1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/superword.hpp"
  42 #include "opto/vectornode.hpp"
  43 
  44 //------------------------------is_loop_exit-----------------------------------
  45 // Given an IfNode, return the loop-exiting projection or NULL if both
  46 // arms remain in the loop.
  47 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  48   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  49   PhaseIdealLoop *phase = _phase;
  50   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  51   // we need loop unswitching instead of peeling.
  52   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  53     return iff->raw_out(0);
  54   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  55     return iff->raw_out(1);
  56   return NULL;
  57 }
  58 
  59 
  60 //=============================================================================
  61 
  62 
  63 //------------------------------record_for_igvn----------------------------
  64 // Put loop body on igvn work list
  65 void IdealLoopTree::record_for_igvn() {
  66   for( uint i = 0; i < _body.size(); i++ ) {
  67     Node *n = _body.at(i);
  68     _phase->_igvn._worklist.push(n);
  69   }
  70 }
  71 
  72 //------------------------------compute_exact_trip_count-----------------------
  73 // Compute loop exact trip count if possible. Do not recalculate trip count for
  74 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  75 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  76   if (!_head->as_Loop()->is_valid_counted_loop()) {
  77     return;
  78   }
  79   CountedLoopNode* cl = _head->as_CountedLoop();
  80   // Trip count may become nonexact for iteration split loops since
  81   // RCE modifies limits. Note, _trip_count value is not reset since
  82   // it is used to limit unrolling of main loop.
  83   cl->set_nonexact_trip_count();
  84 
  85   // Loop's test should be part of loop.
  86   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  87     return; // Infinite loop
  88 
  89 #ifdef ASSERT
  90   BoolTest::mask bt = cl->loopexit()->test_trip();
  91   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  92          bt == BoolTest::ne, "canonical test is expected");
  93 #endif
  94 
  95   Node* init_n = cl->init_trip();
  96   Node* limit_n = cl->limit();
  97   if (init_n  != NULL &&  init_n->is_Con() &&
  98       limit_n != NULL && limit_n->is_Con()) {
  99     // Use longs to avoid integer overflow.
 100     int stride_con  = cl->stride_con();
 101     jlong init_con   = cl->init_trip()->get_int();
 102     jlong limit_con  = cl->limit()->get_int();
 103     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 104     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 105     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 106       // Set exact trip count.
 107       cl->set_exact_trip_count((uint)trip_count);
 108     }
 109   }
 110 }
 111 
 112 //------------------------------compute_profile_trip_cnt----------------------------
 113 // Compute loop trip count from profile data as
 114 //    (backedge_count + loop_exit_count) / loop_exit_count
 115 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 116   if (!_head->is_CountedLoop()) {
 117     return;
 118   }
 119   CountedLoopNode* head = _head->as_CountedLoop();
 120   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 121     return; // Already computed
 122   }
 123   float trip_cnt = (float)max_jint; // default is big
 124 
 125   Node* back = head->in(LoopNode::LoopBackControl);
 126   while (back != head) {
 127     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 128         back->in(0) &&
 129         back->in(0)->is_If() &&
 130         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 131         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 132       break;
 133     }
 134     back = phase->idom(back);
 135   }
 136   if (back != head) {
 137     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 138            back->in(0), "if-projection exists");
 139     IfNode* back_if = back->in(0)->as_If();
 140     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 141 
 142     // Now compute a loop exit count
 143     float loop_exit_cnt = 0.0f;
 144     for( uint i = 0; i < _body.size(); i++ ) {
 145       Node *n = _body[i];
 146       if( n->is_If() ) {
 147         IfNode *iff = n->as_If();
 148         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 149           Node *exit = is_loop_exit(iff);
 150           if( exit ) {
 151             float exit_prob = iff->_prob;
 152             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 153             if (exit_prob > PROB_MIN) {
 154               float exit_cnt = iff->_fcnt * exit_prob;
 155               loop_exit_cnt += exit_cnt;
 156             }
 157           }
 158         }
 159       }
 160     }
 161     if (loop_exit_cnt > 0.0f) {
 162       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 163     } else {
 164       // No exit count so use
 165       trip_cnt = loop_back_cnt;
 166     }
 167   }
 168 #ifndef PRODUCT
 169   if (TraceProfileTripCount) {
 170     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 171   }
 172 #endif
 173   head->set_profile_trip_cnt(trip_cnt);
 174 }
 175 
 176 //---------------------is_invariant_addition-----------------------------
 177 // Return nonzero index of invariant operand for an Add or Sub
 178 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 179 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 180   int op = n->Opcode();
 181   if (op == Op_AddI || op == Op_SubI) {
 182     bool in1_invar = this->is_invariant(n->in(1));
 183     bool in2_invar = this->is_invariant(n->in(2));
 184     if (in1_invar && !in2_invar) return 1;
 185     if (!in1_invar && in2_invar) return 2;
 186   }
 187   return 0;
 188 }
 189 
 190 //---------------------reassociate_add_sub-----------------------------
 191 // Reassociate invariant add and subtract expressions:
 192 //
 193 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 194 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 195 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 196 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 197 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 198 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 199 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 200 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 201 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 202 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 203 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 204 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 205 //
 206 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 207   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 208   if (is_invariant(n1)) return NULL;
 209   int inv1_idx = is_invariant_addition(n1, phase);
 210   if (!inv1_idx) return NULL;
 211   // Don't mess with add of constant (igvn moves them to expression tree root.)
 212   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 213   Node* inv1 = n1->in(inv1_idx);
 214   Node* n2 = n1->in(3 - inv1_idx);
 215   int inv2_idx = is_invariant_addition(n2, phase);
 216   if (!inv2_idx) return NULL;
 217   Node* x    = n2->in(3 - inv2_idx);
 218   Node* inv2 = n2->in(inv2_idx);
 219 
 220   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 221   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 222   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 223   if (n1->is_Sub() && inv1_idx == 1) {
 224     neg_x    = !neg_x;
 225     neg_inv2 = !neg_inv2;
 226   }
 227   Node* inv1_c = phase->get_ctrl(inv1);
 228   Node* inv2_c = phase->get_ctrl(inv2);
 229   Node* n_inv1;
 230   if (neg_inv1) {
 231     Node *zero = phase->_igvn.intcon(0);
 232     phase->set_ctrl(zero, phase->C->root());
 233     n_inv1 = new SubINode(zero, inv1);
 234     phase->register_new_node(n_inv1, inv1_c);
 235   } else {
 236     n_inv1 = inv1;
 237   }
 238   Node* inv;
 239   if (neg_inv2) {
 240     inv = new SubINode(n_inv1, inv2);
 241   } else {
 242     inv = new AddINode(n_inv1, inv2);
 243   }
 244   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 245 
 246   Node* addx;
 247   if (neg_x) {
 248     addx = new SubINode(inv, x);
 249   } else {
 250     addx = new AddINode(x, inv);
 251   }
 252   phase->register_new_node(addx, phase->get_ctrl(x));
 253   phase->_igvn.replace_node(n1, addx);
 254   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 255   _body.yank(n1);
 256   return addx;
 257 }
 258 
 259 //---------------------reassociate_invariants-----------------------------
 260 // Reassociate invariant expressions:
 261 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 262   for (int i = _body.size() - 1; i >= 0; i--) {
 263     Node *n = _body.at(i);
 264     for (int j = 0; j < 5; j++) {
 265       Node* nn = reassociate_add_sub(n, phase);
 266       if (nn == NULL) break;
 267       n = nn; // again
 268     };
 269   }
 270 }
 271 
 272 //------------------------------policy_peeling---------------------------------
 273 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 274 // make some loop-invariant test (usually a null-check) happen before the loop.
 275 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 276   Node *test = ((IdealLoopTree*)this)->tail();
 277   int  body_size = ((IdealLoopTree*)this)->_body.size();
 278   // Peeling does loop cloning which can result in O(N^2) node construction
 279   if( body_size > 255 /* Prevent overflow for large body_size */
 280       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
 281     return false;           // too large to safely clone
 282   }
 283 
 284   // check for vectorized loops, any peeling done was already applied
 285   if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
 286 
 287   while( test != _head ) {      // Scan till run off top of loop
 288     if( test->is_If() ) {       // Test?
 289       Node *ctrl = phase->get_ctrl(test->in(1));
 290       if (ctrl->is_top())
 291         return false;           // Found dead test on live IF?  No peeling!
 292       // Standard IF only has one input value to check for loop invariance
 293       assert(test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd || test->Opcode() == Op_RangeCheck, "Check this code when new subtype is added");
 294       // Condition is not a member of this loop?
 295       if( !is_member(phase->get_loop(ctrl)) &&
 296           is_loop_exit(test) )
 297         return true;            // Found reason to peel!
 298     }
 299     // Walk up dominators to loop _head looking for test which is
 300     // executed on every path thru loop.
 301     test = phase->idom(test);
 302   }
 303   return false;
 304 }
 305 
 306 //------------------------------peeled_dom_test_elim---------------------------
 307 // If we got the effect of peeling, either by actually peeling or by making
 308 // a pre-loop which must execute at least once, we can remove all
 309 // loop-invariant dominated tests in the main body.
 310 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 311   bool progress = true;
 312   while( progress ) {
 313     progress = false;           // Reset for next iteration
 314     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 315     Node *test = prev->in(0);
 316     while( test != loop->_head ) { // Scan till run off top of loop
 317 
 318       int p_op = prev->Opcode();
 319       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 320           test->is_If() &&      // Test?
 321           !test->in(1)->is_Con() && // And not already obvious?
 322           // Condition is not a member of this loop?
 323           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 324         // Walk loop body looking for instances of this test
 325         for( uint i = 0; i < loop->_body.size(); i++ ) {
 326           Node *n = loop->_body.at(i);
 327           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 328             // IfNode was dominated by version in peeled loop body
 329             progress = true;
 330             dominated_by( old_new[prev->_idx], n );
 331           }
 332         }
 333       }
 334       prev = test;
 335       test = idom(test);
 336     } // End of scan tests in loop
 337 
 338   } // End of while( progress )
 339 }
 340 
 341 //------------------------------do_peeling-------------------------------------
 342 // Peel the first iteration of the given loop.
 343 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 344 //         The pre-loop illegally has 2 control users (old & new loops).
 345 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 346 //         Do this by making the old-loop fall-in edges act as if they came
 347 //         around the loopback from the prior iteration (follow the old-loop
 348 //         backedges) and then map to the new peeled iteration.  This leaves
 349 //         the pre-loop with only 1 user (the new peeled iteration), but the
 350 //         peeled-loop backedge has 2 users.
 351 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 352 //         extra backedge user.
 353 //
 354 //                   orig
 355 //
 356 //                  stmt1
 357 //                    |
 358 //                    v
 359 //              loop predicate
 360 //                    |
 361 //                    v
 362 //                   loop<----+
 363 //                     |      |
 364 //                   stmt2    |
 365 //                     |      |
 366 //                     v      |
 367 //                    if      ^
 368 //                   / \      |
 369 //                  /   \     |
 370 //                 v     v    |
 371 //               false true   |
 372 //               /       \    |
 373 //              /         ----+
 374 //             |
 375 //             v
 376 //           exit
 377 //
 378 //
 379 //            after clone loop
 380 //
 381 //                   stmt1
 382 //                     |
 383 //                     v
 384 //               loop predicate
 385 //                 /       \
 386 //        clone   /         \   orig
 387 //               /           \
 388 //              /             \
 389 //             v               v
 390 //   +---->loop clone          loop<----+
 391 //   |      |                    |      |
 392 //   |    stmt2 clone          stmt2    |
 393 //   |      |                    |      |
 394 //   |      v                    v      |
 395 //   ^      if clone            If      ^
 396 //   |      / \                / \      |
 397 //   |     /   \              /   \     |
 398 //   |    v     v            v     v    |
 399 //   |    true  false      false true   |
 400 //   |    /         \      /       \    |
 401 //   +----           \    /         ----+
 402 //                    \  /
 403 //                    1v v2
 404 //                  region
 405 //                     |
 406 //                     v
 407 //                   exit
 408 //
 409 //
 410 //         after peel and predicate move
 411 //
 412 //                   stmt1
 413 //                    /
 414 //                   /
 415 //        clone     /            orig
 416 //                 /
 417 //                /              +----------+
 418 //               /               |          |
 419 //              /          loop predicate   |
 420 //             /                 |          |
 421 //            v                  v          |
 422 //   TOP-->loop clone          loop<----+   |
 423 //          |                    |      |   |
 424 //        stmt2 clone          stmt2    |   |
 425 //          |                    |      |   ^
 426 //          v                    v      |   |
 427 //          if clone            If      ^   |
 428 //          / \                / \      |   |
 429 //         /   \              /   \     |   |
 430 //        v     v            v     v    |   |
 431 //      true   false      false  true   |   |
 432 //        |         \      /       \    |   |
 433 //        |          \    /         ----+   ^
 434 //        |           \  /                  |
 435 //        |           1v v2                 |
 436 //        v         region                  |
 437 //        |            |                    |
 438 //        |            v                    |
 439 //        |          exit                   |
 440 //        |                                 |
 441 //        +--------------->-----------------+
 442 //
 443 //
 444 //              final graph
 445 //
 446 //                  stmt1
 447 //                    |
 448 //                    v
 449 //                  stmt2 clone
 450 //                    |
 451 //                    v
 452 //                   if clone
 453 //                  / |
 454 //                 /  |
 455 //                v   v
 456 //            false  true
 457 //             |      |
 458 //             |      v
 459 //             | loop predicate
 460 //             |      |
 461 //             |      v
 462 //             |     loop<----+
 463 //             |      |       |
 464 //             |    stmt2     |
 465 //             |      |       |
 466 //             |      v       |
 467 //             v      if      ^
 468 //             |     /  \     |
 469 //             |    /    \    |
 470 //             |   v     v    |
 471 //             | false  true  |
 472 //             |  |        \  |
 473 //             v  v         --+
 474 //            region
 475 //              |
 476 //              v
 477 //             exit
 478 //
 479 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 480 
 481   C->set_major_progress();
 482   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 483   // 'pre' loop from the main and the 'pre' can no longer have its
 484   // iterations adjusted.  Therefore, we need to declare this loop as
 485   // no longer a 'main' loop; it will need new pre and post loops before
 486   // we can do further RCE.
 487 #ifndef PRODUCT
 488   if (TraceLoopOpts) {
 489     tty->print("Peel         ");
 490     loop->dump_head();
 491   }
 492 #endif
 493   Node* head = loop->_head;
 494   bool counted_loop = head->is_CountedLoop();
 495   if (counted_loop) {
 496     CountedLoopNode *cl = head->as_CountedLoop();
 497     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 498     cl->set_trip_count(cl->trip_count() - 1);
 499     if (cl->is_main_loop()) {
 500       cl->set_normal_loop();
 501 #ifndef PRODUCT
 502       if (PrintOpto && VerifyLoopOptimizations) {
 503         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 504         loop->dump_head();
 505       }
 506 #endif
 507     }
 508   }
 509   Node* entry = head->in(LoopNode::EntryControl);
 510 
 511   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 512   //         The pre-loop illegally has 2 control users (old & new loops).
 513   clone_loop( loop, old_new, dom_depth(head) );
 514 
 515   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 516   //         Do this by making the old-loop fall-in edges act as if they came
 517   //         around the loopback from the prior iteration (follow the old-loop
 518   //         backedges) and then map to the new peeled iteration.  This leaves
 519   //         the pre-loop with only 1 user (the new peeled iteration), but the
 520   //         peeled-loop backedge has 2 users.
 521   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 522   _igvn.hash_delete(head);
 523   head->set_req(LoopNode::EntryControl, new_entry);
 524   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 525     Node* old = head->fast_out(j);
 526     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 527       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 528       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 529         // Then loop body backedge value remains the same.
 530         new_exit_value = old->in(LoopNode::LoopBackControl);
 531       _igvn.hash_delete(old);
 532       old->set_req(LoopNode::EntryControl, new_exit_value);
 533     }
 534   }
 535 
 536 
 537   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 538   //         extra backedge user.
 539   Node* new_head = old_new[head->_idx];
 540   _igvn.hash_delete(new_head);
 541   new_head->set_req(LoopNode::LoopBackControl, C->top());
 542   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 543     Node* use = new_head->fast_out(j2);
 544     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 545       _igvn.hash_delete(use);
 546       use->set_req(LoopNode::LoopBackControl, C->top());
 547     }
 548   }
 549 
 550 
 551   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 552   int dd = dom_depth(head);
 553   set_idom(head, head->in(1), dd);
 554   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 555     Node *old = loop->_body.at(j3);
 556     Node *nnn = old_new[old->_idx];
 557     if (!has_ctrl(nnn))
 558       set_idom(nnn, idom(nnn), dd-1);
 559   }
 560 
 561   // Now force out all loop-invariant dominating tests.  The optimizer
 562   // finds some, but we _know_ they are all useless.
 563   peeled_dom_test_elim(loop,old_new);
 564 
 565   loop->record_for_igvn();
 566 }
 567 
 568 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 569 
 570 //------------------------------policy_maximally_unroll------------------------
 571 // Calculate exact loop trip count and return true if loop can be maximally
 572 // unrolled.
 573 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 574   CountedLoopNode *cl = _head->as_CountedLoop();
 575   assert(cl->is_normal_loop(), "");
 576   if (!cl->is_valid_counted_loop())
 577     return false; // Malformed counted loop
 578 
 579   if (!cl->has_exact_trip_count()) {
 580     // Trip count is not exact.
 581     return false;
 582   }
 583 
 584   uint trip_count = cl->trip_count();
 585   // Note, max_juint is used to indicate unknown trip count.
 586   assert(trip_count > 1, "one iteration loop should be optimized out already");
 587   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 588 
 589   // Real policy: if we maximally unroll, does it get too big?
 590   // Allow the unrolled mess to get larger than standard loop
 591   // size.  After all, it will no longer be a loop.
 592   uint body_size    = _body.size();
 593   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 594   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 595   if (trip_count > unroll_limit || body_size > unroll_limit) {
 596     return false;
 597   }
 598 
 599   // Fully unroll a loop with few iterations regardless next
 600   // conditions since following loop optimizations will split
 601   // such loop anyway (pre-main-post).
 602   if (trip_count <= 3)
 603     return true;
 604 
 605   // Take into account that after unroll conjoined heads and tails will fold,
 606   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 607   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 608   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 609   if (body_size != tst_body_size) // Check for int overflow
 610     return false;
 611   if (new_body_size > unroll_limit ||
 612       // Unrolling can result in a large amount of node construction
 613       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
 614     return false;
 615   }
 616 
 617   // Do not unroll a loop with String intrinsics code.
 618   // String intrinsics are large and have loops.
 619   for (uint k = 0; k < _body.size(); k++) {
 620     Node* n = _body.at(k);
 621     switch (n->Opcode()) {
 622       case Op_StrComp:
 623       case Op_StrEquals:
 624       case Op_StrIndexOf:
 625       case Op_StrIndexOfChar:
 626       case Op_EncodeISOArray:
 627       case Op_AryEq:
 628       case Op_HasNegatives: {
 629         return false;
 630       }
 631 #if INCLUDE_RTM_OPT
 632       case Op_FastLock:
 633       case Op_FastUnlock: {
 634         // Don't unroll RTM locking code because it is large.
 635         if (UseRTMLocking) {
 636           return false;
 637         }
 638       }
 639 #endif
 640     } // switch
 641   }
 642 
 643   return true; // Do maximally unroll
 644 }
 645 
 646 
 647 //------------------------------policy_unroll----------------------------------
 648 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 649 // the loop is a CountedLoop and the body is small enough.
 650 bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) {
 651 
 652   CountedLoopNode *cl = _head->as_CountedLoop();
 653   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 654 
 655   if (!cl->is_valid_counted_loop())
 656     return false; // Malformed counted loop
 657 
 658   // Protect against over-unrolling.
 659   // After split at least one iteration will be executed in pre-loop.
 660   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 661 
 662   _local_loop_unroll_limit = LoopUnrollLimit;
 663   _local_loop_unroll_factor = 4;
 664   int future_unroll_ct = cl->unrolled_count() * 2;
 665   if (!cl->do_unroll_only()) {
 666     if (future_unroll_ct > LoopMaxUnroll) return false;
 667   } else {
 668     // obey user constraints on vector mapped loops with additional unrolling applied
 669     int unroll_constraint = (cl->slp_max_unroll()) ? cl->slp_max_unroll() : 1;
 670     if ((future_unroll_ct / unroll_constraint) > LoopMaxUnroll) return false;
 671   }
 672 
 673   // Check for initial stride being a small enough constant
 674   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 675 
 676   // Don't unroll if the next round of unrolling would push us
 677   // over the expected trip count of the loop.  One is subtracted
 678   // from the expected trip count because the pre-loop normally
 679   // executes 1 iteration.
 680   if (UnrollLimitForProfileCheck > 0 &&
 681       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 682       future_unroll_ct        > UnrollLimitForProfileCheck &&
 683       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 684     return false;
 685   }
 686 
 687   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 688   //   the residual iterations are more than 10% of the trip count
 689   //   and rounds of "unroll,optimize" are not making significant progress
 690   //   Progress defined as current size less than 20% larger than previous size.
 691   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 692       future_unroll_ct > LoopUnrollMin &&
 693       (future_unroll_ct - 1) * (100 / LoopPercentProfileLimit) > cl->profile_trip_cnt() &&
 694       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 695     return false;
 696   }
 697 
 698   Node *init_n = cl->init_trip();
 699   Node *limit_n = cl->limit();
 700   int stride_con = cl->stride_con();
 701   // Non-constant bounds.
 702   // Protect against over-unrolling when init or/and limit are not constant
 703   // (so that trip_count's init value is maxint) but iv range is known.
 704   if (init_n   == NULL || !init_n->is_Con()  ||
 705       limit_n  == NULL || !limit_n->is_Con()) {
 706     Node* phi = cl->phi();
 707     if (phi != NULL) {
 708       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 709       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 710       int next_stride = stride_con * 2; // stride after this unroll
 711       if (next_stride > 0) {
 712         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 713             iv_type->_lo + next_stride >  iv_type->_hi) {
 714           return false;  // over-unrolling
 715         }
 716       } else if (next_stride < 0) {
 717         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 718             iv_type->_hi + next_stride <  iv_type->_lo) {
 719           return false;  // over-unrolling
 720         }
 721       }
 722     }
 723   }
 724 
 725   // After unroll limit will be adjusted: new_limit = limit-stride.
 726   // Bailout if adjustment overflow.
 727   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 728   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 729       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 730     return false;  // overflow
 731 
 732   // Adjust body_size to determine if we unroll or not
 733   uint body_size = _body.size();
 734   // Key test to unroll loop in CRC32 java code
 735   int xors_in_loop = 0;
 736   // Also count ModL, DivL and MulL which expand mightly
 737   for (uint k = 0; k < _body.size(); k++) {
 738     Node* n = _body.at(k);
 739     switch (n->Opcode()) {
 740       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 741       case Op_ModL: body_size += 30; break;
 742       case Op_DivL: body_size += 30; break;
 743       case Op_MulL: body_size += 10; break;
 744       case Op_StrComp:
 745       case Op_StrEquals:
 746       case Op_StrIndexOf:
 747       case Op_StrIndexOfChar:
 748       case Op_EncodeISOArray:
 749       case Op_AryEq:
 750       case Op_HasNegatives: {
 751         // Do not unroll a loop with String intrinsics code.
 752         // String intrinsics are large and have loops.
 753         return false;
 754       }
 755 #if INCLUDE_RTM_OPT
 756       case Op_FastLock:
 757       case Op_FastUnlock: {
 758         // Don't unroll RTM locking code because it is large.
 759         if (UseRTMLocking) {
 760           return false;
 761         }
 762       }
 763 #endif
 764     } // switch
 765   }
 766 
 767   if (UseSuperWord) {
 768     if (!cl->is_reduction_loop()) {
 769       phase->mark_reductions(this);
 770     }
 771 
 772     // Only attempt slp analysis when user controls do not prohibit it
 773     if (LoopMaxUnroll > _local_loop_unroll_factor) {
 774       // Once policy_slp_analysis succeeds, mark the loop with the
 775       // maximal unroll factor so that we minimize analysis passes
 776       if (future_unroll_ct >= _local_loop_unroll_factor) {
 777         policy_unroll_slp_analysis(cl, phase, future_unroll_ct);
 778       }
 779     }
 780   }
 781 
 782   int slp_max_unroll_factor = cl->slp_max_unroll();
 783   if (cl->has_passed_slp()) {
 784     if (slp_max_unroll_factor >= future_unroll_ct) return true;
 785     // Normal case: loop too big
 786     return false;
 787   }
 788 
 789   // Check for being too big
 790   if (body_size > (uint)_local_loop_unroll_limit) {
 791     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 792     // Normal case: loop too big
 793     return false;
 794   }
 795 
 796   if (cl->do_unroll_only()) {
 797     if (TraceSuperWordLoopUnrollAnalysis) {
 798       tty->print_cr("policy_unroll passed vector loop(vlen=%d,factor = %d)\n", slp_max_unroll_factor, future_unroll_ct);
 799     }
 800   }
 801 
 802   // Unroll once!  (Each trip will soon do double iterations)
 803   return true;
 804 }
 805 
 806 void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct) {
 807   // Enable this functionality target by target as needed
 808   if (SuperWordLoopUnrollAnalysis) {
 809     if (!cl->was_slp_analyzed()) {
 810       SuperWord sw(phase);
 811       sw.transform_loop(this, false);
 812 
 813       // If the loop is slp canonical analyze it
 814       if (sw.early_return() == false) {
 815         sw.unrolling_analysis(_local_loop_unroll_factor);
 816       }
 817     }
 818 
 819     if (cl->has_passed_slp()) {
 820       int slp_max_unroll_factor = cl->slp_max_unroll();
 821       if (slp_max_unroll_factor >= future_unroll_ct) {
 822         int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
 823         if (new_limit > LoopUnrollLimit) {
 824           if (TraceSuperWordLoopUnrollAnalysis) {
 825             tty->print_cr("slp analysis unroll=%d, default limit=%d\n", new_limit, _local_loop_unroll_limit);
 826           }
 827           _local_loop_unroll_limit = new_limit;
 828         }
 829       }
 830     }
 831   }
 832 }
 833 
 834 //------------------------------policy_align-----------------------------------
 835 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 836 // expression that does the alignment.  Note that only one array base can be
 837 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 838 // if we vectorize short memory ops into longer memory ops, we may want to
 839 // increase alignment.
 840 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 841   return false;
 842 }
 843 
 844 //------------------------------policy_range_check-----------------------------
 845 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 846 // Actually we do iteration-splitting, a more powerful form of RCE.
 847 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 848   if (!RangeCheckElimination) return false;
 849 
 850   CountedLoopNode *cl = _head->as_CountedLoop();
 851   // If we unrolled with no intention of doing RCE and we later
 852   // changed our minds, we got no pre-loop.  Either we need to
 853   // make a new pre-loop, or we gotta disallow RCE.
 854   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 855   Node *trip_counter = cl->phi();
 856 
 857   // check for vectorized loops, some opts are no longer needed
 858   if (cl->do_unroll_only()) return false;
 859 
 860   // Check loop body for tests of trip-counter plus loop-invariant vs
 861   // loop-invariant.
 862   for (uint i = 0; i < _body.size(); i++) {
 863     Node *iff = _body[i];
 864     if (iff->Opcode() == Op_If ||
 865         iff->Opcode() == Op_RangeCheck) { // Test?
 866 
 867       // Comparing trip+off vs limit
 868       Node *bol = iff->in(1);
 869       if (bol->req() != 2) continue; // dead constant test
 870       if (!bol->is_Bool()) {
 871         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 872         continue;
 873       }
 874       if (bol->as_Bool()->_test._test == BoolTest::ne)
 875         continue; // not RC
 876 
 877       Node *cmp = bol->in(1);
 878       Node *rc_exp = cmp->in(1);
 879       Node *limit = cmp->in(2);
 880 
 881       Node *limit_c = phase->get_ctrl(limit);
 882       if( limit_c == phase->C->top() )
 883         return false;           // Found dead test on live IF?  No RCE!
 884       if( is_member(phase->get_loop(limit_c) ) ) {
 885         // Compare might have operands swapped; commute them
 886         rc_exp = cmp->in(2);
 887         limit  = cmp->in(1);
 888         limit_c = phase->get_ctrl(limit);
 889         if( is_member(phase->get_loop(limit_c) ) )
 890           continue;             // Both inputs are loop varying; cannot RCE
 891       }
 892 
 893       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 894         continue;
 895       }
 896       // Yeah!  Found a test like 'trip+off vs limit'
 897       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 898       // we need loop unswitching instead of iteration splitting.
 899       if( is_loop_exit(iff) )
 900         return true;            // Found reason to split iterations
 901     } // End of is IF
 902   }
 903 
 904   return false;
 905 }
 906 
 907 //------------------------------policy_peel_only-------------------------------
 908 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 909 // for unrolling loops with NO array accesses.
 910 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 911   // check for vectorized loops, any peeling done was already applied
 912   if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
 913 
 914   for( uint i = 0; i < _body.size(); i++ )
 915     if( _body[i]->is_Mem() )
 916       return false;
 917 
 918   // No memory accesses at all!
 919   return true;
 920 }
 921 
 922 //------------------------------clone_up_backedge_goo--------------------------
 923 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 924 // version of n in preheader_ctrl block and return that, otherwise return n.
 925 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 926   if( get_ctrl(n) != back_ctrl ) return n;
 927 
 928   // Only visit once
 929   if (visited.test_set(n->_idx)) {
 930     Node *x = clones.find(n->_idx);
 931     if (x != NULL)
 932       return x;
 933     return n;
 934   }
 935 
 936   Node *x = NULL;               // If required, a clone of 'n'
 937   // Check for 'n' being pinned in the backedge.
 938   if( n->in(0) && n->in(0) == back_ctrl ) {
 939     assert(clones.find(n->_idx) == NULL, "dead loop");
 940     x = n->clone();             // Clone a copy of 'n' to preheader
 941     clones.push(x, n->_idx);
 942     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 943   }
 944 
 945   // Recursive fixup any other input edges into x.
 946   // If there are no changes we can just return 'n', otherwise
 947   // we need to clone a private copy and change it.
 948   for( uint i = 1; i < n->req(); i++ ) {
 949     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 950     if( g != n->in(i) ) {
 951       if( !x ) {
 952         assert(clones.find(n->_idx) == NULL, "dead loop");
 953         x = n->clone();
 954         clones.push(x, n->_idx);
 955       }
 956       x->set_req(i, g);
 957     }
 958   }
 959   if( x ) {                     // x can legally float to pre-header location
 960     register_new_node( x, preheader_ctrl );
 961     return x;
 962   } else {                      // raise n to cover LCA of uses
 963     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 964   }
 965   return n;
 966 }
 967 
 968 bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
 969   Node* castii = new CastIINode(incr, TypeInt::INT, true);
 970   castii->set_req(0, ctrl);
 971   register_new_node(castii, ctrl);
 972   for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
 973     Node* n = incr->fast_out(i);
 974     if (n->is_Phi() && n->in(0) == loop) {
 975       int nrep = n->replace_edge(incr, castii);
 976       return true;
 977     }
 978   }
 979   return false;
 980 }
 981 
 982 //------------------------------insert_pre_post_loops--------------------------
 983 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 984 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 985 // alignment.  Useful to unroll loops that do no array accesses.
 986 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 987 
 988 #ifndef PRODUCT
 989   if (TraceLoopOpts) {
 990     if (peel_only)
 991       tty->print("PeelMainPost ");
 992     else
 993       tty->print("PreMainPost  ");
 994     loop->dump_head();
 995   }
 996 #endif
 997   C->set_major_progress();
 998 
 999   // Find common pieces of the loop being guarded with pre & post loops
1000   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1001   assert( main_head->is_normal_loop(), "" );
1002   CountedLoopEndNode *main_end = main_head->loopexit();
1003   guarantee(main_end != NULL, "no loop exit node");
1004   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
1005   uint dd_main_head = dom_depth(main_head);
1006   uint max = main_head->outcnt();
1007 
1008   Node *pre_header= main_head->in(LoopNode::EntryControl);
1009   Node *init      = main_head->init_trip();
1010   Node *incr      = main_end ->incr();
1011   Node *limit     = main_end ->limit();
1012   Node *stride    = main_end ->stride();
1013   Node *cmp       = main_end ->cmp_node();
1014   BoolTest::mask b_test = main_end->test_trip();
1015 
1016   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
1017   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
1018   if( bol->outcnt() != 1 ) {
1019     bol = bol->clone();
1020     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
1021     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
1022   }
1023   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
1024   if( cmp->outcnt() != 1 ) {
1025     cmp = cmp->clone();
1026     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
1027     _igvn.replace_input_of(bol, 1, cmp);
1028   }
1029 
1030   // Add the post loop
1031   CountedLoopNode *post_head = NULL;
1032   Node *main_exit = insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
1033 
1034   //------------------------------
1035   // Step B: Create Pre-Loop.
1036 
1037   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1038   // loop pre-header illegally has 2 control users (old & new loops).
1039   clone_loop( loop, old_new, dd_main_head );
1040   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1041   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1042   pre_head->set_pre_loop(main_head);
1043   Node *pre_incr = old_new[incr->_idx];
1044 
1045   // Reduce the pre-loop trip count.
1046   pre_end->_prob = PROB_FAIR;
1047 
1048   // Find the pre-loop normal exit.
1049   Node* pre_exit = pre_end->proj_out(false);
1050   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1051   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1052   _igvn.register_new_node_with_optimizer( new_pre_exit );
1053   set_idom(new_pre_exit, pre_end, dd_main_head);
1054   set_loop(new_pre_exit, loop->_parent);
1055 
1056   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1057   // pre-loop, the main-loop may not execute at all.  Later in life this
1058   // zero-trip guard will become the minimum-trip guard when we unroll
1059   // the main-loop.
1060   Node *min_opaq = new Opaque1Node(C, limit);
1061   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1062   Node *min_bol  = new BoolNode( min_cmp, b_test );
1063   register_new_node( min_opaq, new_pre_exit );
1064   register_new_node( min_cmp , new_pre_exit );
1065   register_new_node( min_bol , new_pre_exit );
1066 
1067   // Build the IfNode (assume the main-loop is executed always).
1068   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1069   _igvn.register_new_node_with_optimizer( min_iff );
1070   set_idom(min_iff, new_pre_exit, dd_main_head);
1071   set_loop(min_iff, loop->_parent);
1072 
1073   // Plug in the false-path, taken if we need to skip main-loop
1074   _igvn.hash_delete( pre_exit );
1075   pre_exit->set_req(0, min_iff);
1076   set_idom(pre_exit, min_iff, dd_main_head);
1077   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1078   // Make the true-path, must enter the main loop
1079   Node *min_taken = new IfTrueNode( min_iff );
1080   _igvn.register_new_node_with_optimizer( min_taken );
1081   set_idom(min_taken, min_iff, dd_main_head);
1082   set_loop(min_taken, loop->_parent);
1083   // Plug in the true path
1084   _igvn.hash_delete( main_head );
1085   main_head->set_req(LoopNode::EntryControl, min_taken);
1086   set_idom(main_head, min_taken, dd_main_head);
1087 
1088   Arena *a = Thread::current()->resource_area();
1089   VectorSet visited(a);
1090   Node_Stack clones(a, main_head->back_control()->outcnt());
1091   // Step B3: Make the fall-in values to the main-loop come from the
1092   // fall-out values of the pre-loop.
1093   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1094     Node* main_phi = main_head->fast_out(i2);
1095     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1096       Node *pre_phi = old_new[main_phi->_idx];
1097       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1098                                              main_head->init_control(),
1099                                              pre_phi->in(LoopNode::LoopBackControl),
1100                                              visited, clones);
1101       _igvn.hash_delete(main_phi);
1102       main_phi->set_req( LoopNode::EntryControl, fallpre );
1103     }
1104   }
1105 
1106   // Nodes inside the loop may be control dependent on a predicate
1107   // that was moved before the preloop. If the back branch of the main
1108   // or post loops becomes dead, those nodes won't be dependent on the
1109   // test that guards that loop nest anymore which could lead to an
1110   // incorrect array access because it executes independently of the
1111   // test that was guarding the loop nest. We add a special CastII on
1112   // the if branch that enters the loop, between the input induction
1113   // variable value and the induction variable Phi to preserve correct
1114   // dependencies.
1115 
1116   // CastII for the main loop:
1117   bool inserted = cast_incr_before_loop( pre_incr, min_taken, main_head );
1118   assert(inserted, "no castII inserted");
1119 
1120   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1121   // RCE and alignment may change this later.
1122   Node *cmp_end = pre_end->cmp_node();
1123   assert( cmp_end->in(2) == limit, "" );
1124   Node *pre_limit = new AddINode( init, stride );
1125 
1126   // Save the original loop limit in this Opaque1 node for
1127   // use by range check elimination.
1128   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1129 
1130   register_new_node( pre_limit, pre_head->in(0) );
1131   register_new_node( pre_opaq , pre_head->in(0) );
1132 
1133   // Since no other users of pre-loop compare, I can hack limit directly
1134   assert( cmp_end->outcnt() == 1, "no other users" );
1135   _igvn.hash_delete(cmp_end);
1136   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1137 
1138   // Special case for not-equal loop bounds:
1139   // Change pre loop test, main loop test, and the
1140   // main loop guard test to use lt or gt depending on stride
1141   // direction:
1142   // positive stride use <
1143   // negative stride use >
1144   //
1145   // not-equal test is kept for post loop to handle case
1146   // when init > limit when stride > 0 (and reverse).
1147 
1148   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1149 
1150     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1151     // Modify pre loop end condition
1152     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1153     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1154     register_new_node( new_bol0, pre_head->in(0) );
1155     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1156     // Modify main loop guard condition
1157     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1158     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1159     register_new_node( new_bol1, new_pre_exit );
1160     _igvn.hash_delete(min_iff);
1161     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1162     // Modify main loop end condition
1163     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1164     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1165     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1166     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1167   }
1168 
1169   // Flag main loop
1170   main_head->set_main_loop();
1171   if( peel_only ) main_head->set_main_no_pre_loop();
1172 
1173   // Subtract a trip count for the pre-loop.
1174   main_head->set_trip_count(main_head->trip_count() - 1);
1175 
1176   // It's difficult to be precise about the trip-counts
1177   // for the pre/post loops.  They are usually very short,
1178   // so guess that 4 trips is a reasonable value.
1179   post_head->set_profile_trip_cnt(4.0);
1180   pre_head->set_profile_trip_cnt(4.0);
1181 
1182   // Now force out all loop-invariant dominating tests.  The optimizer
1183   // finds some, but we _know_ they are all useless.
1184   peeled_dom_test_elim(loop,old_new);
1185   loop->record_for_igvn();
1186 }
1187 
1188 //------------------------------insert_vector_post_loop------------------------
1189 // Insert a copy of the atomic unrolled vectorized main loop as a post loop,
1190 // unroll_policy has already informed us that more unrolling is about to happen to
1191 // the main loop.  The resultant post loop will serve as a vectorized drain loop.
1192 void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new) {
1193   if (!loop->_head->is_CountedLoop()) return;
1194 
1195   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1196 
1197   // only process vectorized main loops
1198   if (!cl->is_vectorized_loop() || !cl->is_main_loop()) return;
1199 
1200   int slp_max_unroll_factor = cl->slp_max_unroll();
1201   int cur_unroll = cl->unrolled_count();
1202 
1203   if (slp_max_unroll_factor == 0) return;
1204 
1205   // only process atomic unroll vector loops (not super unrolled after vectorization)
1206   if (cur_unroll != slp_max_unroll_factor) return;
1207 
1208   // we only ever process this one time
1209   if (cl->has_atomic_post_loop()) return;
1210 
1211 #ifndef PRODUCT
1212   if (TraceLoopOpts) {
1213     tty->print("PostVector  ");
1214     loop->dump_head();
1215   }
1216 #endif
1217   C->set_major_progress();
1218 
1219   // Find common pieces of the loop being guarded with pre & post loops
1220   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1221   CountedLoopEndNode *main_end = main_head->loopexit();
1222   guarantee(main_end != NULL, "no loop exit node");
1223   // diagnostic to show loop end is not properly formed
1224   assert(main_end->outcnt() == 2, "1 true, 1 false path only");
1225 
1226   // mark this loop as processed
1227   main_head->mark_has_atomic_post_loop();
1228 
1229   Node *incr = main_end->incr();
1230   Node *limit = main_end->limit();
1231 
1232   // In this case we throw away the result as we are not using it to connect anything else.
1233   CountedLoopNode *post_head = NULL;
1234   insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
1235 
1236   // It's difficult to be precise about the trip-counts
1237   // for post loops.  They are usually very short,
1238   // so guess that unit vector trips is a reasonable value.
1239   post_head->set_profile_trip_cnt(cur_unroll);
1240 
1241   // Now force out all loop-invariant dominating tests.  The optimizer
1242   // finds some, but we _know_ they are all useless.
1243   peeled_dom_test_elim(loop, old_new);
1244   loop->record_for_igvn();
1245 }
1246 
1247 
1248 //-------------------------insert_scalar_rced_post_loop------------------------
1249 // Insert a copy of the rce'd main loop as a post loop,
1250 // We have not unrolled the main loop, so this is the right time to inject this.
1251 // Later we will examine the partner of this post loop pair which still has range checks
1252 // to see inject code which tests at runtime if the range checks are applicable.
1253 void PhaseIdealLoop::insert_scalar_rced_post_loop(IdealLoopTree *loop, Node_List &old_new) {
1254   if (!loop->_head->is_CountedLoop()) return;
1255 
1256   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1257 
1258   // only process RCE'd main loops
1259   if (!cl->is_main_loop() || cl->range_checks_present()) return;
1260 
1261 #ifndef PRODUCT
1262   if (TraceLoopOpts) {
1263     tty->print("PostScalarRce  ");
1264     loop->dump_head();
1265   }
1266 #endif
1267   C->set_major_progress();
1268 
1269   // Find common pieces of the loop being guarded with pre & post loops
1270   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1271   CountedLoopEndNode *main_end = main_head->loopexit();
1272   guarantee(main_end != NULL, "no loop exit node");
1273   // diagnostic to show loop end is not properly formed
1274   assert(main_end->outcnt() == 2, "1 true, 1 false path only");
1275 
1276   Node *incr = main_end->incr();
1277   Node *limit = main_end->limit();
1278 
1279   // In this case we throw away the result as we are not using it to connect anything else.
1280   CountedLoopNode *post_head = NULL;
1281   insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
1282 
1283   // It's difficult to be precise about the trip-counts
1284   // for post loops.  They are usually very short,
1285   // so guess that unit vector trips is a reasonable value.
1286   post_head->set_profile_trip_cnt(4.0);
1287   post_head->set_is_rce_post_loop();
1288 
1289   // Now force out all loop-invariant dominating tests.  The optimizer
1290   // finds some, but we _know_ they are all useless.
1291   peeled_dom_test_elim(loop, old_new);
1292   loop->record_for_igvn();
1293 }
1294 
1295 
1296 //------------------------------insert_post_loop-------------------------------
1297 // Insert post loops.  Add a post loop to the given loop passed.
1298 Node *PhaseIdealLoop::insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1299                                        CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1300                                        Node *incr, Node *limit, CountedLoopNode *&post_head) {
1301 
1302   //------------------------------
1303   // Step A: Create a new post-Loop.
1304   Node* main_exit = main_end->proj_out(false);
1305   assert(main_exit->Opcode() == Op_IfFalse, "");
1306   int dd_main_exit = dom_depth(main_exit);
1307 
1308   // Step A1: Clone the loop body of main.  The clone becomes the vector post-loop.
1309   // The main loop pre-header illegally has 2 control users (old & new loops).
1310   clone_loop(loop, old_new, dd_main_exit);
1311   assert(old_new[main_end->_idx]->Opcode() == Op_CountedLoopEnd, "");
1312   post_head = old_new[main_head->_idx]->as_CountedLoop();
1313   post_head->set_normal_loop();
1314   post_head->set_post_loop(main_head);
1315 
1316   // Reduce the post-loop trip count.
1317   CountedLoopEndNode* post_end = old_new[main_end->_idx]->as_CountedLoopEnd();
1318   post_end->_prob = PROB_FAIR;
1319 
1320   // Build the main-loop normal exit.
1321   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
1322   _igvn.register_new_node_with_optimizer(new_main_exit);
1323   set_idom(new_main_exit, main_end, dd_main_exit);
1324   set_loop(new_main_exit, loop->_parent);
1325 
1326   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
1327   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
1328   // (the previous loop trip-counter exit value) because we will be changing
1329   // the exit value (via additional unrolling) so we cannot constant-fold away the zero
1330   // trip guard until all unrolling is done.
1331   Node *zer_opaq = new Opaque1Node(C, incr);
1332   Node *zer_cmp = new CmpINode(zer_opaq, limit);
1333   Node *zer_bol = new BoolNode(zer_cmp, main_end->test_trip());
1334   register_new_node(zer_opaq, new_main_exit);
1335   register_new_node(zer_cmp, new_main_exit);
1336   register_new_node(zer_bol, new_main_exit);
1337 
1338   // Build the IfNode
1339   IfNode *zer_iff = new IfNode(new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN);
1340   _igvn.register_new_node_with_optimizer(zer_iff);
1341   set_idom(zer_iff, new_main_exit, dd_main_exit);
1342   set_loop(zer_iff, loop->_parent);
1343 
1344   // Plug in the false-path, taken if we need to skip this post-loop
1345   _igvn.replace_input_of(main_exit, 0, zer_iff);
1346   set_idom(main_exit, zer_iff, dd_main_exit);
1347   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
1348   // Make the true-path, must enter this post loop
1349   Node *zer_taken = new IfTrueNode(zer_iff);
1350   _igvn.register_new_node_with_optimizer(zer_taken);
1351   set_idom(zer_taken, zer_iff, dd_main_exit);
1352   set_loop(zer_taken, loop->_parent);
1353   // Plug in the true path
1354   _igvn.hash_delete(post_head);
1355   post_head->set_req(LoopNode::EntryControl, zer_taken);
1356   set_idom(post_head, zer_taken, dd_main_exit);
1357 
1358   Arena *a = Thread::current()->resource_area();
1359   VectorSet visited(a);
1360   Node_Stack clones(a, main_head->back_control()->outcnt());
1361   // Step A3: Make the fall-in values to the post-loop come from the
1362   // fall-out values of the main-loop.
1363   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
1364     Node* main_phi = main_head->fast_out(i);
1365     if (main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0) {
1366       Node *cur_phi = old_new[main_phi->_idx];
1367       Node *fallnew = clone_up_backedge_goo(main_head->back_control(),
1368                                             post_head->init_control(),
1369                                             main_phi->in(LoopNode::LoopBackControl),
1370                                             visited, clones);
1371       _igvn.hash_delete(cur_phi);
1372       cur_phi->set_req(LoopNode::EntryControl, fallnew);
1373     }
1374   }
1375 
1376   // CastII for the new post loop:
1377   bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
1378   assert(inserted, "no castII inserted");
1379 
1380   return new_main_exit;
1381 }
1382 
1383 //------------------------------is_invariant-----------------------------
1384 // Return true if n is invariant
1385 bool IdealLoopTree::is_invariant(Node* n) const {
1386   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1387   if (n_c->is_top()) return false;
1388   return !is_member(_phase->get_loop(n_c));
1389 }
1390 
1391 
1392 //------------------------------do_unroll--------------------------------------
1393 // Unroll the loop body one step - make each trip do 2 iterations.
1394 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1395   assert(LoopUnrollLimit, "");
1396   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1397   CountedLoopEndNode *loop_end = loop_head->loopexit();
1398   assert(loop_end, "");
1399 #ifndef PRODUCT
1400   if (PrintOpto && VerifyLoopOptimizations) {
1401     tty->print("Unrolling ");
1402     loop->dump_head();
1403   } else if (TraceLoopOpts) {
1404     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1405       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1406     } else {
1407       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1408     }
1409     loop->dump_head();
1410   }
1411 
1412   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1413     Arena* arena = Thread::current()->resource_area();
1414     Node_Stack stack(arena, C->live_nodes() >> 2);
1415     Node_List rpo_list;
1416     VectorSet visited(arena);
1417     visited.set(loop_head->_idx);
1418     rpo( loop_head, stack, visited, rpo_list );
1419     dump(loop, rpo_list.size(), rpo_list );
1420   }
1421 #endif
1422 
1423   // Remember loop node count before unrolling to detect
1424   // if rounds of unroll,optimize are making progress
1425   loop_head->set_node_count_before_unroll(loop->_body.size());
1426 
1427   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1428   Node *limit = loop_head->limit();
1429   Node *init  = loop_head->init_trip();
1430   Node *stride = loop_head->stride();
1431 
1432   Node *opaq = NULL;
1433   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1434     // Search for zero-trip guard.
1435 
1436     // Check the shape of the graph at the loop entry. If an inappropriate
1437     // graph shape is encountered, the compiler bails out loop unrolling;
1438     // compilation of the method will still succeed.
1439     if (!is_canonical_loop_entry(loop_head)) {
1440       return;
1441     }
1442     opaq = ctrl->in(0)->in(1)->in(1)->in(2);
1443     // Zero-trip test uses an 'opaque' node which is not shared.
1444     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1445   }
1446 
1447   C->set_major_progress();
1448 
1449   Node* new_limit = NULL;
1450   int stride_con = stride->get_int();
1451   int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1452   uint old_trip_count = loop_head->trip_count();
1453   // Verify that unroll policy result is still valid.
1454   assert(old_trip_count > 1 &&
1455       (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1456 
1457   // Adjust loop limit to keep valid iterations number after unroll.
1458   // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1459   // which may overflow.
1460   if (!adjust_min_trip) {
1461     assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1462         "odd trip count for maximally unroll");
1463     // Don't need to adjust limit for maximally unroll since trip count is even.
1464   } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1465     // Loop's limit is constant. Loop's init could be constant when pre-loop
1466     // become peeled iteration.
1467     jlong init_con = init->get_int();
1468     // We can keep old loop limit if iterations count stays the same:
1469     //   old_trip_count == new_trip_count * 2
1470     // Note: since old_trip_count >= 2 then new_trip_count >= 1
1471     // so we also don't need to adjust zero trip test.
1472     jlong limit_con  = limit->get_int();
1473     // (stride_con*2) not overflow since stride_con <= 8.
1474     int new_stride_con = stride_con * 2;
1475     int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1476     jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1477     // New trip count should satisfy next conditions.
1478     assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1479     uint new_trip_count = (uint)trip_count;
1480     adjust_min_trip = (old_trip_count != new_trip_count*2);
1481   }
1482 
1483   if (adjust_min_trip) {
1484     // Step 2: Adjust the trip limit if it is called for.
1485     // The adjustment amount is -stride. Need to make sure if the
1486     // adjustment underflows or overflows, then the main loop is skipped.
1487     Node* cmp = loop_end->cmp_node();
1488     assert(cmp->in(2) == limit, "sanity");
1489     assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1490 
1491     // Verify that policy_unroll result is still valid.
1492     const TypeInt* limit_type = _igvn.type(limit)->is_int();
1493     assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1494         stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1495 
1496     if (limit->is_Con()) {
1497       // The check in policy_unroll and the assert above guarantee
1498       // no underflow if limit is constant.
1499       new_limit = _igvn.intcon(limit->get_int() - stride_con);
1500       set_ctrl(new_limit, C->root());
1501     } else {
1502       // Limit is not constant.
1503       if (loop_head->unrolled_count() == 1) { // only for first unroll
1504         // Separate limit by Opaque node in case it is an incremented
1505         // variable from previous loop to avoid using pre-incremented
1506         // value which could increase register pressure.
1507         // Otherwise reorg_offsets() optimization will create a separate
1508         // Opaque node for each use of trip-counter and as result
1509         // zero trip guard limit will be different from loop limit.
1510         assert(has_ctrl(opaq), "should have it");
1511         Node* opaq_ctrl = get_ctrl(opaq);
1512         limit = new Opaque2Node( C, limit );
1513         register_new_node( limit, opaq_ctrl );
1514       }
1515       if (stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo) ||
1516           stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi)) {
1517         // No underflow.
1518         new_limit = new SubINode(limit, stride);
1519       } else {
1520         // (limit - stride) may underflow.
1521         // Clamp the adjustment value with MININT or MAXINT:
1522         //
1523         //   new_limit = limit-stride
1524         //   if (stride > 0)
1525         //     new_limit = (limit < new_limit) ? MININT : new_limit;
1526         //   else
1527         //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1528         //
1529         BoolTest::mask bt = loop_end->test_trip();
1530         assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1531         Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1532         set_ctrl(adj_max, C->root());
1533         Node* old_limit = NULL;
1534         Node* adj_limit = NULL;
1535         Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1536         if (loop_head->unrolled_count() > 1 &&
1537             limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1538             limit->in(CMoveNode::IfTrue) == adj_max &&
1539             bol->as_Bool()->_test._test == bt &&
1540             bol->in(1)->Opcode() == Op_CmpI &&
1541             bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1542           // Loop was unrolled before.
1543           // Optimize the limit to avoid nested CMove:
1544           // use original limit as old limit.
1545           old_limit = bol->in(1)->in(1);
1546           // Adjust previous adjusted limit.
1547           adj_limit = limit->in(CMoveNode::IfFalse);
1548           adj_limit = new SubINode(adj_limit, stride);
1549         } else {
1550           old_limit = limit;
1551           adj_limit = new SubINode(limit, stride);
1552         }
1553         assert(old_limit != NULL && adj_limit != NULL, "");
1554         register_new_node( adj_limit, ctrl ); // adjust amount
1555         Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1556         register_new_node( adj_cmp, ctrl );
1557         Node* adj_bool = new BoolNode(adj_cmp, bt);
1558         register_new_node( adj_bool, ctrl );
1559         new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1560       }
1561       register_new_node(new_limit, ctrl);
1562     }
1563     assert(new_limit != NULL, "");
1564     // Replace in loop test.
1565     assert(loop_end->in(1)->in(1) == cmp, "sanity");
1566     if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1567       // Don't need to create new test since only one user.
1568       _igvn.hash_delete(cmp);
1569       cmp->set_req(2, new_limit);
1570     } else {
1571       // Create new test since it is shared.
1572       Node* ctrl2 = loop_end->in(0);
1573       Node* cmp2  = cmp->clone();
1574       cmp2->set_req(2, new_limit);
1575       register_new_node(cmp2, ctrl2);
1576       Node* bol2 = loop_end->in(1)->clone();
1577       bol2->set_req(1, cmp2);
1578       register_new_node(bol2, ctrl2);
1579       _igvn.replace_input_of(loop_end, 1, bol2);
1580     }
1581     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1582     // Make it a 1-trip test (means at least 2 trips).
1583 
1584     // Guard test uses an 'opaque' node which is not shared.  Hence I
1585     // can edit it's inputs directly.  Hammer in the new limit for the
1586     // minimum-trip guard.
1587     assert(opaq->outcnt() == 1, "");
1588     _igvn.replace_input_of(opaq, 1, new_limit);
1589   }
1590 
1591   // Adjust max trip count. The trip count is intentionally rounded
1592   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1593   // the main, unrolled, part of the loop will never execute as it is protected
1594   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1595   // and later determined that part of the unrolled loop was dead.
1596   loop_head->set_trip_count(old_trip_count / 2);
1597 
1598   // Double the count of original iterations in the unrolled loop body.
1599   loop_head->double_unrolled_count();
1600 
1601   // ---------
1602   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1603   // represents the odd iterations; since the loop trips an even number of
1604   // times its backedge is never taken.  Kill the backedge.
1605   uint dd = dom_depth(loop_head);
1606   clone_loop( loop, old_new, dd );
1607 
1608   // Make backedges of the clone equal to backedges of the original.
1609   // Make the fall-in from the original come from the fall-out of the clone.
1610   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1611     Node* phi = loop_head->fast_out(j);
1612     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1613       Node *newphi = old_new[phi->_idx];
1614       _igvn.hash_delete( phi );
1615       _igvn.hash_delete( newphi );
1616 
1617       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1618       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1619       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1620     }
1621   }
1622   Node *clone_head = old_new[loop_head->_idx];
1623   _igvn.hash_delete( clone_head );
1624   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1625   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1626   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1627   loop->_head = clone_head;     // New loop header
1628 
1629   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1630   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1631 
1632   // Kill the clone's backedge
1633   Node *newcle = old_new[loop_end->_idx];
1634   _igvn.hash_delete( newcle );
1635   Node *one = _igvn.intcon(1);
1636   set_ctrl(one, C->root());
1637   newcle->set_req(1, one);
1638   // Force clone into same loop body
1639   uint max = loop->_body.size();
1640   for( uint k = 0; k < max; k++ ) {
1641     Node *old = loop->_body.at(k);
1642     Node *nnn = old_new[old->_idx];
1643     loop->_body.push(nnn);
1644     if (!has_ctrl(old))
1645       set_loop(nnn, loop);
1646   }
1647 
1648   loop->record_for_igvn();
1649 
1650 #ifndef PRODUCT
1651   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1652     tty->print("\nnew loop after unroll\n");       loop->dump_head();
1653     for (uint i = 0; i < loop->_body.size(); i++) {
1654       loop->_body.at(i)->dump();
1655     }
1656     if(C->clone_map().is_debug()) {
1657       tty->print("\nCloneMap\n");
1658       Dict* dict = C->clone_map().dict();
1659       DictI i(dict);
1660       tty->print_cr("Dict@%p[%d] = ", dict, dict->Size());
1661       for (int ii = 0; i.test(); ++i, ++ii) {
1662         NodeCloneInfo cl((uint64_t)dict->operator[]((void*)i._key));
1663         tty->print("%d->%d:%d,", (int)(intptr_t)i._key, cl.idx(), cl.gen());
1664         if (ii % 10 == 9) {
1665           tty->print_cr(" ");
1666         }
1667       }
1668       tty->print_cr(" ");
1669     }
1670   }
1671 #endif
1672 
1673 }
1674 
1675 //------------------------------do_maximally_unroll----------------------------
1676 
1677 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1678   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1679   assert(cl->has_exact_trip_count(), "trip count is not exact");
1680   assert(cl->trip_count() > 0, "");
1681 #ifndef PRODUCT
1682   if (TraceLoopOpts) {
1683     tty->print("MaxUnroll  %d ", cl->trip_count());
1684     loop->dump_head();
1685   }
1686 #endif
1687 
1688   // If loop is tripping an odd number of times, peel odd iteration
1689   if ((cl->trip_count() & 1) == 1) {
1690     do_peeling(loop, old_new);
1691   }
1692 
1693   // Now its tripping an even number of times remaining.  Double loop body.
1694   // Do not adjust pre-guards; they are not needed and do not exist.
1695   if (cl->trip_count() > 0) {
1696     assert((cl->trip_count() & 1) == 0, "missed peeling");
1697     do_unroll(loop, old_new, false);
1698   }
1699 }
1700 
1701 void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
1702   if (SuperWordReductions == false) return;
1703 
1704   CountedLoopNode* loop_head = loop->_head->as_CountedLoop();
1705   if (loop_head->unrolled_count() > 1) {
1706     return;
1707   }
1708 
1709   Node* trip_phi = loop_head->phi();
1710   for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) {
1711     Node* phi = loop_head->fast_out(i);
1712     if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) {
1713       // For definitions which are loop inclusive and not tripcounts.
1714       Node* def_node = phi->in(LoopNode::LoopBackControl);
1715 
1716       if (def_node != NULL) {
1717         Node* n_ctrl = get_ctrl(def_node);
1718         if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) {
1719           // Now test it to see if it fits the standard pattern for a reduction operator.
1720           int opc = def_node->Opcode();
1721           if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type())) {
1722             if (!def_node->is_reduction()) { // Not marked yet
1723               // To be a reduction, the arithmetic node must have the phi as input and provide a def to it
1724               bool ok = false;
1725               for (unsigned j = 1; j < def_node->req(); j++) {
1726                 Node* in = def_node->in(j);
1727                 if (in == phi) {
1728                   ok = true;
1729                   break;
1730                 }
1731               }
1732 
1733               // do nothing if we did not match the initial criteria
1734               if (ok == false) {
1735                 continue;
1736               }
1737 
1738               // The result of the reduction must not be used in the loop
1739               for (DUIterator_Fast imax, i = def_node->fast_outs(imax); i < imax && ok; i++) {
1740                 Node* u = def_node->fast_out(i);
1741                 if (has_ctrl(u) && !loop->is_member(get_loop(get_ctrl(u)))) {
1742                   continue;
1743                 }
1744                 if (u == phi) {
1745                   continue;
1746                 }
1747                 ok = false;
1748               }
1749 
1750               // iff the uses conform
1751               if (ok) {
1752                 def_node->add_flag(Node::Flag_is_reduction);
1753                 loop_head->mark_has_reductions();
1754               }
1755             }
1756           }
1757         }
1758       }
1759     }
1760   }
1761 }
1762 
1763 //------------------------------dominates_backedge---------------------------------
1764 // Returns true if ctrl is executed on every complete iteration
1765 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1766   assert(ctrl->is_CFG(), "must be control");
1767   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1768   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1769 }
1770 
1771 //------------------------------adjust_limit-----------------------------------
1772 // Helper function for add_constraint().
1773 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1774   // Compute "I :: (limit-offset)/scale"
1775   Node *con = new SubINode(rc_limit, offset);
1776   register_new_node(con, pre_ctrl);
1777   Node *X = new DivINode(0, con, scale);
1778   register_new_node(X, pre_ctrl);
1779 
1780   // Adjust loop limit
1781   loop_limit = (stride_con > 0)
1782                ? (Node*)(new MinINode(loop_limit, X))
1783                : (Node*)(new MaxINode(loop_limit, X));
1784   register_new_node(loop_limit, pre_ctrl);
1785   return loop_limit;
1786 }
1787 
1788 //------------------------------add_constraint---------------------------------
1789 // Constrain the main loop iterations so the conditions:
1790 //    low_limit <= scale_con * I + offset  <  upper_limit
1791 // always holds true.  That is, either increase the number of iterations in
1792 // the pre-loop or the post-loop until the condition holds true in the main
1793 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1794 // stride and scale are constants (offset and limit often are).
1795 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1796   // For positive stride, the pre-loop limit always uses a MAX function
1797   // and the main loop a MIN function.  For negative stride these are
1798   // reversed.
1799 
1800   // Also for positive stride*scale the affine function is increasing, so the
1801   // pre-loop must check for underflow and the post-loop for overflow.
1802   // Negative stride*scale reverses this; pre-loop checks for overflow and
1803   // post-loop for underflow.
1804 
1805   Node *scale = _igvn.intcon(scale_con);
1806   set_ctrl(scale, C->root());
1807 
1808   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1809     // The overflow limit: scale*I+offset < upper_limit
1810     // For main-loop compute
1811     //   ( if (scale > 0) /* and stride > 0 */
1812     //       I < (upper_limit-offset)/scale
1813     //     else /* scale < 0 and stride < 0 */
1814     //       I > (upper_limit-offset)/scale
1815     //   )
1816     //
1817     // (upper_limit-offset) may overflow or underflow.
1818     // But it is fine since main loop will either have
1819     // less iterations or will be skipped in such case.
1820     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1821 
1822     // The underflow limit: low_limit <= scale*I+offset.
1823     // For pre-loop compute
1824     //   NOT(scale*I+offset >= low_limit)
1825     //   scale*I+offset < low_limit
1826     //   ( if (scale > 0) /* and stride > 0 */
1827     //       I < (low_limit-offset)/scale
1828     //     else /* scale < 0 and stride < 0 */
1829     //       I > (low_limit-offset)/scale
1830     //   )
1831 
1832     if (low_limit->get_int() == -max_jint) {
1833       // We need this guard when scale*pre_limit+offset >= limit
1834       // due to underflow. So we need execute pre-loop until
1835       // scale*I+offset >= min_int. But (min_int-offset) will
1836       // underflow when offset > 0 and X will be > original_limit
1837       // when stride > 0. To avoid it we replace positive offset with 0.
1838       //
1839       // Also (min_int+1 == -max_int) is used instead of min_int here
1840       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1841       Node* shift = _igvn.intcon(31);
1842       set_ctrl(shift, C->root());
1843       Node* sign = new RShiftINode(offset, shift);
1844       register_new_node(sign, pre_ctrl);
1845       offset = new AndINode(offset, sign);
1846       register_new_node(offset, pre_ctrl);
1847     } else {
1848       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1849       // The only problem we have here when offset == min_int
1850       // since (0-min_int) == min_int. It may be fine for stride > 0
1851       // but for stride < 0 X will be < original_limit. To avoid it
1852       // max(pre_limit, original_limit) is used in do_range_check().
1853     }
1854     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1855     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1856 
1857   } else { // stride_con*scale_con < 0
1858     // For negative stride*scale pre-loop checks for overflow and
1859     // post-loop for underflow.
1860     //
1861     // The overflow limit: scale*I+offset < upper_limit
1862     // For pre-loop compute
1863     //   NOT(scale*I+offset < upper_limit)
1864     //   scale*I+offset >= upper_limit
1865     //   scale*I+offset+1 > upper_limit
1866     //   ( if (scale < 0) /* and stride > 0 */
1867     //       I < (upper_limit-(offset+1))/scale
1868     //     else /* scale > 0 and stride < 0 */
1869     //       I > (upper_limit-(offset+1))/scale
1870     //   )
1871     //
1872     // (upper_limit-offset-1) may underflow or overflow.
1873     // To avoid it min(pre_limit, original_limit) is used
1874     // in do_range_check() for stride > 0 and max() for < 0.
1875     Node *one  = _igvn.intcon(1);
1876     set_ctrl(one, C->root());
1877 
1878     Node *plus_one = new AddINode(offset, one);
1879     register_new_node( plus_one, pre_ctrl );
1880     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1881     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1882 
1883     if (low_limit->get_int() == -max_jint) {
1884       // We need this guard when scale*main_limit+offset >= limit
1885       // due to underflow. So we need execute main-loop while
1886       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1887       // underflow when (offset+1) > 0 and X will be < main_limit
1888       // when scale < 0 (and stride > 0). To avoid it we replace
1889       // positive (offset+1) with 0.
1890       //
1891       // Also (min_int+1 == -max_int) is used instead of min_int here
1892       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1893       Node* shift = _igvn.intcon(31);
1894       set_ctrl(shift, C->root());
1895       Node* sign = new RShiftINode(plus_one, shift);
1896       register_new_node(sign, pre_ctrl);
1897       plus_one = new AndINode(plus_one, sign);
1898       register_new_node(plus_one, pre_ctrl);
1899     } else {
1900       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1901       // The only problem we have here when offset == max_int
1902       // since (max_int+1) == min_int and (0-min_int) == min_int.
1903       // But it is fine since main loop will either have
1904       // less iterations or will be skipped in such case.
1905     }
1906     // The underflow limit: low_limit <= scale*I+offset.
1907     // For main-loop compute
1908     //   scale*I+offset+1 > low_limit
1909     //   ( if (scale < 0) /* and stride > 0 */
1910     //       I < (low_limit-(offset+1))/scale
1911     //     else /* scale > 0 and stride < 0 */
1912     //       I > (low_limit-(offset+1))/scale
1913     //   )
1914 
1915     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1916   }
1917 }
1918 
1919 
1920 //------------------------------is_scaled_iv---------------------------------
1921 // Return true if exp is a constant times an induction var
1922 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1923   if (exp == iv) {
1924     if (p_scale != NULL) {
1925       *p_scale = 1;
1926     }
1927     return true;
1928   }
1929   int opc = exp->Opcode();
1930   if (opc == Op_MulI) {
1931     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1932       if (p_scale != NULL) {
1933         *p_scale = exp->in(2)->get_int();
1934       }
1935       return true;
1936     }
1937     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1938       if (p_scale != NULL) {
1939         *p_scale = exp->in(1)->get_int();
1940       }
1941       return true;
1942     }
1943   } else if (opc == Op_LShiftI) {
1944     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1945       if (p_scale != NULL) {
1946         *p_scale = 1 << exp->in(2)->get_int();
1947       }
1948       return true;
1949     }
1950   }
1951   return false;
1952 }
1953 
1954 //-----------------------------is_scaled_iv_plus_offset------------------------------
1955 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1956 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1957   if (is_scaled_iv(exp, iv, p_scale)) {
1958     if (p_offset != NULL) {
1959       Node *zero = _igvn.intcon(0);
1960       set_ctrl(zero, C->root());
1961       *p_offset = zero;
1962     }
1963     return true;
1964   }
1965   int opc = exp->Opcode();
1966   if (opc == Op_AddI) {
1967     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1968       if (p_offset != NULL) {
1969         *p_offset = exp->in(2);
1970       }
1971       return true;
1972     }
1973     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1974       if (p_offset != NULL) {
1975         *p_offset = exp->in(1);
1976       }
1977       return true;
1978     }
1979     if (exp->in(2)->is_Con()) {
1980       Node* offset2 = NULL;
1981       if (depth < 2 &&
1982           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1983                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1984         if (p_offset != NULL) {
1985           Node *ctrl_off2 = get_ctrl(offset2);
1986           Node* offset = new AddINode(offset2, exp->in(2));
1987           register_new_node(offset, ctrl_off2);
1988           *p_offset = offset;
1989         }
1990         return true;
1991       }
1992     }
1993   } else if (opc == Op_SubI) {
1994     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1995       if (p_offset != NULL) {
1996         Node *zero = _igvn.intcon(0);
1997         set_ctrl(zero, C->root());
1998         Node *ctrl_off = get_ctrl(exp->in(2));
1999         Node* offset = new SubINode(zero, exp->in(2));
2000         register_new_node(offset, ctrl_off);
2001         *p_offset = offset;
2002       }
2003       return true;
2004     }
2005     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
2006       if (p_offset != NULL) {
2007         *p_scale *= -1;
2008         *p_offset = exp->in(1);
2009       }
2010       return true;
2011     }
2012   }
2013   return false;
2014 }
2015 
2016 //------------------------------do_range_check---------------------------------
2017 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
2018 int PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
2019 #ifndef PRODUCT
2020   if (PrintOpto && VerifyLoopOptimizations) {
2021     tty->print("Range Check Elimination ");
2022     loop->dump_head();
2023   } else if (TraceLoopOpts) {
2024     tty->print("RangeCheck   ");
2025     loop->dump_head();
2026   }
2027 #endif
2028   assert(RangeCheckElimination, "");
2029   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2030   // If we fail before trying to eliminate range checks, set multiversion state
2031   int closed_range_checks = 1;
2032 
2033   // protect against stride not being a constant
2034   if (!cl->stride_is_con())
2035     return closed_range_checks;
2036 
2037   // Find the trip counter; we are iteration splitting based on it
2038   Node *trip_counter = cl->phi();
2039   // Find the main loop limit; we will trim it's iterations
2040   // to not ever trip end tests
2041   Node *main_limit = cl->limit();
2042 
2043   // Check graph shape. Cannot optimize a loop if zero-trip
2044   // Opaque1 node is optimized away and then another round
2045   // of loop opts attempted.
2046   if (!is_canonical_loop_entry(cl)) {
2047     return closed_range_checks;
2048   }
2049 
2050   // Need to find the main-loop zero-trip guard
2051   Node *ctrl  = cl->in(LoopNode::EntryControl);
2052   Node *iffm = ctrl->in(0);
2053   Node *opqzm = iffm->in(1)->in(1)->in(2);
2054   assert(opqzm->in(1) == main_limit, "do not understand situation");
2055 
2056   // Find the pre-loop limit; we will expand its iterations to
2057   // not ever trip low tests.
2058   Node *p_f = iffm->in(0);
2059   // pre loop may have been optimized out
2060   if (p_f->Opcode() != Op_IfFalse) {
2061     return closed_range_checks;
2062   }
2063   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2064   assert(pre_end->loopnode()->is_pre_loop(), "");
2065   Node *pre_opaq1 = pre_end->limit();
2066   // Occasionally it's possible for a pre-loop Opaque1 node to be
2067   // optimized away and then another round of loop opts attempted.
2068   // We can not optimize this particular loop in that case.
2069   if (pre_opaq1->Opcode() != Op_Opaque1)
2070     return closed_range_checks;
2071   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2072   Node *pre_limit = pre_opaq->in(1);
2073 
2074   // Where do we put new limit calculations
2075   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2076 
2077   // Ensure the original loop limit is available from the
2078   // pre-loop Opaque1 node.
2079   Node *orig_limit = pre_opaq->original_loop_limit();
2080   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
2081     return closed_range_checks;
2082 
2083   // Must know if its a count-up or count-down loop
2084 
2085   int stride_con = cl->stride_con();
2086   Node *zero = _igvn.intcon(0);
2087   Node *one  = _igvn.intcon(1);
2088   // Use symmetrical int range [-max_jint,max_jint]
2089   Node *mini = _igvn.intcon(-max_jint);
2090   set_ctrl(zero, C->root());
2091   set_ctrl(one,  C->root());
2092   set_ctrl(mini, C->root());
2093 
2094   // Range checks that do not dominate the loop backedge (ie.
2095   // conditionally executed) can lengthen the pre loop limit beyond
2096   // the original loop limit. To prevent this, the pre limit is
2097   // (for stride > 0) MINed with the original loop limit (MAXed
2098   // stride < 0) when some range_check (rc) is conditionally
2099   // executed.
2100   bool conditional_rc = false;
2101 
2102   // Count number of range checks and reduce by load range limits, if zero,
2103   // the loop is in canonical form to multiversion.
2104   closed_range_checks = 0;
2105 
2106   // Check loop body for tests of trip-counter plus loop-invariant vs
2107   // loop-invariant.
2108   for( uint i = 0; i < loop->_body.size(); i++ ) {
2109     Node *iff = loop->_body[i];
2110     if (iff->Opcode() == Op_If ||
2111         iff->Opcode() == Op_RangeCheck) { // Test?
2112       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
2113       // we need loop unswitching instead of iteration splitting.
2114       closed_range_checks++;
2115       Node *exit = loop->is_loop_exit(iff);
2116       if( !exit ) continue;
2117       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
2118 
2119       // Get boolean condition to test
2120       Node *i1 = iff->in(1);
2121       if( !i1->is_Bool() ) continue;
2122       BoolNode *bol = i1->as_Bool();
2123       BoolTest b_test = bol->_test;
2124       // Flip sense of test if exit condition is flipped
2125       if( flip )
2126         b_test = b_test.negate();
2127 
2128       // Get compare
2129       Node *cmp = bol->in(1);
2130 
2131       // Look for trip_counter + offset vs limit
2132       Node *rc_exp = cmp->in(1);
2133       Node *limit  = cmp->in(2);
2134       jint scale_con= 1;        // Assume trip counter not scaled
2135 
2136       Node *limit_c = get_ctrl(limit);
2137       if( loop->is_member(get_loop(limit_c) ) ) {
2138         // Compare might have operands swapped; commute them
2139         b_test = b_test.commute();
2140         rc_exp = cmp->in(2);
2141         limit  = cmp->in(1);
2142         limit_c = get_ctrl(limit);
2143         if( loop->is_member(get_loop(limit_c) ) )
2144           continue;             // Both inputs are loop varying; cannot RCE
2145       }
2146       // Here we know 'limit' is loop invariant
2147 
2148       // 'limit' maybe pinned below the zero trip test (probably from a
2149       // previous round of rce), in which case, it can't be used in the
2150       // zero trip test expression which must occur before the zero test's if.
2151       if( limit_c == ctrl ) {
2152         continue;  // Don't rce this check but continue looking for other candidates.
2153       }
2154 
2155       // Check for scaled induction variable plus an offset
2156       Node *offset = NULL;
2157 
2158       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
2159         continue;
2160       }
2161 
2162       Node *offset_c = get_ctrl(offset);
2163       if( loop->is_member( get_loop(offset_c) ) )
2164         continue;               // Offset is not really loop invariant
2165       // Here we know 'offset' is loop invariant.
2166 
2167       // As above for the 'limit', the 'offset' maybe pinned below the
2168       // zero trip test.
2169       if( offset_c == ctrl ) {
2170         continue; // Don't rce this check but continue looking for other candidates.
2171       }
2172 #ifdef ASSERT
2173       if (TraceRangeLimitCheck) {
2174         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
2175         bol->dump(2);
2176       }
2177 #endif
2178       // At this point we have the expression as:
2179       //   scale_con * trip_counter + offset :: limit
2180       // where scale_con, offset and limit are loop invariant.  Trip_counter
2181       // monotonically increases by stride_con, a constant.  Both (or either)
2182       // stride_con and scale_con can be negative which will flip about the
2183       // sense of the test.
2184 
2185       // Adjust pre and main loop limits to guard the correct iteration set
2186       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
2187         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
2188           // The underflow and overflow limits: 0 <= scale*I+offset < limit
2189           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
2190           if (!conditional_rc) {
2191             // (0-offset)/scale could be outside of loop iterations range.
2192             conditional_rc = !loop->dominates_backedge(iff);
2193           }
2194         } else {
2195           if (PrintOpto) {
2196             tty->print_cr("missed RCE opportunity");
2197           }
2198           continue;             // In release mode, ignore it
2199         }
2200       } else {                  // Otherwise work on normal compares
2201         switch( b_test._test ) {
2202         case BoolTest::gt:
2203           // Fall into GE case
2204         case BoolTest::ge:
2205           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
2206           scale_con = -scale_con;
2207           offset = new SubINode( zero, offset );
2208           register_new_node( offset, pre_ctrl );
2209           limit  = new SubINode( zero, limit );
2210           register_new_node( limit, pre_ctrl );
2211           // Fall into LE case
2212         case BoolTest::le:
2213           if (b_test._test != BoolTest::gt) {
2214             // Convert X <= Y to X < Y+1
2215             limit = new AddINode( limit, one );
2216             register_new_node( limit, pre_ctrl );
2217           }
2218           // Fall into LT case
2219         case BoolTest::lt:
2220           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
2221           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
2222           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
2223           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
2224           if (!conditional_rc) {
2225             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
2226             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
2227             // still be outside of loop range.
2228             conditional_rc = !loop->dominates_backedge(iff);
2229           }
2230           break;
2231         default:
2232           if (PrintOpto) {
2233             tty->print_cr("missed RCE opportunity");
2234           }
2235           continue;             // Unhandled case
2236         }
2237       }
2238 
2239       // Kill the eliminated test
2240       C->set_major_progress();
2241       Node *kill_con = _igvn.intcon( 1-flip );
2242       set_ctrl(kill_con, C->root());
2243       _igvn.replace_input_of(iff, 1, kill_con);
2244       // Find surviving projection
2245       assert(iff->is_If(), "");
2246       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
2247       // Find loads off the surviving projection; remove their control edge
2248       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
2249         Node* cd = dp->fast_out(i); // Control-dependent node
2250         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
2251           // Allow the load to float around in the loop, or before it
2252           // but NOT before the pre-loop.
2253           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
2254           --i;
2255           --imax;
2256         }
2257       }
2258       if (limit->Opcode() == Op_LoadRange) {
2259         closed_range_checks--;
2260       }
2261 
2262     } // End of is IF
2263 
2264   }
2265 
2266   // Update loop limits
2267   if (conditional_rc) {
2268     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
2269                                  : (Node*)new MaxINode(pre_limit, orig_limit);
2270     register_new_node(pre_limit, pre_ctrl);
2271   }
2272   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
2273 
2274   // Note:: we are making the main loop limit no longer precise;
2275   // need to round up based on stride.
2276   cl->set_nonexact_trip_count();
2277   Node *main_cle = cl->loopexit();
2278   Node *main_bol = main_cle->in(1);
2279   // Hacking loop bounds; need private copies of exit test
2280   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2281     main_bol = main_bol->clone();// Clone a private BoolNode
2282     register_new_node( main_bol, main_cle->in(0) );
2283     _igvn.replace_input_of(main_cle, 1, main_bol);
2284   }
2285   Node *main_cmp = main_bol->in(1);
2286   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2287     main_cmp = main_cmp->clone();// Clone a private CmpNode
2288     register_new_node( main_cmp, main_cle->in(0) );
2289     _igvn.replace_input_of(main_bol, 1, main_cmp);
2290   }
2291   // Hack the now-private loop bounds
2292   _igvn.replace_input_of(main_cmp, 2, main_limit);
2293   // The OpaqueNode is unshared by design
2294   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2295   _igvn.replace_input_of(opqzm, 1, main_limit);
2296 
2297   return closed_range_checks;
2298 }
2299 
2300 //------------------------------has_range_checks-------------------------------
2301 // Check to see if RCE cleaned the current loop of range-checks.
2302 void PhaseIdealLoop::has_range_checks(IdealLoopTree *loop) {
2303   assert(RangeCheckElimination, "");
2304 
2305   // skip if not a counted loop
2306   if (!loop->is_counted()) return;
2307 
2308   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2309 
2310   // skip this loop if it is already checked
2311   if (cl->has_been_range_checked()) return;
2312 
2313   // Now check for existance of range checks
2314   for (uint i = 0; i < loop->_body.size(); i++) {
2315     Node *iff = loop->_body[i];
2316     int iff_opc = iff->Opcode();
2317     if (iff_opc == Op_If || iff_opc == Op_RangeCheck) {
2318       cl->mark_has_range_checks();
2319       break;
2320     }
2321   }
2322   cl->set_has_been_range_checked();
2323 }
2324 
2325 //-------------------------multi_version_post_loops----------------------------
2326 // Check the range checks that remain, if simple, use the bounds to guard
2327 // which version to a post loop we execute, one with range checks or one without
2328 bool PhaseIdealLoop::multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop) {
2329   bool multi_version_succeeded = false;
2330   assert(RangeCheckElimination, "");
2331   CountedLoopNode *legacy_cl = legacy_loop->_head->as_CountedLoop();
2332   assert(legacy_cl->is_post_loop(), "");
2333 
2334   // Check for existance of range checks using the unique instance to make a guard with
2335   Unique_Node_List worklist;
2336   for (uint i = 0; i < legacy_loop->_body.size(); i++) {
2337     Node *iff = legacy_loop->_body[i];
2338     int iff_opc = iff->Opcode();
2339     if (iff_opc == Op_If || iff_opc == Op_RangeCheck) {
2340       worklist.push(iff);
2341     }
2342   }
2343 
2344   // Find RCE'd post loop so that we can stage its guard.
2345   if (!is_canonical_loop_entry(legacy_cl)) return multi_version_succeeded;
2346   Node* ctrl = legacy_cl->in(LoopNode::EntryControl);
2347   Node* iffm = ctrl->in(0);
2348 
2349   // Now we test that both the post loops are connected
2350   Node* post_loop_region = iffm->in(0);
2351   if (post_loop_region == NULL) return multi_version_succeeded;
2352   if (!post_loop_region->is_Region()) return multi_version_succeeded;
2353   Node* covering_region = post_loop_region->in(RegionNode::Control+1);
2354   if (covering_region == NULL) return multi_version_succeeded;
2355   if (!covering_region->is_Region()) return multi_version_succeeded;
2356   Node* p_f = covering_region->in(RegionNode::Control);
2357   if (p_f == NULL) return multi_version_succeeded;
2358   if (!p_f->is_IfFalse()) return multi_version_succeeded;
2359   if (!p_f->in(0)->is_CountedLoopEnd()) return multi_version_succeeded;
2360   CountedLoopEndNode* rce_loop_end = p_f->in(0)->as_CountedLoopEnd();
2361   if (rce_loop_end == NULL) return multi_version_succeeded;
2362   CountedLoopNode* rce_cl = rce_loop_end->loopnode();
2363   if (rce_cl == NULL || !rce_cl->is_post_loop()) return multi_version_succeeded;
2364   CountedLoopNode *known_rce_cl = rce_loop->_head->as_CountedLoop();
2365   if (rce_cl != known_rce_cl) return multi_version_succeeded;
2366 
2367   // Then we fetch the cover entry test
2368   ctrl = rce_cl->in(LoopNode::EntryControl);
2369   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return multi_version_succeeded;
2370 
2371 #ifndef PRODUCT
2372   if (TraceLoopOpts) {
2373     tty->print("PostMultiVersion\n");
2374     rce_loop->dump_head();
2375     legacy_loop->dump_head();
2376   }
2377 #endif
2378 
2379   // Now fetch the limit we want to compare against
2380   Node *limit = rce_cl->limit();
2381   bool first_time = true;
2382 
2383   // If we got this far, we identified the post loop which has been RCE'd and
2384   // we have a work list.  Now we will try to transform the if guard to cause
2385   // the loop pair to be multi version executed with the determination left to runtime
2386   // or the optimizer if full information is known about the given arrays at compile time.
2387   Node *last_min = NULL;
2388   multi_version_succeeded = true;
2389   while (worklist.size()) {
2390     Node* rc_iffm = worklist.pop();
2391     if (rc_iffm->is_If()) {
2392       Node *rc_bolzm = rc_iffm->in(1);
2393       if (rc_bolzm->is_Bool()) {
2394         Node *rc_cmpzm = rc_bolzm->in(1);
2395         if (rc_cmpzm->is_Cmp()) {
2396           Node *rc_left = rc_cmpzm->in(2);
2397           if (rc_left->Opcode() != Op_LoadRange) {
2398             multi_version_succeeded = false;
2399             break;
2400           }
2401           if (first_time) {
2402             last_min = rc_left;
2403             first_time = false;
2404           } else {
2405             Node *cur_min = new MinINode(last_min, rc_left);
2406             last_min = cur_min;
2407             _igvn.register_new_node_with_optimizer(last_min);
2408           }
2409         }
2410       }
2411     }
2412   }
2413 
2414   // All we have to do is update the limit of the rce loop
2415   // with the min of our expression and the current limit.
2416   // We will use this expression to replace the current limit.
2417   if (last_min && multi_version_succeeded) {
2418     Node *cur_min = new MinINode(last_min, limit);
2419     _igvn.register_new_node_with_optimizer(cur_min);
2420     Node *cmp_node = rce_loop_end->cmp_node();
2421     _igvn.replace_input_of(cmp_node, 2, cur_min);
2422     set_idom(cmp_node, cur_min, dom_depth(ctrl));
2423     set_ctrl(cur_min, ctrl);
2424     set_loop(cur_min, rce_loop->_parent);
2425 
2426     legacy_cl->mark_is_multiversioned();
2427     rce_cl->mark_is_multiversioned();
2428     multi_version_succeeded = true;
2429 
2430     C->set_major_progress();
2431   }
2432 
2433   return multi_version_succeeded;
2434 }
2435 
2436 //-------------------------poison_rce_post_loop--------------------------------
2437 // Causes the rce'd post loop to be optimized away if multiverioning fails
2438 void PhaseIdealLoop::poison_rce_post_loop(IdealLoopTree *rce_loop) {
2439   CountedLoopNode *rce_cl = rce_loop->_head->as_CountedLoop();
2440   Node* ctrl = rce_cl->in(LoopNode::EntryControl);
2441   if (ctrl->is_IfTrue() || ctrl->is_IfFalse()) {
2442     Node* iffm = ctrl->in(0);
2443     if (iffm->is_If()) {
2444       Node* cur_bool = iffm->in(1);
2445       if (cur_bool->is_Bool()) {
2446         Node* cur_cmp = cur_bool->in(1);
2447         if (cur_cmp->is_Cmp()) {
2448           BoolTest::mask new_test = BoolTest::gt;
2449           BoolNode *new_bool = new BoolNode(cur_cmp, new_test);
2450           _igvn.replace_node(cur_bool, new_bool);
2451           _igvn._worklist.push(new_bool);
2452           Node* left_op = cur_cmp->in(1);
2453           _igvn.replace_input_of(cur_cmp, 2, left_op);
2454           C->set_major_progress();
2455         }
2456       }
2457     }
2458   }
2459 }
2460 
2461 //------------------------------DCE_loop_body----------------------------------
2462 // Remove simplistic dead code from loop body
2463 void IdealLoopTree::DCE_loop_body() {
2464   for( uint i = 0; i < _body.size(); i++ )
2465     if( _body.at(i)->outcnt() == 0 )
2466       _body.map( i--, _body.pop() );
2467 }
2468 
2469 
2470 //------------------------------adjust_loop_exit_prob--------------------------
2471 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2472 // Replace with a 1-in-10 exit guess.
2473 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2474   Node *test = tail();
2475   while( test != _head ) {
2476     uint top = test->Opcode();
2477     if( top == Op_IfTrue || top == Op_IfFalse ) {
2478       int test_con = ((ProjNode*)test)->_con;
2479       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2480       IfNode *iff = test->in(0)->as_If();
2481       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2482         Node *bol = iff->in(1);
2483         if( bol && bol->req() > 1 && bol->in(1) &&
2484             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2485              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2486              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2487              (bol->in(1)->Opcode() == Op_CompareAndExchangeI ) ||
2488              (bol->in(1)->Opcode() == Op_CompareAndExchangeL ) ||
2489              (bol->in(1)->Opcode() == Op_CompareAndExchangeP ) ||
2490              (bol->in(1)->Opcode() == Op_CompareAndExchangeN ) ||
2491              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapI ) ||
2492              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapL ) ||
2493              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapP ) ||
2494              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapN ) ||
2495              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2496              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2497              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2498              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2499           return;               // Allocation loops RARELY take backedge
2500         // Find the OTHER exit path from the IF
2501         Node* ex = iff->proj_out(1-test_con);
2502         float p = iff->_prob;
2503         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2504           if( top == Op_IfTrue ) {
2505             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2506               iff->_prob = PROB_STATIC_FREQUENT;
2507             }
2508           } else {
2509             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2510               iff->_prob = PROB_STATIC_INFREQUENT;
2511             }
2512           }
2513         }
2514       }
2515     }
2516     test = phase->idom(test);
2517   }
2518 }
2519 
2520 #ifdef ASSERT
2521 static CountedLoopNode* locate_pre_from_main(CountedLoopNode *cl) {
2522   Node *ctrl  = cl->in(LoopNode::EntryControl);
2523   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
2524   Node *iffm = ctrl->in(0);
2525   assert(iffm->Opcode() == Op_If, "");
2526   Node *p_f = iffm->in(0);
2527   assert(p_f->Opcode() == Op_IfFalse, "");
2528   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2529   assert(pre_end->loopnode()->is_pre_loop(), "");
2530   return pre_end->loopnode();
2531 }
2532 #endif
2533 
2534 // Remove the main and post loops and make the pre loop execute all
2535 // iterations. Useful when the pre loop is found empty.
2536 void IdealLoopTree::remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase) {
2537   CountedLoopEndNode* pre_end = cl->loopexit();
2538   Node* pre_cmp = pre_end->cmp_node();
2539   if (pre_cmp->in(2)->Opcode() != Op_Opaque1) {
2540     // Only safe to remove the main loop if the compiler optimized it
2541     // out based on an unknown number of iterations
2542     return;
2543   }
2544 
2545   // Can we find the main loop?
2546   if (_next == NULL) {
2547     return;
2548   }
2549 
2550   Node* next_head = _next->_head;
2551   if (!next_head->is_CountedLoop()) {
2552     return;
2553   }
2554 
2555   CountedLoopNode* main_head = next_head->as_CountedLoop();
2556   if (!main_head->is_main_loop()) {
2557     return;
2558   }
2559 
2560   assert(locate_pre_from_main(main_head) == cl, "bad main loop");
2561   Node* main_iff = main_head->in(LoopNode::EntryControl)->in(0);
2562 
2563   // Remove the Opaque1Node of the pre loop and make it execute all iterations
2564   phase->_igvn.replace_input_of(pre_cmp, 2, pre_cmp->in(2)->in(2));
2565   // Remove the Opaque1Node of the main loop so it can be optimized out
2566   Node* main_cmp = main_iff->in(1)->in(1);
2567   assert(main_cmp->in(2)->Opcode() == Op_Opaque1, "main loop has no opaque node?");
2568   phase->_igvn.replace_input_of(main_cmp, 2, main_cmp->in(2)->in(1));
2569 }
2570 
2571 //------------------------------policy_do_remove_empty_loop--------------------
2572 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2573 // The 'DO' part is to replace the trip counter with the value it will
2574 // have on the last iteration.  This will break the loop.
2575 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2576   // Minimum size must be empty loop
2577   if (_body.size() > EMPTY_LOOP_SIZE)
2578     return false;
2579 
2580   if (!_head->is_CountedLoop())
2581     return false;     // Dead loop
2582   CountedLoopNode *cl = _head->as_CountedLoop();
2583   if (!cl->is_valid_counted_loop())
2584     return false; // Malformed loop
2585   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2586     return false;             // Infinite loop
2587 
2588   if (cl->is_pre_loop()) {
2589     // If the loop we are removing is a pre-loop then the main and
2590     // post loop can be removed as well
2591     remove_main_post_loops(cl, phase);
2592   }
2593 
2594 #ifdef ASSERT
2595   // Ensure only one phi which is the iv.
2596   Node* iv = NULL;
2597   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2598     Node* n = cl->fast_out(i);
2599     if (n->Opcode() == Op_Phi) {
2600       assert(iv == NULL, "Too many phis" );
2601       iv = n;
2602     }
2603   }
2604   assert(iv == cl->phi(), "Wrong phi" );
2605 #endif
2606 
2607   // main and post loops have explicitly created zero trip guard
2608   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2609   if (needs_guard) {
2610     // Skip guard if values not overlap.
2611     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2612     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2613     int  stride_con = cl->stride_con();
2614     if (stride_con > 0) {
2615       needs_guard = (init_t->_hi >= limit_t->_lo);
2616     } else {
2617       needs_guard = (init_t->_lo <= limit_t->_hi);
2618     }
2619   }
2620   if (needs_guard) {
2621     // Check for an obvious zero trip guard.
2622     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2623     if (inctrl->Opcode() == Op_IfTrue || inctrl->Opcode() == Op_IfFalse) {
2624       bool maybe_swapped = (inctrl->Opcode() == Op_IfFalse);
2625       // The test should look like just the backedge of a CountedLoop
2626       Node* iff = inctrl->in(0);
2627       if (iff->is_If()) {
2628         Node* bol = iff->in(1);
2629         if (bol->is_Bool()) {
2630           BoolTest test = bol->as_Bool()->_test;
2631           if (maybe_swapped) {
2632             test._test = test.commute();
2633             test._test = test.negate();
2634           }
2635           if (test._test == cl->loopexit()->test_trip()) {
2636             Node* cmp = bol->in(1);
2637             int init_idx = maybe_swapped ? 2 : 1;
2638             int limit_idx = maybe_swapped ? 1 : 2;
2639             if (cmp->is_Cmp() && cmp->in(init_idx) == cl->init_trip() && cmp->in(limit_idx) == cl->limit()) {
2640               needs_guard = false;
2641             }
2642           }
2643         }
2644       }
2645     }
2646   }
2647 
2648 #ifndef PRODUCT
2649   if (PrintOpto) {
2650     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2651     this->dump_head();
2652   } else if (TraceLoopOpts) {
2653     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2654     this->dump_head();
2655   }
2656 #endif
2657 
2658   if (needs_guard) {
2659     // Peel the loop to ensure there's a zero trip guard
2660     Node_List old_new;
2661     phase->do_peeling(this, old_new);
2662   }
2663 
2664   // Replace the phi at loop head with the final value of the last
2665   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2666   // taken) and all loop-invariant uses of the exit values will be correct.
2667   Node *phi = cl->phi();
2668   Node *exact_limit = phase->exact_limit(this);
2669   if (exact_limit != cl->limit()) {
2670     // We also need to replace the original limit to collapse loop exit.
2671     Node* cmp = cl->loopexit()->cmp_node();
2672     assert(cl->limit() == cmp->in(2), "sanity");
2673     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2674     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2675   }
2676   // Note: the final value after increment should not overflow since
2677   // counted loop has limit check predicate.
2678   Node *final = new SubINode( exact_limit, cl->stride() );
2679   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2680   phase->_igvn.replace_node(phi,final);
2681   phase->C->set_major_progress();
2682   return true;
2683 }
2684 
2685 //------------------------------policy_do_one_iteration_loop-------------------
2686 // Convert one iteration loop into normal code.
2687 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2688   if (!_head->as_Loop()->is_valid_counted_loop())
2689     return false; // Only for counted loop
2690 
2691   CountedLoopNode *cl = _head->as_CountedLoop();
2692   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2693     return false;
2694   }
2695 
2696 #ifndef PRODUCT
2697   if(TraceLoopOpts) {
2698     tty->print("OneIteration ");
2699     this->dump_head();
2700   }
2701 #endif
2702 
2703   Node *init_n = cl->init_trip();
2704 #ifdef ASSERT
2705   // Loop boundaries should be constant since trip count is exact.
2706   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2707 #endif
2708   // Replace the phi at loop head with the value of the init_trip.
2709   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2710   // and all loop-invariant uses of the exit values will be correct.
2711   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2712   phase->C->set_major_progress();
2713   return true;
2714 }
2715 
2716 //=============================================================================
2717 //------------------------------iteration_split_impl---------------------------
2718 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2719   // Compute exact loop trip count if possible.
2720   compute_exact_trip_count(phase);
2721 
2722   // Convert one iteration loop into normal code.
2723   if (policy_do_one_iteration_loop(phase))
2724     return true;
2725 
2726   // Check and remove empty loops (spam micro-benchmarks)
2727   if (policy_do_remove_empty_loop(phase))
2728     return true;  // Here we removed an empty loop
2729 
2730   bool should_peel = policy_peeling(phase); // Should we peel?
2731 
2732   bool should_unswitch = policy_unswitching(phase);
2733 
2734   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2735   // This removes loop-invariant tests (usually null checks).
2736   if (!_head->is_CountedLoop()) { // Non-counted loop
2737     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2738       // Partial peel succeeded so terminate this round of loop opts
2739       return false;
2740     }
2741     if (should_peel) {            // Should we peel?
2742       if (PrintOpto) { tty->print_cr("should_peel"); }
2743       phase->do_peeling(this,old_new);
2744     } else if (should_unswitch) {
2745       phase->do_unswitching(this, old_new);
2746     }
2747     return true;
2748   }
2749   CountedLoopNode *cl = _head->as_CountedLoop();
2750 
2751   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2752 
2753   // Do nothing special to pre- and post- loops
2754   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2755 
2756   // Compute loop trip count from profile data
2757   compute_profile_trip_cnt(phase);
2758 
2759   // Before attempting fancy unrolling, RCE or alignment, see if we want
2760   // to completely unroll this loop or do loop unswitching.
2761   if (cl->is_normal_loop()) {
2762     if (should_unswitch) {
2763       phase->do_unswitching(this, old_new);
2764       return true;
2765     }
2766     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2767     if (should_maximally_unroll) {
2768       // Here we did some unrolling and peeling.  Eventually we will
2769       // completely unroll this loop and it will no longer be a loop.
2770       phase->do_maximally_unroll(this,old_new);
2771       return true;
2772     }
2773   }
2774 
2775   // Skip next optimizations if running low on nodes. Note that
2776   // policy_unswitching and policy_maximally_unroll have this check.
2777   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
2778   if ((int)(2 * _body.size()) > nodes_left) {
2779     return true;
2780   }
2781 
2782   // Counted loops may be peeled, may need some iterations run up
2783   // front for RCE, and may want to align loop refs to a cache
2784   // line.  Thus we clone a full loop up front whose trip count is
2785   // at least 1 (if peeling), but may be several more.
2786 
2787   // The main loop will start cache-line aligned with at least 1
2788   // iteration of the unrolled body (zero-trip test required) and
2789   // will have some range checks removed.
2790 
2791   // A post-loop will finish any odd iterations (leftover after
2792   // unrolling), plus any needed for RCE purposes.
2793 
2794   bool should_unroll = policy_unroll(phase);
2795 
2796   bool should_rce = policy_range_check(phase);
2797 
2798   bool should_align = policy_align(phase);
2799 
2800   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2801   // need a pre-loop.  We may still need to peel an initial iteration but
2802   // we will not be needing an unknown number of pre-iterations.
2803   //
2804   // Basically, if may_rce_align reports FALSE first time through,
2805   // we will not be able to later do RCE or Aligning on this loop.
2806   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2807 
2808   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2809   // we switch to the pre-/main-/post-loop model.  This model also covers
2810   // peeling.
2811   if (should_rce || should_align || should_unroll) {
2812     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2813       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2814 
2815     // Adjust the pre- and main-loop limits to let the pre and post loops run
2816     // with full checks, but the main-loop with no checks.  Remove said
2817     // checks from the main body.
2818     if (should_rce) {
2819       if (phase->do_range_check(this, old_new) != 0) {
2820         cl->mark_has_range_checks();
2821       }
2822     } else if (PostLoopMultiversioning) {
2823       phase->has_range_checks(this);
2824     }
2825 
2826     if (should_unroll && !should_peel && PostLoopMultiversioning) {
2827       // Try to setup multiversioning on main loops before they are unrolled
2828       if (cl->is_main_loop() && (cl->unrolled_count() == 1)) {
2829         phase->insert_scalar_rced_post_loop(this, old_new);
2830       }
2831     }
2832 
2833     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2834     // twice as many iterations as before) and the main body limit (only do
2835     // an even number of trips).  If we are peeling, we might enable some RCE
2836     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2837     // peeling.
2838     if (should_unroll && !should_peel) {
2839       if (SuperWordLoopUnrollAnalysis) {
2840         phase->insert_vector_post_loop(this, old_new);
2841       }
2842       phase->do_unroll(this, old_new, true);
2843     }
2844 
2845     // Adjust the pre-loop limits to align the main body
2846     // iterations.
2847     if (should_align)
2848       Unimplemented();
2849 
2850   } else {                      // Else we have an unchanged counted loop
2851     if (should_peel)           // Might want to peel but do nothing else
2852       phase->do_peeling(this,old_new);
2853   }
2854   return true;
2855 }
2856 
2857 
2858 //=============================================================================
2859 //------------------------------iteration_split--------------------------------
2860 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2861   // Recursively iteration split nested loops
2862   if (_child && !_child->iteration_split(phase, old_new))
2863     return false;
2864 
2865   // Clean out prior deadwood
2866   DCE_loop_body();
2867 
2868 
2869   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2870   // Replace with a 1-in-10 exit guess.
2871   if (_parent /*not the root loop*/ &&
2872       !_irreducible &&
2873       // Also ignore the occasional dead backedge
2874       !tail()->is_top()) {
2875     adjust_loop_exit_prob(phase);
2876   }
2877 
2878   // Gate unrolling, RCE and peeling efforts.
2879   if (!_child &&                // If not an inner loop, do not split
2880       !_irreducible &&
2881       _allow_optimizations &&
2882       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2883     if (!_has_call) {
2884         if (!iteration_split_impl(phase, old_new)) {
2885           return false;
2886         }
2887     } else if (policy_unswitching(phase)) {
2888       phase->do_unswitching(this, old_new);
2889     }
2890   }
2891 
2892   // Minor offset re-organization to remove loop-fallout uses of
2893   // trip counter when there was no major reshaping.
2894   phase->reorg_offsets(this);
2895 
2896   if (_next && !_next->iteration_split(phase, old_new))
2897     return false;
2898   return true;
2899 }
2900 
2901 
2902 //=============================================================================
2903 // Process all the loops in the loop tree and replace any fill
2904 // patterns with an intrinsic version.
2905 bool PhaseIdealLoop::do_intrinsify_fill() {
2906   bool changed = false;
2907   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2908     IdealLoopTree* lpt = iter.current();
2909     changed |= intrinsify_fill(lpt);
2910   }
2911   return changed;
2912 }
2913 
2914 
2915 // Examine an inner loop looking for a a single store of an invariant
2916 // value in a unit stride loop,
2917 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2918                                      Node*& shift, Node*& con) {
2919   const char* msg = NULL;
2920   Node* msg_node = NULL;
2921 
2922   store_value = NULL;
2923   con = NULL;
2924   shift = NULL;
2925 
2926   // Process the loop looking for stores.  If there are multiple
2927   // stores or extra control flow give at this point.
2928   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2929   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2930     Node* n = lpt->_body.at(i);
2931     if (n->outcnt() == 0) continue; // Ignore dead
2932     if (n->is_Store()) {
2933       if (store != NULL) {
2934         msg = "multiple stores";
2935         break;
2936       }
2937       int opc = n->Opcode();
2938       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
2939         msg = "oop fills not handled";
2940         break;
2941       }
2942       Node* value = n->in(MemNode::ValueIn);
2943       if (!lpt->is_invariant(value)) {
2944         msg  = "variant store value";
2945       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2946         msg = "not array address";
2947       }
2948       store = n;
2949       store_value = value;
2950     } else if (n->is_If() && n != head->loopexit()) {
2951       msg = "extra control flow";
2952       msg_node = n;
2953     }
2954   }
2955 
2956   if (store == NULL) {
2957     // No store in loop
2958     return false;
2959   }
2960 
2961   if (msg == NULL && head->stride_con() != 1) {
2962     // could handle negative strides too
2963     if (head->stride_con() < 0) {
2964       msg = "negative stride";
2965     } else {
2966       msg = "non-unit stride";
2967     }
2968   }
2969 
2970   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2971     msg = "can't handle store address";
2972     msg_node = store->in(MemNode::Address);
2973   }
2974 
2975   if (msg == NULL &&
2976       (!store->in(MemNode::Memory)->is_Phi() ||
2977        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2978     msg = "store memory isn't proper phi";
2979     msg_node = store->in(MemNode::Memory);
2980   }
2981 
2982   // Make sure there is an appropriate fill routine
2983   BasicType t = store->as_Mem()->memory_type();
2984   const char* fill_name;
2985   if (msg == NULL &&
2986       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2987     msg = "unsupported store";
2988     msg_node = store;
2989   }
2990 
2991   if (msg != NULL) {
2992 #ifndef PRODUCT
2993     if (TraceOptimizeFill) {
2994       tty->print_cr("not fill intrinsic candidate: %s", msg);
2995       if (msg_node != NULL) msg_node->dump();
2996     }
2997 #endif
2998     return false;
2999   }
3000 
3001   // Make sure the address expression can be handled.  It should be
3002   // head->phi * elsize + con.  head->phi might have a ConvI2L(CastII()).
3003   Node* elements[4];
3004   Node* cast = NULL;
3005   Node* conv = NULL;
3006   bool found_index = false;
3007   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
3008   for (int e = 0; e < count; e++) {
3009     Node* n = elements[e];
3010     if (n->is_Con() && con == NULL) {
3011       con = n;
3012     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
3013       Node* value = n->in(1);
3014 #ifdef _LP64
3015       if (value->Opcode() == Op_ConvI2L) {
3016         conv = value;
3017         value = value->in(1);
3018       }
3019       if (value->Opcode() == Op_CastII &&
3020           value->as_CastII()->has_range_check()) {
3021         // Skip range check dependent CastII nodes
3022         cast = value;
3023         value = value->in(1);
3024       }
3025 #endif
3026       if (value != head->phi()) {
3027         msg = "unhandled shift in address";
3028       } else {
3029         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
3030           msg = "scale doesn't match";
3031         } else {
3032           found_index = true;
3033           shift = n;
3034         }
3035       }
3036     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
3037       conv = n;
3038       n = n->in(1);
3039       if (n->Opcode() == Op_CastII &&
3040           n->as_CastII()->has_range_check()) {
3041         // Skip range check dependent CastII nodes
3042         cast = n;
3043         n = n->in(1);
3044       }
3045       if (n == head->phi()) {
3046         found_index = true;
3047       } else {
3048         msg = "unhandled input to ConvI2L";
3049       }
3050     } else if (n == head->phi()) {
3051       // no shift, check below for allowed cases
3052       found_index = true;
3053     } else {
3054       msg = "unhandled node in address";
3055       msg_node = n;
3056     }
3057   }
3058 
3059   if (count == -1) {
3060     msg = "malformed address expression";
3061     msg_node = store;
3062   }
3063 
3064   if (!found_index) {
3065     msg = "missing use of index";
3066   }
3067 
3068   // byte sized items won't have a shift
3069   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
3070     msg = "can't find shift";
3071     msg_node = store;
3072   }
3073 
3074   if (msg != NULL) {
3075 #ifndef PRODUCT
3076     if (TraceOptimizeFill) {
3077       tty->print_cr("not fill intrinsic: %s", msg);
3078       if (msg_node != NULL) msg_node->dump();
3079     }
3080 #endif
3081     return false;
3082   }
3083 
3084   // No make sure all the other nodes in the loop can be handled
3085   VectorSet ok(Thread::current()->resource_area());
3086 
3087   // store related values are ok
3088   ok.set(store->_idx);
3089   ok.set(store->in(MemNode::Memory)->_idx);
3090 
3091   CountedLoopEndNode* loop_exit = head->loopexit();
3092   guarantee(loop_exit != NULL, "no loop exit node");
3093 
3094   // Loop structure is ok
3095   ok.set(head->_idx);
3096   ok.set(loop_exit->_idx);
3097   ok.set(head->phi()->_idx);
3098   ok.set(head->incr()->_idx);
3099   ok.set(loop_exit->cmp_node()->_idx);
3100   ok.set(loop_exit->in(1)->_idx);
3101 
3102   // Address elements are ok
3103   if (con)   ok.set(con->_idx);
3104   if (shift) ok.set(shift->_idx);
3105   if (cast)  ok.set(cast->_idx);
3106   if (conv)  ok.set(conv->_idx);
3107 
3108   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
3109     Node* n = lpt->_body.at(i);
3110     if (n->outcnt() == 0) continue; // Ignore dead
3111     if (ok.test(n->_idx)) continue;
3112     // Backedge projection is ok
3113     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
3114     if (!n->is_AddP()) {
3115       msg = "unhandled node";
3116       msg_node = n;
3117       break;
3118     }
3119   }
3120 
3121   // Make sure no unexpected values are used outside the loop
3122   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
3123     Node* n = lpt->_body.at(i);
3124     // These values can be replaced with other nodes if they are used
3125     // outside the loop.
3126     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
3127     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
3128       Node* use = iter.get();
3129       if (!lpt->_body.contains(use)) {
3130         msg = "node is used outside loop";
3131         // lpt->_body.dump();
3132         msg_node = n;
3133         break;
3134       }
3135     }
3136   }
3137 
3138 #ifdef ASSERT
3139   if (TraceOptimizeFill) {
3140     if (msg != NULL) {
3141       tty->print_cr("no fill intrinsic: %s", msg);
3142       if (msg_node != NULL) msg_node->dump();
3143     } else {
3144       tty->print_cr("fill intrinsic for:");
3145     }
3146     store->dump();
3147     if (Verbose) {
3148       lpt->_body.dump();
3149     }
3150   }
3151 #endif
3152 
3153   return msg == NULL;
3154 }
3155 
3156 
3157 
3158 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
3159   // Only for counted inner loops
3160   if (!lpt->is_counted() || !lpt->is_inner()) {
3161     return false;
3162   }
3163 
3164   // Must have constant stride
3165   CountedLoopNode* head = lpt->_head->as_CountedLoop();
3166   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
3167     return false;
3168   }
3169 
3170   // Check that the body only contains a store of a loop invariant
3171   // value that is indexed by the loop phi.
3172   Node* store = NULL;
3173   Node* store_value = NULL;
3174   Node* shift = NULL;
3175   Node* offset = NULL;
3176   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
3177     return false;
3178   }
3179 
3180 #ifndef PRODUCT
3181   if (TraceLoopOpts) {
3182     tty->print("ArrayFill    ");
3183     lpt->dump_head();
3184   }
3185 #endif
3186 
3187   // Now replace the whole loop body by a call to a fill routine that
3188   // covers the same region as the loop.
3189   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
3190 
3191   // Build an expression for the beginning of the copy region
3192   Node* index = head->init_trip();
3193 #ifdef _LP64
3194   index = new ConvI2LNode(index);
3195   _igvn.register_new_node_with_optimizer(index);
3196 #endif
3197   if (shift != NULL) {
3198     // byte arrays don't require a shift but others do.
3199     index = new LShiftXNode(index, shift->in(2));
3200     _igvn.register_new_node_with_optimizer(index);
3201   }
3202   index = new AddPNode(base, base, index);
3203   _igvn.register_new_node_with_optimizer(index);
3204   Node* from = new AddPNode(base, index, offset);
3205   _igvn.register_new_node_with_optimizer(from);
3206   // Compute the number of elements to copy
3207   Node* len = new SubINode(head->limit(), head->init_trip());
3208   _igvn.register_new_node_with_optimizer(len);
3209 
3210   BasicType t = store->as_Mem()->memory_type();
3211   bool aligned = false;
3212   if (offset != NULL && head->init_trip()->is_Con()) {
3213     int element_size = type2aelembytes(t);
3214     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
3215   }
3216 
3217   // Build a call to the fill routine
3218   const char* fill_name;
3219   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
3220   assert(fill != NULL, "what?");
3221 
3222   // Convert float/double to int/long for fill routines
3223   if (t == T_FLOAT) {
3224     store_value = new MoveF2INode(store_value);
3225     _igvn.register_new_node_with_optimizer(store_value);
3226   } else if (t == T_DOUBLE) {
3227     store_value = new MoveD2LNode(store_value);
3228     _igvn.register_new_node_with_optimizer(store_value);
3229   }
3230 
3231   Node* mem_phi = store->in(MemNode::Memory);
3232   Node* result_ctrl;
3233   Node* result_mem;
3234   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
3235   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
3236                                             fill_name, TypeAryPtr::get_array_body_type(t));
3237   uint cnt = 0;
3238   call->init_req(TypeFunc::Parms + cnt++, from);
3239   call->init_req(TypeFunc::Parms + cnt++, store_value);
3240 #ifdef _LP64
3241   len = new ConvI2LNode(len);
3242   _igvn.register_new_node_with_optimizer(len);
3243 #endif
3244   call->init_req(TypeFunc::Parms + cnt++, len);
3245 #ifdef _LP64
3246   call->init_req(TypeFunc::Parms + cnt++, C->top());
3247 #endif
3248   call->init_req(TypeFunc::Control,   head->init_control());
3249   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
3250   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
3251   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
3252   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
3253   _igvn.register_new_node_with_optimizer(call);
3254   result_ctrl = new ProjNode(call,TypeFunc::Control);
3255   _igvn.register_new_node_with_optimizer(result_ctrl);
3256   result_mem = new ProjNode(call,TypeFunc::Memory);
3257   _igvn.register_new_node_with_optimizer(result_mem);
3258 
3259 /* Disable following optimization until proper fix (add missing checks).
3260 
3261   // If this fill is tightly coupled to an allocation and overwrites
3262   // the whole body, allow it to take over the zeroing.
3263   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
3264   if (alloc != NULL && alloc->is_AllocateArray()) {
3265     Node* length = alloc->as_AllocateArray()->Ideal_length();
3266     if (head->limit() == length &&
3267         head->init_trip() == _igvn.intcon(0)) {
3268       if (TraceOptimizeFill) {
3269         tty->print_cr("Eliminated zeroing in allocation");
3270       }
3271       alloc->maybe_set_complete(&_igvn);
3272     } else {
3273 #ifdef ASSERT
3274       if (TraceOptimizeFill) {
3275         tty->print_cr("filling array but bounds don't match");
3276         alloc->dump();
3277         head->init_trip()->dump();
3278         head->limit()->dump();
3279         length->dump();
3280       }
3281 #endif
3282     }
3283   }
3284 */
3285 
3286   // Redirect the old control and memory edges that are outside the loop.
3287   Node* exit = head->loopexit()->proj_out(0);
3288   // Sometimes the memory phi of the head is used as the outgoing
3289   // state of the loop.  It's safe in this case to replace it with the
3290   // result_mem.
3291   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
3292   lazy_replace(exit, result_ctrl);
3293   _igvn.replace_node(store, result_mem);
3294   // Any uses the increment outside of the loop become the loop limit.
3295   _igvn.replace_node(head->incr(), head->limit());
3296 
3297   // Disconnect the head from the loop.
3298   for (uint i = 0; i < lpt->_body.size(); i++) {
3299     Node* n = lpt->_body.at(i);
3300     _igvn.replace_node(n, C->top());
3301   }
3302 
3303   return true;
3304 }