1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 #include "vm_version_x86.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Contains all the definitions needed for x86 assembly code generation.
  34 
  35 // Calling convention
  36 class Argument VALUE_OBJ_CLASS_SPEC {
  37  public:
  38   enum {
  39 #ifdef _LP64
  40 #ifdef _WIN64
  41     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  43 #else
  44     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  45     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  46 #endif // _WIN64
  47     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  48     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  49 #else
  50     n_register_parameters = 0   // 0 registers used to pass arguments
  51 #endif // _LP64
  52   };
  53 };
  54 
  55 
  56 #ifdef _LP64
  57 // Symbolically name the register arguments used by the c calling convention.
  58 // Windows is different from linux/solaris. So much for standards...
  59 
  60 #ifdef _WIN64
  61 
  62 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  63 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  64 REGISTER_DECLARATION(Register, c_rarg2, r8);
  65 REGISTER_DECLARATION(Register, c_rarg3, r9);
  66 
  67 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  68 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  69 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  70 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  71 
  72 #else
  73 
  74 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  75 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  76 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  77 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  78 REGISTER_DECLARATION(Register, c_rarg4, r8);
  79 REGISTER_DECLARATION(Register, c_rarg5, r9);
  80 
  81 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  82 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  83 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  84 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  85 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  86 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  87 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  88 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  89 
  90 #endif // _WIN64
  91 
  92 // Symbolically name the register arguments used by the Java calling convention.
  93 // We have control over the convention for java so we can do what we please.
  94 // What pleases us is to offset the java calling convention so that when
  95 // we call a suitable jni method the arguments are lined up and we don't
  96 // have to do little shuffling. A suitable jni method is non-static and a
  97 // small number of arguments (two fewer args on windows)
  98 //
  99 //        |-------------------------------------------------------|
 100 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
 101 //        |-------------------------------------------------------|
 102 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 103 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 104 //        |-------------------------------------------------------|
 105 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 106 //        |-------------------------------------------------------|
 107 
 108 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 109 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 110 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 111 // Windows runs out of register args here
 112 #ifdef _WIN64
 113 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 114 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 115 #else
 116 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 117 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 118 #endif /* _WIN64 */
 119 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 120 
 121 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 122 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 123 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 124 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 125 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 126 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 127 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 128 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 129 
 130 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 131 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 132 
 133 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 134 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 135 
 136 #else
 137 // rscratch1 will apear in 32bit code that is dead but of course must compile
 138 // Using noreg ensures if the dead code is incorrectly live and executed it
 139 // will cause an assertion failure
 140 #define rscratch1 noreg
 141 #define rscratch2 noreg
 142 
 143 #endif // _LP64
 144 
 145 // JSR 292
 146 // On x86, the SP does not have to be saved when invoking method handle intrinsics
 147 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
 148 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
 149 
 150 // Address is an abstraction used to represent a memory location
 151 // using any of the amd64 addressing modes with one object.
 152 //
 153 // Note: A register location is represented via a Register, not
 154 //       via an address for efficiency & simplicity reasons.
 155 
 156 class ArrayAddress;
 157 
 158 class Address VALUE_OBJ_CLASS_SPEC {
 159  public:
 160   enum ScaleFactor {
 161     no_scale = -1,
 162     times_1  =  0,
 163     times_2  =  1,
 164     times_4  =  2,
 165     times_8  =  3,
 166     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 167   };
 168   static ScaleFactor times(int size) {
 169     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 170     if (size == 8)  return times_8;
 171     if (size == 4)  return times_4;
 172     if (size == 2)  return times_2;
 173     return times_1;
 174   }
 175   static int scale_size(ScaleFactor scale) {
 176     assert(scale != no_scale, "");
 177     assert(((1 << (int)times_1) == 1 &&
 178             (1 << (int)times_2) == 2 &&
 179             (1 << (int)times_4) == 4 &&
 180             (1 << (int)times_8) == 8), "");
 181     return (1 << (int)scale);
 182   }
 183 
 184  private:
 185   Register         _base;
 186   Register         _index;
 187   ScaleFactor      _scale;
 188   int              _disp;
 189   RelocationHolder _rspec;
 190 
 191   // Easily misused constructors make them private
 192   // %%% can we make these go away?
 193   NOT_LP64(Address(address loc, RelocationHolder spec);)
 194   Address(int disp, address loc, relocInfo::relocType rtype);
 195   Address(int disp, address loc, RelocationHolder spec);
 196 
 197  public:
 198 
 199  int disp() { return _disp; }
 200   // creation
 201   Address()
 202     : _base(noreg),
 203       _index(noreg),
 204       _scale(no_scale),
 205       _disp(0) {
 206   }
 207 
 208   // No default displacement otherwise Register can be implicitly
 209   // converted to 0(Register) which is quite a different animal.
 210 
 211   Address(Register base, int disp)
 212     : _base(base),
 213       _index(noreg),
 214       _scale(no_scale),
 215       _disp(disp) {
 216   }
 217 
 218   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 219     : _base (base),
 220       _index(index),
 221       _scale(scale),
 222       _disp (disp) {
 223     assert(!index->is_valid() == (scale == Address::no_scale),
 224            "inconsistent address");
 225   }
 226 
 227   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 228     : _base (base),
 229       _index(index.register_or_noreg()),
 230       _scale(scale),
 231       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 232     if (!index.is_register())  scale = Address::no_scale;
 233     assert(!_index->is_valid() == (scale == Address::no_scale),
 234            "inconsistent address");
 235   }
 236 
 237   Address plus_disp(int disp) const {
 238     Address a = (*this);
 239     a._disp += disp;
 240     return a;
 241   }
 242   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 243     Address a = (*this);
 244     a._disp += disp.constant_or_zero() * scale_size(scale);
 245     if (disp.is_register()) {
 246       assert(!a.index()->is_valid(), "competing indexes");
 247       a._index = disp.as_register();
 248       a._scale = scale;
 249     }
 250     return a;
 251   }
 252   bool is_same_address(Address a) const {
 253     // disregard _rspec
 254     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 255   }
 256 
 257   // The following two overloads are used in connection with the
 258   // ByteSize type (see sizes.hpp).  They simplify the use of
 259   // ByteSize'd arguments in assembly code. Note that their equivalent
 260   // for the optimized build are the member functions with int disp
 261   // argument since ByteSize is mapped to an int type in that case.
 262   //
 263   // Note: DO NOT introduce similar overloaded functions for WordSize
 264   // arguments as in the optimized mode, both ByteSize and WordSize
 265   // are mapped to the same type and thus the compiler cannot make a
 266   // distinction anymore (=> compiler errors).
 267 
 268 #ifdef ASSERT
 269   Address(Register base, ByteSize disp)
 270     : _base(base),
 271       _index(noreg),
 272       _scale(no_scale),
 273       _disp(in_bytes(disp)) {
 274   }
 275 
 276   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 277     : _base(base),
 278       _index(index),
 279       _scale(scale),
 280       _disp(in_bytes(disp)) {
 281     assert(!index->is_valid() == (scale == Address::no_scale),
 282            "inconsistent address");
 283   }
 284 
 285   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 286     : _base (base),
 287       _index(index.register_or_noreg()),
 288       _scale(scale),
 289       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 290     if (!index.is_register())  scale = Address::no_scale;
 291     assert(!_index->is_valid() == (scale == Address::no_scale),
 292            "inconsistent address");
 293   }
 294 
 295 #endif // ASSERT
 296 
 297   // accessors
 298   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 299   Register    base()             const { return _base;  }
 300   Register    index()            const { return _index; }
 301   ScaleFactor scale()            const { return _scale; }
 302   int         disp()             const { return _disp;  }
 303 
 304   // Convert the raw encoding form into the form expected by the constructor for
 305   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 306   // that to noreg for the Address constructor.
 307   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 308 
 309   static Address make_array(ArrayAddress);
 310 
 311  private:
 312   bool base_needs_rex() const {
 313     return _base != noreg && _base->encoding() >= 8;
 314   }
 315 
 316   bool index_needs_rex() const {
 317     return _index != noreg &&_index->encoding() >= 8;
 318   }
 319 
 320   relocInfo::relocType reloc() const { return _rspec.type(); }
 321 
 322   friend class Assembler;
 323   friend class MacroAssembler;
 324   friend class LIR_Assembler; // base/index/scale/disp
 325 };
 326 
 327 //
 328 // AddressLiteral has been split out from Address because operands of this type
 329 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 330 // the few instructions that need to deal with address literals are unique and the
 331 // MacroAssembler does not have to implement every instruction in the Assembler
 332 // in order to search for address literals that may need special handling depending
 333 // on the instruction and the platform. As small step on the way to merging i486/amd64
 334 // directories.
 335 //
 336 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 337   friend class ArrayAddress;
 338   RelocationHolder _rspec;
 339   // Typically we use AddressLiterals we want to use their rval
 340   // However in some situations we want the lval (effect address) of the item.
 341   // We provide a special factory for making those lvals.
 342   bool _is_lval;
 343 
 344   // If the target is far we'll need to load the ea of this to
 345   // a register to reach it. Otherwise if near we can do rip
 346   // relative addressing.
 347 
 348   address          _target;
 349 
 350  protected:
 351   // creation
 352   AddressLiteral()
 353     : _is_lval(false),
 354       _target(NULL)
 355   {}
 356 
 357   public:
 358 
 359 
 360   AddressLiteral(address target, relocInfo::relocType rtype);
 361 
 362   AddressLiteral(address target, RelocationHolder const& rspec)
 363     : _rspec(rspec),
 364       _is_lval(false),
 365       _target(target)
 366   {}
 367 
 368   AddressLiteral addr() {
 369     AddressLiteral ret = *this;
 370     ret._is_lval = true;
 371     return ret;
 372   }
 373 
 374 
 375  private:
 376 
 377   address target() { return _target; }
 378   bool is_lval() { return _is_lval; }
 379 
 380   relocInfo::relocType reloc() const { return _rspec.type(); }
 381   const RelocationHolder& rspec() const { return _rspec; }
 382 
 383   friend class Assembler;
 384   friend class MacroAssembler;
 385   friend class Address;
 386   friend class LIR_Assembler;
 387 };
 388 
 389 // Convience classes
 390 class RuntimeAddress: public AddressLiteral {
 391 
 392   public:
 393 
 394   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 395 
 396 };
 397 
 398 class ExternalAddress: public AddressLiteral {
 399  private:
 400   static relocInfo::relocType reloc_for_target(address target) {
 401     // Sometimes ExternalAddress is used for values which aren't
 402     // exactly addresses, like the card table base.
 403     // external_word_type can't be used for values in the first page
 404     // so just skip the reloc in that case.
 405     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 406   }
 407 
 408  public:
 409 
 410   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 411 
 412 };
 413 
 414 class InternalAddress: public AddressLiteral {
 415 
 416   public:
 417 
 418   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 419 
 420 };
 421 
 422 // x86 can do array addressing as a single operation since disp can be an absolute
 423 // address amd64 can't. We create a class that expresses the concept but does extra
 424 // magic on amd64 to get the final result
 425 
 426 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 427   private:
 428 
 429   AddressLiteral _base;
 430   Address        _index;
 431 
 432   public:
 433 
 434   ArrayAddress() {};
 435   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 436   AddressLiteral base() { return _base; }
 437   Address index() { return _index; }
 438 
 439 };
 440 
 441 class InstructionAttr;
 442 
 443 // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes
 444 // See fxsave and xsave(EVEX enabled) documentation for layout
 445 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize);
 446 
 447 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 448 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 449 // is what you get. The Assembler is generating code into a CodeBuffer.
 450 
 451 class Assembler : public AbstractAssembler  {
 452   friend class AbstractAssembler; // for the non-virtual hack
 453   friend class LIR_Assembler; // as_Address()
 454   friend class StubGenerator;
 455 
 456  public:
 457   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 458     zero          = 0x4,
 459     notZero       = 0x5,
 460     equal         = 0x4,
 461     notEqual      = 0x5,
 462     less          = 0xc,
 463     lessEqual     = 0xe,
 464     greater       = 0xf,
 465     greaterEqual  = 0xd,
 466     below         = 0x2,
 467     belowEqual    = 0x6,
 468     above         = 0x7,
 469     aboveEqual    = 0x3,
 470     overflow      = 0x0,
 471     noOverflow    = 0x1,
 472     carrySet      = 0x2,
 473     carryClear    = 0x3,
 474     negative      = 0x8,
 475     positive      = 0x9,
 476     parity        = 0xa,
 477     noParity      = 0xb
 478   };
 479 
 480   enum Prefix {
 481     // segment overrides
 482     CS_segment = 0x2e,
 483     SS_segment = 0x36,
 484     DS_segment = 0x3e,
 485     ES_segment = 0x26,
 486     FS_segment = 0x64,
 487     GS_segment = 0x65,
 488 
 489     REX        = 0x40,
 490 
 491     REX_B      = 0x41,
 492     REX_X      = 0x42,
 493     REX_XB     = 0x43,
 494     REX_R      = 0x44,
 495     REX_RB     = 0x45,
 496     REX_RX     = 0x46,
 497     REX_RXB    = 0x47,
 498 
 499     REX_W      = 0x48,
 500 
 501     REX_WB     = 0x49,
 502     REX_WX     = 0x4A,
 503     REX_WXB    = 0x4B,
 504     REX_WR     = 0x4C,
 505     REX_WRB    = 0x4D,
 506     REX_WRX    = 0x4E,
 507     REX_WRXB   = 0x4F,
 508 
 509     VEX_3bytes = 0xC4,
 510     VEX_2bytes = 0xC5,
 511     EVEX_4bytes = 0x62,
 512     Prefix_EMPTY = 0x0
 513   };
 514 
 515   enum VexPrefix {
 516     VEX_B = 0x20,
 517     VEX_X = 0x40,
 518     VEX_R = 0x80,
 519     VEX_W = 0x80
 520   };
 521 
 522   enum ExexPrefix {
 523     EVEX_F  = 0x04,
 524     EVEX_V  = 0x08,
 525     EVEX_Rb = 0x10,
 526     EVEX_X  = 0x40,
 527     EVEX_Z  = 0x80
 528   };
 529 
 530   enum VexSimdPrefix {
 531     VEX_SIMD_NONE = 0x0,
 532     VEX_SIMD_66   = 0x1,
 533     VEX_SIMD_F3   = 0x2,
 534     VEX_SIMD_F2   = 0x3
 535   };
 536 
 537   enum VexOpcode {
 538     VEX_OPCODE_NONE  = 0x0,
 539     VEX_OPCODE_0F    = 0x1,
 540     VEX_OPCODE_0F_38 = 0x2,
 541     VEX_OPCODE_0F_3A = 0x3,
 542     VEX_OPCODE_MASK  = 0x1F
 543   };
 544 
 545   enum AvxVectorLen {
 546     AVX_128bit = 0x0,
 547     AVX_256bit = 0x1,
 548     AVX_512bit = 0x2,
 549     AVX_NoVec  = 0x4
 550   };
 551 
 552   enum EvexTupleType {
 553     EVEX_FV   = 0,
 554     EVEX_HV   = 4,
 555     EVEX_FVM  = 6,
 556     EVEX_T1S  = 7,
 557     EVEX_T1F  = 11,
 558     EVEX_T2   = 13,
 559     EVEX_T4   = 15,
 560     EVEX_T8   = 17,
 561     EVEX_HVM  = 18,
 562     EVEX_QVM  = 19,
 563     EVEX_OVM  = 20,
 564     EVEX_M128 = 21,
 565     EVEX_DUP  = 22,
 566     EVEX_ETUP = 23
 567   };
 568 
 569   enum EvexInputSizeInBits {
 570     EVEX_8bit  = 0,
 571     EVEX_16bit = 1,
 572     EVEX_32bit = 2,
 573     EVEX_64bit = 3,
 574     EVEX_NObit = 4
 575   };
 576 
 577   enum WhichOperand {
 578     // input to locate_operand, and format code for relocations
 579     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 580     disp32_operand = 1,          // embedded 32-bit displacement or address
 581     call32_operand = 2,          // embedded 32-bit self-relative displacement
 582 #ifndef _LP64
 583     _WhichOperand_limit = 3
 584 #else
 585      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 586     _WhichOperand_limit = 4
 587 #endif
 588   };
 589 
 590   enum ComparisonPredicate {
 591     eq = 0,
 592     lt = 1,
 593     le = 2,
 594     _false = 3,
 595     neq = 4,
 596     nlt = 5,
 597     nle = 6,
 598     _true = 7
 599   };
 600 
 601 
 602   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 603   // of instructions are freely declared without the need for wrapping them an ifdef.
 604   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 605   // In the .cpp file the implementations are wrapped so that they are dropped out
 606   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 607   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 608   //
 609   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 610   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 611 
 612 private:
 613 
 614   bool _legacy_mode_bw;
 615   bool _legacy_mode_dq;
 616   bool _legacy_mode_vl;
 617   bool _legacy_mode_vlbw;
 618   bool _is_managed;
 619   bool _vector_masking;    // For stub code use only
 620 
 621   class InstructionAttr *_attributes;
 622 
 623   // 64bit prefixes
 624   int prefix_and_encode(int reg_enc, bool byteinst = false);
 625   int prefixq_and_encode(int reg_enc);
 626 
 627   int prefix_and_encode(int dst_enc, int src_enc) {
 628     return prefix_and_encode(dst_enc, false, src_enc, false);
 629   }
 630   int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte);
 631   int prefixq_and_encode(int dst_enc, int src_enc);
 632 
 633   void prefix(Register reg);
 634   void prefix(Register dst, Register src, Prefix p);
 635   void prefix(Register dst, Address adr, Prefix p);
 636   void prefix(Address adr);
 637   void prefixq(Address adr);
 638 
 639   void prefix(Address adr, Register reg,  bool byteinst = false);
 640   void prefix(Address adr, XMMRegister reg);
 641   void prefixq(Address adr, Register reg);
 642   void prefixq(Address adr, XMMRegister reg);
 643 
 644   void prefetch_prefix(Address src);
 645 
 646   void rex_prefix(Address adr, XMMRegister xreg,
 647                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 648   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 649                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 650 
 651   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc);
 652 
 653   void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v,
 654                    int nds_enc, VexSimdPrefix pre, VexOpcode opc);
 655 
 656   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 657                   VexSimdPrefix pre, VexOpcode opc,
 658                   InstructionAttr *attributes);
 659 
 660   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 661                              VexSimdPrefix pre, VexOpcode opc,
 662                              InstructionAttr *attributes);
 663 
 664   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
 665                    VexOpcode opc, InstructionAttr *attributes);
 666 
 667   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
 668                              VexOpcode opc, InstructionAttr *attributes);
 669 
 670   // Helper functions for groups of instructions
 671   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 672 
 673   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 674   // Force generation of a 4 byte immediate value even if it fits into 8bit
 675   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 676   void emit_arith(int op1, int op2, Register dst, Register src);
 677 
 678   bool emit_compressed_disp_byte(int &disp);
 679 
 680   void emit_operand(Register reg,
 681                     Register base, Register index, Address::ScaleFactor scale,
 682                     int disp,
 683                     RelocationHolder const& rspec,
 684                     int rip_relative_correction = 0);
 685 
 686   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 687 
 688   // operands that only take the original 32bit registers
 689   void emit_operand32(Register reg, Address adr);
 690 
 691   void emit_operand(XMMRegister reg,
 692                     Register base, Register index, Address::ScaleFactor scale,
 693                     int disp,
 694                     RelocationHolder const& rspec);
 695 
 696   void emit_operand(XMMRegister reg, Address adr);
 697 
 698   void emit_operand(MMXRegister reg, Address adr);
 699 
 700   // workaround gcc (3.2.1-7) bug
 701   void emit_operand(Address adr, MMXRegister reg);
 702 
 703 
 704   // Immediate-to-memory forms
 705   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 706 
 707   void emit_farith(int b1, int b2, int i);
 708 
 709 
 710  protected:
 711   #ifdef ASSERT
 712   void check_relocation(RelocationHolder const& rspec, int format);
 713   #endif
 714 
 715   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 716   void emit_data(jint data, RelocationHolder const& rspec, int format);
 717   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 718   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 719 
 720   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 721 
 722   // These are all easily abused and hence protected
 723 
 724   // 32BIT ONLY SECTION
 725 #ifndef _LP64
 726   // Make these disappear in 64bit mode since they would never be correct
 727   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 728   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 729 
 730   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 731   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 732 
 733   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 734 #else
 735   // 64BIT ONLY SECTION
 736   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 737 
 738   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 739   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 740 
 741   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 742   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 743 #endif // _LP64
 744 
 745   // These are unique in that we are ensured by the caller that the 32bit
 746   // relative in these instructions will always be able to reach the potentially
 747   // 64bit address described by entry. Since they can take a 64bit address they
 748   // don't have the 32 suffix like the other instructions in this class.
 749 
 750   void call_literal(address entry, RelocationHolder const& rspec);
 751   void jmp_literal(address entry, RelocationHolder const& rspec);
 752 
 753   // Avoid using directly section
 754   // Instructions in this section are actually usable by anyone without danger
 755   // of failure but have performance issues that are addressed my enhanced
 756   // instructions which will do the proper thing base on the particular cpu.
 757   // We protect them because we don't trust you...
 758 
 759   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 760   // could cause a partial flag stall since they don't set CF flag.
 761   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 762   // which call inc() & dec() or add() & sub() in accordance with
 763   // the product flag UseIncDec value.
 764 
 765   void decl(Register dst);
 766   void decl(Address dst);
 767   void decq(Register dst);
 768   void decq(Address dst);
 769 
 770   void incl(Register dst);
 771   void incl(Address dst);
 772   void incq(Register dst);
 773   void incq(Address dst);
 774 
 775   // New cpus require use of movsd and movss to avoid partial register stall
 776   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 777   // The selection is done in MacroAssembler::movdbl() and movflt().
 778 
 779   // Move Scalar Single-Precision Floating-Point Values
 780   void movss(XMMRegister dst, Address src);
 781   void movss(XMMRegister dst, XMMRegister src);
 782   void movss(Address dst, XMMRegister src);
 783 
 784   // Move Scalar Double-Precision Floating-Point Values
 785   void movsd(XMMRegister dst, Address src);
 786   void movsd(XMMRegister dst, XMMRegister src);
 787   void movsd(Address dst, XMMRegister src);
 788   void movlpd(XMMRegister dst, Address src);
 789 
 790   // New cpus require use of movaps and movapd to avoid partial register stall
 791   // when moving between registers.
 792   void movaps(XMMRegister dst, XMMRegister src);
 793   void movapd(XMMRegister dst, XMMRegister src);
 794 
 795   // End avoid using directly
 796 
 797 
 798   // Instruction prefixes
 799   void prefix(Prefix p);
 800 
 801   public:
 802 
 803   // Creation
 804   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
 805     init_attributes();
 806   }
 807 
 808   // Decoding
 809   static address locate_operand(address inst, WhichOperand which);
 810   static address locate_next_instruction(address inst);
 811 
 812   // Utilities
 813   static bool is_polling_page_far() NOT_LP64({ return false;});
 814   static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 815                                          int cur_tuple_type, int in_size_in_bits, int cur_encoding);
 816 
 817   // Generic instructions
 818   // Does 32bit or 64bit as needed for the platform. In some sense these
 819   // belong in macro assembler but there is no need for both varieties to exist
 820 
 821   void init_attributes(void) {
 822     _legacy_mode_bw = (VM_Version::supports_avx512bw() == false);
 823     _legacy_mode_dq = (VM_Version::supports_avx512dq() == false);
 824     _legacy_mode_vl = (VM_Version::supports_avx512vl() == false);
 825     _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false);
 826     _is_managed = false;
 827     _vector_masking = false;
 828     _attributes = NULL;
 829   }
 830 
 831   void set_attributes(InstructionAttr *attributes) { _attributes = attributes; }
 832   void clear_attributes(void) { _attributes = NULL; }
 833 
 834   void set_managed(void) { _is_managed = true; }
 835   void clear_managed(void) { _is_managed = false; }
 836   bool is_managed(void) { return _is_managed; }
 837 
 838   // Following functions are for stub code use only
 839   void set_vector_masking(void) { _vector_masking = true; }
 840   void clear_vector_masking(void) { _vector_masking = false; }
 841   bool is_vector_masking(void) { return _vector_masking; }
 842 
 843   void lea(Register dst, Address src);
 844 
 845   void mov(Register dst, Register src);
 846 
 847   void pusha();
 848   void popa();
 849 
 850   void pushf();
 851   void popf();
 852 
 853   void push(int32_t imm32);
 854 
 855   void push(Register src);
 856 
 857   void pop(Register dst);
 858 
 859   // These are dummies to prevent surprise implicit conversions to Register
 860   void push(void* v);
 861   void pop(void* v);
 862 
 863   // These do register sized moves/scans
 864   void rep_mov();
 865   void rep_stos();
 866   void rep_stosb();
 867   void repne_scan();
 868 #ifdef _LP64
 869   void repne_scanl();
 870 #endif
 871 
 872   // Vanilla instructions in lexical order
 873 
 874   void adcl(Address dst, int32_t imm32);
 875   void adcl(Address dst, Register src);
 876   void adcl(Register dst, int32_t imm32);
 877   void adcl(Register dst, Address src);
 878   void adcl(Register dst, Register src);
 879 
 880   void adcq(Register dst, int32_t imm32);
 881   void adcq(Register dst, Address src);
 882   void adcq(Register dst, Register src);
 883 
 884   void addl(Address dst, int32_t imm32);
 885   void addl(Address dst, Register src);
 886   void addl(Register dst, int32_t imm32);
 887   void addl(Register dst, Address src);
 888   void addl(Register dst, Register src);
 889 
 890   void addq(Address dst, int32_t imm32);
 891   void addq(Address dst, Register src);
 892   void addq(Register dst, int32_t imm32);
 893   void addq(Register dst, Address src);
 894   void addq(Register dst, Register src);
 895 
 896 #ifdef _LP64
 897  //Add Unsigned Integers with Carry Flag
 898   void adcxq(Register dst, Register src);
 899 
 900  //Add Unsigned Integers with Overflow Flag
 901   void adoxq(Register dst, Register src);
 902 #endif
 903 
 904   void addr_nop_4();
 905   void addr_nop_5();
 906   void addr_nop_7();
 907   void addr_nop_8();
 908 
 909   // Add Scalar Double-Precision Floating-Point Values
 910   void addsd(XMMRegister dst, Address src);
 911   void addsd(XMMRegister dst, XMMRegister src);
 912 
 913   // Add Scalar Single-Precision Floating-Point Values
 914   void addss(XMMRegister dst, Address src);
 915   void addss(XMMRegister dst, XMMRegister src);
 916 
 917   // AES instructions
 918   void aesdec(XMMRegister dst, Address src);
 919   void aesdec(XMMRegister dst, XMMRegister src);
 920   void aesdeclast(XMMRegister dst, Address src);
 921   void aesdeclast(XMMRegister dst, XMMRegister src);
 922   void aesenc(XMMRegister dst, Address src);
 923   void aesenc(XMMRegister dst, XMMRegister src);
 924   void aesenclast(XMMRegister dst, Address src);
 925   void aesenclast(XMMRegister dst, XMMRegister src);
 926 
 927 
 928   void andl(Address  dst, int32_t imm32);
 929   void andl(Register dst, int32_t imm32);
 930   void andl(Register dst, Address src);
 931   void andl(Register dst, Register src);
 932 
 933   void andq(Address  dst, int32_t imm32);
 934   void andq(Register dst, int32_t imm32);
 935   void andq(Register dst, Address src);
 936   void andq(Register dst, Register src);
 937 
 938   // BMI instructions
 939   void andnl(Register dst, Register src1, Register src2);
 940   void andnl(Register dst, Register src1, Address src2);
 941   void andnq(Register dst, Register src1, Register src2);
 942   void andnq(Register dst, Register src1, Address src2);
 943 
 944   void blsil(Register dst, Register src);
 945   void blsil(Register dst, Address src);
 946   void blsiq(Register dst, Register src);
 947   void blsiq(Register dst, Address src);
 948 
 949   void blsmskl(Register dst, Register src);
 950   void blsmskl(Register dst, Address src);
 951   void blsmskq(Register dst, Register src);
 952   void blsmskq(Register dst, Address src);
 953 
 954   void blsrl(Register dst, Register src);
 955   void blsrl(Register dst, Address src);
 956   void blsrq(Register dst, Register src);
 957   void blsrq(Register dst, Address src);
 958 
 959   void bsfl(Register dst, Register src);
 960   void bsrl(Register dst, Register src);
 961 
 962 #ifdef _LP64
 963   void bsfq(Register dst, Register src);
 964   void bsrq(Register dst, Register src);
 965 #endif
 966 
 967   void bswapl(Register reg);
 968 
 969   void bswapq(Register reg);
 970 
 971   void call(Label& L, relocInfo::relocType rtype);
 972   void call(Register reg);  // push pc; pc <- reg
 973   void call(Address adr);   // push pc; pc <- adr
 974 
 975   void cdql();
 976 
 977   void cdqq();
 978 
 979   void cld();
 980 
 981   void clflush(Address adr);
 982 
 983   void cmovl(Condition cc, Register dst, Register src);
 984   void cmovl(Condition cc, Register dst, Address src);
 985 
 986   void cmovq(Condition cc, Register dst, Register src);
 987   void cmovq(Condition cc, Register dst, Address src);
 988 
 989 
 990   void cmpb(Address dst, int imm8);
 991 
 992   void cmpl(Address dst, int32_t imm32);
 993 
 994   void cmpl(Register dst, int32_t imm32);
 995   void cmpl(Register dst, Register src);
 996   void cmpl(Register dst, Address src);
 997 
 998   void cmpq(Address dst, int32_t imm32);
 999   void cmpq(Address dst, Register src);
1000 
1001   void cmpq(Register dst, int32_t imm32);
1002   void cmpq(Register dst, Register src);
1003   void cmpq(Register dst, Address src);
1004 
1005   // these are dummies used to catch attempting to convert NULL to Register
1006   void cmpl(Register dst, void* junk); // dummy
1007   void cmpq(Register dst, void* junk); // dummy
1008 
1009   void cmpw(Address dst, int imm16);
1010 
1011   void cmpxchg8 (Address adr);
1012 
1013   void cmpxchgb(Register reg, Address adr);
1014   void cmpxchgl(Register reg, Address adr);
1015 
1016   void cmpxchgq(Register reg, Address adr);
1017 
1018   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1019   void comisd(XMMRegister dst, Address src);
1020   void comisd(XMMRegister dst, XMMRegister src);
1021 
1022   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1023   void comiss(XMMRegister dst, Address src);
1024   void comiss(XMMRegister dst, XMMRegister src);
1025 
1026   // Identify processor type and features
1027   void cpuid();
1028 
1029   // CRC32C
1030   void crc32(Register crc, Register v, int8_t sizeInBytes);
1031   void crc32(Register crc, Address adr, int8_t sizeInBytes);
1032 
1033   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1034   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1035   void cvtsd2ss(XMMRegister dst, Address src);
1036 
1037   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1038   void cvtsi2sdl(XMMRegister dst, Register src);
1039   void cvtsi2sdl(XMMRegister dst, Address src);
1040   void cvtsi2sdq(XMMRegister dst, Register src);
1041   void cvtsi2sdq(XMMRegister dst, Address src);
1042 
1043   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1044   void cvtsi2ssl(XMMRegister dst, Register src);
1045   void cvtsi2ssl(XMMRegister dst, Address src);
1046   void cvtsi2ssq(XMMRegister dst, Register src);
1047   void cvtsi2ssq(XMMRegister dst, Address src);
1048 
1049   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1050   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1051 
1052   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1053   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1054 
1055   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1056   void cvtss2sd(XMMRegister dst, XMMRegister src);
1057   void cvtss2sd(XMMRegister dst, Address src);
1058 
1059   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1060   void cvttsd2sil(Register dst, Address src);
1061   void cvttsd2sil(Register dst, XMMRegister src);
1062   void cvttsd2siq(Register dst, XMMRegister src);
1063 
1064   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1065   void cvttss2sil(Register dst, XMMRegister src);
1066   void cvttss2siq(Register dst, XMMRegister src);
1067 
1068   void cvttpd2dq(XMMRegister dst, XMMRegister src);
1069 
1070   // Divide Scalar Double-Precision Floating-Point Values
1071   void divsd(XMMRegister dst, Address src);
1072   void divsd(XMMRegister dst, XMMRegister src);
1073 
1074   // Divide Scalar Single-Precision Floating-Point Values
1075   void divss(XMMRegister dst, Address src);
1076   void divss(XMMRegister dst, XMMRegister src);
1077 
1078   void emms();
1079 
1080   void fabs();
1081 
1082   void fadd(int i);
1083 
1084   void fadd_d(Address src);
1085   void fadd_s(Address src);
1086 
1087   // "Alternate" versions of x87 instructions place result down in FPU
1088   // stack instead of on TOS
1089 
1090   void fadda(int i); // "alternate" fadd
1091   void faddp(int i = 1);
1092 
1093   void fchs();
1094 
1095   void fcom(int i);
1096 
1097   void fcomp(int i = 1);
1098   void fcomp_d(Address src);
1099   void fcomp_s(Address src);
1100 
1101   void fcompp();
1102 
1103   void fcos();
1104 
1105   void fdecstp();
1106 
1107   void fdiv(int i);
1108   void fdiv_d(Address src);
1109   void fdivr_s(Address src);
1110   void fdiva(int i);  // "alternate" fdiv
1111   void fdivp(int i = 1);
1112 
1113   void fdivr(int i);
1114   void fdivr_d(Address src);
1115   void fdiv_s(Address src);
1116 
1117   void fdivra(int i); // "alternate" reversed fdiv
1118 
1119   void fdivrp(int i = 1);
1120 
1121   void ffree(int i = 0);
1122 
1123   void fild_d(Address adr);
1124   void fild_s(Address adr);
1125 
1126   void fincstp();
1127 
1128   void finit();
1129 
1130   void fist_s (Address adr);
1131   void fistp_d(Address adr);
1132   void fistp_s(Address adr);
1133 
1134   void fld1();
1135 
1136   void fld_d(Address adr);
1137   void fld_s(Address adr);
1138   void fld_s(int index);
1139   void fld_x(Address adr);  // extended-precision (80-bit) format
1140 
1141   void fldcw(Address src);
1142 
1143   void fldenv(Address src);
1144 
1145   void fldlg2();
1146 
1147   void fldln2();
1148 
1149   void fldz();
1150 
1151   void flog();
1152   void flog10();
1153 
1154   void fmul(int i);
1155 
1156   void fmul_d(Address src);
1157   void fmul_s(Address src);
1158 
1159   void fmula(int i);  // "alternate" fmul
1160 
1161   void fmulp(int i = 1);
1162 
1163   void fnsave(Address dst);
1164 
1165   void fnstcw(Address src);
1166 
1167   void fnstsw_ax();
1168 
1169   void fprem();
1170   void fprem1();
1171 
1172   void frstor(Address src);
1173 
1174   void fsin();
1175 
1176   void fsqrt();
1177 
1178   void fst_d(Address adr);
1179   void fst_s(Address adr);
1180 
1181   void fstp_d(Address adr);
1182   void fstp_d(int index);
1183   void fstp_s(Address adr);
1184   void fstp_x(Address adr); // extended-precision (80-bit) format
1185 
1186   void fsub(int i);
1187   void fsub_d(Address src);
1188   void fsub_s(Address src);
1189 
1190   void fsuba(int i);  // "alternate" fsub
1191 
1192   void fsubp(int i = 1);
1193 
1194   void fsubr(int i);
1195   void fsubr_d(Address src);
1196   void fsubr_s(Address src);
1197 
1198   void fsubra(int i); // "alternate" reversed fsub
1199 
1200   void fsubrp(int i = 1);
1201 
1202   void ftan();
1203 
1204   void ftst();
1205 
1206   void fucomi(int i = 1);
1207   void fucomip(int i = 1);
1208 
1209   void fwait();
1210 
1211   void fxch(int i = 1);
1212 
1213   void fxrstor(Address src);
1214   void xrstor(Address src);
1215 
1216   void fxsave(Address dst);
1217   void xsave(Address dst);
1218 
1219   void fyl2x();
1220   void frndint();
1221   void f2xm1();
1222   void fldl2e();
1223 
1224   void hlt();
1225 
1226   void idivl(Register src);
1227   void divl(Register src); // Unsigned division
1228 
1229 #ifdef _LP64
1230   void idivq(Register src);
1231 #endif
1232 
1233   void imull(Register src);
1234   void imull(Register dst, Register src);
1235   void imull(Register dst, Register src, int value);
1236   void imull(Register dst, Address src);
1237 
1238 #ifdef _LP64
1239   void imulq(Register dst, Register src);
1240   void imulq(Register dst, Register src, int value);
1241   void imulq(Register dst, Address src);
1242 #endif
1243 
1244   // jcc is the generic conditional branch generator to run-
1245   // time routines, jcc is used for branches to labels. jcc
1246   // takes a branch opcode (cc) and a label (L) and generates
1247   // either a backward branch or a forward branch and links it
1248   // to the label fixup chain. Usage:
1249   //
1250   // Label L;      // unbound label
1251   // jcc(cc, L);   // forward branch to unbound label
1252   // bind(L);      // bind label to the current pc
1253   // jcc(cc, L);   // backward branch to bound label
1254   // bind(L);      // illegal: a label may be bound only once
1255   //
1256   // Note: The same Label can be used for forward and backward branches
1257   // but it may be bound only once.
1258 
1259   void jcc(Condition cc, Label& L, bool maybe_short = true);
1260 
1261   // Conditional jump to a 8-bit offset to L.
1262   // WARNING: be very careful using this for forward jumps.  If the label is
1263   // not bound within an 8-bit offset of this instruction, a run-time error
1264   // will occur.
1265   void jccb(Condition cc, Label& L);
1266 
1267   void jmp(Address entry);    // pc <- entry
1268 
1269   // Label operations & relative jumps (PPUM Appendix D)
1270   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1271 
1272   void jmp(Register entry); // pc <- entry
1273 
1274   // Unconditional 8-bit offset jump to L.
1275   // WARNING: be very careful using this for forward jumps.  If the label is
1276   // not bound within an 8-bit offset of this instruction, a run-time error
1277   // will occur.
1278   void jmpb(Label& L);
1279 
1280   void ldmxcsr( Address src );
1281 
1282   void leal(Register dst, Address src);
1283 
1284   void leaq(Register dst, Address src);
1285 
1286   void lfence();
1287 
1288   void lock();
1289 
1290   void lzcntl(Register dst, Register src);
1291 
1292 #ifdef _LP64
1293   void lzcntq(Register dst, Register src);
1294 #endif
1295 
1296   enum Membar_mask_bits {
1297     StoreStore = 1 << 3,
1298     LoadStore  = 1 << 2,
1299     StoreLoad  = 1 << 1,
1300     LoadLoad   = 1 << 0
1301   };
1302 
1303   // Serializes memory and blows flags
1304   void membar(Membar_mask_bits order_constraint) {
1305     if (os::is_MP()) {
1306       // We only have to handle StoreLoad
1307       if (order_constraint & StoreLoad) {
1308         // All usable chips support "locked" instructions which suffice
1309         // as barriers, and are much faster than the alternative of
1310         // using cpuid instruction. We use here a locked add [esp-C],0.
1311         // This is conveniently otherwise a no-op except for blowing
1312         // flags, and introducing a false dependency on target memory
1313         // location. We can't do anything with flags, but we can avoid
1314         // memory dependencies in the current method by locked-adding
1315         // somewhere else on the stack. Doing [esp+C] will collide with
1316         // something on stack in current method, hence we go for [esp-C].
1317         // It is convenient since it is almost always in data cache, for
1318         // any small C.  We need to step back from SP to avoid data
1319         // dependencies with other things on below SP (callee-saves, for
1320         // example). Without a clear way to figure out the minimal safe
1321         // distance from SP, it makes sense to step back the complete
1322         // cache line, as this will also avoid possible second-order effects
1323         // with locked ops against the cache line. Our choice of offset
1324         // is bounded by x86 operand encoding, which should stay within
1325         // [-128; +127] to have the 8-byte displacement encoding.
1326         //
1327         // Any change to this code may need to revisit other places in
1328         // the code where this idiom is used, in particular the
1329         // orderAccess code.
1330 
1331         int offset = -VM_Version::L1_line_size();
1332         if (offset < -128) {
1333           offset = -128;
1334         }
1335 
1336         lock();
1337         addl(Address(rsp, offset), 0);// Assert the lock# signal here
1338       }
1339     }
1340   }
1341 
1342   void mfence();
1343 
1344   // Moves
1345 
1346   void mov64(Register dst, int64_t imm64);
1347 
1348   void movb(Address dst, Register src);
1349   void movb(Address dst, int imm8);
1350   void movb(Register dst, Address src);
1351 
1352   void movddup(XMMRegister dst, XMMRegister src);
1353 
1354   void kmovbl(KRegister dst, Register src);
1355   void kmovbl(Register dst, KRegister src);
1356   void kmovwl(KRegister dst, Register src);
1357   void kmovwl(KRegister dst, Address src);
1358   void kmovwl(Register dst, KRegister src);
1359   void kmovdl(KRegister dst, Register src);
1360   void kmovdl(Register dst, KRegister src);
1361   void kmovql(KRegister dst, KRegister src);
1362   void kmovql(Address dst, KRegister src);
1363   void kmovql(KRegister dst, Address src);
1364   void kmovql(KRegister dst, Register src);
1365   void kmovql(Register dst, KRegister src);
1366 
1367   void knotwl(KRegister dst, KRegister src);
1368 
1369   void kortestbl(KRegister dst, KRegister src);
1370   void kortestwl(KRegister dst, KRegister src);
1371   void kortestdl(KRegister dst, KRegister src);
1372   void kortestql(KRegister dst, KRegister src);
1373 
1374   void ktestq(KRegister src1, KRegister src2);
1375   void ktestd(KRegister src1, KRegister src2);
1376 
1377   void ktestql(KRegister dst, KRegister src);
1378 
1379   void movdl(XMMRegister dst, Register src);
1380   void movdl(Register dst, XMMRegister src);
1381   void movdl(XMMRegister dst, Address src);
1382   void movdl(Address dst, XMMRegister src);
1383 
1384   // Move Double Quadword
1385   void movdq(XMMRegister dst, Register src);
1386   void movdq(Register dst, XMMRegister src);
1387 
1388   // Move Aligned Double Quadword
1389   void movdqa(XMMRegister dst, XMMRegister src);
1390   void movdqa(XMMRegister dst, Address src);
1391 
1392   // Move Unaligned Double Quadword
1393   void movdqu(Address     dst, XMMRegister src);
1394   void movdqu(XMMRegister dst, Address src);
1395   void movdqu(XMMRegister dst, XMMRegister src);
1396 
1397   // Move Unaligned 256bit Vector
1398   void vmovdqu(Address dst, XMMRegister src);
1399   void vmovdqu(XMMRegister dst, Address src);
1400   void vmovdqu(XMMRegister dst, XMMRegister src);
1401 
1402    // Move Unaligned 512bit Vector
1403   void evmovdqub(Address dst, XMMRegister src, int vector_len);
1404   void evmovdqub(XMMRegister dst, Address src, int vector_len);
1405   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len);
1406   void evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len);
1407   void evmovdquw(Address dst, XMMRegister src, int vector_len);
1408   void evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len);
1409   void evmovdquw(XMMRegister dst, Address src, int vector_len);
1410   void evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len);
1411   void evmovdqul(Address dst, XMMRegister src, int vector_len);
1412   void evmovdqul(XMMRegister dst, Address src, int vector_len);
1413   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len);
1414   void evmovdquq(Address dst, XMMRegister src, int vector_len);
1415   void evmovdquq(XMMRegister dst, Address src, int vector_len);
1416   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len);
1417 
1418   // Move lower 64bit to high 64bit in 128bit register
1419   void movlhps(XMMRegister dst, XMMRegister src);
1420 
1421   void movl(Register dst, int32_t imm32);
1422   void movl(Address dst, int32_t imm32);
1423   void movl(Register dst, Register src);
1424   void movl(Register dst, Address src);
1425   void movl(Address dst, Register src);
1426 
1427   // These dummies prevent using movl from converting a zero (like NULL) into Register
1428   // by giving the compiler two choices it can't resolve
1429 
1430   void movl(Address  dst, void* junk);
1431   void movl(Register dst, void* junk);
1432 
1433 #ifdef _LP64
1434   void movq(Register dst, Register src);
1435   void movq(Register dst, Address src);
1436   void movq(Address  dst, Register src);
1437 #endif
1438 
1439   void movq(Address     dst, MMXRegister src );
1440   void movq(MMXRegister dst, Address src );
1441 
1442 #ifdef _LP64
1443   // These dummies prevent using movq from converting a zero (like NULL) into Register
1444   // by giving the compiler two choices it can't resolve
1445 
1446   void movq(Address  dst, void* dummy);
1447   void movq(Register dst, void* dummy);
1448 #endif
1449 
1450   // Move Quadword
1451   void movq(Address     dst, XMMRegister src);
1452   void movq(XMMRegister dst, Address src);
1453 
1454   void movsbl(Register dst, Address src);
1455   void movsbl(Register dst, Register src);
1456 
1457 #ifdef _LP64
1458   void movsbq(Register dst, Address src);
1459   void movsbq(Register dst, Register src);
1460 
1461   // Move signed 32bit immediate to 64bit extending sign
1462   void movslq(Address  dst, int32_t imm64);
1463   void movslq(Register dst, int32_t imm64);
1464 
1465   void movslq(Register dst, Address src);
1466   void movslq(Register dst, Register src);
1467   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1468 #endif
1469 
1470   void movswl(Register dst, Address src);
1471   void movswl(Register dst, Register src);
1472 
1473 #ifdef _LP64
1474   void movswq(Register dst, Address src);
1475   void movswq(Register dst, Register src);
1476 #endif
1477 
1478   void movw(Address dst, int imm16);
1479   void movw(Register dst, Address src);
1480   void movw(Address dst, Register src);
1481 
1482   void movzbl(Register dst, Address src);
1483   void movzbl(Register dst, Register src);
1484 
1485 #ifdef _LP64
1486   void movzbq(Register dst, Address src);
1487   void movzbq(Register dst, Register src);
1488 #endif
1489 
1490   void movzwl(Register dst, Address src);
1491   void movzwl(Register dst, Register src);
1492 
1493 #ifdef _LP64
1494   void movzwq(Register dst, Address src);
1495   void movzwq(Register dst, Register src);
1496 #endif
1497 
1498   // Unsigned multiply with RAX destination register
1499   void mull(Address src);
1500   void mull(Register src);
1501 
1502 #ifdef _LP64
1503   void mulq(Address src);
1504   void mulq(Register src);
1505   void mulxq(Register dst1, Register dst2, Register src);
1506 #endif
1507 
1508   // Multiply Scalar Double-Precision Floating-Point Values
1509   void mulsd(XMMRegister dst, Address src);
1510   void mulsd(XMMRegister dst, XMMRegister src);
1511 
1512   // Multiply Scalar Single-Precision Floating-Point Values
1513   void mulss(XMMRegister dst, Address src);
1514   void mulss(XMMRegister dst, XMMRegister src);
1515 
1516   void negl(Register dst);
1517 
1518 #ifdef _LP64
1519   void negq(Register dst);
1520 #endif
1521 
1522   void nop(int i = 1);
1523 
1524   void notl(Register dst);
1525 
1526 #ifdef _LP64
1527   void notq(Register dst);
1528 #endif
1529 
1530   void orl(Address dst, int32_t imm32);
1531   void orl(Register dst, int32_t imm32);
1532   void orl(Register dst, Address src);
1533   void orl(Register dst, Register src);
1534   void orl(Address dst, Register src);
1535 
1536   void orq(Address dst, int32_t imm32);
1537   void orq(Register dst, int32_t imm32);
1538   void orq(Register dst, Address src);
1539   void orq(Register dst, Register src);
1540 
1541   // Pack with unsigned saturation
1542   void packuswb(XMMRegister dst, XMMRegister src);
1543   void packuswb(XMMRegister dst, Address src);
1544   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1545 
1546   // Pemutation of 64bit words
1547   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
1548   void vpermq(XMMRegister dst, XMMRegister src, int imm8);
1549   void vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8);
1550 
1551   void pause();
1552 
1553   // SSE4.2 string instructions
1554   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1555   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1556 
1557   void pcmpeqb(XMMRegister dst, XMMRegister src);
1558   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1559   void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1560   void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1561   void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
1562 
1563   void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1564   void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
1565 
1566   void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len);
1567   void evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate of, int vector_len);
1568   void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len);
1569 
1570   void pcmpeqw(XMMRegister dst, XMMRegister src);
1571   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1572   void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1573   void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1574 
1575   void pcmpeqd(XMMRegister dst, XMMRegister src);
1576   void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1577   void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1578   void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1579 
1580   void pcmpeqq(XMMRegister dst, XMMRegister src);
1581   void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1582   void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1583   void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1584 
1585   void pmovmskb(Register dst, XMMRegister src);
1586   void vpmovmskb(Register dst, XMMRegister src);
1587 
1588   // SSE 4.1 extract
1589   void pextrd(Register dst, XMMRegister src, int imm8);
1590   void pextrq(Register dst, XMMRegister src, int imm8);
1591   void pextrd(Address dst, XMMRegister src, int imm8);
1592   void pextrq(Address dst, XMMRegister src, int imm8);
1593   void pextrb(Address dst, XMMRegister src, int imm8);
1594   // SSE 2 extract
1595   void pextrw(Register dst, XMMRegister src, int imm8);
1596   void pextrw(Address dst, XMMRegister src, int imm8);
1597 
1598   // SSE 4.1 insert
1599   void pinsrd(XMMRegister dst, Register src, int imm8);
1600   void pinsrq(XMMRegister dst, Register src, int imm8);
1601   void pinsrd(XMMRegister dst, Address src, int imm8);
1602   void pinsrq(XMMRegister dst, Address src, int imm8);
1603   void pinsrb(XMMRegister dst, Address src, int imm8);
1604   // SSE 2 insert
1605   void pinsrw(XMMRegister dst, Register src, int imm8);
1606   void pinsrw(XMMRegister dst, Address src, int imm8);
1607 
1608   // SSE4.1 packed move
1609   void pmovzxbw(XMMRegister dst, XMMRegister src);
1610   void pmovzxbw(XMMRegister dst, Address src);
1611 
1612   void vpmovzxbw( XMMRegister dst, Address src, int vector_len);
1613   void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len);
1614 
1615   void evpmovwb(Address dst, XMMRegister src, int vector_len);
1616   void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len);
1617 
1618 #ifndef _LP64 // no 32bit push/pop on amd64
1619   void popl(Address dst);
1620 #endif
1621 
1622 #ifdef _LP64
1623   void popq(Address dst);
1624 #endif
1625 
1626   void popcntl(Register dst, Address src);
1627   void popcntl(Register dst, Register src);
1628 
1629 #ifdef _LP64
1630   void popcntq(Register dst, Address src);
1631   void popcntq(Register dst, Register src);
1632 #endif
1633 
1634   // Prefetches (SSE, SSE2, 3DNOW only)
1635 
1636   void prefetchnta(Address src);
1637   void prefetchr(Address src);
1638   void prefetcht0(Address src);
1639   void prefetcht1(Address src);
1640   void prefetcht2(Address src);
1641   void prefetchw(Address src);
1642 
1643   // Shuffle Bytes
1644   void pshufb(XMMRegister dst, XMMRegister src);
1645   void pshufb(XMMRegister dst, Address src);
1646   void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1647 
1648   // Shuffle Packed Doublewords
1649   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1650   void pshufd(XMMRegister dst, Address src,     int mode);
1651   void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len);
1652 
1653   // Shuffle Packed Low Words
1654   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1655   void pshuflw(XMMRegister dst, Address src,     int mode);
1656 
1657   // Shift Right by bytes Logical DoubleQuadword Immediate
1658   void psrldq(XMMRegister dst, int shift);
1659   // Shift Left by bytes Logical DoubleQuadword Immediate
1660   void pslldq(XMMRegister dst, int shift);
1661 
1662   // Logical Compare 128bit
1663   void ptest(XMMRegister dst, XMMRegister src);
1664   void ptest(XMMRegister dst, Address src);
1665   // Logical Compare 256bit
1666   void vptest(XMMRegister dst, XMMRegister src);
1667   void vptest(XMMRegister dst, Address src);
1668 
1669   // Interleave Low Bytes
1670   void punpcklbw(XMMRegister dst, XMMRegister src);
1671   void punpcklbw(XMMRegister dst, Address src);
1672 
1673   // Interleave Low Doublewords
1674   void punpckldq(XMMRegister dst, XMMRegister src);
1675   void punpckldq(XMMRegister dst, Address src);
1676 
1677   // Interleave Low Quadwords
1678   void punpcklqdq(XMMRegister dst, XMMRegister src);
1679 
1680 #ifndef _LP64 // no 32bit push/pop on amd64
1681   void pushl(Address src);
1682 #endif
1683 
1684   void pushq(Address src);
1685 
1686   void rcll(Register dst, int imm8);
1687 
1688   void rclq(Register dst, int imm8);
1689 
1690   void rcrq(Register dst, int imm8);
1691 
1692   void rcpps(XMMRegister dst, XMMRegister src);
1693 
1694   void rcpss(XMMRegister dst, XMMRegister src);
1695 
1696   void rdtsc();
1697 
1698   void ret(int imm16);
1699 
1700 #ifdef _LP64
1701   void rorq(Register dst, int imm8);
1702   void rorxq(Register dst, Register src, int imm8);
1703   void rorxd(Register dst, Register src, int imm8);
1704 #endif
1705 
1706   void sahf();
1707 
1708   void sarl(Register dst, int imm8);
1709   void sarl(Register dst);
1710 
1711   void sarq(Register dst, int imm8);
1712   void sarq(Register dst);
1713 
1714   void sbbl(Address dst, int32_t imm32);
1715   void sbbl(Register dst, int32_t imm32);
1716   void sbbl(Register dst, Address src);
1717   void sbbl(Register dst, Register src);
1718 
1719   void sbbq(Address dst, int32_t imm32);
1720   void sbbq(Register dst, int32_t imm32);
1721   void sbbq(Register dst, Address src);
1722   void sbbq(Register dst, Register src);
1723 
1724   void setb(Condition cc, Register dst);
1725 
1726   void palignr(XMMRegister dst, XMMRegister src, int imm8);
1727   void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len);
1728 
1729   void pblendw(XMMRegister dst, XMMRegister src, int imm8);
1730 
1731   void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8);
1732   void sha1nexte(XMMRegister dst, XMMRegister src);
1733   void sha1msg1(XMMRegister dst, XMMRegister src);
1734   void sha1msg2(XMMRegister dst, XMMRegister src);
1735   // xmm0 is implicit additional source to the following instruction.
1736   void sha256rnds2(XMMRegister dst, XMMRegister src);
1737   void sha256msg1(XMMRegister dst, XMMRegister src);
1738   void sha256msg2(XMMRegister dst, XMMRegister src);
1739 
1740   void shldl(Register dst, Register src);
1741   void shldl(Register dst, Register src, int8_t imm8);
1742 
1743   void shll(Register dst, int imm8);
1744   void shll(Register dst);
1745 
1746   void shlq(Register dst, int imm8);
1747   void shlq(Register dst);
1748 
1749   void shrdl(Register dst, Register src);
1750 
1751   void shrl(Register dst, int imm8);
1752   void shrl(Register dst);
1753 
1754   void shrq(Register dst, int imm8);
1755   void shrq(Register dst);
1756 
1757   void smovl(); // QQQ generic?
1758 
1759   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1760   void sqrtsd(XMMRegister dst, Address src);
1761   void sqrtsd(XMMRegister dst, XMMRegister src);
1762 
1763   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1764   void sqrtss(XMMRegister dst, Address src);
1765   void sqrtss(XMMRegister dst, XMMRegister src);
1766 
1767   void std();
1768 
1769   void stmxcsr( Address dst );
1770 
1771   void subl(Address dst, int32_t imm32);
1772   void subl(Address dst, Register src);
1773   void subl(Register dst, int32_t imm32);
1774   void subl(Register dst, Address src);
1775   void subl(Register dst, Register src);
1776 
1777   void subq(Address dst, int32_t imm32);
1778   void subq(Address dst, Register src);
1779   void subq(Register dst, int32_t imm32);
1780   void subq(Register dst, Address src);
1781   void subq(Register dst, Register src);
1782 
1783   // Force generation of a 4 byte immediate value even if it fits into 8bit
1784   void subl_imm32(Register dst, int32_t imm32);
1785   void subq_imm32(Register dst, int32_t imm32);
1786 
1787   // Subtract Scalar Double-Precision Floating-Point Values
1788   void subsd(XMMRegister dst, Address src);
1789   void subsd(XMMRegister dst, XMMRegister src);
1790 
1791   // Subtract Scalar Single-Precision Floating-Point Values
1792   void subss(XMMRegister dst, Address src);
1793   void subss(XMMRegister dst, XMMRegister src);
1794 
1795   void testb(Register dst, int imm8);
1796   void testb(Address dst, int imm8);
1797 
1798   void testl(Register dst, int32_t imm32);
1799   void testl(Register dst, Register src);
1800   void testl(Register dst, Address src);
1801 
1802   void testq(Register dst, int32_t imm32);
1803   void testq(Register dst, Register src);
1804 
1805   // BMI - count trailing zeros
1806   void tzcntl(Register dst, Register src);
1807   void tzcntq(Register dst, Register src);
1808 
1809   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1810   void ucomisd(XMMRegister dst, Address src);
1811   void ucomisd(XMMRegister dst, XMMRegister src);
1812 
1813   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1814   void ucomiss(XMMRegister dst, Address src);
1815   void ucomiss(XMMRegister dst, XMMRegister src);
1816 
1817   void xabort(int8_t imm8);
1818 
1819   void xaddl(Address dst, Register src);
1820 
1821   void xaddq(Address dst, Register src);
1822 
1823   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1824 
1825   void xchgl(Register reg, Address adr);
1826   void xchgl(Register dst, Register src);
1827 
1828   void xchgq(Register reg, Address adr);
1829   void xchgq(Register dst, Register src);
1830 
1831   void xend();
1832 
1833   // Get Value of Extended Control Register
1834   void xgetbv();
1835 
1836   void xorl(Register dst, int32_t imm32);
1837   void xorl(Register dst, Address src);
1838   void xorl(Register dst, Register src);
1839 
1840   void xorb(Register dst, Address src);
1841 
1842   void xorq(Register dst, Address src);
1843   void xorq(Register dst, Register src);
1844 
1845   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1846 
1847   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1848 
1849   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1850   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1851   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1852   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1853   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1854   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1855   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1856   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1857   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1858   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1859   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1860   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1861   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1862   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1863   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1864   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1865 
1866   void shlxl(Register dst, Register src1, Register src2);
1867   void shlxq(Register dst, Register src1, Register src2);
1868 
1869   //====================VECTOR ARITHMETIC=====================================
1870 
1871   // Add Packed Floating-Point Values
1872   void addpd(XMMRegister dst, XMMRegister src);
1873   void addpd(XMMRegister dst, Address src);
1874   void addps(XMMRegister dst, XMMRegister src);
1875   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1876   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1877   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1878   void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1879 
1880   // Subtract Packed Floating-Point Values
1881   void subpd(XMMRegister dst, XMMRegister src);
1882   void subps(XMMRegister dst, XMMRegister src);
1883   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1884   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1885   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1886   void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1887 
1888   // Multiply Packed Floating-Point Values
1889   void mulpd(XMMRegister dst, XMMRegister src);
1890   void mulpd(XMMRegister dst, Address src);
1891   void mulps(XMMRegister dst, XMMRegister src);
1892   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1893   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1894   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1895   void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1896 
1897   // Divide Packed Floating-Point Values
1898   void divpd(XMMRegister dst, XMMRegister src);
1899   void divps(XMMRegister dst, XMMRegister src);
1900   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1901   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1902   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1903   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1904 
1905   // Sqrt Packed Floating-Point Values - Double precision only
1906   void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len);
1907   void vsqrtpd(XMMRegister dst, Address src, int vector_len);
1908 
1909   // Bitwise Logical AND of Packed Floating-Point Values
1910   void andpd(XMMRegister dst, XMMRegister src);
1911   void andps(XMMRegister dst, XMMRegister src);
1912   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1913   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1914   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1915   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1916 
1917   void unpckhpd(XMMRegister dst, XMMRegister src);
1918   void unpcklpd(XMMRegister dst, XMMRegister src);
1919 
1920   // Bitwise Logical XOR of Packed Floating-Point Values
1921   void xorpd(XMMRegister dst, XMMRegister src);
1922   void xorps(XMMRegister dst, XMMRegister src);
1923   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1924   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1925   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1926   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1927 
1928   // Add horizontal packed integers
1929   void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1930   void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1931   void phaddw(XMMRegister dst, XMMRegister src);
1932   void phaddd(XMMRegister dst, XMMRegister src);
1933 
1934   // Add packed integers
1935   void paddb(XMMRegister dst, XMMRegister src);
1936   void paddw(XMMRegister dst, XMMRegister src);
1937   void paddd(XMMRegister dst, XMMRegister src);
1938   void paddd(XMMRegister dst, Address src);
1939   void paddq(XMMRegister dst, XMMRegister src);
1940   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1941   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1942   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1943   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1944   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1945   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1946   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1947   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1948 
1949   // Sub packed integers
1950   void psubb(XMMRegister dst, XMMRegister src);
1951   void psubw(XMMRegister dst, XMMRegister src);
1952   void psubd(XMMRegister dst, XMMRegister src);
1953   void psubq(XMMRegister dst, XMMRegister src);
1954   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1955   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1956   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1957   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1958   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1959   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1960   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1961   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1962 
1963   // Multiply packed integers (only shorts and ints)
1964   void pmullw(XMMRegister dst, XMMRegister src);
1965   void pmulld(XMMRegister dst, XMMRegister src);
1966   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1967   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1968   void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1969   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1970   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1971   void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1972 
1973   // Shift left packed integers
1974   void psllw(XMMRegister dst, int shift);
1975   void pslld(XMMRegister dst, int shift);
1976   void psllq(XMMRegister dst, int shift);
1977   void psllw(XMMRegister dst, XMMRegister shift);
1978   void pslld(XMMRegister dst, XMMRegister shift);
1979   void psllq(XMMRegister dst, XMMRegister shift);
1980   void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1981   void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1982   void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1983   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1984   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1985   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1986 
1987   // Logical shift right packed integers
1988   void psrlw(XMMRegister dst, int shift);
1989   void psrld(XMMRegister dst, int shift);
1990   void psrlq(XMMRegister dst, int shift);
1991   void psrlw(XMMRegister dst, XMMRegister shift);
1992   void psrld(XMMRegister dst, XMMRegister shift);
1993   void psrlq(XMMRegister dst, XMMRegister shift);
1994   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1995   void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1996   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1997   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1998   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1999   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2000 
2001   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
2002   void psraw(XMMRegister dst, int shift);
2003   void psrad(XMMRegister dst, int shift);
2004   void psraw(XMMRegister dst, XMMRegister shift);
2005   void psrad(XMMRegister dst, XMMRegister shift);
2006   void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2007   void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2008   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2009   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2010 
2011   // And packed integers
2012   void pand(XMMRegister dst, XMMRegister src);
2013   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2014   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2015 
2016   // Andn packed integers
2017   void pandn(XMMRegister dst, XMMRegister src);
2018 
2019   // Or packed integers
2020   void por(XMMRegister dst, XMMRegister src);
2021   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2022   void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2023 
2024   // Xor packed integers
2025   void pxor(XMMRegister dst, XMMRegister src);
2026   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2027   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2028 
2029   // vinserti forms
2030   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2031   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2032   void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2033   void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2034   void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2035 
2036   // vinsertf forms
2037   void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2038   void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2039   void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2040   void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2041   void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2042   void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2043 
2044   // vextracti forms
2045   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
2046   void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
2047   void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2048   void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8);
2049   void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
2050   void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2051 
2052   // vextractf forms
2053   void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
2054   void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
2055   void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2056   void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
2057   void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
2058   void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2059   void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
2060 
2061   // legacy xmm sourced word/dword replicate
2062   void vpbroadcastw(XMMRegister dst, XMMRegister src);
2063   void vpbroadcastd(XMMRegister dst, XMMRegister src);
2064 
2065   // xmm/mem sourced byte/word/dword/qword replicate
2066   void evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
2067   void evpbroadcastb(XMMRegister dst, Address src, int vector_len);
2068   void evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
2069   void evpbroadcastw(XMMRegister dst, Address src, int vector_len);
2070   void evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
2071   void evpbroadcastd(XMMRegister dst, Address src, int vector_len);
2072   void evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
2073   void evpbroadcastq(XMMRegister dst, Address src, int vector_len);
2074 
2075   // scalar single/double precision replicate
2076   void evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
2077   void evpbroadcastss(XMMRegister dst, Address src, int vector_len);
2078   void evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
2079   void evpbroadcastsd(XMMRegister dst, Address src, int vector_len);
2080 
2081   // gpr sourced byte/word/dword/qword replicate
2082   void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
2083   void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
2084   void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
2085   void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
2086 
2087   // Carry-Less Multiplication Quadword
2088   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
2089   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
2090 
2091   // AVX instruction which is used to clear upper 128 bits of YMM registers and
2092   // to avoid transaction penalty between AVX and SSE states. There is no
2093   // penalty if legacy SSE instructions are encoded using VEX prefix because
2094   // they always clear upper 128 bits. It should be used before calling
2095   // runtime code and native libraries.
2096   void vzeroupper();
2097 
2098   // AVX support for vectorized conditional move (double). The following two instructions used only coupled.
2099   void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
2100   void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
2101 
2102  protected:
2103   // Next instructions require address alignment 16 bytes SSE mode.
2104   // They should be called only from corresponding MacroAssembler instructions.
2105   void andpd(XMMRegister dst, Address src);
2106   void andps(XMMRegister dst, Address src);
2107   void xorpd(XMMRegister dst, Address src);
2108   void xorps(XMMRegister dst, Address src);
2109 
2110 };
2111 
2112 // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions.
2113 // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction
2114 // are applied.
2115 class InstructionAttr {
2116 public:
2117   InstructionAttr(
2118     int vector_len,     // The length of vector to be applied in encoding - for both AVX and EVEX
2119     bool rex_vex_w,     // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true
2120     bool legacy_mode,   // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX
2121     bool no_reg_mask,   // when true, k0 is used when EVEX encoding is chosen, else k1 is used under the same condition
2122     bool uses_vl)       // This instruction may have legacy constraints based on vector length for EVEX
2123     :
2124       _avx_vector_len(vector_len),
2125       _rex_vex_w(rex_vex_w),
2126       _rex_vex_w_reverted(false),
2127       _legacy_mode(legacy_mode),
2128       _no_reg_mask(no_reg_mask),
2129       _uses_vl(uses_vl),
2130       _tuple_type(Assembler::EVEX_ETUP),
2131       _input_size_in_bits(Assembler::EVEX_NObit),
2132       _is_evex_instruction(false),
2133       _evex_encoding(0),
2134       _is_clear_context(false),
2135       _is_extended_context(false),
2136       _current_assembler(NULL),
2137       _embedded_opmask_register_specifier(1) { // hard code k1, it will be initialized for now
2138     if (UseAVX < 3) _legacy_mode = true;
2139   }
2140 
2141   ~InstructionAttr() {
2142     if (_current_assembler != NULL) {
2143       _current_assembler->clear_attributes();
2144     }
2145     _current_assembler = NULL;
2146   }
2147 
2148 private:
2149   int  _avx_vector_len;
2150   bool _rex_vex_w;
2151   bool _rex_vex_w_reverted;
2152   bool _legacy_mode;
2153   bool _no_reg_mask;
2154   bool _uses_vl;
2155   int  _tuple_type;
2156   int  _input_size_in_bits;
2157   bool _is_evex_instruction;
2158   int  _evex_encoding;
2159   bool _is_clear_context;
2160   bool _is_extended_context;
2161   int _embedded_opmask_register_specifier;
2162 
2163   Assembler *_current_assembler;
2164 
2165 public:
2166   // query functions for field accessors
2167   int  get_vector_len(void) const { return _avx_vector_len; }
2168   bool is_rex_vex_w(void) const { return _rex_vex_w; }
2169   bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; }
2170   bool is_legacy_mode(void) const { return _legacy_mode; }
2171   bool is_no_reg_mask(void) const { return _no_reg_mask; }
2172   bool uses_vl(void) const { return _uses_vl; }
2173   int  get_tuple_type(void) const { return _tuple_type; }
2174   int  get_input_size(void) const { return _input_size_in_bits; }
2175   int  is_evex_instruction(void) const { return _is_evex_instruction; }
2176   int  get_evex_encoding(void) const { return _evex_encoding; }
2177   bool is_clear_context(void) const { return _is_clear_context; }
2178   bool is_extended_context(void) const { return _is_extended_context; }
2179   int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; }
2180 
2181   // Set the vector len manually
2182   void set_vector_len(int vector_len) { _avx_vector_len = vector_len; }
2183 
2184   // Set revert rex_vex_w for avx encoding
2185   void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; }
2186 
2187   // Set rex_vex_w based on state
2188   void set_rex_vex_w(bool state) { _rex_vex_w = state; }
2189 
2190   // Set the instruction to be encoded in AVX mode
2191   void set_is_legacy_mode(void) { _legacy_mode = true; }
2192 
2193   // Set the current instuction to be encoded as an EVEX instuction
2194   void set_is_evex_instruction(void) { _is_evex_instruction = true; }
2195 
2196   // Internal encoding data used in compressed immediate offset programming
2197   void set_evex_encoding(int value) { _evex_encoding = value; }
2198 
2199   // Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components
2200   void set_is_clear_context(void) { _is_clear_context = true; }
2201 
2202   // Map back to current asembler so that we can manage object level assocation
2203   void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; }
2204 
2205   // Address modifiers used for compressed displacement calculation
2206   void set_address_attributes(int tuple_type, int input_size_in_bits) {
2207     if (VM_Version::supports_evex()) {
2208       _tuple_type = tuple_type;
2209       _input_size_in_bits = input_size_in_bits;
2210     }
2211   }
2212 
2213   // Set embedded opmask register specifier.
2214   void set_embedded_opmask_register_specifier(KRegister mask) {
2215     _embedded_opmask_register_specifier = (*mask).encoding() & 0x7;
2216   }
2217 
2218 };
2219 
2220 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP