1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/cardTable.hpp"
  29 #include "gc/shared/cardTableBarrierSet.inline.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "interp_masm_arm.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/markOop.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/basicLock.hpp"
  42 #include "runtime/biasedLocking.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1BarrierSet.hpp"
  48 #include "gc/g1/heapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 
  51 //--------------------------------------------------------------------
  52 // Implementation of InterpreterMacroAssembler
  53 
  54 
  55 
  56 
  57 InterpreterMacroAssembler::InterpreterMacroAssembler(CodeBuffer* code) : MacroAssembler(code) {
  58 }
  59 
  60 void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  61 #if defined(ASSERT) && !defined(AARCH64)
  62   // Ensure that last_sp is not filled.
  63   { Label L;
  64     ldr(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
  65     cbz(Rtemp, L);
  66     stop("InterpreterMacroAssembler::call_VM_helper: last_sp != NULL");
  67     bind(L);
  68   }
  69 #endif // ASSERT && !AARCH64
  70 
  71   // Rbcp must be saved/restored since it may change due to GC.
  72   save_bcp();
  73 
  74 #ifdef AARCH64
  75   check_no_cached_stack_top(Rtemp);
  76   save_stack_top();
  77   check_extended_sp(Rtemp);
  78   cut_sp_before_call();
  79 #endif // AARCH64
  80 
  81   // super call
  82   MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions);
  83 
  84 #ifdef AARCH64
  85   // Restore SP to extended SP
  86   restore_sp_after_call(Rtemp);
  87   check_stack_top();
  88   clear_cached_stack_top();
  89 #endif // AARCH64
  90 
  91   // Restore interpreter specific registers.
  92   restore_bcp();
  93   restore_method();
  94 }
  95 
  96 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  97   assert(entry, "Entry must have been generated by now");
  98   b(entry);
  99 }
 100 
 101 void InterpreterMacroAssembler::check_and_handle_popframe() {
 102   if (can_pop_frame()) {
 103     Label L;
 104     const Register popframe_cond = R2_tmp;
 105 
 106     // Initiate popframe handling only if it is not already being processed.  If the flag
 107     // has the popframe_processing bit set, it means that this code is called *during* popframe
 108     // handling - we don't want to reenter.
 109 
 110     ldr_s32(popframe_cond, Address(Rthread, JavaThread::popframe_condition_offset()));
 111     tbz(popframe_cond, exact_log2(JavaThread::popframe_pending_bit), L);
 112     tbnz(popframe_cond, exact_log2(JavaThread::popframe_processing_bit), L);
 113 
 114     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 115     // address of the same-named entrypoint in the generated interpreter code.
 116     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 117 
 118     // Call indirectly to avoid generation ordering problem.
 119     jump(R0);
 120 
 121     bind(L);
 122   }
 123 }
 124 
 125 
 126 // Blows R2, Rtemp. Sets TOS cached value.
 127 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 128   const Register thread_state = R2_tmp;
 129 
 130   ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
 131 
 132   const Address tos_addr(thread_state, JvmtiThreadState::earlyret_tos_offset());
 133   const Address oop_addr(thread_state, JvmtiThreadState::earlyret_oop_offset());
 134   const Address val_addr(thread_state, JvmtiThreadState::earlyret_value_offset());
 135 #ifndef AARCH64
 136   const Address val_addr_hi(thread_state, JvmtiThreadState::earlyret_value_offset()
 137                              + in_ByteSize(wordSize));
 138 #endif // !AARCH64
 139 
 140   Register zero = zero_register(Rtemp);
 141 
 142   switch (state) {
 143     case atos: ldr(R0_tos, oop_addr);
 144                str(zero, oop_addr);
 145                interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 146                break;
 147 
 148 #ifdef AARCH64
 149     case ltos: ldr(R0_tos, val_addr);              break;
 150 #else
 151     case ltos: ldr(R1_tos_hi, val_addr_hi);        // fall through
 152 #endif // AARCH64
 153     case btos:                                     // fall through
 154     case ztos:                                     // fall through
 155     case ctos:                                     // fall through
 156     case stos:                                     // fall through
 157     case itos: ldr_s32(R0_tos, val_addr);          break;
 158 #ifdef __SOFTFP__
 159     case dtos: ldr(R1_tos_hi, val_addr_hi);        // fall through
 160     case ftos: ldr(R0_tos, val_addr);              break;
 161 #else
 162     case ftos: ldr_float (S0_tos, val_addr);       break;
 163     case dtos: ldr_double(D0_tos, val_addr);       break;
 164 #endif // __SOFTFP__
 165     case vtos: /* nothing to do */                 break;
 166     default  : ShouldNotReachHere();
 167   }
 168   // Clean up tos value in the thread object
 169   str(zero, val_addr);
 170 #ifndef AARCH64
 171   str(zero, val_addr_hi);
 172 #endif // !AARCH64
 173 
 174   mov(Rtemp, (int) ilgl);
 175   str_32(Rtemp, tos_addr);
 176 }
 177 
 178 
 179 // Blows R2, Rtemp.
 180 void InterpreterMacroAssembler::check_and_handle_earlyret() {
 181   if (can_force_early_return()) {
 182     Label L;
 183     const Register thread_state = R2_tmp;
 184 
 185     ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
 186     cbz(thread_state, L); // if (thread->jvmti_thread_state() == NULL) exit;
 187 
 188     // Initiate earlyret handling only if it is not already being processed.
 189     // If the flag has the earlyret_processing bit set, it means that this code
 190     // is called *during* earlyret handling - we don't want to reenter.
 191 
 192     ldr_s32(Rtemp, Address(thread_state, JvmtiThreadState::earlyret_state_offset()));
 193     cmp(Rtemp, JvmtiThreadState::earlyret_pending);
 194     b(L, ne);
 195 
 196     // Call Interpreter::remove_activation_early_entry() to get the address of the
 197     // same-named entrypoint in the generated interpreter code.
 198 
 199     ldr_s32(R0, Address(thread_state, JvmtiThreadState::earlyret_tos_offset()));
 200     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), R0);
 201 
 202     jump(R0);
 203 
 204     bind(L);
 205   }
 206 }
 207 
 208 
 209 // Sets reg. Blows Rtemp.
 210 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 211   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 212   assert(reg != Rtemp, "should be different registers");
 213 
 214   ldrb(Rtemp, Address(Rbcp, bcp_offset));
 215   ldrb(reg, Address(Rbcp, bcp_offset+1));
 216   orr(reg, reg, AsmOperand(Rtemp, lsl, BitsPerByte));
 217 }
 218 
 219 void InterpreterMacroAssembler::get_index_at_bcp(Register index, int bcp_offset, Register tmp_reg, size_t index_size) {
 220   assert_different_registers(index, tmp_reg);
 221   if (index_size == sizeof(u2)) {
 222     // load bytes of index separately to avoid unaligned access
 223     ldrb(index, Address(Rbcp, bcp_offset+1));
 224     ldrb(tmp_reg, Address(Rbcp, bcp_offset));
 225     orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
 226   } else if (index_size == sizeof(u4)) {
 227     // TODO-AARCH64: consider using unaligned access here
 228     ldrb(index, Address(Rbcp, bcp_offset+3));
 229     ldrb(tmp_reg, Address(Rbcp, bcp_offset+2));
 230     orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
 231     ldrb(tmp_reg, Address(Rbcp, bcp_offset+1));
 232     orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
 233     ldrb(tmp_reg, Address(Rbcp, bcp_offset));
 234     orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
 235     // Check if the secondary index definition is still ~x, otherwise
 236     // we have to change the following assembler code to calculate the
 237     // plain index.
 238     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 239     mvn_32(index, index);  // convert to plain index
 240   } else if (index_size == sizeof(u1)) {
 241     ldrb(index, Address(Rbcp, bcp_offset));
 242   } else {
 243     ShouldNotReachHere();
 244   }
 245 }
 246 
 247 // Sets cache, index.
 248 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size) {
 249   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 250   assert_different_registers(cache, index);
 251 
 252   get_index_at_bcp(index, bcp_offset, cache, index_size);
 253 
 254   // load constant pool cache pointer
 255   ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
 256 
 257   // convert from field index to ConstantPoolCacheEntry index
 258   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 259   // TODO-AARCH64 merge this shift with shift "add(..., Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord))" after this method is called
 260   logical_shift_left(index, index, 2);
 261 }
 262 
 263 // Sets cache, index, bytecode.
 264 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) {
 265   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 266   // caution index and bytecode can be the same
 267   add(bytecode, cache, AsmOperand(index, lsl, LogBytesPerWord));
 268 #ifdef AARCH64
 269   add(bytecode, bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 270   ldarb(bytecode, bytecode);
 271 #else
 272   ldrb(bytecode, Address(bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())));
 273   TemplateTable::volatile_barrier(MacroAssembler::LoadLoad, noreg, true);
 274 #endif // AARCH64
 275 }
 276 
 277 // Sets cache. Blows reg_tmp.
 278 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register reg_tmp, int bcp_offset, size_t index_size) {
 279   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 280   assert_different_registers(cache, reg_tmp);
 281 
 282   get_index_at_bcp(reg_tmp, bcp_offset, cache, index_size);
 283 
 284   // load constant pool cache pointer
 285   ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
 286 
 287   // skip past the header
 288   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 289   // convert from field index to ConstantPoolCacheEntry index
 290   // and from word offset to byte offset
 291   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 292   add(cache, cache, AsmOperand(reg_tmp, lsl, 2 + LogBytesPerWord));
 293 }
 294 
 295 // Load object from cpool->resolved_references(index)
 296 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 297                                            Register result, Register index) {
 298   assert_different_registers(result, index);
 299   get_constant_pool(result);
 300 
 301   Register cache = result;
 302   // load pointer for resolved_references[] objArray
 303   ldr(cache, Address(result, ConstantPool::cache_offset_in_bytes()));
 304   ldr(cache, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 305   resolve_oop_handle(cache);
 306   // Add in the index
 307   // convert from field index to resolved_references() index and from
 308   // word index to byte offset. Since this is a java object, it can be compressed
 309   add(cache, cache, AsmOperand(index, lsl, LogBytesPerHeapOop));
 310   load_heap_oop(result, Address(cache, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 311 }
 312 
 313 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 314                                            Register Rcpool, Register Rindex, Register Rklass) {
 315   add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
 316   ldrh(Rtemp, Address(Rtemp, sizeof(ConstantPool))); // Rtemp = resolved_klass_index
 317   ldr(Rklass, Address(Rcpool,  ConstantPool::resolved_klasses_offset_in_bytes())); // Rklass = cpool->_resolved_klasses
 318   add(Rklass, Rklass, AsmOperand(Rtemp, lsl, LogBytesPerWord));
 319   ldr(Rklass, Address(Rklass, Array<Klass*>::base_offset_in_bytes()));
 320 }
 321 
 322 // Generate a subtype check: branch to not_subtype if sub_klass is
 323 // not a subtype of super_klass.
 324 // Profiling code for the subtype check failure (profile_typecheck_failed)
 325 // should be explicitly generated by the caller in the not_subtype case.
 326 // Blows Rtemp, tmp1, tmp2.
 327 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 328                                                   Register Rsuper_klass,
 329                                                   Label &not_subtype,
 330                                                   Register tmp1,
 331                                                   Register tmp2) {
 332 
 333   assert_different_registers(Rsub_klass, Rsuper_klass, tmp1, tmp2, Rtemp);
 334   Label ok_is_subtype, loop, update_cache;
 335 
 336   const Register super_check_offset = tmp1;
 337   const Register cached_super = tmp2;
 338 
 339   // Profile the not-null value's klass.
 340   profile_typecheck(tmp1, Rsub_klass);
 341 
 342   // Load the super-klass's check offset into
 343   ldr_u32(super_check_offset, Address(Rsuper_klass, Klass::super_check_offset_offset()));
 344 
 345   // Check for self
 346   cmp(Rsub_klass, Rsuper_klass);
 347 
 348   // Load from the sub-klass's super-class display list, or a 1-word cache of
 349   // the secondary superclass list, or a failing value with a sentinel offset
 350   // if the super-klass is an interface or exceptionally deep in the Java
 351   // hierarchy and we have to scan the secondary superclass list the hard way.
 352   // See if we get an immediate positive hit
 353   ldr(cached_super, Address(Rsub_klass, super_check_offset));
 354 
 355   cond_cmp(Rsuper_klass, cached_super, ne);
 356   b(ok_is_subtype, eq);
 357 
 358   // Check for immediate negative hit
 359   cmp(super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
 360   b(not_subtype, ne);
 361 
 362   // Now do a linear scan of the secondary super-klass chain.
 363   const Register supers_arr = tmp1;
 364   const Register supers_cnt = tmp2;
 365   const Register cur_super  = Rtemp;
 366 
 367   // Load objArrayOop of secondary supers.
 368   ldr(supers_arr, Address(Rsub_klass, Klass::secondary_supers_offset()));
 369 
 370   ldr_u32(supers_cnt, Address(supers_arr, Array<Klass*>::length_offset_in_bytes())); // Load the array length
 371 #ifdef AARCH64
 372   cbz(supers_cnt, not_subtype);
 373   add(supers_arr, supers_arr, Array<Klass*>::base_offset_in_bytes());
 374 #else
 375   cmp(supers_cnt, 0);
 376 
 377   // Skip to the start of array elements and prefetch the first super-klass.
 378   ldr(cur_super, Address(supers_arr, Array<Klass*>::base_offset_in_bytes(), pre_indexed), ne);
 379   b(not_subtype, eq);
 380 #endif // AARCH64
 381 
 382   bind(loop);
 383 
 384 #ifdef AARCH64
 385   ldr(cur_super, Address(supers_arr, wordSize, post_indexed));
 386 #endif // AARCH64
 387 
 388   cmp(cur_super, Rsuper_klass);
 389   b(update_cache, eq);
 390 
 391   subs(supers_cnt, supers_cnt, 1);
 392 
 393 #ifndef AARCH64
 394   ldr(cur_super, Address(supers_arr, wordSize, pre_indexed), ne);
 395 #endif // !AARCH64
 396 
 397   b(loop, ne);
 398 
 399   b(not_subtype);
 400 
 401   bind(update_cache);
 402   // Must be equal but missed in cache.  Update cache.
 403   str(Rsuper_klass, Address(Rsub_klass, Klass::secondary_super_cache_offset()));
 404 
 405   bind(ok_is_subtype);
 406 }
 407 
 408 
 409 //////////////////////////////////////////////////////////////////////////////////
 410 
 411 
 412 // Java Expression Stack
 413 
 414 void InterpreterMacroAssembler::pop_ptr(Register r) {
 415   assert(r != Rstack_top, "unpredictable instruction");
 416   ldr(r, Address(Rstack_top, wordSize, post_indexed));
 417 }
 418 
 419 void InterpreterMacroAssembler::pop_i(Register r) {
 420   assert(r != Rstack_top, "unpredictable instruction");
 421   ldr_s32(r, Address(Rstack_top, wordSize, post_indexed));
 422   zap_high_non_significant_bits(r);
 423 }
 424 
 425 #ifdef AARCH64
 426 void InterpreterMacroAssembler::pop_l(Register r) {
 427   assert(r != Rstack_top, "unpredictable instruction");
 428   ldr(r, Address(Rstack_top, 2*wordSize, post_indexed));
 429 }
 430 #else
 431 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 432   assert_different_registers(lo, hi);
 433   assert(lo < hi, "lo must be < hi");
 434   pop(RegisterSet(lo) | RegisterSet(hi));
 435 }
 436 #endif // AARCH64
 437 
 438 void InterpreterMacroAssembler::pop_f(FloatRegister fd) {
 439 #ifdef AARCH64
 440   ldr_s(fd, Address(Rstack_top, wordSize, post_indexed));
 441 #else
 442   fpops(fd);
 443 #endif // AARCH64
 444 }
 445 
 446 void InterpreterMacroAssembler::pop_d(FloatRegister fd) {
 447 #ifdef AARCH64
 448   ldr_d(fd, Address(Rstack_top, 2*wordSize, post_indexed));
 449 #else
 450   fpopd(fd);
 451 #endif // AARCH64
 452 }
 453 
 454 
 455 // Transition vtos -> state. Blows R0, R1. Sets TOS cached value.
 456 void InterpreterMacroAssembler::pop(TosState state) {
 457   switch (state) {
 458     case atos: pop_ptr(R0_tos);                              break;
 459     case btos:                                               // fall through
 460     case ztos:                                               // fall through
 461     case ctos:                                               // fall through
 462     case stos:                                               // fall through
 463     case itos: pop_i(R0_tos);                                break;
 464 #ifdef AARCH64
 465     case ltos: pop_l(R0_tos);                                break;
 466 #else
 467     case ltos: pop_l(R0_tos_lo, R1_tos_hi);                  break;
 468 #endif // AARCH64
 469 #ifdef __SOFTFP__
 470     case ftos: pop_i(R0_tos);                                break;
 471     case dtos: pop_l(R0_tos_lo, R1_tos_hi);                  break;
 472 #else
 473     case ftos: pop_f(S0_tos);                                break;
 474     case dtos: pop_d(D0_tos);                                break;
 475 #endif // __SOFTFP__
 476     case vtos: /* nothing to do */                           break;
 477     default  : ShouldNotReachHere();
 478   }
 479   interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 480 }
 481 
 482 void InterpreterMacroAssembler::push_ptr(Register r) {
 483   assert(r != Rstack_top, "unpredictable instruction");
 484   str(r, Address(Rstack_top, -wordSize, pre_indexed));
 485   check_stack_top_on_expansion();
 486 }
 487 
 488 void InterpreterMacroAssembler::push_i(Register r) {
 489   assert(r != Rstack_top, "unpredictable instruction");
 490   str_32(r, Address(Rstack_top, -wordSize, pre_indexed));
 491   check_stack_top_on_expansion();
 492 }
 493 
 494 #ifdef AARCH64
 495 void InterpreterMacroAssembler::push_l(Register r) {
 496   assert(r != Rstack_top, "unpredictable instruction");
 497   stp(r, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
 498   check_stack_top_on_expansion();
 499 }
 500 #else
 501 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 502   assert_different_registers(lo, hi);
 503   assert(lo < hi, "lo must be < hi");
 504   push(RegisterSet(lo) | RegisterSet(hi));
 505 }
 506 #endif // AARCH64
 507 
 508 void InterpreterMacroAssembler::push_f() {
 509 #ifdef AARCH64
 510   str_s(S0_tos, Address(Rstack_top, -wordSize, pre_indexed));
 511   check_stack_top_on_expansion();
 512 #else
 513   fpushs(S0_tos);
 514 #endif // AARCH64
 515 }
 516 
 517 void InterpreterMacroAssembler::push_d() {
 518 #ifdef AARCH64
 519   str_d(D0_tos, Address(Rstack_top, -2*wordSize, pre_indexed));
 520   check_stack_top_on_expansion();
 521 #else
 522   fpushd(D0_tos);
 523 #endif // AARCH64
 524 }
 525 
 526 // Transition state -> vtos. Blows Rtemp.
 527 void InterpreterMacroAssembler::push(TosState state) {
 528   interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 529   switch (state) {
 530     case atos: push_ptr(R0_tos);                              break;
 531     case btos:                                                // fall through
 532     case ztos:                                                // fall through
 533     case ctos:                                                // fall through
 534     case stos:                                                // fall through
 535     case itos: push_i(R0_tos);                                break;
 536 #ifdef AARCH64
 537     case ltos: push_l(R0_tos);                                break;
 538 #else
 539     case ltos: push_l(R0_tos_lo, R1_tos_hi);                  break;
 540 #endif // AARCH64
 541 #ifdef __SOFTFP__
 542     case ftos: push_i(R0_tos);                                break;
 543     case dtos: push_l(R0_tos_lo, R1_tos_hi);                  break;
 544 #else
 545     case ftos: push_f();                                      break;
 546     case dtos: push_d();                                      break;
 547 #endif // __SOFTFP__
 548     case vtos: /* nothing to do */                            break;
 549     default  : ShouldNotReachHere();
 550   }
 551 }
 552 
 553 
 554 #ifndef AARCH64
 555 
 556 // Converts return value in R0/R1 (interpreter calling conventions) to TOS cached value.
 557 void InterpreterMacroAssembler::convert_retval_to_tos(TosState state) {
 558 #if (!defined __SOFTFP__ && !defined __ABI_HARD__)
 559   // According to interpreter calling conventions, result is returned in R0/R1,
 560   // but templates expect ftos in S0, and dtos in D0.
 561   if (state == ftos) {
 562     fmsr(S0_tos, R0);
 563   } else if (state == dtos) {
 564     fmdrr(D0_tos, R0, R1);
 565   }
 566 #endif // !__SOFTFP__ && !__ABI_HARD__
 567 }
 568 
 569 // Converts TOS cached value to return value in R0/R1 (according to interpreter calling conventions).
 570 void InterpreterMacroAssembler::convert_tos_to_retval(TosState state) {
 571 #if (!defined __SOFTFP__ && !defined __ABI_HARD__)
 572   // According to interpreter calling conventions, result is returned in R0/R1,
 573   // so ftos (S0) and dtos (D0) are moved to R0/R1.
 574   if (state == ftos) {
 575     fmrs(R0, S0_tos);
 576   } else if (state == dtos) {
 577     fmrrd(R0, R1, D0_tos);
 578   }
 579 #endif // !__SOFTFP__ && !__ABI_HARD__
 580 }
 581 
 582 #endif // !AARCH64
 583 
 584 
 585 // Helpers for swap and dup
 586 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 587   ldr(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
 588 }
 589 
 590 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 591   str(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
 592 }
 593 
 594 
 595 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 596 #ifdef AARCH64
 597   check_no_cached_stack_top(Rtemp);
 598   save_stack_top();
 599   cut_sp_before_call();
 600   mov(Rparams, Rstack_top);
 601 #endif // AARCH64
 602 
 603   // set sender sp
 604   mov(Rsender_sp, SP);
 605 
 606 #ifndef AARCH64
 607   // record last_sp
 608   str(Rsender_sp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 609 #endif // !AARCH64
 610 }
 611 
 612 // Jump to from_interpreted entry of a call unless single stepping is possible
 613 // in this thread in which case we must call the i2i entry
 614 void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
 615   assert_different_registers(method, Rtemp);
 616 
 617   prepare_to_jump_from_interpreted();
 618 
 619   if (can_post_interpreter_events()) {
 620     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 621     // compiled code in threads for which the event is enabled.  Check here for
 622     // interp_only_mode if these events CAN be enabled.
 623 
 624     ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
 625 #ifdef AARCH64
 626     {
 627       Label not_interp_only_mode;
 628 
 629       cbz(Rtemp, not_interp_only_mode);
 630       indirect_jump(Address(method, Method::interpreter_entry_offset()), Rtemp);
 631 
 632       bind(not_interp_only_mode);
 633     }
 634 #else
 635     cmp(Rtemp, 0);
 636     ldr(PC, Address(method, Method::interpreter_entry_offset()), ne);
 637 #endif // AARCH64
 638   }
 639 
 640   indirect_jump(Address(method, Method::from_interpreted_offset()), Rtemp);
 641 }
 642 
 643 
 644 void InterpreterMacroAssembler::restore_dispatch() {
 645   mov_slow(RdispatchTable, (address)Interpreter::dispatch_table(vtos));
 646 }
 647 
 648 
 649 // The following two routines provide a hook so that an implementation
 650 // can schedule the dispatch in two parts.
 651 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 652   // Nothing ARM-specific to be done here.
 653 }
 654 
 655 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 656   dispatch_next(state, step);
 657 }
 658 
 659 void InterpreterMacroAssembler::dispatch_base(TosState state,
 660                                               DispatchTableMode table_mode,
 661                                               bool verifyoop) {
 662   if (VerifyActivationFrameSize) {
 663     Label L;
 664 #ifdef AARCH64
 665     mov(Rtemp, SP);
 666     sub(Rtemp, FP, Rtemp);
 667 #else
 668     sub(Rtemp, FP, SP);
 669 #endif // AARCH64
 670     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 671     cmp(Rtemp, min_frame_size);
 672     b(L, ge);
 673     stop("broken stack frame");
 674     bind(L);
 675   }
 676 
 677   if (verifyoop) {
 678     interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 679   }
 680 
 681   if((state == itos) || (state == btos) || (state == ztos) || (state == ctos) || (state == stos)) {
 682     zap_high_non_significant_bits(R0_tos);
 683   }
 684 
 685 #ifdef ASSERT
 686   Label L;
 687   mov_slow(Rtemp, (address)Interpreter::dispatch_table(vtos));
 688   cmp(Rtemp, RdispatchTable);
 689   b(L, eq);
 690   stop("invalid RdispatchTable");
 691   bind(L);
 692 #endif
 693 
 694   if (table_mode == DispatchDefault) {
 695     if (state == vtos) {
 696       indirect_jump(Address::indexed_ptr(RdispatchTable, R3_bytecode), Rtemp);
 697     } else {
 698 #ifdef AARCH64
 699       sub(Rtemp, R3_bytecode, (Interpreter::distance_from_dispatch_table(vtos) -
 700                            Interpreter::distance_from_dispatch_table(state)));
 701       indirect_jump(Address::indexed_ptr(RdispatchTable, Rtemp), Rtemp);
 702 #else
 703       // on 32-bit ARM this method is faster than the one above.
 704       sub(Rtemp, RdispatchTable, (Interpreter::distance_from_dispatch_table(vtos) -
 705                            Interpreter::distance_from_dispatch_table(state)) * wordSize);
 706       indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
 707 #endif
 708     }
 709   } else {
 710     assert(table_mode == DispatchNormal, "invalid dispatch table mode");
 711     address table = (address) Interpreter::normal_table(state);
 712     mov_slow(Rtemp, table);
 713     indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
 714   }
 715 
 716   nop(); // to avoid filling CPU pipeline with invalid instructions
 717   nop();
 718 }
 719 
 720 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 721   dispatch_base(state, DispatchDefault);
 722 }
 723 
 724 
 725 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 726   dispatch_base(state, DispatchNormal);
 727 }
 728 
 729 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 730   dispatch_base(state, DispatchNormal, false);
 731 }
 732 
 733 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 734   // load next bytecode and advance Rbcp
 735   ldrb(R3_bytecode, Address(Rbcp, step, pre_indexed));
 736   dispatch_base(state, DispatchDefault);
 737 }
 738 
 739 void InterpreterMacroAssembler::narrow(Register result) {
 740   // mask integer result to narrower return type.
 741   const Register Rtmp = R2;
 742 
 743   // get method type
 744   ldr(Rtmp, Address(Rmethod, Method::const_offset()));
 745   ldrb(Rtmp, Address(Rtmp, ConstMethod::result_type_offset()));
 746 
 747   Label notBool, notByte, notChar, done;
 748   cmp(Rtmp, T_INT);
 749   b(done, eq);
 750 
 751   cmp(Rtmp, T_BOOLEAN);
 752   b(notBool, ne);
 753   and_32(result, result, 1);
 754   b(done);
 755 
 756   bind(notBool);
 757   cmp(Rtmp, T_BYTE);
 758   b(notByte, ne);
 759   sign_extend(result, result, 8);
 760   b(done);
 761 
 762   bind(notByte);
 763   cmp(Rtmp, T_CHAR);
 764   b(notChar, ne);
 765   zero_extend(result, result, 16);
 766   b(done);
 767 
 768   bind(notChar);
 769   // cmp(Rtmp, T_SHORT);
 770   // b(done, ne);
 771   sign_extend(result, result, 16);
 772 
 773   // Nothing to do
 774   bind(done);
 775 }
 776 
 777 // remove activation
 778 //
 779 // Unlock the receiver if this is a synchronized method.
 780 // Unlock any Java monitors from syncronized blocks.
 781 // Remove the activation from the stack.
 782 //
 783 // If there are locked Java monitors
 784 //    If throw_monitor_exception
 785 //       throws IllegalMonitorStateException
 786 //    Else if install_monitor_exception
 787 //       installs IllegalMonitorStateException
 788 //    Else
 789 //       no error processing
 790 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
 791                                                   bool throw_monitor_exception,
 792                                                   bool install_monitor_exception,
 793                                                   bool notify_jvmdi) {
 794   Label unlock, unlocked, no_unlock;
 795 
 796   // Note: Registers R0, R1, S0 and D0 (TOS cached value) may be in use for the result.
 797 
 798   const Address do_not_unlock_if_synchronized(Rthread,
 799                          JavaThread::do_not_unlock_if_synchronized_offset());
 800 
 801   const Register Rflag = R2;
 802   const Register Raccess_flags = R3;
 803 
 804   restore_method();
 805 
 806   ldrb(Rflag, do_not_unlock_if_synchronized);
 807 
 808   // get method access flags
 809   ldr_u32(Raccess_flags, Address(Rmethod, Method::access_flags_offset()));
 810 
 811   strb(zero_register(Rtemp), do_not_unlock_if_synchronized); // reset the flag
 812 
 813   // check if method is synchronized
 814 
 815   tbz(Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT, unlocked);
 816 
 817   // Don't unlock anything if the _do_not_unlock_if_synchronized flag is set.
 818   cbnz(Rflag, no_unlock);
 819 
 820   // unlock monitor
 821   push(state);                                   // save result
 822 
 823   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 824   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 825 
 826   const Register Rmonitor = R1;                  // fixed in unlock_object()
 827   const Register Robj = R2;
 828 
 829   // address of first monitor
 830   sub(Rmonitor, FP, - frame::interpreter_frame_monitor_block_bottom_offset * wordSize + (int)sizeof(BasicObjectLock));
 831 
 832   ldr(Robj, Address(Rmonitor, BasicObjectLock::obj_offset_in_bytes()));
 833   cbnz(Robj, unlock);
 834 
 835   pop(state);
 836 
 837   if (throw_monitor_exception) {
 838     // Entry already unlocked, need to throw exception
 839     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 840     should_not_reach_here();
 841   } else {
 842     // Monitor already unlocked during a stack unroll.
 843     // If requested, install an illegal_monitor_state_exception.
 844     // Continue with stack unrolling.
 845     if (install_monitor_exception) {
 846       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 847     }
 848     b(unlocked);
 849   }
 850 
 851 
 852   // Exception case for the check that all monitors are unlocked.
 853   const Register Rcur = R2;
 854   Label restart_check_monitors_unlocked, exception_monitor_is_still_locked;
 855 
 856   bind(exception_monitor_is_still_locked);
 857   // Monitor entry is still locked, need to throw exception.
 858   // Rcur: monitor entry.
 859 
 860   if (throw_monitor_exception) {
 861     // Throw exception
 862     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 863     should_not_reach_here();
 864   } else {
 865     // Stack unrolling. Unlock object and install illegal_monitor_exception
 866     // Unlock does not block, so don't have to worry about the frame
 867 
 868     push(state);
 869     mov(R1, Rcur);
 870     unlock_object(R1);
 871 
 872     if (install_monitor_exception) {
 873       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 874     }
 875 
 876     pop(state);
 877     b(restart_check_monitors_unlocked);
 878   }
 879 
 880   bind(unlock);
 881   unlock_object(Rmonitor);
 882   pop(state);
 883 
 884   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
 885   bind(unlocked);
 886 
 887   // Check that all monitors are unlocked
 888   {
 889     Label loop;
 890 
 891     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 892     const Register Rbottom = R3;
 893     const Register Rcur_obj = Rtemp;
 894 
 895     bind(restart_check_monitors_unlocked);
 896 
 897     ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
 898                                  // points to current entry, starting with top-most entry
 899     sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
 900                                  // points to word before bottom of monitor block
 901 
 902     cmp(Rcur, Rbottom);          // check if there are no monitors
 903 #ifndef AARCH64
 904     ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
 905                                  // prefetch monitor's object
 906 #endif // !AARCH64
 907     b(no_unlock, eq);
 908 
 909     bind(loop);
 910 #ifdef AARCH64
 911     ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
 912 #endif // AARCH64
 913     // check if current entry is used
 914     cbnz(Rcur_obj, exception_monitor_is_still_locked);
 915 
 916     add(Rcur, Rcur, entry_size);      // otherwise advance to next entry
 917     cmp(Rcur, Rbottom);               // check if bottom reached
 918 #ifndef AARCH64
 919     ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
 920                                       // prefetch monitor's object
 921 #endif // !AARCH64
 922     b(loop, ne);                      // if not at bottom then check this entry
 923   }
 924 
 925   bind(no_unlock);
 926 
 927   // jvmti support
 928   if (notify_jvmdi) {
 929     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
 930   } else {
 931     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 932   }
 933 
 934   // remove activation
 935 #ifdef AARCH64
 936   ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
 937   ldp(FP, LR, Address(FP));
 938   mov(SP, Rtemp);
 939 #else
 940   mov(Rtemp, FP);
 941   ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
 942   ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
 943 #endif
 944 
 945   if (ret_addr != LR) {
 946     mov(ret_addr, LR);
 947   }
 948 }
 949 
 950 
 951 // At certain points in the method invocation the monitor of
 952 // synchronized methods hasn't been entered yet.
 953 // To correctly handle exceptions at these points, we set the thread local
 954 // variable _do_not_unlock_if_synchronized to true. The remove_activation will
 955 // check this flag.
 956 void InterpreterMacroAssembler::set_do_not_unlock_if_synchronized(bool flag, Register tmp) {
 957   const Address do_not_unlock_if_synchronized(Rthread,
 958                          JavaThread::do_not_unlock_if_synchronized_offset());
 959   if (flag) {
 960     mov(tmp, 1);
 961     strb(tmp, do_not_unlock_if_synchronized);
 962   } else {
 963     strb(zero_register(tmp), do_not_unlock_if_synchronized);
 964   }
 965 }
 966 
 967 // Lock object
 968 //
 969 // Argument: R1 : Points to BasicObjectLock to be used for locking.
 970 // Must be initialized with object to lock.
 971 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
 972 void InterpreterMacroAssembler::lock_object(Register Rlock) {
 973   assert(Rlock == R1, "the second argument");
 974 
 975   if (UseHeavyMonitors) {
 976     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
 977   } else {
 978     Label done;
 979 
 980     const Register Robj = R2;
 981     const Register Rmark = R3;
 982     assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
 983 
 984     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 985     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 986     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
 987 
 988     Label already_locked, slow_case;
 989 
 990     // Load object pointer
 991     ldr(Robj, Address(Rlock, obj_offset));
 992 
 993     if (UseBiasedLocking) {
 994       biased_locking_enter(Robj, Rmark/*scratched*/, R0, false, Rtemp, done, slow_case);
 995     }
 996 
 997 #ifdef AARCH64
 998     assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
 999     ldr(Rmark, Robj);
1000 
1001     // Test if object is already locked
1002     assert(markOopDesc::unlocked_value == 1, "adjust this code");
1003     tbz(Rmark, exact_log2(markOopDesc::unlocked_value), already_locked);
1004 
1005 #else // AARCH64
1006 
1007     // On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
1008     // That would be acceptable as ether CAS or slow case path is taken in that case.
1009     // Exception to that is if the object is locked by the calling thread, then the recursive test will pass (guaranteed as
1010     // loads are satisfied from a store queue if performed on the same processor).
1011 
1012     assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
1013     ldr(Rmark, Address(Robj, oopDesc::mark_offset_in_bytes()));
1014 
1015     // Test if object is already locked
1016     tst(Rmark, markOopDesc::unlocked_value);
1017     b(already_locked, eq);
1018 
1019 #endif // !AARCH64
1020     // Save old object->mark() into BasicLock's displaced header
1021     str(Rmark, Address(Rlock, mark_offset));
1022 
1023     cas_for_lock_acquire(Rmark, Rlock, Robj, Rtemp, slow_case);
1024 
1025 #ifndef PRODUCT
1026     if (PrintBiasedLockingStatistics) {
1027       cond_atomic_inc32(al, BiasedLocking::fast_path_entry_count_addr());
1028     }
1029 #endif //!PRODUCT
1030 
1031     b(done);
1032 
1033     // If we got here that means the object is locked by ether calling thread or another thread.
1034     bind(already_locked);
1035     // Handling of locked objects: recursive locks and slow case.
1036 
1037     // Fast check for recursive lock.
1038     //
1039     // Can apply the optimization only if this is a stack lock
1040     // allocated in this thread. For efficiency, we can focus on
1041     // recently allocated stack locks (instead of reading the stack
1042     // base and checking whether 'mark' points inside the current
1043     // thread stack):
1044     //  1) (mark & 3) == 0
1045     //  2) SP <= mark < SP + os::pagesize()
1046     //
1047     // Warning: SP + os::pagesize can overflow the stack base. We must
1048     // neither apply the optimization for an inflated lock allocated
1049     // just above the thread stack (this is why condition 1 matters)
1050     // nor apply the optimization if the stack lock is inside the stack
1051     // of another thread. The latter is avoided even in case of overflow
1052     // because we have guard pages at the end of all stacks. Hence, if
1053     // we go over the stack base and hit the stack of another thread,
1054     // this should not be in a writeable area that could contain a
1055     // stack lock allocated by that thread. As a consequence, a stack
1056     // lock less than page size away from SP is guaranteed to be
1057     // owned by the current thread.
1058     //
1059     // Note: assuming SP is aligned, we can check the low bits of
1060     // (mark-SP) instead of the low bits of mark. In that case,
1061     // assuming page size is a power of 2, we can merge the two
1062     // conditions into a single test:
1063     // => ((mark - SP) & (3 - os::pagesize())) == 0
1064 
1065 #ifdef AARCH64
1066     // Use the single check since the immediate is OK for AARCH64
1067     sub(R0, Rmark, Rstack_top);
1068     intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
1069     Assembler::LogicalImmediate imm(mask, false);
1070     ands(R0, R0, imm);
1071 
1072     // For recursive case store 0 into lock record.
1073     // It is harmless to store it unconditionally as lock record contains some garbage
1074     // value in its _displaced_header field by this moment.
1075     str(ZR, Address(Rlock, mark_offset));
1076 
1077 #else // AARCH64
1078     // (3 - os::pagesize()) cannot be encoded as an ARM immediate operand.
1079     // Check independently the low bits and the distance to SP.
1080     // -1- test low 2 bits
1081     movs(R0, AsmOperand(Rmark, lsl, 30));
1082     // -2- test (mark - SP) if the low two bits are 0
1083     sub(R0, Rmark, SP, eq);
1084     movs(R0, AsmOperand(R0, lsr, exact_log2(os::vm_page_size())), eq);
1085     // If still 'eq' then recursive locking OK: store 0 into lock record
1086     str(R0, Address(Rlock, mark_offset), eq);
1087 
1088 #endif // AARCH64
1089 
1090 #ifndef PRODUCT
1091     if (PrintBiasedLockingStatistics) {
1092       cond_atomic_inc32(eq, BiasedLocking::fast_path_entry_count_addr());
1093     }
1094 #endif // !PRODUCT
1095 
1096     b(done, eq);
1097 
1098     bind(slow_case);
1099 
1100     // Call the runtime routine for slow case
1101     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
1102 
1103     bind(done);
1104   }
1105 }
1106 
1107 
1108 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1109 //
1110 // Argument: R1: Points to BasicObjectLock structure for lock
1111 // Throw an IllegalMonitorException if object is not locked by current thread
1112 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
1113 void InterpreterMacroAssembler::unlock_object(Register Rlock) {
1114   assert(Rlock == R1, "the second argument");
1115 
1116   if (UseHeavyMonitors) {
1117     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
1118   } else {
1119     Label done, slow_case;
1120 
1121     const Register Robj = R2;
1122     const Register Rmark = R3;
1123     const Register Rresult = R0;
1124     assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
1125 
1126     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1127     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1128     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1129 
1130     const Register Rzero = zero_register(Rtemp);
1131 
1132     // Load oop into Robj
1133     ldr(Robj, Address(Rlock, obj_offset));
1134 
1135     // Free entry
1136     str(Rzero, Address(Rlock, obj_offset));
1137 
1138     if (UseBiasedLocking) {
1139       biased_locking_exit(Robj, Rmark, done);
1140     }
1141 
1142     // Load the old header from BasicLock structure
1143     ldr(Rmark, Address(Rlock, mark_offset));
1144 
1145     // Test for recursion (zero mark in BasicLock)
1146     cbz(Rmark, done);
1147 
1148     bool allow_fallthrough_on_failure = true;
1149 
1150     cas_for_lock_release(Rlock, Rmark, Robj, Rtemp, slow_case, allow_fallthrough_on_failure);
1151 
1152     b(done, eq);
1153 
1154     bind(slow_case);
1155 
1156     // Call the runtime routine for slow case.
1157     str(Robj, Address(Rlock, obj_offset)); // restore obj
1158     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
1159 
1160     bind(done);
1161   }
1162 }
1163 
1164 
1165 // Test ImethodDataPtr.  If it is null, continue at the specified label
1166 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1167   assert(ProfileInterpreter, "must be profiling interpreter");
1168   ldr(mdp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1169   cbz(mdp, zero_continue);
1170 }
1171 
1172 
1173 // Set the method data pointer for the current bcp.
1174 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
1175 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1176   assert(ProfileInterpreter, "must be profiling interpreter");
1177   Label set_mdp;
1178 
1179   // Test MDO to avoid the call if it is NULL.
1180   ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
1181   cbz(Rtemp, set_mdp);
1182 
1183   mov(R0, Rmethod);
1184   mov(R1, Rbcp);
1185   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R0, R1);
1186   // R0/W0: mdi
1187 
1188   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1189   ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
1190   add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
1191   add_ptr_scaled_int32(Rtemp, Rtemp, R0, 0);
1192 
1193   bind(set_mdp);
1194   str(Rtemp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1195 }
1196 
1197 
1198 void InterpreterMacroAssembler::verify_method_data_pointer() {
1199   assert(ProfileInterpreter, "must be profiling interpreter");
1200 #ifdef ASSERT
1201   Label verify_continue;
1202   save_caller_save_registers();
1203 
1204   const Register Rmdp = R2;
1205   test_method_data_pointer(Rmdp, verify_continue); // If mdp is zero, continue
1206 
1207   // If the mdp is valid, it will point to a DataLayout header which is
1208   // consistent with the bcp.  The converse is highly probable also.
1209 
1210   ldrh(R3, Address(Rmdp, DataLayout::bci_offset()));
1211   ldr(Rtemp, Address(Rmethod, Method::const_offset()));
1212   add(R3, R3, Rtemp);
1213   add(R3, R3, in_bytes(ConstMethod::codes_offset()));
1214   cmp(R3, Rbcp);
1215   b(verify_continue, eq);
1216 
1217   mov(R0, Rmethod);
1218   mov(R1, Rbcp);
1219   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), R0, R1, Rmdp);
1220 
1221   bind(verify_continue);
1222   restore_caller_save_registers();
1223 #endif // ASSERT
1224 }
1225 
1226 
1227 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int offset, Register value) {
1228   assert(ProfileInterpreter, "must be profiling interpreter");
1229   assert_different_registers(mdp_in, value);
1230   str(value, Address(mdp_in, offset));
1231 }
1232 
1233 
1234 // Increments mdp data. Sets bumped_count register to adjusted counter.
1235 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1236                                                       int offset,
1237                                                       Register bumped_count,
1238                                                       bool decrement) {
1239   assert(ProfileInterpreter, "must be profiling interpreter");
1240 
1241   // Counter address
1242   Address data(mdp_in, offset);
1243   assert_different_registers(mdp_in, bumped_count);
1244 
1245   increment_mdp_data_at(data, bumped_count, decrement);
1246 }
1247 
1248 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
1249   assert_different_registers(mdp_in, Rtemp);
1250   assert(ProfileInterpreter, "must be profiling interpreter");
1251   assert((0 < flag_byte_constant) && (flag_byte_constant < (1 << BitsPerByte)), "flag mask is out of range");
1252 
1253   // Set the flag
1254   ldrb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
1255   orr(Rtemp, Rtemp, (unsigned)flag_byte_constant);
1256   strb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
1257 }
1258 
1259 
1260 // Increments mdp data. Sets bumped_count register to adjusted counter.
1261 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1262                                                       Register bumped_count,
1263                                                       bool decrement) {
1264   assert(ProfileInterpreter, "must be profiling interpreter");
1265 
1266   ldr(bumped_count, data);
1267   if (decrement) {
1268     // Decrement the register. Set condition codes.
1269     subs(bumped_count, bumped_count, DataLayout::counter_increment);
1270     // Avoid overflow.
1271 #ifdef AARCH64
1272     assert(DataLayout::counter_increment == 1, "required for cinc");
1273     cinc(bumped_count, bumped_count, pl);
1274 #else
1275     add(bumped_count, bumped_count, DataLayout::counter_increment, pl);
1276 #endif // AARCH64
1277   } else {
1278     // Increment the register. Set condition codes.
1279     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1280     // Avoid overflow.
1281 #ifdef AARCH64
1282     assert(DataLayout::counter_increment == 1, "required for cinv");
1283     cinv(bumped_count, bumped_count, mi); // inverts 0x80..00 back to 0x7f..ff
1284 #else
1285     sub(bumped_count, bumped_count, DataLayout::counter_increment, mi);
1286 #endif // AARCH64
1287   }
1288   str(bumped_count, data);
1289 }
1290 
1291 
1292 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1293                                                  int offset,
1294                                                  Register value,
1295                                                  Register test_value_out,
1296                                                  Label& not_equal_continue) {
1297   assert(ProfileInterpreter, "must be profiling interpreter");
1298   assert_different_registers(mdp_in, test_value_out, value);
1299 
1300   ldr(test_value_out, Address(mdp_in, offset));
1301   cmp(test_value_out, value);
1302 
1303   b(not_equal_continue, ne);
1304 }
1305 
1306 
1307 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp, Register reg_temp) {
1308   assert(ProfileInterpreter, "must be profiling interpreter");
1309   assert_different_registers(mdp_in, reg_temp);
1310 
1311   ldr(reg_temp, Address(mdp_in, offset_of_disp));
1312   add(mdp_in, mdp_in, reg_temp);
1313   str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1314 }
1315 
1316 
1317 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg_offset, Register reg_tmp) {
1318   assert(ProfileInterpreter, "must be profiling interpreter");
1319   assert_different_registers(mdp_in, reg_offset, reg_tmp);
1320 
1321   ldr(reg_tmp, Address(mdp_in, reg_offset));
1322   add(mdp_in, mdp_in, reg_tmp);
1323   str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1324 }
1325 
1326 
1327 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1328   assert(ProfileInterpreter, "must be profiling interpreter");
1329   add(mdp_in, mdp_in, constant);
1330   str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1331 }
1332 
1333 
1334 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
1335 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1336   assert(ProfileInterpreter, "must be profiling interpreter");
1337   assert_different_registers(return_bci, R0, R1, R2, R3, Rtemp);
1338 
1339   mov(R1, return_bci);
1340   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), R1);
1341 }
1342 
1343 
1344 // Sets mdp, bumped_count registers, blows Rtemp.
1345 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1346   assert_different_registers(mdp, bumped_count);
1347 
1348   if (ProfileInterpreter) {
1349     Label profile_continue;
1350 
1351     // If no method data exists, go to profile_continue.
1352     // Otherwise, assign to mdp
1353     test_method_data_pointer(mdp, profile_continue);
1354 
1355     // We are taking a branch. Increment the taken count.
1356     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()), bumped_count);
1357 
1358     // The method data pointer needs to be updated to reflect the new target.
1359     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()), Rtemp);
1360 
1361     bind (profile_continue);
1362   }
1363 }
1364 
1365 
1366 // Sets mdp, blows Rtemp.
1367 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1368   assert_different_registers(mdp, Rtemp);
1369 
1370   if (ProfileInterpreter) {
1371     Label profile_continue;
1372 
1373     // If no method data exists, go to profile_continue.
1374     test_method_data_pointer(mdp, profile_continue);
1375 
1376     // We are taking a branch.  Increment the not taken count.
1377     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Rtemp);
1378 
1379     // The method data pointer needs to be updated to correspond to the next bytecode
1380     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1381 
1382     bind (profile_continue);
1383   }
1384 }
1385 
1386 
1387 // Sets mdp, blows Rtemp.
1388 void InterpreterMacroAssembler::profile_call(Register mdp) {
1389   assert_different_registers(mdp, Rtemp);
1390 
1391   if (ProfileInterpreter) {
1392     Label profile_continue;
1393 
1394     // If no method data exists, go to profile_continue.
1395     test_method_data_pointer(mdp, profile_continue);
1396 
1397     // We are making a call.  Increment the count.
1398     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1399 
1400     // The method data pointer needs to be updated to reflect the new target.
1401     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1402 
1403     bind (profile_continue);
1404   }
1405 }
1406 
1407 
1408 // Sets mdp, blows Rtemp.
1409 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1410   if (ProfileInterpreter) {
1411     Label profile_continue;
1412 
1413     // If no method data exists, go to profile_continue.
1414     test_method_data_pointer(mdp, profile_continue);
1415 
1416     // We are making a call.  Increment the count.
1417     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1418 
1419     // The method data pointer needs to be updated to reflect the new target.
1420     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1421 
1422     bind (profile_continue);
1423   }
1424 }
1425 
1426 
1427 // Sets mdp, blows Rtemp.
1428 void InterpreterMacroAssembler::profile_virtual_call(Register mdp, Register receiver, bool receiver_can_be_null) {
1429   assert_different_registers(mdp, receiver, Rtemp);
1430 
1431   if (ProfileInterpreter) {
1432     Label profile_continue;
1433 
1434     // If no method data exists, go to profile_continue.
1435     test_method_data_pointer(mdp, profile_continue);
1436 
1437     Label skip_receiver_profile;
1438     if (receiver_can_be_null) {
1439       Label not_null;
1440       cbnz(receiver, not_null);
1441       // We are making a call.  Increment the count for null receiver.
1442       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1443       b(skip_receiver_profile);
1444       bind(not_null);
1445     }
1446 
1447     // Record the receiver type.
1448     record_klass_in_profile(receiver, mdp, Rtemp, true);
1449     bind(skip_receiver_profile);
1450 
1451     // The method data pointer needs to be updated to reflect the new target.
1452     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1453     bind(profile_continue);
1454   }
1455 }
1456 
1457 
1458 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1459                                         Register receiver, Register mdp,
1460                                         Register reg_tmp,
1461                                         int start_row, Label& done, bool is_virtual_call) {
1462   if (TypeProfileWidth == 0)
1463     return;
1464 
1465   assert_different_registers(receiver, mdp, reg_tmp);
1466 
1467   int last_row = VirtualCallData::row_limit() - 1;
1468   assert(start_row <= last_row, "must be work left to do");
1469   // Test this row for both the receiver and for null.
1470   // Take any of three different outcomes:
1471   //   1. found receiver => increment count and goto done
1472   //   2. found null => keep looking for case 1, maybe allocate this cell
1473   //   3. found something else => keep looking for cases 1 and 2
1474   // Case 3 is handled by a recursive call.
1475   for (int row = start_row; row <= last_row; row++) {
1476     Label next_test;
1477 
1478     // See if the receiver is receiver[n].
1479     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1480 
1481     test_mdp_data_at(mdp, recvr_offset, receiver, reg_tmp, next_test);
1482 
1483     // The receiver is receiver[n].  Increment count[n].
1484     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1485     increment_mdp_data_at(mdp, count_offset, reg_tmp);
1486     b(done);
1487 
1488     bind(next_test);
1489     // reg_tmp now contains the receiver from the CallData.
1490 
1491     if (row == start_row) {
1492       Label found_null;
1493       // Failed the equality check on receiver[n]...  Test for null.
1494       if (start_row == last_row) {
1495         // The only thing left to do is handle the null case.
1496         if (is_virtual_call) {
1497           cbz(reg_tmp, found_null);
1498           // Receiver did not match any saved receiver and there is no empty row for it.
1499           // Increment total counter to indicate polymorphic case.
1500           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), reg_tmp);
1501           b(done);
1502           bind(found_null);
1503         } else {
1504           cbnz(reg_tmp, done);
1505         }
1506         break;
1507       }
1508       // Since null is rare, make it be the branch-taken case.
1509       cbz(reg_tmp, found_null);
1510 
1511       // Put all the "Case 3" tests here.
1512       record_klass_in_profile_helper(receiver, mdp, reg_tmp, start_row + 1, done, is_virtual_call);
1513 
1514       // Found a null.  Keep searching for a matching receiver,
1515       // but remember that this is an empty (unused) slot.
1516       bind(found_null);
1517     }
1518   }
1519 
1520   // In the fall-through case, we found no matching receiver, but we
1521   // observed the receiver[start_row] is NULL.
1522 
1523   // Fill in the receiver field and increment the count.
1524   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1525   set_mdp_data_at(mdp, recvr_offset, receiver);
1526   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1527   mov(reg_tmp, DataLayout::counter_increment);
1528   set_mdp_data_at(mdp, count_offset, reg_tmp);
1529   if (start_row > 0) {
1530     b(done);
1531   }
1532 }
1533 
1534 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1535                                                         Register mdp,
1536                                                         Register reg_tmp,
1537                                                         bool is_virtual_call) {
1538   assert(ProfileInterpreter, "must be profiling");
1539   assert_different_registers(receiver, mdp, reg_tmp);
1540 
1541   Label done;
1542 
1543   record_klass_in_profile_helper(receiver, mdp, reg_tmp, 0, done, is_virtual_call);
1544 
1545   bind (done);
1546 }
1547 
1548 // Sets mdp, blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
1549 void InterpreterMacroAssembler::profile_ret(Register mdp, Register return_bci) {
1550   assert_different_registers(mdp, return_bci, Rtemp, R0, R1, R2, R3);
1551 
1552   if (ProfileInterpreter) {
1553     Label profile_continue;
1554     uint row;
1555 
1556     // If no method data exists, go to profile_continue.
1557     test_method_data_pointer(mdp, profile_continue);
1558 
1559     // Update the total ret count.
1560     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1561 
1562     for (row = 0; row < RetData::row_limit(); row++) {
1563       Label next_test;
1564 
1565       // See if return_bci is equal to bci[n]:
1566       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1567                        Rtemp, next_test);
1568 
1569       // return_bci is equal to bci[n].  Increment the count.
1570       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)), Rtemp);
1571 
1572       // The method data pointer needs to be updated to reflect the new target.
1573       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)), Rtemp);
1574       b(profile_continue);
1575       bind(next_test);
1576     }
1577 
1578     update_mdp_for_ret(return_bci);
1579 
1580     bind(profile_continue);
1581   }
1582 }
1583 
1584 
1585 // Sets mdp.
1586 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1587   if (ProfileInterpreter) {
1588     Label profile_continue;
1589 
1590     // If no method data exists, go to profile_continue.
1591     test_method_data_pointer(mdp, profile_continue);
1592 
1593     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1594 
1595     // The method data pointer needs to be updated.
1596     int mdp_delta = in_bytes(BitData::bit_data_size());
1597     if (TypeProfileCasts) {
1598       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1599     }
1600     update_mdp_by_constant(mdp, mdp_delta);
1601 
1602     bind (profile_continue);
1603   }
1604 }
1605 
1606 
1607 // Sets mdp, blows Rtemp.
1608 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1609   assert_different_registers(mdp, Rtemp);
1610 
1611   if (ProfileInterpreter && TypeProfileCasts) {
1612     Label profile_continue;
1613 
1614     // If no method data exists, go to profile_continue.
1615     test_method_data_pointer(mdp, profile_continue);
1616 
1617     int count_offset = in_bytes(CounterData::count_offset());
1618     // Back up the address, since we have already bumped the mdp.
1619     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1620 
1621     // *Decrement* the counter.  We expect to see zero or small negatives.
1622     increment_mdp_data_at(mdp, count_offset, Rtemp, true);
1623 
1624     bind (profile_continue);
1625   }
1626 }
1627 
1628 
1629 // Sets mdp, blows Rtemp.
1630 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass)
1631 {
1632   assert_different_registers(mdp, klass, Rtemp);
1633 
1634   if (ProfileInterpreter) {
1635     Label profile_continue;
1636 
1637     // If no method data exists, go to profile_continue.
1638     test_method_data_pointer(mdp, profile_continue);
1639 
1640     // The method data pointer needs to be updated.
1641     int mdp_delta = in_bytes(BitData::bit_data_size());
1642     if (TypeProfileCasts) {
1643       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1644 
1645       // Record the object type.
1646       record_klass_in_profile(klass, mdp, Rtemp, false);
1647     }
1648     update_mdp_by_constant(mdp, mdp_delta);
1649 
1650     bind(profile_continue);
1651   }
1652 }
1653 
1654 
1655 // Sets mdp, blows Rtemp.
1656 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1657   assert_different_registers(mdp, Rtemp);
1658 
1659   if (ProfileInterpreter) {
1660     Label profile_continue;
1661 
1662     // If no method data exists, go to profile_continue.
1663     test_method_data_pointer(mdp, profile_continue);
1664 
1665     // Update the default case count
1666     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()), Rtemp);
1667 
1668     // The method data pointer needs to be updated.
1669     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()), Rtemp);
1670 
1671     bind(profile_continue);
1672   }
1673 }
1674 
1675 
1676 // Sets mdp. Blows reg_tmp1, reg_tmp2. Index could be the same as reg_tmp2.
1677 void InterpreterMacroAssembler::profile_switch_case(Register mdp, Register index, Register reg_tmp1, Register reg_tmp2) {
1678   assert_different_registers(mdp, reg_tmp1, reg_tmp2);
1679   assert_different_registers(mdp, reg_tmp1, index);
1680 
1681   if (ProfileInterpreter) {
1682     Label profile_continue;
1683 
1684     const int count_offset = in_bytes(MultiBranchData::case_array_offset()) +
1685                               in_bytes(MultiBranchData::relative_count_offset());
1686 
1687     const int displacement_offset = in_bytes(MultiBranchData::case_array_offset()) +
1688                               in_bytes(MultiBranchData::relative_displacement_offset());
1689 
1690     // If no method data exists, go to profile_continue.
1691     test_method_data_pointer(mdp, profile_continue);
1692 
1693     // Build the base (index * per_case_size_in_bytes())
1694     logical_shift_left(reg_tmp1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1695 
1696     // Update the case count
1697     add(reg_tmp1, reg_tmp1, count_offset);
1698     increment_mdp_data_at(Address(mdp, reg_tmp1), reg_tmp2);
1699 
1700     // The method data pointer needs to be updated.
1701     add(reg_tmp1, reg_tmp1, displacement_offset - count_offset);
1702     update_mdp_by_offset(mdp, reg_tmp1, reg_tmp2);
1703 
1704     bind (profile_continue);
1705   }
1706 }
1707 
1708 
1709 void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Register rtmp2) {
1710 #ifdef AARCH64
1711   rev_w(r, r);
1712 #else
1713   if (VM_Version::supports_rev()) {
1714     rev(r, r);
1715   } else {
1716     eor(rtmp1, r, AsmOperand(r, ror, 16));
1717     mvn(rtmp2, 0x0000ff00);
1718     andr(rtmp1, rtmp2, AsmOperand(rtmp1, lsr, 8));
1719     eor(r, rtmp1, AsmOperand(r, ror, 8));
1720   }
1721 #endif // AARCH64
1722 }
1723 
1724 
1725 void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, int offset, Register tmp1, Register tmp2, bool avoid_overflow) {
1726   const intx addr = (intx) (address_of_counter + offset);
1727 
1728   assert ((addr & 0x3) == 0, "address of counter should be aligned");
1729   const intx offset_mask = right_n_bits(AARCH64_ONLY(12 + 2) NOT_AARCH64(12));
1730 
1731   const address base = (address) (addr & ~offset_mask);
1732   const int offs = (int) (addr & offset_mask);
1733 
1734   const Register addr_base = tmp1;
1735   const Register val = tmp2;
1736 
1737   mov_slow(addr_base, base);
1738   ldr_s32(val, Address(addr_base, offs));
1739 
1740   if (avoid_overflow) {
1741     adds_32(val, val, 1);
1742 #ifdef AARCH64
1743     Label L;
1744     b(L, mi);
1745     str_32(val, Address(addr_base, offs));
1746     bind(L);
1747 #else
1748     str(val, Address(addr_base, offs), pl);
1749 #endif // AARCH64
1750   } else {
1751     add_32(val, val, 1);
1752     str_32(val, Address(addr_base, offs));
1753   }
1754 }
1755 
1756 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char *file, int line) {
1757   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop", file, line); }
1758 }
1759 
1760 // Inline assembly for:
1761 //
1762 // if (thread is in interp_only_mode) {
1763 //   InterpreterRuntime::post_method_entry();
1764 // }
1765 // if (DTraceMethodProbes) {
1766 //   SharedRuntime::dtrace_method_entry(method, receiver);
1767 // }
1768 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1769 //   SharedRuntime::rc_trace_method_entry(method, receiver);
1770 // }
1771 
1772 void InterpreterMacroAssembler::notify_method_entry() {
1773   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1774   // track stack depth.  If it is possible to enter interp_only_mode we add
1775   // the code to check if the event should be sent.
1776   if (can_post_interpreter_events()) {
1777     Label L;
1778 
1779     ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
1780     cbz(Rtemp, L);
1781 
1782     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1783 
1784     bind(L);
1785   }
1786 
1787   // Note: Disable DTrace runtime check for now to eliminate overhead on each method entry
1788   if (DTraceMethodProbes) {
1789     Label Lcontinue;
1790 
1791     ldrb_global(Rtemp, (address)&DTraceMethodProbes);
1792     cbz(Rtemp, Lcontinue);
1793 
1794     mov(R0, Rthread);
1795     mov(R1, Rmethod);
1796     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), R0, R1);
1797 
1798     bind(Lcontinue);
1799   }
1800   // RedefineClasses() tracing support for obsolete method entry
1801   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1802     mov(R0, Rthread);
1803     mov(R1, Rmethod);
1804     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1805                  R0, R1);
1806   }
1807 }
1808 
1809 
1810 void InterpreterMacroAssembler::notify_method_exit(
1811                  TosState state, NotifyMethodExitMode mode,
1812                  bool native, Register result_lo, Register result_hi, FloatRegister result_fp) {
1813   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1814   // track stack depth.  If it is possible to enter interp_only_mode we add
1815   // the code to check if the event should be sent.
1816   if (mode == NotifyJVMTI && can_post_interpreter_events()) {
1817     Label L;
1818     // Note: frame::interpreter_frame_result has a dependency on how the
1819     // method result is saved across the call to post_method_exit. If this
1820     // is changed then the interpreter_frame_result implementation will
1821     // need to be updated too.
1822 
1823     ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
1824     cbz(Rtemp, L);
1825 
1826     if (native) {
1827       // For c++ and template interpreter push both result registers on the
1828       // stack in native, we don't know the state.
1829       // On AArch64 result registers are stored into the frame at known locations.
1830       // See frame::interpreter_frame_result for code that gets the result values from here.
1831       assert(result_lo != noreg, "result registers should be defined");
1832 
1833 #ifdef AARCH64
1834       assert(result_hi == noreg, "result_hi is not used on AArch64");
1835       assert(result_fp != fnoreg, "FP result register must be defined");
1836 
1837       str_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
1838       str(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
1839 #else
1840       assert(result_hi != noreg, "result registers should be defined");
1841 
1842 #ifdef __ABI_HARD__
1843       assert(result_fp != fnoreg, "FP result register must be defined");
1844       sub(SP, SP, 2 * wordSize);
1845       fstd(result_fp, Address(SP));
1846 #endif // __ABI_HARD__
1847 
1848       push(RegisterSet(result_lo) | RegisterSet(result_hi));
1849 #endif // AARCH64
1850 
1851       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1852 
1853 #ifdef AARCH64
1854       ldr_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
1855       ldr(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
1856 #else
1857       pop(RegisterSet(result_lo) | RegisterSet(result_hi));
1858 #ifdef __ABI_HARD__
1859       fldd(result_fp, Address(SP));
1860       add(SP, SP, 2 * wordSize);
1861 #endif // __ABI_HARD__
1862 #endif // AARCH64
1863 
1864     } else {
1865       // For the template interpreter, the value on tos is the size of the
1866       // state. (c++ interpreter calls jvmti somewhere else).
1867       push(state);
1868       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1869       pop(state);
1870     }
1871 
1872     bind(L);
1873   }
1874 
1875   // Note: Disable DTrace runtime check for now to eliminate overhead on each method exit
1876   if (DTraceMethodProbes) {
1877     Label Lcontinue;
1878 
1879     ldrb_global(Rtemp, (address)&DTraceMethodProbes);
1880     cbz(Rtemp, Lcontinue);
1881 
1882     push(state);
1883 
1884     mov(R0, Rthread);
1885     mov(R1, Rmethod);
1886 
1887     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), R0, R1);
1888 
1889     pop(state);
1890 
1891     bind(Lcontinue);
1892   }
1893 }
1894 
1895 
1896 #ifndef PRODUCT
1897 
1898 void InterpreterMacroAssembler::trace_state(const char* msg) {
1899   int push_size = save_caller_save_registers();
1900 
1901   Label Lcontinue;
1902   InlinedString Lmsg0("%s: FP=" INTPTR_FORMAT ", SP=" INTPTR_FORMAT "\n");
1903   InlinedString Lmsg(msg);
1904   InlinedAddress Lprintf((address)printf);
1905 
1906   ldr_literal(R0, Lmsg0);
1907   ldr_literal(R1, Lmsg);
1908   mov(R2, FP);
1909   add(R3, SP, push_size);  // original SP (without saved registers)
1910   ldr_literal(Rtemp, Lprintf);
1911   call(Rtemp);
1912 
1913   b(Lcontinue);
1914 
1915   bind_literal(Lmsg0);
1916   bind_literal(Lmsg);
1917   bind_literal(Lprintf);
1918 
1919 
1920   bind(Lcontinue);
1921 
1922   restore_caller_save_registers();
1923 }
1924 
1925 #endif
1926 
1927 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1928 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1929                                                         int increment, Address mask_addr,
1930                                                         Register scratch, Register scratch2,
1931                                                         AsmCondition cond, Label* where) {
1932   // caution: scratch2 and base address of counter_addr can be the same
1933   assert_different_registers(scratch, scratch2);
1934   ldr_u32(scratch, counter_addr);
1935   add(scratch, scratch, increment);
1936   str_32(scratch, counter_addr);
1937 
1938 #ifdef AARCH64
1939   ldr_u32(scratch2, mask_addr);
1940   ands_w(ZR, scratch, scratch2);
1941 #else
1942   ldr(scratch2, mask_addr);
1943   andrs(scratch, scratch, scratch2);
1944 #endif // AARCH64
1945   b(*where, cond);
1946 }
1947 
1948 void InterpreterMacroAssembler::get_method_counters(Register method,
1949                                                     Register Rcounters,
1950                                                     Label& skip,
1951                                                     bool saveRegs,
1952                                                     Register reg1,
1953                                                     Register reg2,
1954                                                     Register reg3) {
1955   const Address method_counters(method, Method::method_counters_offset());
1956   Label has_counters;
1957 
1958   ldr(Rcounters, method_counters);
1959   cbnz(Rcounters, has_counters);
1960 
1961   if (saveRegs) {
1962     // Save and restore in use caller-saved registers since they will be trashed by call_VM
1963     assert(reg1 != noreg, "must specify reg1");
1964     assert(reg2 != noreg, "must specify reg2");
1965 #ifdef AARCH64
1966     assert(reg3 != noreg, "must specify reg3");
1967     stp(reg1, reg2, Address(Rstack_top, -2*wordSize, pre_indexed));
1968     stp(reg3, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
1969 #else
1970     assert(reg3 == noreg, "must not specify reg3");
1971     push(RegisterSet(reg1) | RegisterSet(reg2));
1972 #endif
1973   }
1974 
1975   mov(R1, method);
1976   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), R1);
1977 
1978   if (saveRegs) {
1979 #ifdef AARCH64
1980     ldp(reg3, ZR, Address(Rstack_top, 2*wordSize, post_indexed));
1981     ldp(reg1, reg2, Address(Rstack_top, 2*wordSize, post_indexed));
1982 #else
1983     pop(RegisterSet(reg1) | RegisterSet(reg2));
1984 #endif
1985   }
1986 
1987   ldr(Rcounters, method_counters);
1988   cbz(Rcounters, skip); // No MethodCounters created, OutOfMemory
1989 
1990   bind(has_counters);
1991 }