1 /*
   2  * Copyright (c) 2009, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
  26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
  27 
  28 #include "utilities/align.hpp"
  29 #include "utilities/stack.hpp"
  30 #include "utilities/copy.hpp"
  31 
  32 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
  33                      size_t max_size):
  34   _seg_size(segment_size),
  35   _max_cache_size(max_cache_size),
  36   _max_size(adjust_max_size(max_size, segment_size))
  37 {
  38   assert(_max_size % _seg_size == 0, "not a multiple");
  39 }
  40 
  41 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
  42 {
  43   assert(seg_size > 0, "cannot be 0");
  44   assert(max_size >= seg_size || max_size == 0, "max_size too small");
  45   const size_t limit = max_uintx - (seg_size - 1);
  46   if (max_size == 0 || max_size > limit) {
  47     max_size = limit;
  48   }
  49   return (max_size + seg_size - 1) / seg_size * seg_size;
  50 }
  51 
  52 template <class E, MEMFLAGS F>
  53 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
  54   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
  55 {
  56   reset(true);
  57 }
  58 
  59 template <class E, MEMFLAGS F>
  60 void Stack<E, F>::push(E item)
  61 {
  62   assert(!is_full(), "pushing onto a full stack");
  63   if (this->_cur_seg_size == this->_seg_size) {
  64     push_segment();
  65   }
  66   this->_cur_seg[this->_cur_seg_size] = item;
  67   ++this->_cur_seg_size;
  68 }
  69 
  70 template <class E, MEMFLAGS F>
  71 E Stack<E, F>::pop()
  72 {
  73   assert(!is_empty(), "popping from an empty stack");
  74   if (this->_cur_seg_size == 1) {
  75     E tmp = _cur_seg[--this->_cur_seg_size];
  76     pop_segment();
  77     return tmp;
  78   }
  79   return this->_cur_seg[--this->_cur_seg_size];
  80 }
  81 
  82 template <class E, MEMFLAGS F>
  83 void Stack<E, F>::clear(bool clear_cache)
  84 {
  85   free_segments(_cur_seg);
  86   if (clear_cache) free_segments(_cache);
  87   reset(clear_cache);
  88 }
  89 
  90 template <class E, MEMFLAGS F>
  91 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
  92 {
  93   const size_t elem_sz = sizeof(E);
  94   const size_t ptr_sz = sizeof(E*);
  95   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
  96   if (elem_sz < ptr_sz) {
  97     return align_up(seg_size * elem_sz, ptr_sz) / elem_sz;
  98   }
  99   return seg_size;
 100 }
 101 
 102 template <class E, MEMFLAGS F>
 103 size_t Stack<E, F>::link_offset() const
 104 {
 105   return align_up(this->_seg_size * sizeof(E), sizeof(E*));
 106 }
 107 
 108 template <class E, MEMFLAGS F>
 109 size_t Stack<E, F>::segment_bytes() const
 110 {
 111   return link_offset() + sizeof(E*);
 112 }
 113 
 114 template <class E, MEMFLAGS F>
 115 E** Stack<E, F>::link_addr(E* seg) const
 116 {
 117   return (E**) ((char*)seg + link_offset());
 118 }
 119 
 120 template <class E, MEMFLAGS F>
 121 E* Stack<E, F>::get_link(E* seg) const
 122 {
 123   return *link_addr(seg);
 124 }
 125 
 126 template <class E, MEMFLAGS F>
 127 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
 128 {
 129   *link_addr(new_seg) = old_seg;
 130   return new_seg;
 131 }
 132 
 133 template <class E, MEMFLAGS F>
 134 E* Stack<E, F>::alloc(size_t bytes)
 135 {
 136   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
 137 }
 138 
 139 template <class E, MEMFLAGS F>
 140 void Stack<E, F>::free(E* addr, size_t bytes)
 141 {
 142   FREE_C_HEAP_ARRAY(char, (char*) addr);
 143 }
 144 
 145 // Stack is used by the GC code and in some hot paths a lot of the Stack
 146 // code gets inlined. This is generally good, but when too much code has
 147 // been inlined, no further inlining is allowed by GCC. Therefore we need
 148 // to prevent parts of the slow path in Stack to be inlined to allow other
 149 // code to be.
 150 template <class E, MEMFLAGS F>
 151 NOINLINE void Stack<E, F>::push_segment()
 152 {
 153   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
 154   E* next;
 155   if (this->_cache_size > 0) {
 156     // Use a cached segment.
 157     next = _cache;
 158     _cache = get_link(_cache);
 159     --this->_cache_size;
 160   } else {
 161     next = alloc(segment_bytes());
 162     DEBUG_ONLY(zap_segment(next, true);)
 163   }
 164   const bool at_empty_transition = is_empty();
 165   this->_cur_seg = set_link(next, _cur_seg);
 166   this->_cur_seg_size = 0;
 167   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
 168   DEBUG_ONLY(verify(at_empty_transition);)
 169 }
 170 
 171 template <class E, MEMFLAGS F>
 172 void Stack<E, F>::pop_segment()
 173 {
 174   assert(this->_cur_seg_size == 0, "current segment is not empty");
 175   E* const prev = get_link(_cur_seg);
 176   if (this->_cache_size < this->_max_cache_size) {
 177     // Add the current segment to the cache.
 178     DEBUG_ONLY(zap_segment(_cur_seg, false);)
 179     _cache = set_link(_cur_seg, _cache);
 180     ++this->_cache_size;
 181   } else {
 182     DEBUG_ONLY(zap_segment(_cur_seg, true);)
 183     free(_cur_seg, segment_bytes());
 184   }
 185   const bool at_empty_transition = prev == NULL;
 186   this->_cur_seg = prev;
 187   this->_cur_seg_size = this->_seg_size;
 188   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
 189   DEBUG_ONLY(verify(at_empty_transition);)
 190 }
 191 
 192 template <class E, MEMFLAGS F>
 193 void Stack<E, F>::free_segments(E* seg)
 194 {
 195   const size_t bytes = segment_bytes();
 196   while (seg != NULL) {
 197     E* const prev = get_link(seg);
 198     free(seg, bytes);
 199     seg = prev;
 200   }
 201 }
 202 
 203 template <class E, MEMFLAGS F>
 204 void Stack<E, F>::reset(bool reset_cache)
 205 {
 206   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
 207   this->_full_seg_size = 0;
 208   _cur_seg = NULL;
 209   if (reset_cache) {
 210     this->_cache_size = 0;
 211     _cache = NULL;
 212   }
 213 }
 214 
 215 #ifdef ASSERT
 216 template <class E, MEMFLAGS F>
 217 void Stack<E, F>::verify(bool at_empty_transition) const
 218 {
 219   assert(size() <= this->max_size(), "stack exceeded bounds");
 220   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
 221   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
 222 
 223   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
 224   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
 225   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
 226 
 227   if (is_empty()) {
 228     assert(this->_cur_seg_size == this->segment_size(), "sanity");
 229   }
 230 }
 231 
 232 template <class E, MEMFLAGS F>
 233 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
 234 {
 235   if (!ZapStackSegments) return;
 236   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
 237   Copy::fill_to_bytes(seg, zap_bytes, badStackSegVal);
 238 }
 239 #endif
 240 
 241 template <class E, MEMFLAGS F>
 242 E* ResourceStack<E, F>::alloc(size_t bytes)
 243 {
 244   return (E*) resource_allocate_bytes(bytes);
 245 }
 246 
 247 template <class E, MEMFLAGS F>
 248 void ResourceStack<E, F>::free(E* addr, size_t bytes)
 249 {
 250   resource_free_bytes((char*) addr, bytes);
 251 }
 252 
 253 template <class E, MEMFLAGS F>
 254 void StackIterator<E, F>::sync()
 255 {
 256   _full_seg_size = _stack._full_seg_size;
 257   _cur_seg_size = _stack._cur_seg_size;
 258   _cur_seg = _stack._cur_seg;
 259 }
 260 
 261 template <class E, MEMFLAGS F>
 262 E* StackIterator<E, F>::next_addr()
 263 {
 264   assert(!is_empty(), "no items left");
 265   if (_cur_seg_size == 1) {
 266     E* addr = _cur_seg;
 267     _cur_seg = _stack.get_link(_cur_seg);
 268     _cur_seg_size = _stack.segment_size();
 269     _full_seg_size -= _stack.segment_size();
 270     return addr;
 271   }
 272   return _cur_seg + --_cur_seg_size;
 273 }
 274 
 275 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP