 
4027   C->set_has_split_ifs(true); // Has chance for split-if optimization
4028   if (!stopped()) {
4029     set_result(newcopy);
4030   }
4031   return true;
4032 }
4033 
4034 
4035 //----------------------generate_virtual_guard---------------------------
4036 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4037 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4038                                              RegionNode* slow_region) {
4039   ciMethod* method = callee();
4040   int vtable_index = method->vtable_index();
4041   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4042          "bad index %d", vtable_index);
4043   // Get the Method* out of the appropriate vtable entry.
4044   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4045                      vtable_index*vtableEntry::size_in_bytes() +
4046                      vtableEntry::method_offset_in_bytes();
4047   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4048   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4049 
4050   // Compare the target method with the expected method (e.g., Object.hashCode).
4051   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4052 
4053   Node* native_call = makecon(native_call_addr);
4054   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4055   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4056 
4057   return generate_slow_guard(test_native, slow_region);
4058 }
4059 
4060 //-----------------------generate_method_call----------------------------
4061 // Use generate_method_call to make a slow-call to the real
4062 // method if the fast path fails.  An alternative would be to
4063 // use a stub like OptoRuntime::slow_arraycopy_Java.
4064 // This only works for expanding the current library call,
4065 // not another intrinsic.  (E.g., don't use this for making an
4066 // arraycopy call inside of the copyOf intrinsic.)
4067 CallJavaNode*
4068 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4069   // When compiling the intrinsic method itself, do not use this technique.
4070   guarantee(callee() != C->method(), "cannot make slow-call to self");
4071 
4072   ciMethod* method = callee();
4073   // ensure the JVMS we have will be correct for this call
4074   guarantee(method_id == method->intrinsic_id(), "must match");
4075 
4076   const TypeFunc* tf = TypeFunc::make(method);
4077   CallJavaNode* slow_call;
4078   if (is_static) {
4079     assert(!is_virtual, "");
4080     slow_call = new CallStaticJavaNode(C, tf,
4081                            SharedRuntime::get_resolve_static_call_stub(),
4082                            method, bci());
4083   } else if (is_virtual) {
4084     null_check_receiver();
4085     int vtable_index = Method::invalid_vtable_index;
4086     if (UseInlineCaches) {
4087       // Suppress the vtable call
4088     } else {
4089       // hashCode and clone are not a miranda methods,
4090       // so the vtable index is fixed.
4091       // No need to use the linkResolver to get it.
4092        vtable_index = method->vtable_index();
4093        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4094               "bad index %d", vtable_index);
4095     }
4096     slow_call = new CallDynamicJavaNode(tf,
4097                           SharedRuntime::get_resolve_virtual_call_stub(),
4098                           method, vtable_index, bci());
4099   } else {  // neither virtual nor static:  opt_virtual
4100     null_check_receiver();
4101     slow_call = new CallStaticJavaNode(C, tf,
4102                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4103                                 method, bci());
4104     slow_call->set_optimized_virtual(true);
4105   }
4106   set_arguments_for_java_call(slow_call);
4107   set_edges_for_java_call(slow_call);
4108   return slow_call;
4109 }
4110 
4111 
4112 /**
4113  * Build special case code for calls to hashCode on an object. This call may
4114  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4115  * slightly different code.
4116  */
4117 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4118   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4119   assert(!(is_virtual && is_static), "either virtual, special, or static");
4120 
4121   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4122 
4123   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4124   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4125   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4126   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4127   Node* obj = NULL;
4128   if (!is_static) {
4129     // Check for hashing null object
4130     obj = null_check_receiver();
4131     if (stopped())  return true;        // unconditionally null
4132     result_reg->init_req(_null_path, top());
4133     result_val->init_req(_null_path, top());
4134   } else {
4135     // Do a null check, and return zero if null.
4136     // System.identityHashCode(null) == 0
4137     obj = argument(0);
4138     Node* null_ctl = top();
4139     obj = null_check_oop(obj, &null_ctl);
4140     result_reg->init_req(_null_path, null_ctl);
4141     result_val->init_req(_null_path, _gvn.intcon(0));
4142   }
4143 
4144   // Unconditionally null?  Then return right away.
4145   if (stopped()) {
4146     set_control( result_reg->in(_null_path));
4147     if (!stopped())
4148       set_result(result_val->in(_null_path));
4149     return true;
4150   }
4151 
4152   // We only go to the fast case code if we pass a number of guards.  The
4153   // paths which do not pass are accumulated in the slow_region.
4154   RegionNode* slow_region = new RegionNode(1);
4155   record_for_igvn(slow_region);
4156 
4157   // If this is a virtual call, we generate a funny guard.  We pull out
4158   // the vtable entry corresponding to hashCode() from the target object.
4159   // If the target method which we are calling happens to be the native
4160   // Object hashCode() method, we pass the guard.  We do not need this
4161   // guard for non-virtual calls -- the caller is known to be the native
4162   // Object hashCode().
4163   if (is_virtual) {
4164     // After null check, get the object's klass.
4165     Node* obj_klass = load_object_klass(obj);
4166     generate_virtual_guard(obj_klass, slow_region);
4167   }
4168 
4169   // Get the header out of the object, use LoadMarkNode when available
4170   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4171   // The control of the load must be NULL. Otherwise, the load can move before
4172   // the null check after castPP removal.
4173   Node* no_ctrl = NULL;
4174   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4175 
4176   // Test the header to see if it is unlocked.
4177   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4178   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4179   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4180   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4181   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4182 
4183   generate_slow_guard(test_unlocked, slow_region);
4184 
4185   // Get the hash value and check to see that it has been properly assigned.
4186   // We depend on hash_mask being at most 32 bits and avoid the use of
4187   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4188   // vm: see markOop.hpp.
4189   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4190   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4191   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4192   // This hack lets the hash bits live anywhere in the mark object now, as long
4193   // as the shift drops the relevant bits into the low 32 bits.  Note that
4194   // Java spec says that HashCode is an int so there's no point in capturing
4195   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4196   hshifted_header      = ConvX2I(hshifted_header);
4197   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4198 
4199   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4200   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4201   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4202 
4203   generate_slow_guard(test_assigned, slow_region);
4204 
4205   Node* init_mem = reset_memory();
4206   // fill in the rest of the null path:
4207   result_io ->init_req(_null_path, i_o());
4208   result_mem->init_req(_null_path, init_mem);
4209 
4210   result_val->init_req(_fast_path, hash_val);
4211   result_reg->init_req(_fast_path, control());
4212   result_io ->init_req(_fast_path, i_o());
4213   result_mem->init_req(_fast_path, init_mem);
4214 
4215   // Generate code for the slow case.  We make a call to hashCode().
4216   set_control(_gvn.transform(slow_region));
4217   if (!stopped()) {
4218     // No need for PreserveJVMState, because we're using up the present state.
4219     set_all_memory(init_mem);
4220     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4221     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4222     Node* slow_result = set_results_for_java_call(slow_call);
4223     // this->control() comes from set_results_for_java_call
4224     result_reg->init_req(_slow_path, control());
4225     result_val->init_req(_slow_path, slow_result);
4226     result_io  ->set_req(_slow_path, i_o());
4227     result_mem ->set_req(_slow_path, reset_memory());
4228   }
4229 
4230   // Return the combined state.
4231   set_i_o(        _gvn.transform(result_io)  );
4232   set_all_memory( _gvn.transform(result_mem));
4233 
4234   set_result(result_reg, result_val);
4235   return true;
4236 }
4237 
4238 //---------------------------inline_native_getClass----------------------------
4239 // public final native Class<?> java.lang.Object.getClass();
4240 //
4241 // Build special case code for calls to getClass on an object.
4242 bool LibraryCallKit::inline_native_getClass() {
4243   Node* obj = null_check_receiver();
4244   if (stopped())  return true;
4245   set_result(load_mirror_from_klass(load_object_klass(obj)));
4246   return true;
4247 }
4248 
4249 //-----------------inline_native_Reflection_getCallerClass---------------------
4250 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4251 //
4252 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4253 //
4254 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4255 // in that it must skip particular security frames and checks for
4256 // caller sensitive methods.
4257 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4258 #ifndef PRODUCT
4259   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4260     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4261   }
4262 #endif
4263 
4264   if (!jvms()->has_method()) {
4265 #ifndef PRODUCT
4266     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4267       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4268     }
4269 #endif
4270     return false;
4271   }
4272 
4273   // Walk back up the JVM state to find the caller at the required
4274   // depth.
4275   JVMState* caller_jvms = jvms();
4276 
4277   // Cf. JVM_GetCallerClass
4278   // NOTE: Start the loop at depth 1 because the current JVM state does
4279   // not include the Reflection.getCallerClass() frame.
4280   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4281     ciMethod* m = caller_jvms->method();
4282     switch (n) {
4283     case 0:
4284       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4285       break;
4286     case 1:
4287       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4288       if (!m->caller_sensitive()) {
4289 #ifndef PRODUCT
4290         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4291           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4292         }
4293 #endif
4294         return false;  // bail-out; let JVM_GetCallerClass do the work
4295       }
4296       break;
4297     default:
4298       if (!m->is_ignored_by_security_stack_walk()) {
4299         // We have reached the desired frame; return the holder class.
4300         // Acquire method holder as java.lang.Class and push as constant.
4301         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4302         ciInstance* caller_mirror = caller_klass->java_mirror();
4303         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4304 
4305 #ifndef PRODUCT
4306         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4307           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4308           tty->print_cr("  JVM state at this point:");
4309           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4310             ciMethod* m = jvms()->of_depth(i)->method();
4311             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4312           }
4313         }
4314 #endif
4315         return true;
4316       }
4317       break;
4318     }
4319   }
4320 
4321 #ifndef PRODUCT
4322   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4323     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4324     tty->print_cr("  JVM state at this point:");
4325     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4326       ciMethod* m = jvms()->of_depth(i)->method();
4327       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4328     }
4329   }
4330 #endif
4331 
4332   return false;  // bail-out; let JVM_GetCallerClass do the work
4333 }
4334 
4335 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4336   Node* arg = argument(0);
4337   Node* result = NULL;
4338 
4339   switch (id) {
4340   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4341   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4342   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4343   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4344 
4345   case vmIntrinsics::_doubleToLongBits: {
4346     // two paths (plus control) merge in a wood
4347     RegionNode *r = new RegionNode(3);
4348     Node *phi = new PhiNode(r, TypeLong::LONG);
4349 
4350     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4351     // Build the boolean node
4352     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4353 
4354     // Branch either way.
4355     // NaN case is less traveled, which makes all the difference.
4356     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4357     Node *opt_isnan = _gvn.transform(ifisnan);
4358     assert( opt_isnan->is_If(), "Expect an IfNode");
4359     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4360     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4361 
4362     set_control(iftrue);
4363 
4364     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4365     Node *slow_result = longcon(nan_bits); // return NaN
4366     phi->init_req(1, _gvn.transform( slow_result ));
4367     r->init_req(1, iftrue);
4368 
4369     // Else fall through
4370     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4371     set_control(iffalse);
4372 
4373     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4374     r->init_req(2, iffalse);
4375 
4376     // Post merge
4377     set_control(_gvn.transform(r));
4378     record_for_igvn(r);
4379 
4380     C->set_has_split_ifs(true); // Has chance for split-if optimization
4381     result = phi;
4382     assert(result->bottom_type()->isa_long(), "must be");
4383     break;
4384   }
4385 
4386   case vmIntrinsics::_floatToIntBits: {
4387     // two paths (plus control) merge in a wood
4388     RegionNode *r = new RegionNode(3);
4389     Node *phi = new PhiNode(r, TypeInt::INT);
4390 
4391     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4392     // Build the boolean node
4393     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4394 
4395     // Branch either way.
4396     // NaN case is less traveled, which makes all the difference.
4397     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4398     Node *opt_isnan = _gvn.transform(ifisnan);
4399     assert( opt_isnan->is_If(), "Expect an IfNode");
4400     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4401     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4402 
4403     set_control(iftrue);
4404 
4405     static const jint nan_bits = 0x7fc00000;
4406     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4407     phi->init_req(1, _gvn.transform( slow_result ));
4408     r->init_req(1, iftrue);
4409 
4410     // Else fall through
4411     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4412     set_control(iffalse);
4413 
4414     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4415     r->init_req(2, iffalse);
4416 
4417     // Post merge
4418     set_control(_gvn.transform(r));
4419     record_for_igvn(r);
4420 
4421     C->set_has_split_ifs(true); // Has chance for split-if optimization
4422     result = phi;
4423     assert(result->bottom_type()->isa_int(), "must be");
4424     break;
4425   }
4426 
4427   default:
4428     fatal_unexpected_iid(id);
4429     break;
4430   }
4431   set_result(_gvn.transform(result));
4432   return true;
4433 }
4434 
4435 //----------------------inline_unsafe_copyMemory-------------------------
4436 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4437 bool LibraryCallKit::inline_unsafe_copyMemory() {
4438   if (callee()->is_static())  return false;  // caller must have the capability!
4439   null_check_receiver();  // null-check receiver
4440   if (stopped())  return true;
4441 
4442   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4443 
4444   Node* src_ptr =         argument(1);   // type: oop
4445   Node* src_off = ConvL2X(argument(2));  // type: long
4446   Node* dst_ptr =         argument(4);   // type: oop
4447   Node* dst_off = ConvL2X(argument(5));  // type: long
4448   Node* size    = ConvL2X(argument(7));  // type: long
4449 
4450   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4451          "fieldOffset must be byte-scaled");
4452 
4453   Node* src = make_unsafe_address(src_ptr, src_off);
4454   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4455 
4456   // Conservatively insert a memory barrier on all memory slices.
4457   // Do not let writes of the copy source or destination float below the copy.
4458   insert_mem_bar(Op_MemBarCPUOrder);
4459 
4460   // Call it.  Note that the length argument is not scaled.
4461   make_runtime_call(RC_LEAF|RC_NO_FP,
4462                     OptoRuntime::fast_arraycopy_Type(),
4463                     StubRoutines::unsafe_arraycopy(),
4464                     "unsafe_arraycopy",
4465                     TypeRawPtr::BOTTOM,
4466                     src, dst, size XTOP);
4467 
4468   // Do not let reads of the copy destination float above the copy.
4469   insert_mem_bar(Op_MemBarCPUOrder);
4470 
4471   return true;
4472 }
4473 
4474 //------------------------clone_coping-----------------------------------
4475 // Helper function for inline_native_clone.
4476 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4477   assert(obj_size != NULL, "");
4478   Node* raw_obj = alloc_obj->in(1);
4479   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4480 
4481   AllocateNode* alloc = NULL;
4482   if (ReduceBulkZeroing) {
4483     // We will be completely responsible for initializing this object -
4484     // mark Initialize node as complete.
4485     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4486     // The object was just allocated - there should be no any stores!
4487     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4488     // Mark as complete_with_arraycopy so that on AllocateNode
4489     // expansion, we know this AllocateNode is initialized by an array
4490     // copy and a StoreStore barrier exists after the array copy.
4491     alloc->initialization()->set_complete_with_arraycopy();
4492   }
4493 
4494   // Copy the fastest available way.
4495   // TODO: generate fields copies for small objects instead.
4496   Node* src  = obj;
4497   Node* dest = alloc_obj;
4498   Node* size = _gvn.transform(obj_size);
4499 
4500   // Exclude the header but include array length to copy by 8 bytes words.
4501   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4502   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4503                             instanceOopDesc::base_offset_in_bytes();
4504   // base_off:
4505   // 8  - 32-bit VM
4506   // 12 - 64-bit VM, compressed klass
4507   // 16 - 64-bit VM, normal klass
4508   if (base_off % BytesPerLong != 0) {
4509     assert(UseCompressedClassPointers, "");
4510     if (is_array) {
4511       // Exclude length to copy by 8 bytes words.
4512       base_off += sizeof(int);
4513     } else {
4514       // Include klass to copy by 8 bytes words.
4515       base_off = instanceOopDesc::klass_offset_in_bytes();
4516     }
4517     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4518   }
4519   src  = basic_plus_adr(src,  base_off);
4520   dest = basic_plus_adr(dest, base_off);
4521 
4522   // Compute the length also, if needed:
4523   Node* countx = size;
4524   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4525   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4526 
4527   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4528 
4529   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4530   ac->set_clonebasic();
4531   Node* n = _gvn.transform(ac);
4532   if (n == ac) {
4533     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4534   } else {
4535     set_all_memory(n);
4536   }
4537 
4538   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4539   if (card_mark) {
4540     assert(!is_array, "");
4541     // Put in store barrier for any and all oops we are sticking
4542     // into this object.  (We could avoid this if we could prove
4543     // that the object type contains no oop fields at all.)
4544     Node* no_particular_value = NULL;
4545     Node* no_particular_field = NULL;
4546     int raw_adr_idx = Compile::AliasIdxRaw;
4547     post_barrier(control(),
4548                  memory(raw_adr_type),
4549                  alloc_obj,
4550                  no_particular_field,
4551                  raw_adr_idx,
4552                  no_particular_value,
4553                  T_OBJECT,
4554                  false);
4555   }
4556 
4557   // Do not let reads from the cloned object float above the arraycopy.
4558   if (alloc != NULL) {
4559     // Do not let stores that initialize this object be reordered with
4560     // a subsequent store that would make this object accessible by
4561     // other threads.
4562     // Record what AllocateNode this StoreStore protects so that
4563     // escape analysis can go from the MemBarStoreStoreNode to the
4564     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4565     // based on the escape status of the AllocateNode.
4566     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4567   } else {
4568     insert_mem_bar(Op_MemBarCPUOrder);
4569   }
4570 }
4571 
4572 //------------------------inline_native_clone----------------------------
4573 // protected native Object java.lang.Object.clone();
4574 //
4575 // Here are the simple edge cases:
4576 //  null receiver => normal trap
4577 //  virtual and clone was overridden => slow path to out-of-line clone
4578 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4579 //
4580 // The general case has two steps, allocation and copying.
4581 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4582 //
4583 // Copying also has two cases, oop arrays and everything else.
4584 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4585 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4586 //
4587 // These steps fold up nicely if and when the cloned object's klass
4588 // can be sharply typed as an object array, a type array, or an instance.
4589 //
4590 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4591   PhiNode* result_val;
4592 
4593   // Set the reexecute bit for the interpreter to reexecute
4594   // the bytecode that invokes Object.clone if deoptimization happens.
4595   { PreserveReexecuteState preexecs(this);
4596     jvms()->set_should_reexecute(true);
4597 
4598     Node* obj = null_check_receiver();
4599     if (stopped())  return true;
4600 
4601     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4602 
4603     // If we are going to clone an instance, we need its exact type to
4604     // know the number and types of fields to convert the clone to
4605     // loads/stores. Maybe a speculative type can help us.
4606     if (!obj_type->klass_is_exact() &&
4607         obj_type->speculative_type() != NULL &&
4608         obj_type->speculative_type()->is_instance_klass()) {
4609       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4610       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4611           !spec_ik->has_injected_fields()) {
4612         ciKlass* k = obj_type->klass();
4613         if (!k->is_instance_klass() ||
4614             k->as_instance_klass()->is_interface() ||
4615             k->as_instance_klass()->has_subklass()) {
4616           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4617         }
4618       }
4619     }
4620 
4621     Node* obj_klass = load_object_klass(obj);
4622     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4623     const TypeOopPtr*   toop   = ((tklass != NULL)
4624                                 ? tklass->as_instance_type()
4625                                 : TypeInstPtr::NOTNULL);
4626 
4627     // Conservatively insert a memory barrier on all memory slices.
4628     // Do not let writes into the original float below the clone.
4629     insert_mem_bar(Op_MemBarCPUOrder);
4630 
4631     // paths into result_reg:
4632     enum {
4633       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4634       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4635       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4636       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4637       PATH_LIMIT
4638     };
4639     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4640     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4641     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4642     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4643     record_for_igvn(result_reg);
4644 
4645     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4646     int raw_adr_idx = Compile::AliasIdxRaw;
4647 
4648     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4649     if (array_ctl != NULL) {
4650       // It's an array.
4651       PreserveJVMState pjvms(this);
4652       set_control(array_ctl);
4653       Node* obj_length = load_array_length(obj);
4654       Node* obj_size  = NULL;
4655       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4656 
4657       if (!use_ReduceInitialCardMarks()) {
4658         // If it is an oop array, it requires very special treatment,
4659         // because card marking is required on each card of the array.
4660         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4661         if (is_obja != NULL) {
4662           PreserveJVMState pjvms2(this);
4663           set_control(is_obja);
4664           // Generate a direct call to the right arraycopy function(s).
4665           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4666           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4667           ac->set_cloneoop();
4668           Node* n = _gvn.transform(ac);
4669           assert(n == ac, "cannot disappear");
4670           ac->connect_outputs(this);
4671 
4672           result_reg->init_req(_objArray_path, control());
4673           result_val->init_req(_objArray_path, alloc_obj);
4674           result_i_o ->set_req(_objArray_path, i_o());
4675           result_mem ->set_req(_objArray_path, reset_memory());
4676         }
4677       }
4678       // Otherwise, there are no card marks to worry about.
4679       // (We can dispense with card marks if we know the allocation
4680       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4681       //  causes the non-eden paths to take compensating steps to
4682       //  simulate a fresh allocation, so that no further
4683       //  card marks are required in compiled code to initialize
4684       //  the object.)
4685 
4686       if (!stopped()) {
4687         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4688 
4689         // Present the results of the copy.
4690         result_reg->init_req(_array_path, control());
4691         result_val->init_req(_array_path, alloc_obj);
4692         result_i_o ->set_req(_array_path, i_o());
4693         result_mem ->set_req(_array_path, reset_memory());
4694       }
4695     }
4696 
4697     // We only go to the instance fast case code if we pass a number of guards.
4698     // The paths which do not pass are accumulated in the slow_region.
4699     RegionNode* slow_region = new RegionNode(1);
4700     record_for_igvn(slow_region);
4701     if (!stopped()) {
4702       // It's an instance (we did array above).  Make the slow-path tests.
4703       // If this is a virtual call, we generate a funny guard.  We grab
4704       // the vtable entry corresponding to clone() from the target object.
4705       // If the target method which we are calling happens to be the
4706       // Object clone() method, we pass the guard.  We do not need this
4707       // guard for non-virtual calls; the caller is known to be the native
4708       // Object clone().
4709       if (is_virtual) {
4710         generate_virtual_guard(obj_klass, slow_region);
4711       }
4712 
4713       // The object must be easily cloneable and must not have a finalizer.
4714       // Both of these conditions may be checked in a single test.
4715       // We could optimize the test further, but we don't care.
4716       generate_access_flags_guard(obj_klass,
4717                                   // Test both conditions:
4718                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4719                                   // Must be cloneable but not finalizer:
4720                                   JVM_ACC_IS_CLONEABLE_FAST,
4721                                   slow_region);
4722     }
4723 
4724     if (!stopped()) {
4725       // It's an instance, and it passed the slow-path tests.
4726       PreserveJVMState pjvms(this);
4727       Node* obj_size  = NULL;
4728       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4729       // is reexecuted if deoptimization occurs and there could be problems when merging
4730       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4731       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4732 
4733       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4734 
4735       // Present the results of the slow call.
4736       result_reg->init_req(_instance_path, control());
4737       result_val->init_req(_instance_path, alloc_obj);
4738       result_i_o ->set_req(_instance_path, i_o());
4739       result_mem ->set_req(_instance_path, reset_memory());
4740     }
4741 
4742     // Generate code for the slow case.  We make a call to clone().
4743     set_control(_gvn.transform(slow_region));
4744     if (!stopped()) {
4745       PreserveJVMState pjvms(this);
4746       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4747       Node* slow_result = set_results_for_java_call(slow_call);
4748       // this->control() comes from set_results_for_java_call
4749       result_reg->init_req(_slow_path, control());
4750       result_val->init_req(_slow_path, slow_result);
4751       result_i_o ->set_req(_slow_path, i_o());
4752       result_mem ->set_req(_slow_path, reset_memory());
4753     }
4754 
4755     // Return the combined state.
4756     set_control(    _gvn.transform(result_reg));
4757     set_i_o(        _gvn.transform(result_i_o));
4758     set_all_memory( _gvn.transform(result_mem));
4759   } // original reexecute is set back here
4760 
4761   set_result(_gvn.transform(result_val));
4762   return true;
4763 }
4764 
4765 // If we have a tighly coupled allocation, the arraycopy may take care
4766 // of the array initialization. If one of the guards we insert between
4767 // the allocation and the arraycopy causes a deoptimization, an
4768 // unitialized array will escape the compiled method. To prevent that
4769 // we set the JVM state for uncommon traps between the allocation and
4770 // the arraycopy to the state before the allocation so, in case of
4771 // deoptimization, we'll reexecute the allocation and the
4772 // initialization.
4773 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4774   if (alloc != NULL) {
4775     ciMethod* trap_method = alloc->jvms()->method();
4776     int trap_bci = alloc->jvms()->bci();
4777 
4778     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4779           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4780       // Make sure there's no store between the allocation and the
4781       // arraycopy otherwise visible side effects could be rexecuted
4782       // in case of deoptimization and cause incorrect execution.
4783       bool no_interfering_store = true;
4784       Node* mem = alloc->in(TypeFunc::Memory);
4785       if (mem->is_MergeMem()) {
4786         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4787           Node* n = mms.memory();
4788           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4789             assert(n->is_Store(), "what else?");
4790             no_interfering_store = false;
4791             break;
4792           }
4793         }
4794       } else {
4795         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4796           Node* n = mms.memory();
4797           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4798             assert(n->is_Store(), "what else?");
4799             no_interfering_store = false;
4800             break;
4801           }
4802         }
4803       }
4804 
4805       if (no_interfering_store) {
4806         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4807         uint size = alloc->req();
4808         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4809         old_jvms->set_map(sfpt);
4810         for (uint i = 0; i < size; i++) {
4811           sfpt->init_req(i, alloc->in(i));
4812         }
4813         // re-push array length for deoptimization
4814         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4815         old_jvms->set_sp(old_jvms->sp()+1);
4816         old_jvms->set_monoff(old_jvms->monoff()+1);
4817         old_jvms->set_scloff(old_jvms->scloff()+1);
4818         old_jvms->set_endoff(old_jvms->endoff()+1);
4819         old_jvms->set_should_reexecute(true);
4820 
4821         sfpt->set_i_o(map()->i_o());
4822         sfpt->set_memory(map()->memory());
4823         sfpt->set_control(map()->control());
4824 
4825         JVMState* saved_jvms = jvms();
4826         saved_reexecute_sp = _reexecute_sp;
4827 
4828         set_jvms(sfpt->jvms());
4829         _reexecute_sp = jvms()->sp();
4830 
4831         return saved_jvms;
4832       }
4833     }
4834   }
4835   return NULL;
4836 }
4837 
4838 // In case of a deoptimization, we restart execution at the
4839 // allocation, allocating a new array. We would leave an uninitialized
4840 // array in the heap that GCs wouldn't expect. Move the allocation
4841 // after the traps so we don't allocate the array if we
4842 // deoptimize. This is possible because tightly_coupled_allocation()
4843 // guarantees there's no observer of the allocated array at this point
4844 // and the control flow is simple enough.
4845 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4846   if (saved_jvms != NULL && !stopped()) {
4847     assert(alloc != NULL, "only with a tightly coupled allocation");
4848     // restore JVM state to the state at the arraycopy
4849     saved_jvms->map()->set_control(map()->control());
4850     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4851     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4852     // If we've improved the types of some nodes (null check) while
4853     // emitting the guards, propagate them to the current state
4854     map()->replaced_nodes().apply(saved_jvms->map());
4855     set_jvms(saved_jvms);
4856     _reexecute_sp = saved_reexecute_sp;
4857 
4858     // Remove the allocation from above the guards
4859     CallProjections callprojs;
4860     alloc->extract_projections(&callprojs, true);
4861     InitializeNode* init = alloc->initialization();
4862     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4863     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4864     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4865     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4866 
4867     // move the allocation here (after the guards)
4868     _gvn.hash_delete(alloc);
4869     alloc->set_req(TypeFunc::Control, control());
4870     alloc->set_req(TypeFunc::I_O, i_o());
4871     Node *mem = reset_memory();
4872     set_all_memory(mem);
4873     alloc->set_req(TypeFunc::Memory, mem);
4874     set_control(init->proj_out(TypeFunc::Control));
4875     set_i_o(callprojs.fallthrough_ioproj);
4876 
4877     // Update memory as done in GraphKit::set_output_for_allocation()
4878     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4879     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4880     if (ary_type->isa_aryptr() && length_type != NULL) {
4881       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4882     }
4883     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4884     int            elemidx  = C->get_alias_index(telemref);
4885     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4886     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4887 
4888     Node* allocx = _gvn.transform(alloc);
4889     assert(allocx == alloc, "where has the allocation gone?");
4890     assert(dest->is_CheckCastPP(), "not an allocation result?");
4891 
4892     _gvn.hash_delete(dest);
4893     dest->set_req(0, control());
4894     Node* destx = _gvn.transform(dest);
4895     assert(destx == dest, "where has the allocation result gone?");
4896   }
4897 }
4898 
4899 
4900 //------------------------------inline_arraycopy-----------------------
4901 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4902 //                                                      Object dest, int destPos,
4903 //                                                      int length);
4904 bool LibraryCallKit::inline_arraycopy() {
4905   // Get the arguments.
4906   Node* src         = argument(0);  // type: oop
4907   Node* src_offset  = argument(1);  // type: int
4908   Node* dest        = argument(2);  // type: oop
4909   Node* dest_offset = argument(3);  // type: int
4910   Node* length      = argument(4);  // type: int
4911 
4912 
4913   // Check for allocation before we add nodes that would confuse
4914   // tightly_coupled_allocation()
4915   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4916 
4917   int saved_reexecute_sp = -1;
4918   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4919   // See arraycopy_restore_alloc_state() comment
4920   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4921   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4922   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4923   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4924 
4925   // The following tests must be performed
4926   // (1) src and dest are arrays.
4927   // (2) src and dest arrays must have elements of the same BasicType
4928   // (3) src and dest must not be null.
4929   // (4) src_offset must not be negative.
4930   // (5) dest_offset must not be negative.
4931   // (6) length must not be negative.
4932   // (7) src_offset + length must not exceed length of src.
4933   // (8) dest_offset + length must not exceed length of dest.
4934   // (9) each element of an oop array must be assignable
4935 
4936   // (3) src and dest must not be null.
4937   // always do this here because we need the JVM state for uncommon traps
4938   Node* null_ctl = top();
4939   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4940   assert(null_ctl->is_top(), "no null control here");
4941   dest = null_check(dest, T_ARRAY);
4942 
4943   if (!can_emit_guards) {
4944     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4945     // guards but the arraycopy node could still take advantage of a
4946     // tightly allocated allocation. tightly_coupled_allocation() is
4947     // called again to make sure it takes the null check above into
4948     // account: the null check is mandatory and if it caused an
4949     // uncommon trap to be emitted then the allocation can't be
4950     // considered tightly coupled in this context.
4951     alloc = tightly_coupled_allocation(dest, NULL);
4952   }
4953 
4954   bool validated = false;
4955 
4956   const Type* src_type  = _gvn.type(src);
4957   const Type* dest_type = _gvn.type(dest);
4958   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4959   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4960 
4961   // Do we have the type of src?
4962   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4963   // Do we have the type of dest?
4964   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4965   // Is the type for src from speculation?
4966   bool src_spec = false;
4967   // Is the type for dest from speculation?
4968   bool dest_spec = false;
4969 
4970   if ((!has_src || !has_dest) && can_emit_guards) {
4971     // We don't have sufficient type information, let's see if
4972     // speculative types can help. We need to have types for both src
4973     // and dest so that it pays off.
4974 
4975     // Do we already have or could we have type information for src
4976     bool could_have_src = has_src;
4977     // Do we already have or could we have type information for dest
4978     bool could_have_dest = has_dest;
4979 
4980     ciKlass* src_k = NULL;
4981     if (!has_src) {
4982       src_k = src_type->speculative_type_not_null();
4983       if (src_k != NULL && src_k->is_array_klass()) {
4984         could_have_src = true;
4985       }
4986     }
4987 
4988     ciKlass* dest_k = NULL;
4989     if (!has_dest) {
4990       dest_k = dest_type->speculative_type_not_null();
4991       if (dest_k != NULL && dest_k->is_array_klass()) {
4992         could_have_dest = true;
4993       }
4994     }
4995 
4996     if (could_have_src && could_have_dest) {
4997       // This is going to pay off so emit the required guards
4998       if (!has_src) {
4999         src = maybe_cast_profiled_obj(src, src_k, true);
5000         src_type  = _gvn.type(src);
5001         top_src  = src_type->isa_aryptr();
5002         has_src = (top_src != NULL && top_src->klass() != NULL);
5003         src_spec = true;
5004       }
5005       if (!has_dest) {
5006         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5007         dest_type  = _gvn.type(dest);
5008         top_dest  = dest_type->isa_aryptr();
5009         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5010         dest_spec = true;
5011       }
5012     }
5013   }
5014 
5015   if (has_src && has_dest && can_emit_guards) {
5016     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5017     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5018     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5019     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5020 
5021     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5022       // If both arrays are object arrays then having the exact types
5023       // for both will remove the need for a subtype check at runtime
5024       // before the call and may make it possible to pick a faster copy
5025       // routine (without a subtype check on every element)
5026       // Do we have the exact type of src?
5027       bool could_have_src = src_spec;
5028       // Do we have the exact type of dest?
5029       bool could_have_dest = dest_spec;
5030       ciKlass* src_k = top_src->klass();
5031       ciKlass* dest_k = top_dest->klass();
5032       if (!src_spec) {
5033         src_k = src_type->speculative_type_not_null();
5034         if (src_k != NULL && src_k->is_array_klass()) {
5035           could_have_src = true;
5036         }
5037       }
5038       if (!dest_spec) {
5039         dest_k = dest_type->speculative_type_not_null();
5040         if (dest_k != NULL && dest_k->is_array_klass()) {
5041           could_have_dest = true;
5042         }
5043       }
5044       if (could_have_src && could_have_dest) {
5045         // If we can have both exact types, emit the missing guards
5046         if (could_have_src && !src_spec) {
5047           src = maybe_cast_profiled_obj(src, src_k, true);
5048         }
5049         if (could_have_dest && !dest_spec) {
5050           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5051         }
5052       }
5053     }
5054   }
5055 
5056   ciMethod* trap_method = method();
5057   int trap_bci = bci();
5058   if (saved_jvms != NULL) {
5059     trap_method = alloc->jvms()->method();
5060     trap_bci = alloc->jvms()->bci();
5061   }
5062 
5063   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5064       can_emit_guards &&
5065       !src->is_top() && !dest->is_top()) {
5066     // validate arguments: enables transformation the ArrayCopyNode
5067     validated = true;
5068 
5069     RegionNode* slow_region = new RegionNode(1);
5070     record_for_igvn(slow_region);
5071 
5072     // (1) src and dest are arrays.
5073     generate_non_array_guard(load_object_klass(src), slow_region);
5074     generate_non_array_guard(load_object_klass(dest), slow_region);
5075 
5076     // (2) src and dest arrays must have elements of the same BasicType
5077     // done at macro expansion or at Ideal transformation time
5078 
5079     // (4) src_offset must not be negative.
5080     generate_negative_guard(src_offset, slow_region);
5081 
5082     // (5) dest_offset must not be negative.
5083     generate_negative_guard(dest_offset, slow_region);
5084 
5085     // (7) src_offset + length must not exceed length of src.
5086     generate_limit_guard(src_offset, length,
5087                          load_array_length(src),
5088                          slow_region);
5089 
5090     // (8) dest_offset + length must not exceed length of dest.
5091     generate_limit_guard(dest_offset, length,
5092                          load_array_length(dest),
5093                          slow_region);
5094 
5095     // (9) each element of an oop array must be assignable
5096     Node* src_klass  = load_object_klass(src);
5097     Node* dest_klass = load_object_klass(dest);
5098     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5099 
5100     if (not_subtype_ctrl != top()) {
5101       PreserveJVMState pjvms(this);
5102       set_control(not_subtype_ctrl);
5103       uncommon_trap(Deoptimization::Reason_intrinsic,
5104                     Deoptimization::Action_make_not_entrant);
5105       assert(stopped(), "Should be stopped");
5106     }
5107     {
5108       PreserveJVMState pjvms(this);
5109       set_control(_gvn.transform(slow_region));
5110       uncommon_trap(Deoptimization::Reason_intrinsic,
5111                     Deoptimization::Action_make_not_entrant);
5112       assert(stopped(), "Should be stopped");
5113     }
5114   }
5115 
5116   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5117 
5118   if (stopped()) {
5119     return true;
5120   }
5121 
5122   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5123                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5124                                           // so the compiler has a chance to eliminate them: during macro expansion,
5125                                           // we have to set their control (CastPP nodes are eliminated).
5126                                           load_object_klass(src), load_object_klass(dest),
5127                                           load_array_length(src), load_array_length(dest));
5128 
5129   ac->set_arraycopy(validated);
5130 
5131   Node* n = _gvn.transform(ac);
5132   if (n == ac) {
5133     ac->connect_outputs(this);
5134   } else {
5135     assert(validated, "shouldn't transform if all arguments not validated");
5136     set_all_memory(n);
5137   }
5138 
5139   return true;
5140 }
5141 
5142 
5143 // Helper function which determines if an arraycopy immediately follows
5144 // an allocation, with no intervening tests or other escapes for the object.
5145 AllocateArrayNode*
5146 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5147                                            RegionNode* slow_region) {
5148   if (stopped())             return NULL;  // no fast path
5149   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5150 
5151   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5152   if (alloc == NULL)  return NULL;
5153 
5154   Node* rawmem = memory(Compile::AliasIdxRaw);
5155   // Is the allocation's memory state untouched?
5156   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5157     // Bail out if there have been raw-memory effects since the allocation.
5158     // (Example:  There might have been a call or safepoint.)
5159     return NULL;
5160   }
5161   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5162   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5163     return NULL;
5164   }
5165 
5166   // There must be no unexpected observers of this allocation.
5167   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5168     Node* obs = ptr->fast_out(i);
5169     if (obs != this->map()) {
5170       return NULL;
5171     }
5172   }
5173 
5174   // This arraycopy must unconditionally follow the allocation of the ptr.
5175   Node* alloc_ctl = ptr->in(0);
5176   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5177 
5178   Node* ctl = control();
5179   while (ctl != alloc_ctl) {
5180     // There may be guards which feed into the slow_region.
5181     // Any other control flow means that we might not get a chance
5182     // to finish initializing the allocated object.
5183     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5184       IfNode* iff = ctl->in(0)->as_If();
5185       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5186       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5187       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5188         ctl = iff->in(0);       // This test feeds the known slow_region.
5189         continue;
5190       }
5191       // One more try:  Various low-level checks bottom out in
5192       // uncommon traps.  If the debug-info of the trap omits
5193       // any reference to the allocation, as we've already
5194       // observed, then there can be no objection to the trap.
5195       bool found_trap = false;
5196       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5197         Node* obs = not_ctl->fast_out(j);
5198         if (obs->in(0) == not_ctl && obs->is_Call() &&
5199             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5200           found_trap = true; break;
5201         }
5202       }
5203       if (found_trap) {
5204         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5205         continue;
5206       }
5207     }
5208     return NULL;
5209   }
5210 
5211   // If we get this far, we have an allocation which immediately
5212   // precedes the arraycopy, and we can take over zeroing the new object.
5213   // The arraycopy will finish the initialization, and provide
5214   // a new control state to which we will anchor the destination pointer.
5215 
5216   return alloc;
5217 }
5218 
5219 //-------------inline_encodeISOArray-----------------------------------
5220 // encode char[] to byte[] in ISO_8859_1
5221 bool LibraryCallKit::inline_encodeISOArray() {
5222   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5223   // no receiver since it is static method
5224   Node *src         = argument(0);
5225   Node *src_offset  = argument(1);
5226   Node *dst         = argument(2);
5227   Node *dst_offset  = argument(3);
5228   Node *length      = argument(4);
5229 
5230   const Type* src_type = src->Value(&_gvn);
5231   const Type* dst_type = dst->Value(&_gvn);
5232   const TypeAryPtr* top_src = src_type->isa_aryptr();
5233   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5234   if (top_src  == NULL || top_src->klass()  == NULL ||
5235       top_dest == NULL || top_dest->klass() == NULL) {
5236     // failed array check
5237     return false;
5238   }
5239 
5240   // Figure out the size and type of the elements we will be copying.
5241   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5242   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5243   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5244     return false;
5245   }
5246 
5247   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5248   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5249   // 'src_start' points to src array + scaled offset
5250   // 'dst_start' points to dst array + scaled offset
5251 
5252   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5253   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5254   enc = _gvn.transform(enc);
5255   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5256   set_memory(res_mem, mtype);
5257   set_result(enc);
5258   return true;
5259 }
5260 
5261 //-------------inline_multiplyToLen-----------------------------------
5262 bool LibraryCallKit::inline_multiplyToLen() {
5263   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5264 
5265   address stubAddr = StubRoutines::multiplyToLen();
5266   if (stubAddr == NULL) {
5267     return false; // Intrinsic's stub is not implemented on this platform
5268   }
5269   const char* stubName = "multiplyToLen";
5270 
5271   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5272 
5273   // no receiver because it is a static method
5274   Node* x    = argument(0);
5275   Node* xlen = argument(1);
5276   Node* y    = argument(2);
5277   Node* ylen = argument(3);
5278   Node* z    = argument(4);
5279 
5280   const Type* x_type = x->Value(&_gvn);
5281   const Type* y_type = y->Value(&_gvn);
5282   const TypeAryPtr* top_x = x_type->isa_aryptr();
5283   const TypeAryPtr* top_y = y_type->isa_aryptr();
5284   if (top_x  == NULL || top_x->klass()  == NULL ||
5285       top_y == NULL || top_y->klass() == NULL) {
5286     // failed array check
5287     return false;
5288   }
5289 
5290   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5291   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5292   if (x_elem != T_INT || y_elem != T_INT) {
5293     return false;
5294   }
5295 
5296   // Set the original stack and the reexecute bit for the interpreter to reexecute
5297   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5298   // on the return from z array allocation in runtime.
5299   { PreserveReexecuteState preexecs(this);
5300     jvms()->set_should_reexecute(true);
5301 
5302     Node* x_start = array_element_address(x, intcon(0), x_elem);
5303     Node* y_start = array_element_address(y, intcon(0), y_elem);
5304     // 'x_start' points to x array + scaled xlen
5305     // 'y_start' points to y array + scaled ylen
5306 
5307     // Allocate the result array
5308     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5309     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5310     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5311 
5312     IdealKit ideal(this);
5313 
5314 #define __ ideal.
5315      Node* one = __ ConI(1);
5316      Node* zero = __ ConI(0);
5317      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5318      __ set(need_alloc, zero);
5319      __ set(z_alloc, z);
5320      __ if_then(z, BoolTest::eq, null()); {
5321        __ increment (need_alloc, one);
5322      } __ else_(); {
5323        // Update graphKit memory and control from IdealKit.
5324        sync_kit(ideal);
5325        Node* zlen_arg = load_array_length(z);
5326        // Update IdealKit memory and control from graphKit.
5327        __ sync_kit(this);
5328        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5329          __ increment (need_alloc, one);
5330        } __ end_if();
5331      } __ end_if();
5332 
5333      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5334        // Update graphKit memory and control from IdealKit.
5335        sync_kit(ideal);
5336        Node * narr = new_array(klass_node, zlen, 1);
5337        // Update IdealKit memory and control from graphKit.
5338        __ sync_kit(this);
5339        __ set(z_alloc, narr);
5340      } __ end_if();
5341 
5342      sync_kit(ideal);
5343      z = __ value(z_alloc);
5344      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5345      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5346      // Final sync IdealKit and GraphKit.
5347      final_sync(ideal);
5348 #undef __
5349 
5350     Node* z_start = array_element_address(z, intcon(0), T_INT);
5351 
5352     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5353                                    OptoRuntime::multiplyToLen_Type(),
5354                                    stubAddr, stubName, TypePtr::BOTTOM,
5355                                    x_start, xlen, y_start, ylen, z_start, zlen);
5356   } // original reexecute is set back here
5357 
5358   C->set_has_split_ifs(true); // Has chance for split-if optimization
5359   set_result(z);
5360   return true;
5361 }
5362 
5363 //-------------inline_squareToLen------------------------------------
5364 bool LibraryCallKit::inline_squareToLen() {
5365   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5366 
5367   address stubAddr = StubRoutines::squareToLen();
5368   if (stubAddr == NULL) {
5369     return false; // Intrinsic's stub is not implemented on this platform
5370   }
5371   const char* stubName = "squareToLen";
5372 
5373   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5374 
5375   Node* x    = argument(0);
5376   Node* len  = argument(1);
5377   Node* z    = argument(2);
5378   Node* zlen = argument(3);
5379 
5380   const Type* x_type = x->Value(&_gvn);
5381   const Type* z_type = z->Value(&_gvn);
5382   const TypeAryPtr* top_x = x_type->isa_aryptr();
5383   const TypeAryPtr* top_z = z_type->isa_aryptr();
5384   if (top_x  == NULL || top_x->klass()  == NULL ||
5385       top_z  == NULL || top_z->klass()  == NULL) {
5386     // failed array check
5387     return false;
5388   }
5389 
5390   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5391   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5392   if (x_elem != T_INT || z_elem != T_INT) {
5393     return false;
5394   }
5395 
5396 
5397   Node* x_start = array_element_address(x, intcon(0), x_elem);
5398   Node* z_start = array_element_address(z, intcon(0), z_elem);
5399 
5400   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5401                                   OptoRuntime::squareToLen_Type(),
5402                                   stubAddr, stubName, TypePtr::BOTTOM,
5403                                   x_start, len, z_start, zlen);
5404 
5405   set_result(z);
5406   return true;
5407 }
5408 
5409 //-------------inline_mulAdd------------------------------------------
5410 bool LibraryCallKit::inline_mulAdd() {
5411   assert(UseMulAddIntrinsic, "not implemented on this platform");
5412 
5413   address stubAddr = StubRoutines::mulAdd();
5414   if (stubAddr == NULL) {
5415     return false; // Intrinsic's stub is not implemented on this platform
5416   }
5417   const char* stubName = "mulAdd";
5418 
5419   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5420 
5421   Node* out      = argument(0);
5422   Node* in       = argument(1);
5423   Node* offset   = argument(2);
5424   Node* len      = argument(3);
5425   Node* k        = argument(4);
5426 
5427   const Type* out_type = out->Value(&_gvn);
5428   const Type* in_type = in->Value(&_gvn);
5429   const TypeAryPtr* top_out = out_type->isa_aryptr();
5430   const TypeAryPtr* top_in = in_type->isa_aryptr();
5431   if (top_out  == NULL || top_out->klass()  == NULL ||
5432       top_in == NULL || top_in->klass() == NULL) {
5433     // failed array check
5434     return false;
5435   }
5436 
5437   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5438   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5439   if (out_elem != T_INT || in_elem != T_INT) {
5440     return false;
5441   }
5442 
5443   Node* outlen = load_array_length(out);
5444   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5445   Node* out_start = array_element_address(out, intcon(0), out_elem);
5446   Node* in_start = array_element_address(in, intcon(0), in_elem);
5447 
5448   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5449                                   OptoRuntime::mulAdd_Type(),
5450                                   stubAddr, stubName, TypePtr::BOTTOM,
5451                                   out_start,in_start, new_offset, len, k);
5452   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5453   set_result(result);
5454   return true;
5455 }
5456 
5457 //-------------inline_montgomeryMultiply-----------------------------------
5458 bool LibraryCallKit::inline_montgomeryMultiply() {
5459   address stubAddr = StubRoutines::montgomeryMultiply();
5460   if (stubAddr == NULL) {
5461     return false; // Intrinsic's stub is not implemented on this platform
5462   }
5463 
5464   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5465   const char* stubName = "montgomery_square";
5466 
5467   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5468 
5469   Node* a    = argument(0);
5470   Node* b    = argument(1);
5471   Node* n    = argument(2);
5472   Node* len  = argument(3);
5473   Node* inv  = argument(4);
5474   Node* m    = argument(6);
5475 
5476   const Type* a_type = a->Value(&_gvn);
5477   const TypeAryPtr* top_a = a_type->isa_aryptr();
5478   const Type* b_type = b->Value(&_gvn);
5479   const TypeAryPtr* top_b = b_type->isa_aryptr();
5480   const Type* n_type = a->Value(&_gvn);
5481   const TypeAryPtr* top_n = n_type->isa_aryptr();
5482   const Type* m_type = a->Value(&_gvn);
5483   const TypeAryPtr* top_m = m_type->isa_aryptr();
5484   if (top_a  == NULL || top_a->klass()  == NULL ||
5485       top_b == NULL || top_b->klass()  == NULL ||
5486       top_n == NULL || top_n->klass()  == NULL ||
5487       top_m == NULL || top_m->klass()  == NULL) {
5488     // failed array check
5489     return false;
5490   }
5491 
5492   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5493   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5494   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5495   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5496   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5497     return false;
5498   }
5499 
5500   // Make the call
5501   {
5502     Node* a_start = array_element_address(a, intcon(0), a_elem);
5503     Node* b_start = array_element_address(b, intcon(0), b_elem);
5504     Node* n_start = array_element_address(n, intcon(0), n_elem);
5505     Node* m_start = array_element_address(m, intcon(0), m_elem);
5506 
5507     Node* call = make_runtime_call(RC_LEAF,
5508                                    OptoRuntime::montgomeryMultiply_Type(),
5509                                    stubAddr, stubName, TypePtr::BOTTOM,
5510                                    a_start, b_start, n_start, len, inv, top(),
5511                                    m_start);
5512     set_result(m);
5513   }
5514 
5515   return true;
5516 }
5517 
5518 bool LibraryCallKit::inline_montgomerySquare() {
5519   address stubAddr = StubRoutines::montgomerySquare();
5520   if (stubAddr == NULL) {
5521     return false; // Intrinsic's stub is not implemented on this platform
5522   }
5523 
5524   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5525   const char* stubName = "montgomery_square";
5526 
5527   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5528 
5529   Node* a    = argument(0);
5530   Node* n    = argument(1);
5531   Node* len  = argument(2);
5532   Node* inv  = argument(3);
5533   Node* m    = argument(5);
5534 
5535   const Type* a_type = a->Value(&_gvn);
5536   const TypeAryPtr* top_a = a_type->isa_aryptr();
5537   const Type* n_type = a->Value(&_gvn);
5538   const TypeAryPtr* top_n = n_type->isa_aryptr();
5539   const Type* m_type = a->Value(&_gvn);
5540   const TypeAryPtr* top_m = m_type->isa_aryptr();
5541   if (top_a  == NULL || top_a->klass()  == NULL ||
5542       top_n == NULL || top_n->klass()  == NULL ||
5543       top_m == NULL || top_m->klass()  == NULL) {
5544     // failed array check
5545     return false;
5546   }
5547 
5548   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5549   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5550   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5551   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5552     return false;
5553   }
5554 
5555   // Make the call
5556   {
5557     Node* a_start = array_element_address(a, intcon(0), a_elem);
5558     Node* n_start = array_element_address(n, intcon(0), n_elem);
5559     Node* m_start = array_element_address(m, intcon(0), m_elem);
5560 
5561     Node* call = make_runtime_call(RC_LEAF,
5562                                    OptoRuntime::montgomerySquare_Type(),
5563                                    stubAddr, stubName, TypePtr::BOTTOM,
5564                                    a_start, n_start, len, inv, top(),
5565                                    m_start);
5566     set_result(m);
5567   }
5568 
5569   return true;
5570 }
5571 
5572 //-------------inline_vectorizedMismatch------------------------------
5573 bool LibraryCallKit::inline_vectorizedMismatch() {
5574   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5575 
5576   address stubAddr = StubRoutines::vectorizedMismatch();
5577   if (stubAddr == NULL) {
5578     return false; // Intrinsic's stub is not implemented on this platform
5579   }
5580   const char* stubName = "vectorizedMismatch";
5581   int size_l = callee()->signature()->size();
5582   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5583 
5584   Node* obja = argument(0);
5585   Node* aoffset = argument(1);
5586   Node* objb = argument(3);
5587   Node* boffset = argument(4);
5588   Node* length = argument(6);
5589   Node* scale = argument(7);
5590 
5591   const Type* a_type = obja->Value(&_gvn);
5592   const Type* b_type = objb->Value(&_gvn);
5593   const TypeAryPtr* top_a = a_type->isa_aryptr();
5594   const TypeAryPtr* top_b = b_type->isa_aryptr();
5595   if (top_a == NULL || top_a->klass() == NULL ||
5596     top_b == NULL || top_b->klass() == NULL) {
5597     // failed array check
5598     return false;
5599   }
5600 
5601   Node* call;
5602   jvms()->set_should_reexecute(true);
5603 
5604   Node* obja_adr = make_unsafe_address(obja, aoffset);
5605   Node* objb_adr = make_unsafe_address(objb, boffset);
5606 
5607   call = make_runtime_call(RC_LEAF,
5608     OptoRuntime::vectorizedMismatch_Type(),
5609     stubAddr, stubName, TypePtr::BOTTOM,
5610     obja_adr, objb_adr, length, scale);
5611 
5612   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5613   set_result(result);
5614   return true;
5615 }
5616 
5617 /**
5618  * Calculate CRC32 for byte.
5619  * int java.util.zip.CRC32.update(int crc, int b)
5620  */
5621 bool LibraryCallKit::inline_updateCRC32() {
5622   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5623   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5624   // no receiver since it is static method
5625   Node* crc  = argument(0); // type: int
5626   Node* b    = argument(1); // type: int
5627 
5628   /*
5629    *    int c = ~ crc;
5630    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5631    *    b = b ^ (c >>> 8);
5632    *    crc = ~b;
5633    */
5634 
5635   Node* M1 = intcon(-1);
5636   crc = _gvn.transform(new XorINode(crc, M1));
5637   Node* result = _gvn.transform(new XorINode(crc, b));
5638   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5639 
5640   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5641   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5642   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5643   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5644 
5645   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5646   result = _gvn.transform(new XorINode(crc, result));
5647   result = _gvn.transform(new XorINode(result, M1));
5648   set_result(result);
5649   return true;
5650 }
5651 
5652 /**
5653  * Calculate CRC32 for byte[] array.
5654  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5655  */
5656 bool LibraryCallKit::inline_updateBytesCRC32() {
5657   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5658   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5659   // no receiver since it is static method
5660   Node* crc     = argument(0); // type: int
5661   Node* src     = argument(1); // type: oop
5662   Node* offset  = argument(2); // type: int
5663   Node* length  = argument(3); // type: int
5664 
5665   const Type* src_type = src->Value(&_gvn);
5666   const TypeAryPtr* top_src = src_type->isa_aryptr();
5667   if (top_src  == NULL || top_src->klass()  == NULL) {
5668     // failed array check
5669     return false;
5670   }
5671 
5672   // Figure out the size and type of the elements we will be copying.
5673   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5674   if (src_elem != T_BYTE) {
5675     return false;
5676   }
5677 
5678   // 'src_start' points to src array + scaled offset
5679   Node* src_start = array_element_address(src, offset, src_elem);
5680 
5681   // We assume that range check is done by caller.
5682   // TODO: generate range check (offset+length < src.length) in debug VM.
5683 
5684   // Call the stub.
5685   address stubAddr = StubRoutines::updateBytesCRC32();
5686   const char *stubName = "updateBytesCRC32";
5687 
5688   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5689                                  stubAddr, stubName, TypePtr::BOTTOM,
5690                                  crc, src_start, length);
5691   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5692   set_result(result);
5693   return true;
5694 }
5695 
5696 /**
5697  * Calculate CRC32 for ByteBuffer.
5698  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5699  */
5700 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5701   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5702   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5703   // no receiver since it is static method
5704   Node* crc     = argument(0); // type: int
5705   Node* src     = argument(1); // type: long
5706   Node* offset  = argument(3); // type: int
5707   Node* length  = argument(4); // type: int
5708 
5709   src = ConvL2X(src);  // adjust Java long to machine word
5710   Node* base = _gvn.transform(new CastX2PNode(src));
5711   offset = ConvI2X(offset);
5712 
5713   // 'src_start' points to src array + scaled offset
5714   Node* src_start = basic_plus_adr(top(), base, offset);
5715 
5716   // Call the stub.
5717   address stubAddr = StubRoutines::updateBytesCRC32();
5718   const char *stubName = "updateBytesCRC32";
5719 
5720   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5721                                  stubAddr, stubName, TypePtr::BOTTOM,
5722                                  crc, src_start, length);
5723   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5724   set_result(result);
5725   return true;
5726 }
5727 
5728 //------------------------------get_table_from_crc32c_class-----------------------
5729 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5730   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5731   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5732 
5733   return table;
5734 }
5735 
5736 //------------------------------inline_updateBytesCRC32C-----------------------
5737 //
5738 // Calculate CRC32C for byte[] array.
5739 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5740 //
5741 bool LibraryCallKit::inline_updateBytesCRC32C() {
5742   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5743   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5744   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5745   // no receiver since it is a static method
5746   Node* crc     = argument(0); // type: int
5747   Node* src     = argument(1); // type: oop
5748   Node* offset  = argument(2); // type: int
5749   Node* end     = argument(3); // type: int
5750 
5751   Node* length = _gvn.transform(new SubINode(end, offset));
5752 
5753   const Type* src_type = src->Value(&_gvn);
5754   const TypeAryPtr* top_src = src_type->isa_aryptr();
5755   if (top_src  == NULL || top_src->klass()  == NULL) {
5756     // failed array check
5757     return false;
5758   }
5759 
5760   // Figure out the size and type of the elements we will be copying.
5761   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5762   if (src_elem != T_BYTE) {
5763     return false;
5764   }
5765 
5766   // 'src_start' points to src array + scaled offset
5767   Node* src_start = array_element_address(src, offset, src_elem);
5768 
5769   // static final int[] byteTable in class CRC32C
5770   Node* table = get_table_from_crc32c_class(callee()->holder());
5771   Node* table_start = array_element_address(table, intcon(0), T_INT);
5772 
5773   // We assume that range check is done by caller.
5774   // TODO: generate range check (offset+length < src.length) in debug VM.
5775 
5776   // Call the stub.
5777   address stubAddr = StubRoutines::updateBytesCRC32C();
5778   const char *stubName = "updateBytesCRC32C";
5779 
5780   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5781                                  stubAddr, stubName, TypePtr::BOTTOM,
5782                                  crc, src_start, length, table_start);
5783   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5784   set_result(result);
5785   return true;
5786 }
5787 
5788 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5789 //
5790 // Calculate CRC32C for DirectByteBuffer.
5791 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5792 //
5793 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5794   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5795   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5796   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5797   // no receiver since it is a static method
5798   Node* crc     = argument(0); // type: int
5799   Node* src     = argument(1); // type: long
5800   Node* offset  = argument(3); // type: int
5801   Node* end     = argument(4); // type: int
5802 
5803   Node* length = _gvn.transform(new SubINode(end, offset));
5804 
5805   src = ConvL2X(src);  // adjust Java long to machine word
5806   Node* base = _gvn.transform(new CastX2PNode(src));
5807   offset = ConvI2X(offset);
5808 
5809   // 'src_start' points to src array + scaled offset
5810   Node* src_start = basic_plus_adr(top(), base, offset);
5811 
5812   // static final int[] byteTable in class CRC32C
5813   Node* table = get_table_from_crc32c_class(callee()->holder());
5814   Node* table_start = array_element_address(table, intcon(0), T_INT);
5815 
5816   // Call the stub.
5817   address stubAddr = StubRoutines::updateBytesCRC32C();
5818   const char *stubName = "updateBytesCRC32C";
5819 
5820   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5821                                  stubAddr, stubName, TypePtr::BOTTOM,
5822                                  crc, src_start, length, table_start);
5823   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5824   set_result(result);
5825   return true;
5826 }
5827 
5828 //------------------------------inline_updateBytesAdler32----------------------
5829 //
5830 // Calculate Adler32 checksum for byte[] array.
5831 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5832 //
5833 bool LibraryCallKit::inline_updateBytesAdler32() {
5834   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5835   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5836   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5837   // no receiver since it is static method
5838   Node* crc     = argument(0); // type: int
5839   Node* src     = argument(1); // type: oop
5840   Node* offset  = argument(2); // type: int
5841   Node* length  = argument(3); // type: int
5842 
5843   const Type* src_type = src->Value(&_gvn);
5844   const TypeAryPtr* top_src = src_type->isa_aryptr();
5845   if (top_src  == NULL || top_src->klass()  == NULL) {
5846     // failed array check
5847     return false;
5848   }
5849 
5850   // Figure out the size and type of the elements we will be copying.
5851   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5852   if (src_elem != T_BYTE) {
5853     return false;
5854   }
5855 
5856   // 'src_start' points to src array + scaled offset
5857   Node* src_start = array_element_address(src, offset, src_elem);
5858 
5859   // We assume that range check is done by caller.
5860   // TODO: generate range check (offset+length < src.length) in debug VM.
5861 
5862   // Call the stub.
5863   address stubAddr = StubRoutines::updateBytesAdler32();
5864   const char *stubName = "updateBytesAdler32";
5865 
5866   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5867                                  stubAddr, stubName, TypePtr::BOTTOM,
5868                                  crc, src_start, length);
5869   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5870   set_result(result);
5871   return true;
5872 }
5873 
5874 //------------------------------inline_updateByteBufferAdler32---------------
5875 //
5876 // Calculate Adler32 checksum for DirectByteBuffer.
5877 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5878 //
5879 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5880   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5881   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5882   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5883   // no receiver since it is static method
5884   Node* crc     = argument(0); // type: int
5885   Node* src     = argument(1); // type: long
5886   Node* offset  = argument(3); // type: int
5887   Node* length  = argument(4); // type: int
5888 
5889   src = ConvL2X(src);  // adjust Java long to machine word
5890   Node* base = _gvn.transform(new CastX2PNode(src));
5891   offset = ConvI2X(offset);
5892 
5893   // 'src_start' points to src array + scaled offset
5894   Node* src_start = basic_plus_adr(top(), base, offset);
5895 
5896   // Call the stub.
5897   address stubAddr = StubRoutines::updateBytesAdler32();
5898   const char *stubName = "updateBytesAdler32";
5899 
5900   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5901                                  stubAddr, stubName, TypePtr::BOTTOM,
5902                                  crc, src_start, length);
5903 
5904   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5905   set_result(result);
5906   return true;
5907 }
5908 
5909 //----------------------------inline_reference_get----------------------------
5910 // public T java.lang.ref.Reference.get();
5911 bool LibraryCallKit::inline_reference_get() {
5912   const int referent_offset = java_lang_ref_Reference::referent_offset;
5913   guarantee(referent_offset > 0, "should have already been set");
5914 
5915   // Get the argument:
5916   Node* reference_obj = null_check_receiver();
5917   if (stopped()) return true;
5918 
5919   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5920 
5921   ciInstanceKlass* klass = env()->Object_klass();
5922   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5923 
5924   Node* no_ctrl = NULL;
5925   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5926 
5927   // Use the pre-barrier to record the value in the referent field
5928   pre_barrier(false /* do_load */,
5929               control(),
5930               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5931               result /* pre_val */,
5932               T_OBJECT);
5933 
5934   // Add memory barrier to prevent commoning reads from this field
5935   // across safepoint since GC can change its value.
5936   insert_mem_bar(Op_MemBarCPUOrder);
5937 
5938   set_result(result);
5939   return true;
5940 }
5941 
5942 
5943 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5944                                               bool is_exact=true, bool is_static=false,
5945                                               ciInstanceKlass * fromKls=NULL) {
5946   if (fromKls == NULL) {
5947     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5948     assert(tinst != NULL, "obj is null");
5949     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5950     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5951     fromKls = tinst->klass()->as_instance_klass();
5952   } else {
5953     assert(is_static, "only for static field access");
5954   }
5955   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5956                                               ciSymbol::make(fieldTypeString),
5957                                               is_static);
5958 
5959   assert (field != NULL, "undefined field");
5960   if (field == NULL) return (Node *) NULL;
5961 
5962   if (is_static) {
5963     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5964     fromObj = makecon(tip);
5965   }
5966 
5967   // Next code  copied from Parse::do_get_xxx():
5968 
5969   // Compute address and memory type.
5970   int offset  = field->offset_in_bytes();
5971   bool is_vol = field->is_volatile();
5972   ciType* field_klass = field->type();
5973   assert(field_klass->is_loaded(), "should be loaded");
5974   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5975   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5976   BasicType bt = field->layout_type();
5977 
5978   // Build the resultant type of the load
5979   const Type *type;
5980   if (bt == T_OBJECT) {
5981     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5982   } else {
5983     type = Type::get_const_basic_type(bt);
5984   }
5985 
5986   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5987     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5988   }
5989   // Build the load.
5990   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5991   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5992   // If reference is volatile, prevent following memory ops from
5993   // floating up past the volatile read.  Also prevents commoning
5994   // another volatile read.
5995   if (is_vol) {
5996     // Memory barrier includes bogus read of value to force load BEFORE membar
5997     insert_mem_bar(Op_MemBarAcquire, loadedField);
5998   }
5999   return loadedField;
6000 }
6001 
6002 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6003                                                  bool is_exact = true, bool is_static = false,
6004                                                  ciInstanceKlass * fromKls = NULL) {
6005   if (fromKls == NULL) {
6006     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6007     assert(tinst != NULL, "obj is null");
6008     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6009     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6010     fromKls = tinst->klass()->as_instance_klass();
6011   }
6012   else {
6013     assert(is_static, "only for static field access");
6014   }
6015   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6016     ciSymbol::make(fieldTypeString),
6017     is_static);
6018 
6019   assert(field != NULL, "undefined field");
6020   assert(!field->is_volatile(), "not defined for volatile fields");
6021 
6022   if (is_static) {
6023     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6024     fromObj = makecon(tip);
6025   }
6026 
6027   // Next code  copied from Parse::do_get_xxx():
6028 
6029   // Compute address and memory type.
6030   int offset = field->offset_in_bytes();
6031   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6032 
6033   return adr;
6034 }
6035 
6036 //------------------------------inline_aescrypt_Block-----------------------
6037 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6038   address stubAddr = NULL;
6039   const char *stubName;
6040   assert(UseAES, "need AES instruction support");
6041 
6042   switch(id) {
6043   case vmIntrinsics::_aescrypt_encryptBlock:
6044     stubAddr = StubRoutines::aescrypt_encryptBlock();
6045     stubName = "aescrypt_encryptBlock";
6046     break;
6047   case vmIntrinsics::_aescrypt_decryptBlock:
6048     stubAddr = StubRoutines::aescrypt_decryptBlock();
6049     stubName = "aescrypt_decryptBlock";
6050     break;
6051   }
6052   if (stubAddr == NULL) return false;
6053 
6054   Node* aescrypt_object = argument(0);
6055   Node* src             = argument(1);
6056   Node* src_offset      = argument(2);
6057   Node* dest            = argument(3);
6058   Node* dest_offset     = argument(4);
6059 
6060   // (1) src and dest are arrays.
6061   const Type* src_type = src->Value(&_gvn);
6062   const Type* dest_type = dest->Value(&_gvn);
6063   const TypeAryPtr* top_src = src_type->isa_aryptr();
6064   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6065   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6066 
6067   // for the quick and dirty code we will skip all the checks.
6068   // we are just trying to get the call to be generated.
6069   Node* src_start  = src;
6070   Node* dest_start = dest;
6071   if (src_offset != NULL || dest_offset != NULL) {
6072     assert(src_offset != NULL && dest_offset != NULL, "");
6073     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6074     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6075   }
6076 
6077   // now need to get the start of its expanded key array
6078   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6079   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6080   if (k_start == NULL) return false;
6081 
6082   if (Matcher::pass_original_key_for_aes()) {
6083     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6084     // compatibility issues between Java key expansion and SPARC crypto instructions
6085     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6086     if (original_k_start == NULL) return false;
6087 
6088     // Call the stub.
6089     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6090                       stubAddr, stubName, TypePtr::BOTTOM,
6091                       src_start, dest_start, k_start, original_k_start);
6092   } else {
6093     // Call the stub.
6094     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6095                       stubAddr, stubName, TypePtr::BOTTOM,
6096                       src_start, dest_start, k_start);
6097   }
6098 
6099   return true;
6100 }
6101 
6102 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6103 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6104   address stubAddr = NULL;
6105   const char *stubName = NULL;
6106 
6107   assert(UseAES, "need AES instruction support");
6108 
6109   switch(id) {
6110   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6111     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6112     stubName = "cipherBlockChaining_encryptAESCrypt";
6113     break;
6114   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6115     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6116     stubName = "cipherBlockChaining_decryptAESCrypt";
6117     break;
6118   }
6119   if (stubAddr == NULL) return false;
6120 
6121   Node* cipherBlockChaining_object = argument(0);
6122   Node* src                        = argument(1);
6123   Node* src_offset                 = argument(2);
6124   Node* len                        = argument(3);
6125   Node* dest                       = argument(4);
6126   Node* dest_offset                = argument(5);
6127 
6128   // (1) src and dest are arrays.
6129   const Type* src_type = src->Value(&_gvn);
6130   const Type* dest_type = dest->Value(&_gvn);
6131   const TypeAryPtr* top_src = src_type->isa_aryptr();
6132   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6133   assert (top_src  != NULL && top_src->klass()  != NULL
6134           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6135 
6136   // checks are the responsibility of the caller
6137   Node* src_start  = src;
6138   Node* dest_start = dest;
6139   if (src_offset != NULL || dest_offset != NULL) {
6140     assert(src_offset != NULL && dest_offset != NULL, "");
6141     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6142     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6143   }
6144 
6145   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6146   // (because of the predicated logic executed earlier).
6147   // so we cast it here safely.
6148   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6149 
6150   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6151   if (embeddedCipherObj == NULL) return false;
6152 
6153   // cast it to what we know it will be at runtime
6154   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6155   assert(tinst != NULL, "CBC obj is null");
6156   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6157   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6158   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6159 
6160   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6161   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6162   const TypeOopPtr* xtype = aklass->as_instance_type();
6163   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6164   aescrypt_object = _gvn.transform(aescrypt_object);
6165 
6166   // we need to get the start of the aescrypt_object's expanded key array
6167   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6168   if (k_start == NULL) return false;
6169 
6170   // similarly, get the start address of the r vector
6171   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6172   if (objRvec == NULL) return false;
6173   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6174 
6175   Node* cbcCrypt;
6176   if (Matcher::pass_original_key_for_aes()) {
6177     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6178     // compatibility issues between Java key expansion and SPARC crypto instructions
6179     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6180     if (original_k_start == NULL) return false;
6181 
6182     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6183     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6184                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6185                                  stubAddr, stubName, TypePtr::BOTTOM,
6186                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6187   } else {
6188     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6189     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6190                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6191                                  stubAddr, stubName, TypePtr::BOTTOM,
6192                                  src_start, dest_start, k_start, r_start, len);
6193   }
6194 
6195   // return cipher length (int)
6196   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6197   set_result(retvalue);
6198   return true;
6199 }
6200 
6201 //------------------------------inline_counterMode_AESCrypt-----------------------
6202 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6203   assert(UseAES, "need AES instruction support");
6204   if (!UseAESCTRIntrinsics) return false;
6205 
6206   address stubAddr = NULL;
6207   const char *stubName = NULL;
6208   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6209     stubAddr = StubRoutines::counterMode_AESCrypt();
6210     stubName = "counterMode_AESCrypt";
6211   }
6212   if (stubAddr == NULL) return false;
6213 
6214   Node* counterMode_object = argument(0);
6215   Node* src = argument(1);
6216   Node* src_offset = argument(2);
6217   Node* len = argument(3);
6218   Node* dest = argument(4);
6219   Node* dest_offset = argument(5);
6220 
6221   // (1) src and dest are arrays.
6222   const Type* src_type = src->Value(&_gvn);
6223   const Type* dest_type = dest->Value(&_gvn);
6224   const TypeAryPtr* top_src = src_type->isa_aryptr();
6225   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6226   assert(top_src != NULL && top_src->klass() != NULL &&
6227          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6228 
6229   // checks are the responsibility of the caller
6230   Node* src_start = src;
6231   Node* dest_start = dest;
6232   if (src_offset != NULL || dest_offset != NULL) {
6233     assert(src_offset != NULL && dest_offset != NULL, "");
6234     src_start = array_element_address(src, src_offset, T_BYTE);
6235     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6236   }
6237 
6238   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6239   // (because of the predicated logic executed earlier).
6240   // so we cast it here safely.
6241   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6242   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6243   if (embeddedCipherObj == NULL) return false;
6244   // cast it to what we know it will be at runtime
6245   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6246   assert(tinst != NULL, "CTR obj is null");
6247   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6248   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6249   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6250   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6251   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6252   const TypeOopPtr* xtype = aklass->as_instance_type();
6253   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6254   aescrypt_object = _gvn.transform(aescrypt_object);
6255   // we need to get the start of the aescrypt_object's expanded key array
6256   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6257   if (k_start == NULL) return false;
6258   // similarly, get the start address of the r vector
6259   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6260   if (obj_counter == NULL) return false;
6261   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6262 
6263   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6264   if (saved_encCounter == NULL) return false;
6265   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6266   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6267 
6268   Node* ctrCrypt;
6269   if (Matcher::pass_original_key_for_aes()) {
6270     // no SPARC version for AES/CTR intrinsics now.
6271     return false;
6272   }
6273   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6274   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6275                                OptoRuntime::counterMode_aescrypt_Type(),
6276                                stubAddr, stubName, TypePtr::BOTTOM,
6277                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6278 
6279   // return cipher length (int)
6280   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6281   set_result(retvalue);
6282   return true;
6283 }
6284 
6285 //------------------------------get_key_start_from_aescrypt_object-----------------------
6286 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6287 #ifdef PPC64
6288   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6289   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6290   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6291   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6292   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6293   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6294   if (objSessionK == NULL) {
6295     return (Node *) NULL;
6296   }
6297   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6298 #else
6299   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6300 #endif // PPC64
6301   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6302   if (objAESCryptKey == NULL) return (Node *) NULL;
6303 
6304   // now have the array, need to get the start address of the K array
6305   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6306   return k_start;
6307 }
6308 
6309 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6310 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6311   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6312   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6313   if (objAESCryptKey == NULL) return (Node *) NULL;
6314 
6315   // now have the array, need to get the start address of the lastKey array
6316   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6317   return original_k_start;
6318 }
6319 
6320 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6321 // Return node representing slow path of predicate check.
6322 // the pseudo code we want to emulate with this predicate is:
6323 // for encryption:
6324 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6325 // for decryption:
6326 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6327 //    note cipher==plain is more conservative than the original java code but that's OK
6328 //
6329 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6330   // The receiver was checked for NULL already.
6331   Node* objCBC = argument(0);
6332 
6333   // Load embeddedCipher field of CipherBlockChaining object.
6334   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6335 
6336   // get AESCrypt klass for instanceOf check
6337   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6338   // will have same classloader as CipherBlockChaining object
6339   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6340   assert(tinst != NULL, "CBCobj is null");
6341   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6342 
6343   // we want to do an instanceof comparison against the AESCrypt class
6344   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6345   if (!klass_AESCrypt->is_loaded()) {
6346     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6347     Node* ctrl = control();
6348     set_control(top()); // no regular fast path
6349     return ctrl;
6350   }
6351   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6352 
6353   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6354   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6355   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6356 
6357   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6358 
6359   // for encryption, we are done
6360   if (!decrypting)
6361     return instof_false;  // even if it is NULL
6362 
6363   // for decryption, we need to add a further check to avoid
6364   // taking the intrinsic path when cipher and plain are the same
6365   // see the original java code for why.
6366   RegionNode* region = new RegionNode(3);
6367   region->init_req(1, instof_false);
6368   Node* src = argument(1);
6369   Node* dest = argument(4);
6370   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6371   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6372   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6373   region->init_req(2, src_dest_conjoint);
6374 
6375   record_for_igvn(region);
6376   return _gvn.transform(region);
6377 }
6378 
6379 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6380 // Return node representing slow path of predicate check.
6381 // the pseudo code we want to emulate with this predicate is:
6382 // for encryption:
6383 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6384 // for decryption:
6385 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6386 //    note cipher==plain is more conservative than the original java code but that's OK
6387 //
6388 
6389 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6390   // The receiver was checked for NULL already.
6391   Node* objCTR = argument(0);
6392 
6393   // Load embeddedCipher field of CipherBlockChaining object.
6394   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6395 
6396   // get AESCrypt klass for instanceOf check
6397   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6398   // will have same classloader as CipherBlockChaining object
6399   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6400   assert(tinst != NULL, "CTRobj is null");
6401   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6402 
6403   // we want to do an instanceof comparison against the AESCrypt class
6404   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6405   if (!klass_AESCrypt->is_loaded()) {
6406     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6407     Node* ctrl = control();
6408     set_control(top()); // no regular fast path
6409     return ctrl;
6410   }
6411 
6412   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6413   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6414   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6415   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6416   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6417 
6418   return instof_false; // even if it is NULL
6419 }
6420 
6421 //------------------------------inline_ghash_processBlocks
6422 bool LibraryCallKit::inline_ghash_processBlocks() {
6423   address stubAddr;
6424   const char *stubName;
6425   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6426 
6427   stubAddr = StubRoutines::ghash_processBlocks();
6428   stubName = "ghash_processBlocks";
6429 
6430   Node* data           = argument(0);
6431   Node* offset         = argument(1);
6432   Node* len            = argument(2);
6433   Node* state          = argument(3);
6434   Node* subkeyH        = argument(4);
6435 
6436   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6437   assert(state_start, "state is NULL");
6438   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6439   assert(subkeyH_start, "subkeyH is NULL");
6440   Node* data_start  = array_element_address(data, offset, T_BYTE);
6441   assert(data_start, "data is NULL");
6442 
6443   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6444                                   OptoRuntime::ghash_processBlocks_Type(),
6445                                   stubAddr, stubName, TypePtr::BOTTOM,
6446                                   state_start, subkeyH_start, data_start, len);
6447   return true;
6448 }
6449 
6450 //------------------------------inline_sha_implCompress-----------------------
6451 //
6452 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6453 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6454 //
6455 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6456 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6457 //
6458 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6459 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6460 //
6461 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6462   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6463 
6464   Node* sha_obj = argument(0);
6465   Node* src     = argument(1); // type oop
6466   Node* ofs     = argument(2); // type int
6467 
6468   const Type* src_type = src->Value(&_gvn);
6469   const TypeAryPtr* top_src = src_type->isa_aryptr();
6470   if (top_src  == NULL || top_src->klass()  == NULL) {
6471     // failed array check
6472     return false;
6473   }
6474   // Figure out the size and type of the elements we will be copying.
6475   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6476   if (src_elem != T_BYTE) {
6477     return false;
6478   }
6479   // 'src_start' points to src array + offset
6480   Node* src_start = array_element_address(src, ofs, src_elem);
6481   Node* state = NULL;
6482   address stubAddr;
6483   const char *stubName;
6484 
6485   switch(id) {
6486   case vmIntrinsics::_sha_implCompress:
6487     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6488     state = get_state_from_sha_object(sha_obj);
6489     stubAddr = StubRoutines::sha1_implCompress();
6490     stubName = "sha1_implCompress";
6491     break;
6492   case vmIntrinsics::_sha2_implCompress:
6493     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6494     state = get_state_from_sha_object(sha_obj);
6495     stubAddr = StubRoutines::sha256_implCompress();
6496     stubName = "sha256_implCompress";
6497     break;
6498   case vmIntrinsics::_sha5_implCompress:
6499     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6500     state = get_state_from_sha5_object(sha_obj);
6501     stubAddr = StubRoutines::sha512_implCompress();
6502     stubName = "sha512_implCompress";
6503     break;
6504   default:
6505     fatal_unexpected_iid(id);
6506     return false;
6507   }
6508   if (state == NULL) return false;
6509 
6510   // Call the stub.
6511   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6512                                  stubAddr, stubName, TypePtr::BOTTOM,
6513                                  src_start, state);
6514 
6515   return true;
6516 }
6517 
6518 //------------------------------inline_digestBase_implCompressMB-----------------------
6519 //
6520 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6521 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6522 //
6523 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6524   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6525          "need SHA1/SHA256/SHA512 instruction support");
6526   assert((uint)predicate < 3, "sanity");
6527   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6528 
6529   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6530   Node* src            = argument(1); // byte[] array
6531   Node* ofs            = argument(2); // type int
6532   Node* limit          = argument(3); // type int
6533 
6534   const Type* src_type = src->Value(&_gvn);
6535   const TypeAryPtr* top_src = src_type->isa_aryptr();
6536   if (top_src  == NULL || top_src->klass()  == NULL) {
6537     // failed array check
6538     return false;
6539   }
6540   // Figure out the size and type of the elements we will be copying.
6541   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6542   if (src_elem != T_BYTE) {
6543     return false;
6544   }
6545   // 'src_start' points to src array + offset
6546   Node* src_start = array_element_address(src, ofs, src_elem);
6547 
6548   const char* klass_SHA_name = NULL;
6549   const char* stub_name = NULL;
6550   address     stub_addr = NULL;
6551   bool        long_state = false;
6552 
6553   switch (predicate) {
6554   case 0:
6555     if (UseSHA1Intrinsics) {
6556       klass_SHA_name = "sun/security/provider/SHA";
6557       stub_name = "sha1_implCompressMB";
6558       stub_addr = StubRoutines::sha1_implCompressMB();
6559     }
6560     break;
6561   case 1:
6562     if (UseSHA256Intrinsics) {
6563       klass_SHA_name = "sun/security/provider/SHA2";
6564       stub_name = "sha256_implCompressMB";
6565       stub_addr = StubRoutines::sha256_implCompressMB();
6566     }
6567     break;
6568   case 2:
6569     if (UseSHA512Intrinsics) {
6570       klass_SHA_name = "sun/security/provider/SHA5";
6571       stub_name = "sha512_implCompressMB";
6572       stub_addr = StubRoutines::sha512_implCompressMB();
6573       long_state = true;
6574     }
6575     break;
6576   default:
6577     fatal("unknown SHA intrinsic predicate: %d", predicate);
6578   }
6579   if (klass_SHA_name != NULL) {
6580     // get DigestBase klass to lookup for SHA klass
6581     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6582     assert(tinst != NULL, "digestBase_obj is not instance???");
6583     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6584 
6585     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6586     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6587     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6588     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6589   }
6590   return false;
6591 }
6592 //------------------------------inline_sha_implCompressMB-----------------------
6593 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6594                                                bool long_state, address stubAddr, const char *stubName,
6595                                                Node* src_start, Node* ofs, Node* limit) {
6596   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6597   const TypeOopPtr* xtype = aklass->as_instance_type();
6598   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6599   sha_obj = _gvn.transform(sha_obj);
6600 
6601   Node* state;
6602   if (long_state) {
6603     state = get_state_from_sha5_object(sha_obj);
6604   } else {
6605     state = get_state_from_sha_object(sha_obj);
6606   }
6607   if (state == NULL) return false;
6608 
6609   // Call the stub.
6610   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6611                                  OptoRuntime::digestBase_implCompressMB_Type(),
6612                                  stubAddr, stubName, TypePtr::BOTTOM,
6613                                  src_start, state, ofs, limit);
6614   // return ofs (int)
6615   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6616   set_result(result);
6617 
6618   return true;
6619 }
6620 
6621 //------------------------------get_state_from_sha_object-----------------------
6622 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6623   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6624   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6625   if (sha_state == NULL) return (Node *) NULL;
6626 
6627   // now have the array, need to get the start address of the state array
6628   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6629   return state;
6630 }
6631 
6632 //------------------------------get_state_from_sha5_object-----------------------
6633 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6634   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6635   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6636   if (sha_state == NULL) return (Node *) NULL;
6637 
6638   // now have the array, need to get the start address of the state array
6639   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6640   return state;
6641 }
6642 
6643 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6644 // Return node representing slow path of predicate check.
6645 // the pseudo code we want to emulate with this predicate is:
6646 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6647 //
6648 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6649   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6650          "need SHA1/SHA256/SHA512 instruction support");
6651   assert((uint)predicate < 3, "sanity");
6652 
6653   // The receiver was checked for NULL already.
6654   Node* digestBaseObj = argument(0);
6655 
6656   // get DigestBase klass for instanceOf check
6657   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6658   assert(tinst != NULL, "digestBaseObj is null");
6659   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6660 
6661   const char* klass_SHA_name = NULL;
6662   switch (predicate) {
6663   case 0:
6664     if (UseSHA1Intrinsics) {
6665       // we want to do an instanceof comparison against the SHA class
6666       klass_SHA_name = "sun/security/provider/SHA";
6667     }
6668     break;
6669   case 1:
6670     if (UseSHA256Intrinsics) {
6671       // we want to do an instanceof comparison against the SHA2 class
6672       klass_SHA_name = "sun/security/provider/SHA2";
6673     }
6674     break;
6675   case 2:
6676     if (UseSHA512Intrinsics) {
6677       // we want to do an instanceof comparison against the SHA5 class
6678       klass_SHA_name = "sun/security/provider/SHA5";
6679     }
6680     break;
6681   default:
6682     fatal("unknown SHA intrinsic predicate: %d", predicate);
6683   }
6684 
6685   ciKlass* klass_SHA = NULL;
6686   if (klass_SHA_name != NULL) {
6687     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6688   }
6689   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6690     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6691     Node* ctrl = control();
6692     set_control(top()); // no intrinsic path
6693     return ctrl;
6694   }
6695   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6696 
6697   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6698   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6699   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6700   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6701 
6702   return instof_false;  // even if it is NULL
6703 }
6704 
6705 bool LibraryCallKit::inline_profileBoolean() {
6706   Node* counts = argument(1);
6707   const TypeAryPtr* ary = NULL;
6708   ciArray* aobj = NULL;
6709   if (counts->is_Con()
6710       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6711       && (aobj = ary->const_oop()->as_array()) != NULL
6712       && (aobj->length() == 2)) {
6713     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6714     jint false_cnt = aobj->element_value(0).as_int();
6715     jint  true_cnt = aobj->element_value(1).as_int();
6716 
6717     if (C->log() != NULL) {
6718       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6719                      false_cnt, true_cnt);
6720     }
6721 
6722     if (false_cnt + true_cnt == 0) {
6723       // According to profile, never executed.
6724       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6725                           Deoptimization::Action_reinterpret);
6726       return true;
6727     }
6728 
6729     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6730     // is a number of each value occurrences.
6731     Node* result = argument(0);
6732     if (false_cnt == 0 || true_cnt == 0) {
6733       // According to profile, one value has been never seen.
6734       int expected_val = (false_cnt == 0) ? 1 : 0;
6735 
6736       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6737       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6738 
6739       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6740       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6741       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6742 
6743       { // Slow path: uncommon trap for never seen value and then reexecute
6744         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6745         // the value has been seen at least once.
6746         PreserveJVMState pjvms(this);
6747         PreserveReexecuteState preexecs(this);
6748         jvms()->set_should_reexecute(true);
6749 
6750         set_control(slow_path);
6751         set_i_o(i_o());
6752 
6753         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6754                             Deoptimization::Action_reinterpret);
6755       }
6756       // The guard for never seen value enables sharpening of the result and
6757       // returning a constant. It allows to eliminate branches on the same value
6758       // later on.
6759       set_control(fast_path);
6760       result = intcon(expected_val);
6761     }
6762     // Stop profiling.
6763     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6764     // By replacing method body with profile data (represented as ProfileBooleanNode
6765     // on IR level) we effectively disable profiling.
6766     // It enables full speed execution once optimized code is generated.
6767     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6768     C->record_for_igvn(profile);
6769     set_result(profile);
6770     return true;
6771   } else {
6772     // Continue profiling.
6773     // Profile data isn't available at the moment. So, execute method's bytecode version.
6774     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6775     // is compiled and counters aren't available since corresponding MethodHandle
6776     // isn't a compile-time constant.
6777     return false;
6778   }
6779 }
6780 
6781 bool LibraryCallKit::inline_isCompileConstant() {
6782   Node* n = argument(0);
6783   set_result(n->is_Con() ? intcon(1) : intcon(0));
6784   return true;
6785 }