1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/dirtyCardQueue.hpp"
  27 #include "gc/g1/g1BarrierSet.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CardTable.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1FromCardCache.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1HotCardCache.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1RootClosures.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionManager.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcTraceTime.inline.hpp"
  42 #include "gc/shared/suspendibleThreadSet.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "memory/iterator.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/access.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/os.hpp"
  49 #include "utilities/align.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 #include "utilities/intHisto.hpp"
  52 #include "utilities/stack.inline.hpp"
  53 #include "utilities/ticks.hpp"
  54 
  55 // Collects information about the overall remembered set scan progress during an evacuation.
  56 class G1RemSetScanState : public CHeapObj<mtGC> {
  57 private:
  58   class G1ClearCardTableTask : public AbstractGangTask {
  59     G1CollectedHeap* _g1h;
  60     uint* _dirty_region_list;
  61     size_t _num_dirty_regions;
  62     size_t _chunk_length;
  63 
  64     size_t volatile _cur_dirty_regions;
  65   public:
  66     G1ClearCardTableTask(G1CollectedHeap* g1h,
  67                          uint* dirty_region_list,
  68                          size_t num_dirty_regions,
  69                          size_t chunk_length) :
  70       AbstractGangTask("G1 Clear Card Table Task"),
  71       _g1h(g1h),
  72       _dirty_region_list(dirty_region_list),
  73       _num_dirty_regions(num_dirty_regions),
  74       _chunk_length(chunk_length),
  75       _cur_dirty_regions(0) {
  76 
  77       assert(chunk_length > 0, "must be");
  78     }
  79 
  80     static size_t chunk_size() { return M; }
  81 
  82     void work(uint worker_id) {
  83       while (_cur_dirty_regions < _num_dirty_regions) {
  84         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  85         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  86 
  87         for (size_t i = next; i < max; i++) {
  88           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  89           if (!r->is_survivor()) {
  90             r->clear_cardtable();
  91           }
  92         }
  93       }
  94     }
  95   };
  96 
  97   size_t _max_regions;
  98 
  99   // Scan progress for the remembered set of a single region. Transitions from
 100   // Unclaimed -> Claimed -> Complete.
 101   // At each of the transitions the thread that does the transition needs to perform
 102   // some special action once. This is the reason for the extra "Claimed" state.
 103   typedef jint G1RemsetIterState;
 104 
 105   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 106   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 107   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 108 
 109   G1RemsetIterState volatile* _iter_states;
 110   // The current location where the next thread should continue scanning in a region's
 111   // remembered set.
 112   size_t volatile* _iter_claims;
 113 
 114   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 115   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 116   uint* _dirty_region_buffer;
 117 
 118   typedef jbyte IsDirtyRegionState;
 119   static const IsDirtyRegionState Clean = 0;
 120   static const IsDirtyRegionState Dirty = 1;
 121   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 122   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 123   IsDirtyRegionState* _in_dirty_region_buffer;
 124   size_t _cur_dirty_region;
 125 
 126   // Creates a snapshot of the current _top values at the start of collection to
 127   // filter out card marks that we do not want to scan.
 128   class G1ResetScanTopClosure : public HeapRegionClosure {
 129   private:
 130     HeapWord** _scan_top;
 131   public:
 132     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 133 
 134     virtual bool do_heap_region(HeapRegion* r) {
 135       uint hrm_index = r->hrm_index();
 136       if (!r->in_collection_set() && r->is_old_or_humongous_or_archive()) {
 137         _scan_top[hrm_index] = r->top();
 138       } else {
 139         _scan_top[hrm_index] = r->bottom();
 140       }
 141       return false;
 142     }
 143   };
 144 
 145   // For each region, contains the maximum top() value to be used during this garbage
 146   // collection. Subsumes common checks like filtering out everything but old and
 147   // humongous regions outside the collection set.
 148   // This is valid because we are not interested in scanning stray remembered set
 149   // entries from free or archive regions.
 150   HeapWord** _scan_top;
 151 public:
 152   G1RemSetScanState() :
 153     _max_regions(0),
 154     _iter_states(NULL),
 155     _iter_claims(NULL),
 156     _dirty_region_buffer(NULL),
 157     _in_dirty_region_buffer(NULL),
 158     _cur_dirty_region(0),
 159     _scan_top(NULL) {
 160   }
 161 
 162   ~G1RemSetScanState() {
 163     if (_iter_states != NULL) {
 164       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 165     }
 166     if (_iter_claims != NULL) {
 167       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 168     }
 169     if (_dirty_region_buffer != NULL) {
 170       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 171     }
 172     if (_in_dirty_region_buffer != NULL) {
 173       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 174     }
 175     if (_scan_top != NULL) {
 176       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 177     }
 178   }
 179 
 180   void initialize(uint max_regions) {
 181     assert(_iter_states == NULL, "Must not be initialized twice");
 182     assert(_iter_claims == NULL, "Must not be initialized twice");
 183     _max_regions = max_regions;
 184     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 185     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 186     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 187     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 188     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 189   }
 190 
 191   void reset() {
 192     for (uint i = 0; i < _max_regions; i++) {
 193       _iter_states[i] = Unclaimed;
 194     }
 195 
 196     G1ResetScanTopClosure cl(_scan_top);
 197     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 198 
 199     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 200     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 201     _cur_dirty_region = 0;
 202   }
 203 
 204   // Attempt to claim the remembered set of the region for iteration. Returns true
 205   // if this call caused the transition from Unclaimed to Claimed.
 206   inline bool claim_iter(uint region) {
 207     assert(region < _max_regions, "Tried to access invalid region %u", region);
 208     if (_iter_states[region] != Unclaimed) {
 209       return false;
 210     }
 211     G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed);
 212     return (res == Unclaimed);
 213   }
 214 
 215   // Try to atomically sets the iteration state to "complete". Returns true for the
 216   // thread that caused the transition.
 217   inline bool set_iter_complete(uint region) {
 218     if (iter_is_complete(region)) {
 219       return false;
 220     }
 221     G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed);
 222     return (res == Claimed);
 223   }
 224 
 225   // Returns true if the region's iteration is complete.
 226   inline bool iter_is_complete(uint region) const {
 227     assert(region < _max_regions, "Tried to access invalid region %u", region);
 228     return _iter_states[region] == Complete;
 229   }
 230 
 231   // The current position within the remembered set of the given region.
 232   inline size_t iter_claimed(uint region) const {
 233     assert(region < _max_regions, "Tried to access invalid region %u", region);
 234     return _iter_claims[region];
 235   }
 236 
 237   // Claim the next block of cards within the remembered set of the region with
 238   // step size.
 239   inline size_t iter_claimed_next(uint region, size_t step) {
 240     return Atomic::add(step, &_iter_claims[region]) - step;
 241   }
 242 
 243   void add_dirty_region(uint region) {
 244     if (_in_dirty_region_buffer[region] == Dirty) {
 245       return;
 246     }
 247 
 248     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 249     if (marked_as_dirty) {
 250       size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
 251       _dirty_region_buffer[allocated] = region;
 252     }
 253   }
 254 
 255   HeapWord* scan_top(uint region_idx) const {
 256     return _scan_top[region_idx];
 257   }
 258 
 259   // Clear the card table of "dirty" regions.
 260   void clear_card_table(WorkGang* workers) {
 261     if (_cur_dirty_region == 0) {
 262       return;
 263     }
 264 
 265     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 266     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 267     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 268 
 269     // Iterate over the dirty cards region list.
 270     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 271 
 272     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 273                         "units of work for " SIZE_FORMAT " regions.",
 274                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 275     workers->run_task(&cl, num_workers);
 276 
 277 #ifndef PRODUCT
 278     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 279 #endif
 280   }
 281 };
 282 
 283 G1RemSet::G1RemSet(G1CollectedHeap* g1h,
 284                    G1CardTable* ct,
 285                    G1HotCardCache* hot_card_cache) :
 286   _scan_state(new G1RemSetScanState()),
 287   _prev_period_summary(),
 288   _g1h(g1h),
 289   _num_conc_refined_cards(0),
 290   _ct(ct),
 291   _g1p(_g1h->g1_policy()),
 292   _hot_card_cache(hot_card_cache) {
 293 }
 294 
 295 G1RemSet::~G1RemSet() {
 296   if (_scan_state != NULL) {
 297     delete _scan_state;
 298   }
 299 }
 300 
 301 uint G1RemSet::num_par_rem_sets() {
 302   return DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads);
 303 }
 304 
 305 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 306   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 307   _scan_state->initialize(max_regions);
 308 }
 309 
 310 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 311                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 312                                                    G1ParScanThreadState* pss,
 313                                                    uint worker_i) :
 314   _g1h(G1CollectedHeap::heap()),
 315   _ct(_g1h->card_table()),
 316   _pss(pss),
 317   _scan_objs_on_card_cl(scan_obj_on_card),
 318   _scan_state(scan_state),
 319   _worker_i(worker_i),
 320   _cards_scanned(0),
 321   _cards_claimed(0),
 322   _cards_skipped(0),
 323   _rem_set_root_scan_time(),
 324   _rem_set_trim_partially_time(),
 325   _strong_code_root_scan_time(),
 326   _strong_code_trim_partially_time() {
 327 }
 328 
 329 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 330   _ct->set_card_claimed(card_index);
 331   _scan_state->add_dirty_region(region_idx_for_card);
 332 }
 333 
 334 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 335   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 336   _scan_objs_on_card_cl->set_region(card_region);
 337   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 338   _scan_objs_on_card_cl->trim_queue_partially();
 339   _cards_scanned++;
 340 }
 341 
 342 void G1ScanRSForRegionClosure::scan_rem_set_roots(HeapRegion* r) {
 343   EventGCPhaseParallel event;
 344   uint const region_idx = r->hrm_index();
 345 
 346   if (_scan_state->claim_iter(region_idx)) {
 347     // If we ever free the collection set concurrently, we should also
 348     // clear the card table concurrently therefore we won't need to
 349     // add regions of the collection set to the dirty cards region.
 350     _scan_state->add_dirty_region(region_idx);
 351   }
 352 
 353   // We claim cards in blocks so as to reduce the contention.
 354   size_t const block_size = G1RSetScanBlockSize;
 355 
 356   HeapRegionRemSetIterator iter(r->rem_set());
 357   size_t card_index;
 358 
 359   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 360   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 361     if (current_card >= claimed_card_block + block_size) {
 362       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 363     }
 364     if (current_card < claimed_card_block) {
 365       _cards_skipped++;
 366       continue;
 367     }
 368     _cards_claimed++;
 369 
 370     // If the card is dirty, then G1 will scan it during Update RS.
 371     if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) {
 372       continue;
 373     }
 374 
 375     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
 376     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 377 
 378     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
 379            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 380     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 381     if (card_start >= top) {
 382       continue;
 383     }
 384 
 385     // We claim lazily (so races are possible but they're benign), which reduces the
 386     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 387     // Claim the card after checking bounds above: the remembered set may contain
 388     // random cards into current survivor, and we would then have an incorrectly
 389     // claimed card in survivor space. Card table clear does not reset the card table
 390     // of survivor space regions.
 391     claim_card(card_index, region_idx_for_card);
 392 
 393     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 394 
 395     scan_card(mr, region_idx_for_card);
 396   }
 397   event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ScanRS));
 398 }
 399 
 400 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 401   EventGCPhaseParallel event;
 402   r->strong_code_roots_do(_pss->closures()->weak_codeblobs());
 403   event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::CodeRoots));
 404 }
 405 
 406 bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) {
 407   assert(r->in_collection_set(),
 408          "Should only be called on elements of the collection set but region %u is not.",
 409          r->hrm_index());
 410   uint const region_idx = r->hrm_index();
 411 
 412   // Do an early out if we know we are complete.
 413   if (_scan_state->iter_is_complete(region_idx)) {
 414     return false;
 415   }
 416 
 417   {
 418     G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time);
 419     scan_rem_set_roots(r);
 420   }
 421 
 422   if (_scan_state->set_iter_complete(region_idx)) {
 423     G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time);
 424     // Scan the strong code root list attached to the current region
 425     scan_strong_code_roots(r);
 426   }
 427   return false;
 428 }
 429 
 430 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 431   G1ScanObjsDuringScanRSClosure scan_cl(_g1h, pss);
 432   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, pss, worker_i);
 433   _g1h->collection_set_iterate_from(&cl, worker_i);
 434 
 435   G1GCPhaseTimes* p = _g1p->phase_times();
 436 
 437   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, cl.rem_set_root_scan_time().seconds());
 438   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.rem_set_trim_partially_time().seconds());
 439 
 440   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
 441   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
 442   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
 443 
 444   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time().seconds());
 445   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.strong_code_root_trim_partially_time().seconds());
 446 }
 447 
 448 // Closure used for updating rem sets. Only called during an evacuation pause.
 449 class G1RefineCardClosure: public CardTableEntryClosure {
 450   G1RemSet* _g1rs;
 451   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 452 
 453   size_t _cards_scanned;
 454   size_t _cards_skipped;
 455 public:
 456   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 457     _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
 458   {}
 459 
 460   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 461     // The only time we care about recording cards that
 462     // contain references that point into the collection set
 463     // is during RSet updating within an evacuation pause.
 464     // In this case worker_i should be the id of a GC worker thread.
 465     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 466 
 467     bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
 468 
 469     if (card_scanned) {
 470       _update_rs_cl->trim_queue_partially();
 471       _cards_scanned++;
 472     } else {
 473       _cards_skipped++;
 474     }
 475     return true;
 476   }
 477 
 478   size_t cards_scanned() const { return _cards_scanned; }
 479   size_t cards_skipped() const { return _cards_skipped; }
 480 };
 481 
 482 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 483   G1GCPhaseTimes* p = _g1p->phase_times();
 484 
 485   // Apply closure to log entries in the HCC.
 486   if (G1HotCardCache::default_use_cache()) {
 487     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::ScanHCC, worker_i);
 488 
 489     G1ScanObjsDuringUpdateRSClosure scan_hcc_cl(_g1h, pss, worker_i);
 490     G1RefineCardClosure refine_card_cl(_g1h, &scan_hcc_cl);
 491     _g1h->iterate_hcc_closure(&refine_card_cl, worker_i);
 492   }
 493 
 494   // Now apply the closure to all remaining log entries.
 495   {
 496     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::UpdateRS, worker_i);
 497 
 498     G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1h, pss, worker_i);
 499     G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl);
 500     _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 501 
 502     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
 503     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
 504   }
 505 }
 506 
 507 void G1RemSet::cleanupHRRS() {
 508   HeapRegionRemSet::cleanup();
 509 }
 510 
 511 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss, uint worker_i) {
 512   update_rem_set(pss, worker_i);
 513   scan_rem_set(pss, worker_i);;
 514 }
 515 
 516 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 517   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 518   dcqs.concatenate_logs();
 519 
 520   _scan_state->reset();
 521 }
 522 
 523 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 524   G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
 525 
 526   // Set all cards back to clean.
 527   double start = os::elapsedTime();
 528   _scan_state->clear_card_table(_g1h->workers());
 529   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 530 }
 531 
 532 inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) {
 533 #ifdef ASSERT
 534   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 535   assert(g1h->is_in_exact(ct->addr_for(card_ptr)),
 536          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 537          p2i(card_ptr),
 538          ct->index_for(ct->addr_for(card_ptr)),
 539          p2i(ct->addr_for(card_ptr)),
 540          g1h->addr_to_region(ct->addr_for(card_ptr)));
 541 #endif
 542 }
 543 
 544 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 545                                         uint worker_i) {
 546   assert(!_g1h->is_gc_active(), "Only call concurrently");
 547 
 548   check_card_ptr(card_ptr, _ct);
 549 
 550   // If the card is no longer dirty, nothing to do.
 551   if (*card_ptr != G1CardTable::dirty_card_val()) {
 552     return;
 553   }
 554 
 555   // Construct the region representing the card.
 556   HeapWord* start = _ct->addr_for(card_ptr);
 557   // And find the region containing it.
 558   HeapRegion* r = _g1h->heap_region_containing(start);
 559 
 560   // This check is needed for some uncommon cases where we should
 561   // ignore the card.
 562   //
 563   // The region could be young.  Cards for young regions are
 564   // distinctly marked (set to g1_young_gen), so the post-barrier will
 565   // filter them out.  However, that marking is performed
 566   // concurrently.  A write to a young object could occur before the
 567   // card has been marked young, slipping past the filter.
 568   //
 569   // The card could be stale, because the region has been freed since
 570   // the card was recorded. In this case the region type could be
 571   // anything.  If (still) free or (reallocated) young, just ignore
 572   // it.  If (reallocated) old or humongous, the later card trimming
 573   // and additional checks in iteration may detect staleness.  At
 574   // worst, we end up processing a stale card unnecessarily.
 575   //
 576   // In the normal (non-stale) case, the synchronization between the
 577   // enqueueing of the card and processing it here will have ensured
 578   // we see the up-to-date region type here.
 579   if (!r->is_old_or_humongous_or_archive()) {
 580     return;
 581   }
 582 
 583   // The result from the hot card cache insert call is either:
 584   //   * pointer to the current card
 585   //     (implying that the current card is not 'hot'),
 586   //   * null
 587   //     (meaning we had inserted the card ptr into the "hot" card cache,
 588   //     which had some headroom),
 589   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 590   //
 591 
 592   if (_hot_card_cache->use_cache()) {
 593     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 594 
 595     const jbyte* orig_card_ptr = card_ptr;
 596     card_ptr = _hot_card_cache->insert(card_ptr);
 597     if (card_ptr == NULL) {
 598       // There was no eviction. Nothing to do.
 599       return;
 600     } else if (card_ptr != orig_card_ptr) {
 601       // Original card was inserted and an old card was evicted.
 602       start = _ct->addr_for(card_ptr);
 603       r = _g1h->heap_region_containing(start);
 604 
 605       // Check whether the region formerly in the cache should be
 606       // ignored, as discussed earlier for the original card.  The
 607       // region could have been freed while in the cache.
 608       if (!r->is_old_or_humongous_or_archive()) {
 609         return;
 610       }
 611     } // Else we still have the original card.
 612   }
 613 
 614   // Trim the region designated by the card to what's been allocated
 615   // in the region.  The card could be stale, or the card could cover
 616   // (part of) an object at the end of the allocated space and extend
 617   // beyond the end of allocation.
 618 
 619   // Non-humongous objects are only allocated in the old-gen during
 620   // GC, so if region is old then top is stable.  Humongous object
 621   // allocation sets top last; if top has not yet been set, this is
 622   // a stale card and we'll end up with an empty intersection.  If
 623   // this is not a stale card, the synchronization between the
 624   // enqueuing of the card and processing it here will have ensured
 625   // we see the up-to-date top here.
 626   HeapWord* scan_limit = r->top();
 627 
 628   if (scan_limit <= start) {
 629     // If the trimmed region is empty, the card must be stale.
 630     return;
 631   }
 632 
 633   // Okay to clean and process the card now.  There are still some
 634   // stale card cases that may be detected by iteration and dealt with
 635   // as iteration failure.
 636   *const_cast<volatile jbyte*>(card_ptr) = G1CardTable::clean_card_val();
 637 
 638   // This fence serves two purposes.  First, the card must be cleaned
 639   // before processing the contents.  Second, we can't proceed with
 640   // processing until after the read of top, for synchronization with
 641   // possibly concurrent humongous object allocation.  It's okay that
 642   // reading top and reading type were racy wrto each other.  We need
 643   // both set, in any order, to proceed.
 644   OrderAccess::fence();
 645 
 646   // Don't use addr_for(card_ptr + 1) which can ask for
 647   // a card beyond the heap.
 648   HeapWord* end = start + G1CardTable::card_size_in_words;
 649   MemRegion dirty_region(start, MIN2(scan_limit, end));
 650   assert(!dirty_region.is_empty(), "sanity");
 651 
 652   G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i);
 653 
 654   bool card_processed =
 655     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 656 
 657   // If unable to process the card then we encountered an unparsable
 658   // part of the heap (e.g. a partially allocated object) while
 659   // processing a stale card.  Despite the card being stale, redirty
 660   // and re-enqueue, because we've already cleaned the card.  Without
 661   // this we could incorrectly discard a non-stale card.
 662   if (!card_processed) {
 663     // The card might have gotten re-dirtied and re-enqueued while we
 664     // worked.  (In fact, it's pretty likely.)
 665     if (*card_ptr != G1CardTable::dirty_card_val()) {
 666       *card_ptr = G1CardTable::dirty_card_val();
 667       MutexLockerEx x(Shared_DirtyCardQ_lock,
 668                       Mutex::_no_safepoint_check_flag);
 669       DirtyCardQueue* sdcq =
 670         G1BarrierSet::dirty_card_queue_set().shared_dirty_card_queue();
 671       sdcq->enqueue(card_ptr);
 672     }
 673   } else {
 674     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 675   }
 676 }
 677 
 678 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 679                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 680   assert(_g1h->is_gc_active(), "Only call during GC");
 681 
 682   check_card_ptr(card_ptr, _ct);
 683 
 684   // If the card is no longer dirty, nothing to do. This covers cards that were already
 685   // scanned as parts of the remembered sets.
 686   if (*card_ptr != G1CardTable::dirty_card_val()) {
 687     return false;
 688   }
 689 
 690   // We claim lazily (so races are possible but they're benign), which reduces the
 691   // number of potential duplicate scans (multiple threads may enqueue the same card twice).
 692   *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val();
 693 
 694   // Construct the region representing the card.
 695   HeapWord* card_start = _ct->addr_for(card_ptr);
 696   // And find the region containing it.
 697   uint const card_region_idx = _g1h->addr_to_region(card_start);
 698 
 699   _scan_state->add_dirty_region(card_region_idx);
 700   HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
 701   if (scan_limit <= card_start) {
 702     // If the card starts above the area in the region containing objects to scan, skip it.
 703     return false;
 704   }
 705 
 706   // Don't use addr_for(card_ptr + 1) which can ask for
 707   // a card beyond the heap.
 708   HeapWord* card_end = card_start + G1CardTable::card_size_in_words;
 709   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 710   assert(!dirty_region.is_empty(), "sanity");
 711 
 712   HeapRegion* const card_region = _g1h->region_at(card_region_idx);
 713   update_rs_cl->set_region(card_region);
 714   bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 715   assert(card_processed, "must be");
 716   return true;
 717 }
 718 
 719 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 720   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 721       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 722 
 723     G1RemSetSummary current(this);
 724     _prev_period_summary.subtract_from(&current);
 725 
 726     Log(gc, remset) log;
 727     log.trace("%s", header);
 728     ResourceMark rm;
 729     LogStream ls(log.trace());
 730     _prev_period_summary.print_on(&ls);
 731 
 732     _prev_period_summary.set(&current);
 733   }
 734 }
 735 
 736 void G1RemSet::print_summary_info() {
 737   Log(gc, remset, exit) log;
 738   if (log.is_trace()) {
 739     log.trace(" Cumulative RS summary");
 740     G1RemSetSummary current(this);
 741     ResourceMark rm;
 742     LogStream ls(log.trace());
 743     current.print_on(&ls);
 744   }
 745 }
 746 
 747 class G1RebuildRemSetTask: public AbstractGangTask {
 748   // Aggregate the counting data that was constructed concurrently
 749   // with marking.
 750   class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure {
 751     G1ConcurrentMark* _cm;
 752     G1RebuildRemSetClosure _update_cl;
 753 
 754     // Applies _update_cl to the references of the given object, limiting objArrays
 755     // to the given MemRegion. Returns the amount of words actually scanned.
 756     size_t scan_for_references(oop const obj, MemRegion mr) {
 757       size_t const obj_size = obj->size();
 758       // All non-objArrays and objArrays completely within the mr
 759       // can be scanned without passing the mr.
 760       if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) {
 761         obj->oop_iterate(&_update_cl);
 762         return obj_size;
 763       }
 764       // This path is for objArrays crossing the given MemRegion. Only scan the
 765       // area within the MemRegion.
 766       obj->oop_iterate(&_update_cl, mr);
 767       return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size();
 768     }
 769 
 770     // A humongous object is live (with respect to the scanning) either
 771     // a) it is marked on the bitmap as such
 772     // b) its TARS is larger than TAMS, i.e. has been allocated during marking.
 773     bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const {
 774       return bitmap->is_marked(humongous_obj) || (tars > tams);
 775     }
 776 
 777     // Iterator over the live objects within the given MemRegion.
 778     class LiveObjIterator : public StackObj {
 779       const G1CMBitMap* const _bitmap;
 780       const HeapWord* _tams;
 781       const MemRegion _mr;
 782       HeapWord* _current;
 783 
 784       bool is_below_tams() const {
 785         return _current < _tams;
 786       }
 787 
 788       bool is_live(HeapWord* obj) const {
 789         return !is_below_tams() || _bitmap->is_marked(obj);
 790       }
 791 
 792       HeapWord* bitmap_limit() const {
 793         return MIN2(const_cast<HeapWord*>(_tams), _mr.end());
 794       }
 795 
 796       void move_if_below_tams() {
 797         if (is_below_tams() && has_next()) {
 798           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 799         }
 800       }
 801     public:
 802       LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) :
 803           _bitmap(bitmap),
 804           _tams(tams),
 805           _mr(mr),
 806           _current(first_oop_into_mr) {
 807 
 808         assert(_current <= _mr.start(),
 809                "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")",
 810                p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end()));
 811 
 812         // Step to the next live object within the MemRegion if needed.
 813         if (is_live(_current)) {
 814           // Non-objArrays were scanned by the previous part of that region.
 815           if (_current < mr.start() && !oop(_current)->is_objArray()) {
 816             _current += oop(_current)->size();
 817             // We might have positioned _current on a non-live object. Reposition to the next
 818             // live one if needed.
 819             move_if_below_tams();
 820           }
 821         } else {
 822           // The object at _current can only be dead if below TAMS, so we can use the bitmap.
 823           // immediately.
 824           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 825           assert(_current == _mr.end() || is_live(_current),
 826                  "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")",
 827                  p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end()));
 828         }
 829       }
 830 
 831       void move_to_next() {
 832         _current += next()->size();
 833         move_if_below_tams();
 834       }
 835 
 836       oop next() const {
 837         oop result = oop(_current);
 838         assert(is_live(_current),
 839                "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d",
 840                p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result));
 841         return result;
 842       }
 843 
 844       bool has_next() const {
 845         return _current < _mr.end();
 846       }
 847     };
 848 
 849     // Rebuild remembered sets in the part of the region specified by mr and hr.
 850     // Objects between the bottom of the region and the TAMS are checked for liveness
 851     // using the given bitmap. Objects between TAMS and TARS are assumed to be live.
 852     // Returns the number of live words between bottom and TAMS.
 853     size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap,
 854                                      HeapWord* const top_at_mark_start,
 855                                      HeapWord* const top_at_rebuild_start,
 856                                      HeapRegion* hr,
 857                                      MemRegion mr) {
 858       size_t marked_words = 0;
 859 
 860       if (hr->is_humongous()) {
 861         oop const humongous_obj = oop(hr->humongous_start_region()->bottom());
 862         if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) {
 863           // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start);
 864           // however in case of humongous objects it is sufficient to scan the encompassing
 865           // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the
 866           // two areas will be zero sized. I.e. TAMS is either
 867           // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different
 868           // value: this would mean that TAMS points somewhere into the object.
 869           assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start,
 870                  "More than one object in the humongous region?");
 871           humongous_obj->oop_iterate(&_update_cl, mr);
 872           return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0;
 873         } else {
 874           return 0;
 875         }
 876       }
 877 
 878       for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) {
 879         oop obj = it.next();
 880         size_t scanned_size = scan_for_references(obj, mr);
 881         if ((HeapWord*)obj < top_at_mark_start) {
 882           marked_words += scanned_size;
 883         }
 884       }
 885 
 886       return marked_words * HeapWordSize;
 887     }
 888 public:
 889   G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h,
 890                                    G1ConcurrentMark* cm,
 891                                    uint worker_id) :
 892     HeapRegionClosure(),
 893     _cm(cm),
 894     _update_cl(g1h, worker_id) { }
 895 
 896     bool do_heap_region(HeapRegion* hr) {
 897       if (_cm->has_aborted()) {
 898         return true;
 899       }
 900 
 901       uint const region_idx = hr->hrm_index();
 902       DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);)
 903       assert(top_at_rebuild_start_check == NULL ||
 904              top_at_rebuild_start_check > hr->bottom(),
 905              "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)",
 906              p2i(top_at_rebuild_start_check), p2i(hr->bottom()),  region_idx, hr->get_type_str());
 907 
 908       size_t total_marked_bytes = 0;
 909       size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize;
 910 
 911       HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start();
 912 
 913       HeapWord* cur = hr->bottom();
 914       while (cur < hr->end()) {
 915         // After every iteration (yield point) we need to check whether the region's
 916         // TARS changed due to e.g. eager reclaim.
 917         HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);
 918         if (top_at_rebuild_start == NULL) {
 919           return false;
 920         }
 921 
 922         MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words));
 923         if (next_chunk.is_empty()) {
 924           break;
 925         }
 926 
 927         const Ticks start = Ticks::now();
 928         size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(),
 929                                                         top_at_mark_start,
 930                                                         top_at_rebuild_start,
 931                                                         hr,
 932                                                         next_chunk);
 933         Tickspan time = Ticks::now() - start;
 934 
 935         log_trace(gc, remset, tracking)("Rebuilt region %u "
 936                                         "live " SIZE_FORMAT " "
 937                                         "time %.3fms "
 938                                         "marked bytes " SIZE_FORMAT " "
 939                                         "bot " PTR_FORMAT " "
 940                                         "TAMS " PTR_FORMAT " "
 941                                         "TARS " PTR_FORMAT,
 942                                         region_idx,
 943                                         _cm->liveness(region_idx) * HeapWordSize,
 944                                         time.seconds() * 1000.0,
 945                                         marked_bytes,
 946                                         p2i(hr->bottom()),
 947                                         p2i(top_at_mark_start),
 948                                         p2i(top_at_rebuild_start));
 949 
 950         if (marked_bytes > 0) {
 951           total_marked_bytes += marked_bytes;
 952         }
 953         cur += chunk_size_in_words;
 954 
 955         _cm->do_yield_check();
 956         if (_cm->has_aborted()) {
 957           return true;
 958         }
 959       }
 960       // In the final iteration of the loop the region might have been eagerly reclaimed.
 961       // Simply filter out those regions. We can not just use region type because there
 962       // might have already been new allocations into these regions.
 963       DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);)
 964       assert(top_at_rebuild_start == NULL ||
 965              total_marked_bytes == hr->marked_bytes(),
 966              "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " "
 967              "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")",
 968              total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(),
 969              p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start));
 970        // Abort state may have changed after the yield check.
 971       return _cm->has_aborted();
 972     }
 973   };
 974 
 975   HeapRegionClaimer _hr_claimer;
 976   G1ConcurrentMark* _cm;
 977 
 978   uint _worker_id_offset;
 979 public:
 980   G1RebuildRemSetTask(G1ConcurrentMark* cm,
 981                       uint n_workers,
 982                       uint worker_id_offset) :
 983       AbstractGangTask("G1 Rebuild Remembered Set"),
 984       _hr_claimer(n_workers),
 985       _cm(cm),
 986       _worker_id_offset(worker_id_offset) {
 987   }
 988 
 989   void work(uint worker_id) {
 990     SuspendibleThreadSetJoiner sts_join;
 991 
 992     G1CollectedHeap* g1h = G1CollectedHeap::heap();
 993 
 994     G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id);
 995     g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id);
 996   }
 997 };
 998 
 999 void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm,
1000                                WorkGang* workers,
1001                                uint worker_id_offset) {
1002   uint num_workers = workers->active_workers();
1003 
1004   G1RebuildRemSetTask cl(cm,
1005                          num_workers,
1006                          worker_id_offset);
1007   workers->run_task(&cl, num_workers);
1008 }