1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/shared/adaptiveSizePolicy.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTableRS.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "gc/shared/collectorCounters.hpp"
  40 #include "gc/shared/gcId.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "gc/shared/gcPolicyCounters.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/gcVMOperations.hpp"
  46 #include "gc/shared/genCollectedHeap.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/generationSpec.hpp"
  49 #include "gc/shared/oopStorageParState.inline.hpp"
  50 #include "gc/shared/space.hpp"
  51 #include "gc/shared/strongRootsScope.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "gc/shared/workgroup.hpp"
  54 #include "memory/filemap.hpp"
  55 #include "memory/metaspaceCounters.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/flags/flagSetting.hpp"
  60 #include "runtime/handles.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/management.hpp"
  65 #include "services/memoryService.hpp"
  66 #include "utilities/debug.hpp"
  67 #include "utilities/formatBuffer.hpp"
  68 #include "utilities/macros.hpp"
  69 #include "utilities/stack.inline.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  73                                    Generation::Name young,
  74                                    Generation::Name old,
  75                                    const char* policy_counters_name) :
  76   CollectedHeap(),
  77   _young_gen_spec(new GenerationSpec(young,
  78                                      policy->initial_young_size(),
  79                                      policy->max_young_size(),
  80                                      policy->gen_alignment())),
  81   _old_gen_spec(new GenerationSpec(old,
  82                                    policy->initial_old_size(),
  83                                    policy->max_old_size(),
  84                                    policy->gen_alignment())),
  85   _rem_set(NULL),
  86   _gen_policy(policy),
  87   _soft_ref_gen_policy(),
  88   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  89   _full_collections_completed(0),
  90   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)) {
  91 }
  92 
  93 jint GenCollectedHeap::initialize() {
  94   // While there are no constraints in the GC code that HeapWordSize
  95   // be any particular value, there are multiple other areas in the
  96   // system which believe this to be true (e.g. oop->object_size in some
  97   // cases incorrectly returns the size in wordSize units rather than
  98   // HeapWordSize).
  99   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 100 
 101   // Allocate space for the heap.
 102 
 103   char* heap_address;
 104   ReservedSpace heap_rs;
 105 
 106   size_t heap_alignment = collector_policy()->heap_alignment();
 107 
 108   heap_address = allocate(heap_alignment, &heap_rs);
 109 
 110   if (!heap_rs.is_reserved()) {
 111     vm_shutdown_during_initialization(
 112       "Could not reserve enough space for object heap");
 113     return JNI_ENOMEM;
 114   }
 115 
 116   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 117 
 118   _rem_set = create_rem_set(reserved_region());
 119   _rem_set->initialize();
 120   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 121   bs->initialize();
 122   BarrierSet::set_barrier_set(bs);
 123 
 124   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 125   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 126   heap_rs = heap_rs.last_part(_young_gen_spec->max_size());
 127 
 128   ReservedSpace old_rs = heap_rs.first_part(_old_gen_spec->max_size(), false, false);
 129   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 130   clear_incremental_collection_failed();
 131 
 132   return JNI_OK;
 133 }
 134 
 135 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 136   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 137 }
 138 
 139 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 140                                               size_t init_promo_size,
 141                                               size_t init_survivor_size) {
 142   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 143   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 144                                         init_promo_size,
 145                                         init_survivor_size,
 146                                         max_gc_pause_sec,
 147                                         GCTimeRatio);
 148 }
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   // Now figure out the total size.
 153   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 154   assert(alignment % pageSize == 0, "Must be");
 155 
 156   // Check for overflow.
 157   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 158   if (total_reserved < _young_gen_spec->max_size()) {
 159     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 160                                   "the maximum representable size");
 161   }
 162   assert(total_reserved % alignment == 0,
 163          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 164          SIZE_FORMAT, total_reserved, alignment);
 165 
 166   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 167 
 168   os::trace_page_sizes("Heap",
 169                        collector_policy()->min_heap_byte_size(),
 170                        total_reserved,
 171                        alignment,
 172                        heap_rs->base(),
 173                        heap_rs->size());
 174 
 175   return heap_rs->base();
 176 }
 177 
 178 void GenCollectedHeap::post_initialize() {
 179   CollectedHeap::post_initialize();
 180   ref_processing_init();
 181 
 182   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 183 
 184   initialize_size_policy(def_new_gen->eden()->capacity(),
 185                          _old_gen->capacity(),
 186                          def_new_gen->from()->capacity());
 187 
 188   MarkSweep::initialize();
 189 }
 190 
 191 void GenCollectedHeap::ref_processing_init() {
 192   _young_gen->ref_processor_init();
 193   _old_gen->ref_processor_init();
 194 }
 195 
 196 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 197   return _young_gen_spec;
 198 }
 199 
 200 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 201   return _old_gen_spec;
 202 }
 203 
 204 size_t GenCollectedHeap::capacity() const {
 205   return _young_gen->capacity() + _old_gen->capacity();
 206 }
 207 
 208 size_t GenCollectedHeap::used() const {
 209   return _young_gen->used() + _old_gen->used();
 210 }
 211 
 212 void GenCollectedHeap::save_used_regions() {
 213   _old_gen->save_used_region();
 214   _young_gen->save_used_region();
 215 }
 216 
 217 size_t GenCollectedHeap::max_capacity() const {
 218   return _young_gen->max_capacity() + _old_gen->max_capacity();
 219 }
 220 
 221 // Update the _full_collections_completed counter
 222 // at the end of a stop-world full GC.
 223 unsigned int GenCollectedHeap::update_full_collections_completed() {
 224   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 225   assert(_full_collections_completed <= _total_full_collections,
 226          "Can't complete more collections than were started");
 227   _full_collections_completed = _total_full_collections;
 228   ml.notify_all();
 229   return _full_collections_completed;
 230 }
 231 
 232 // Update the _full_collections_completed counter, as appropriate,
 233 // at the end of a concurrent GC cycle. Note the conditional update
 234 // below to allow this method to be called by a concurrent collector
 235 // without synchronizing in any manner with the VM thread (which
 236 // may already have initiated a STW full collection "concurrently").
 237 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 238   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 239   assert((_full_collections_completed <= _total_full_collections) &&
 240          (count <= _total_full_collections),
 241          "Can't complete more collections than were started");
 242   if (count > _full_collections_completed) {
 243     _full_collections_completed = count;
 244     ml.notify_all();
 245   }
 246   return _full_collections_completed;
 247 }
 248 
 249 // Return true if any of the following is true:
 250 // . the allocation won't fit into the current young gen heap
 251 // . gc locker is occupied (jni critical section)
 252 // . heap memory is tight -- the most recent previous collection
 253 //   was a full collection because a partial collection (would
 254 //   have) failed and is likely to fail again
 255 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 256   size_t young_capacity = _young_gen->capacity_before_gc();
 257   return    (word_size > heap_word_size(young_capacity))
 258          || GCLocker::is_active_and_needs_gc()
 259          || incremental_collection_failed();
 260 }
 261 
 262 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 263   HeapWord* result = NULL;
 264   if (_old_gen->should_allocate(size, is_tlab)) {
 265     result = _old_gen->expand_and_allocate(size, is_tlab);
 266   }
 267   if (result == NULL) {
 268     if (_young_gen->should_allocate(size, is_tlab)) {
 269       result = _young_gen->expand_and_allocate(size, is_tlab);
 270     }
 271   }
 272   assert(result == NULL || is_in_reserved(result), "result not in heap");
 273   return result;
 274 }
 275 
 276 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 277                                               bool is_tlab,
 278                                               bool* gc_overhead_limit_was_exceeded) {
 279   // In general gc_overhead_limit_was_exceeded should be false so
 280   // set it so here and reset it to true only if the gc time
 281   // limit is being exceeded as checked below.
 282   *gc_overhead_limit_was_exceeded = false;
 283 
 284   HeapWord* result = NULL;
 285 
 286   // Loop until the allocation is satisfied, or unsatisfied after GC.
 287   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 288     HandleMark hm; // Discard any handles allocated in each iteration.
 289 
 290     // First allocation attempt is lock-free.
 291     Generation *young = _young_gen;
 292     assert(young->supports_inline_contig_alloc(),
 293       "Otherwise, must do alloc within heap lock");
 294     if (young->should_allocate(size, is_tlab)) {
 295       result = young->par_allocate(size, is_tlab);
 296       if (result != NULL) {
 297         assert(is_in_reserved(result), "result not in heap");
 298         return result;
 299       }
 300     }
 301     uint gc_count_before;  // Read inside the Heap_lock locked region.
 302     {
 303       MutexLocker ml(Heap_lock);
 304       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 305       // Note that only large objects get a shot at being
 306       // allocated in later generations.
 307       bool first_only = !should_try_older_generation_allocation(size);
 308 
 309       result = attempt_allocation(size, is_tlab, first_only);
 310       if (result != NULL) {
 311         assert(is_in_reserved(result), "result not in heap");
 312         return result;
 313       }
 314 
 315       if (GCLocker::is_active_and_needs_gc()) {
 316         if (is_tlab) {
 317           return NULL;  // Caller will retry allocating individual object.
 318         }
 319         if (!is_maximal_no_gc()) {
 320           // Try and expand heap to satisfy request.
 321           result = expand_heap_and_allocate(size, is_tlab);
 322           // Result could be null if we are out of space.
 323           if (result != NULL) {
 324             return result;
 325           }
 326         }
 327 
 328         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 329           return NULL; // We didn't get to do a GC and we didn't get any memory.
 330         }
 331 
 332         // If this thread is not in a jni critical section, we stall
 333         // the requestor until the critical section has cleared and
 334         // GC allowed. When the critical section clears, a GC is
 335         // initiated by the last thread exiting the critical section; so
 336         // we retry the allocation sequence from the beginning of the loop,
 337         // rather than causing more, now probably unnecessary, GC attempts.
 338         JavaThread* jthr = JavaThread::current();
 339         if (!jthr->in_critical()) {
 340           MutexUnlocker mul(Heap_lock);
 341           // Wait for JNI critical section to be exited
 342           GCLocker::stall_until_clear();
 343           gclocker_stalled_count += 1;
 344           continue;
 345         } else {
 346           if (CheckJNICalls) {
 347             fatal("Possible deadlock due to allocating while"
 348                   " in jni critical section");
 349           }
 350           return NULL;
 351         }
 352       }
 353 
 354       // Read the gc count while the heap lock is held.
 355       gc_count_before = total_collections();
 356     }
 357 
 358     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 359     VMThread::execute(&op);
 360     if (op.prologue_succeeded()) {
 361       result = op.result();
 362       if (op.gc_locked()) {
 363          assert(result == NULL, "must be NULL if gc_locked() is true");
 364          continue;  // Retry and/or stall as necessary.
 365       }
 366 
 367       // Allocation has failed and a collection
 368       // has been done.  If the gc time limit was exceeded the
 369       // this time, return NULL so that an out-of-memory
 370       // will be thrown.  Clear gc_overhead_limit_exceeded
 371       // so that the overhead exceeded does not persist.
 372 
 373       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 374       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 375 
 376       if (limit_exceeded && softrefs_clear) {
 377         *gc_overhead_limit_was_exceeded = true;
 378         size_policy()->set_gc_overhead_limit_exceeded(false);
 379         if (op.result() != NULL) {
 380           CollectedHeap::fill_with_object(op.result(), size);
 381         }
 382         return NULL;
 383       }
 384       assert(result == NULL || is_in_reserved(result),
 385              "result not in heap");
 386       return result;
 387     }
 388 
 389     // Give a warning if we seem to be looping forever.
 390     if ((QueuedAllocationWarningCount > 0) &&
 391         (try_count % QueuedAllocationWarningCount == 0)) {
 392           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 393                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 394     }
 395   }
 396 }
 397 
 398 #ifndef PRODUCT
 399 // Override of memory state checking method in CollectedHeap:
 400 // Some collectors (CMS for example) can't have badHeapWordVal written
 401 // in the first two words of an object. (For instance , in the case of
 402 // CMS these words hold state used to synchronize between certain
 403 // (concurrent) GC steps and direct allocating mutators.)
 404 // The skip_header_HeapWords() method below, allows us to skip
 405 // over the requisite number of HeapWord's. Note that (for
 406 // generational collectors) this means that those many words are
 407 // skipped in each object, irrespective of the generation in which
 408 // that object lives. The resultant loss of precision seems to be
 409 // harmless and the pain of avoiding that imprecision appears somewhat
 410 // higher than we are prepared to pay for such rudimentary debugging
 411 // support.
 412 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 413                                                          size_t size) {
 414   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 415     // We are asked to check a size in HeapWords,
 416     // but the memory is mangled in juint words.
 417     juint* start = (juint*) (addr + skip_header_HeapWords());
 418     juint* end   = (juint*) (addr + size);
 419     for (juint* slot = start; slot < end; slot += 1) {
 420       assert(*slot == badHeapWordVal,
 421              "Found non badHeapWordValue in pre-allocation check");
 422     }
 423   }
 424 }
 425 #endif
 426 
 427 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 428                                                bool is_tlab,
 429                                                bool first_only) {
 430   HeapWord* res = NULL;
 431 
 432   if (_young_gen->should_allocate(size, is_tlab)) {
 433     res = _young_gen->allocate(size, is_tlab);
 434     if (res != NULL || first_only) {
 435       return res;
 436     }
 437   }
 438 
 439   if (_old_gen->should_allocate(size, is_tlab)) {
 440     res = _old_gen->allocate(size, is_tlab);
 441   }
 442 
 443   return res;
 444 }
 445 
 446 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 447                                          bool* gc_overhead_limit_was_exceeded) {
 448   return mem_allocate_work(size,
 449                            false /* is_tlab */,
 450                            gc_overhead_limit_was_exceeded);
 451 }
 452 
 453 bool GenCollectedHeap::must_clear_all_soft_refs() {
 454   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 455          _gc_cause == GCCause::_wb_full_gc;
 456 }
 457 
 458 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 459                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 460                                           bool restore_marks_for_biased_locking) {
 461   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 462   GCTraceTime(Trace, gc, phases) t1(title);
 463   TraceCollectorStats tcs(gen->counters());
 464   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 465 
 466   gen->stat_record()->invocations++;
 467   gen->stat_record()->accumulated_time.start();
 468 
 469   // Must be done anew before each collection because
 470   // a previous collection will do mangling and will
 471   // change top of some spaces.
 472   record_gen_tops_before_GC();
 473 
 474   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 475 
 476   if (run_verification && VerifyBeforeGC) {
 477     HandleMark hm;  // Discard invalid handles created during verification
 478     Universe::verify("Before GC");
 479   }
 480   COMPILER2_PRESENT(DerivedPointerTable::clear());
 481 
 482   if (restore_marks_for_biased_locking) {
 483     // We perform this mark word preservation work lazily
 484     // because it's only at this point that we know whether we
 485     // absolutely have to do it; we want to avoid doing it for
 486     // scavenge-only collections where it's unnecessary
 487     BiasedLocking::preserve_marks();
 488   }
 489 
 490   // Do collection work
 491   {
 492     // Note on ref discovery: For what appear to be historical reasons,
 493     // GCH enables and disabled (by enqueing) refs discovery.
 494     // In the future this should be moved into the generation's
 495     // collect method so that ref discovery and enqueueing concerns
 496     // are local to a generation. The collect method could return
 497     // an appropriate indication in the case that notification on
 498     // the ref lock was needed. This will make the treatment of
 499     // weak refs more uniform (and indeed remove such concerns
 500     // from GCH). XXX
 501 
 502     HandleMark hm;  // Discard invalid handles created during gc
 503     save_marks();   // save marks for all gens
 504     // We want to discover references, but not process them yet.
 505     // This mode is disabled in process_discovered_references if the
 506     // generation does some collection work, or in
 507     // enqueue_discovered_references if the generation returns
 508     // without doing any work.
 509     ReferenceProcessor* rp = gen->ref_processor();
 510     // If the discovery of ("weak") refs in this generation is
 511     // atomic wrt other collectors in this configuration, we
 512     // are guaranteed to have empty discovered ref lists.
 513     if (rp->discovery_is_atomic()) {
 514       rp->enable_discovery();
 515       rp->setup_policy(clear_soft_refs);
 516     } else {
 517       // collect() below will enable discovery as appropriate
 518     }
 519     gen->collect(full, clear_soft_refs, size, is_tlab);
 520     if (!rp->enqueuing_is_done()) {
 521       rp->disable_discovery();
 522     } else {
 523       rp->set_enqueuing_is_done(false);
 524     }
 525     rp->verify_no_references_recorded();
 526   }
 527 
 528   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 529 
 530   gen->stat_record()->accumulated_time.stop();
 531 
 532   update_gc_stats(gen, full);
 533 
 534   if (run_verification && VerifyAfterGC) {
 535     HandleMark hm;  // Discard invalid handles created during verification
 536     Universe::verify("After GC");
 537   }
 538 }
 539 
 540 void GenCollectedHeap::do_collection(bool           full,
 541                                      bool           clear_all_soft_refs,
 542                                      size_t         size,
 543                                      bool           is_tlab,
 544                                      GenerationType max_generation) {
 545   ResourceMark rm;
 546   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 547 
 548   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 549   assert(my_thread->is_VM_thread() ||
 550          my_thread->is_ConcurrentGC_thread(),
 551          "incorrect thread type capability");
 552   assert(Heap_lock->is_locked(),
 553          "the requesting thread should have the Heap_lock");
 554   guarantee(!is_gc_active(), "collection is not reentrant");
 555 
 556   if (GCLocker::check_active_before_gc()) {
 557     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 558   }
 559 
 560   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 561                           soft_ref_policy()->should_clear_all_soft_refs();
 562 
 563   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 564 
 565   const size_t metadata_prev_used = MetaspaceUtils::used_bytes();
 566 
 567 
 568   FlagSetting fl(_is_gc_active, true);
 569 
 570   bool complete = full && (max_generation == OldGen);
 571   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 572   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 573 
 574   size_t young_prev_used = _young_gen->used();
 575   size_t old_prev_used = _old_gen->used();
 576 
 577   bool run_verification = total_collections() >= VerifyGCStartAt;
 578   bool prepared_for_verification = false;
 579   bool do_full_collection = false;
 580 
 581   if (do_young_collection) {
 582     GCIdMark gc_id_mark;
 583     GCTraceCPUTime tcpu;
 584     GCTraceTime(Info, gc) t("Pause Young", NULL, gc_cause(), true);
 585 
 586     print_heap_before_gc();
 587 
 588     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 589       prepare_for_verify();
 590       prepared_for_verification = true;
 591     }
 592 
 593     gc_prologue(complete);
 594     increment_total_collections(complete);
 595 
 596     collect_generation(_young_gen,
 597                        full,
 598                        size,
 599                        is_tlab,
 600                        run_verification && VerifyGCLevel <= 0,
 601                        do_clear_all_soft_refs,
 602                        false);
 603 
 604     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 605         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 606       // Allocation request was met by young GC.
 607       size = 0;
 608     }
 609 
 610     // Ask if young collection is enough. If so, do the final steps for young collection,
 611     // and fallthrough to the end.
 612     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 613     if (!do_full_collection) {
 614       // Adjust generation sizes.
 615       _young_gen->compute_new_size();
 616 
 617       print_heap_change(young_prev_used, old_prev_used);
 618       MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 619 
 620       // Track memory usage and detect low memory after GC finishes
 621       MemoryService::track_memory_usage();
 622 
 623       gc_epilogue(complete);
 624     }
 625 
 626     print_heap_after_gc();
 627 
 628   } else {
 629     // No young collection, ask if we need to perform Full collection.
 630     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 631   }
 632 
 633   if (do_full_collection) {
 634     GCIdMark gc_id_mark;
 635     GCTraceCPUTime tcpu;
 636     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 637 
 638     print_heap_before_gc();
 639 
 640     if (!prepared_for_verification && run_verification &&
 641         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 642       prepare_for_verify();
 643     }
 644 
 645     if (!do_young_collection) {
 646       gc_prologue(complete);
 647       increment_total_collections();
 648     }
 649     increment_total_full_collections();
 650 
 651     collect_generation(_old_gen,
 652                        full,
 653                        size,
 654                        is_tlab,
 655                        run_verification && VerifyGCLevel <= 1,
 656                        do_clear_all_soft_refs,
 657                        true);
 658 
 659     // Adjust generation sizes.
 660     _old_gen->compute_new_size();
 661     _young_gen->compute_new_size();
 662 
 663     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 664     ClassLoaderDataGraph::purge();
 665     MetaspaceUtils::verify_metrics();
 666     // Resize the metaspace capacity after full collections
 667     MetaspaceGC::compute_new_size();
 668     update_full_collections_completed();
 669 
 670     print_heap_change(young_prev_used, old_prev_used);
 671     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 672 
 673     // Track memory usage and detect low memory after GC finishes
 674     MemoryService::track_memory_usage();
 675 
 676     gc_epilogue(complete);
 677 
 678     BiasedLocking::restore_marks();
 679 
 680     print_heap_after_gc();
 681   }
 682 
 683 #ifdef TRACESPINNING
 684   ParallelTaskTerminator::print_termination_counts();
 685 #endif
 686 }
 687 
 688 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 689                                                  GenCollectedHeap::GenerationType max_gen) const {
 690   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 691 }
 692 
 693 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 694   CodeCache::register_scavenge_root_nmethod(nm);
 695 }
 696 
 697 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 698   CodeCache::verify_scavenge_root_nmethod(nm);
 699 }
 700 
 701 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 702   GCCauseSetter x(this, GCCause::_allocation_failure);
 703   HeapWord* result = NULL;
 704 
 705   assert(size != 0, "Precondition violated");
 706   if (GCLocker::is_active_and_needs_gc()) {
 707     // GC locker is active; instead of a collection we will attempt
 708     // to expand the heap, if there's room for expansion.
 709     if (!is_maximal_no_gc()) {
 710       result = expand_heap_and_allocate(size, is_tlab);
 711     }
 712     return result;   // Could be null if we are out of space.
 713   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 714     // Do an incremental collection.
 715     do_collection(false,                     // full
 716                   false,                     // clear_all_soft_refs
 717                   size,                      // size
 718                   is_tlab,                   // is_tlab
 719                   GenCollectedHeap::OldGen); // max_generation
 720   } else {
 721     log_trace(gc)(" :: Trying full because partial may fail :: ");
 722     // Try a full collection; see delta for bug id 6266275
 723     // for the original code and why this has been simplified
 724     // with from-space allocation criteria modified and
 725     // such allocation moved out of the safepoint path.
 726     do_collection(true,                      // full
 727                   false,                     // clear_all_soft_refs
 728                   size,                      // size
 729                   is_tlab,                   // is_tlab
 730                   GenCollectedHeap::OldGen); // max_generation
 731   }
 732 
 733   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 734 
 735   if (result != NULL) {
 736     assert(is_in_reserved(result), "result not in heap");
 737     return result;
 738   }
 739 
 740   // OK, collection failed, try expansion.
 741   result = expand_heap_and_allocate(size, is_tlab);
 742   if (result != NULL) {
 743     return result;
 744   }
 745 
 746   // If we reach this point, we're really out of memory. Try every trick
 747   // we can to reclaim memory. Force collection of soft references. Force
 748   // a complete compaction of the heap. Any additional methods for finding
 749   // free memory should be here, especially if they are expensive. If this
 750   // attempt fails, an OOM exception will be thrown.
 751   {
 752     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 753 
 754     do_collection(true,                      // full
 755                   true,                      // clear_all_soft_refs
 756                   size,                      // size
 757                   is_tlab,                   // is_tlab
 758                   GenCollectedHeap::OldGen); // max_generation
 759   }
 760 
 761   result = attempt_allocation(size, is_tlab, false /* first_only */);
 762   if (result != NULL) {
 763     assert(is_in_reserved(result), "result not in heap");
 764     return result;
 765   }
 766 
 767   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 768     "Flag should have been handled and cleared prior to this point");
 769 
 770   // What else?  We might try synchronous finalization later.  If the total
 771   // space available is large enough for the allocation, then a more
 772   // complete compaction phase than we've tried so far might be
 773   // appropriate.
 774   return NULL;
 775 }
 776 
 777 #ifdef ASSERT
 778 class AssertNonScavengableClosure: public OopClosure {
 779 public:
 780   virtual void do_oop(oop* p) {
 781     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 782       "Referent should not be scavengable.");  }
 783   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 784 };
 785 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 786 #endif
 787 
 788 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 789                                      ScanningOption so,
 790                                      OopClosure* strong_roots,
 791                                      CLDClosure* strong_cld_closure,
 792                                      CLDClosure* weak_cld_closure,
 793                                      CodeBlobToOopClosure* code_roots) {
 794   // General roots.
 795   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 796   assert(code_roots != NULL, "code root closure should always be set");
 797   // _n_termination for _process_strong_tasks should be set up stream
 798   // in a method not running in a GC worker.  Otherwise the GC worker
 799   // could be trying to change the termination condition while the task
 800   // is executing in another GC worker.
 801 
 802   if (_process_strong_tasks->try_claim_task(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 803     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 804   }
 805 
 806   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 807   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 808 
 809   bool is_par = scope->n_threads() > 1;
 810   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 811 
 812   if (_process_strong_tasks->try_claim_task(GCH_PS_Universe_oops_do)) {
 813     Universe::oops_do(strong_roots);
 814   }
 815   // Global (strong) JNI handles
 816   if (_process_strong_tasks->try_claim_task(GCH_PS_JNIHandles_oops_do)) {
 817     JNIHandles::oops_do(strong_roots);
 818   }
 819 
 820   if (_process_strong_tasks->try_claim_task(GCH_PS_ObjectSynchronizer_oops_do)) {
 821     ObjectSynchronizer::oops_do(strong_roots);
 822   }
 823   if (_process_strong_tasks->try_claim_task(GCH_PS_Management_oops_do)) {
 824     Management::oops_do(strong_roots);
 825   }
 826   if (_process_strong_tasks->try_claim_task(GCH_PS_jvmti_oops_do)) {
 827     JvmtiExport::oops_do(strong_roots);
 828   }
 829   if (UseAOT && _process_strong_tasks->try_claim_task(GCH_PS_aot_oops_do)) {
 830     AOTLoader::oops_do(strong_roots);
 831   }
 832 
 833   if (_process_strong_tasks->try_claim_task(GCH_PS_SystemDictionary_oops_do)) {
 834     SystemDictionary::oops_do(strong_roots);
 835   }
 836 
 837   if (_process_strong_tasks->try_claim_task(GCH_PS_CodeCache_oops_do)) {
 838     if (so & SO_ScavengeCodeCache) {
 839       assert(code_roots != NULL, "must supply closure for code cache");
 840 
 841       // We only visit parts of the CodeCache when scavenging.
 842       CodeCache::scavenge_root_nmethods_do(code_roots);
 843     }
 844     if (so & SO_AllCodeCache) {
 845       assert(code_roots != NULL, "must supply closure for code cache");
 846 
 847       // CMSCollector uses this to do intermediate-strength collections.
 848       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 849       CodeCache::blobs_do(code_roots);
 850     }
 851     // Verify that the code cache contents are not subject to
 852     // movement by a scavenging collection.
 853     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 854     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 855   }
 856 }
 857 
 858 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 859                                                   OopClosure* root_closure,
 860                                                   OopStorage::ParState<false, false>* par_state_string) {
 861   assert(root_closure != NULL, "Must be set");
 862   // All threads execute the following. A specific chunk of buckets
 863   // from the StringTable are the individual tasks.
 864 
 865   // Either we should be single threaded or have a ParState
 866   assert((scope->n_threads() <= 1) || par_state_string != NULL, "Parallel but no ParState");
 867 
 868   if (scope->n_threads() > 1) {
 869     StringTable::possibly_parallel_oops_do(par_state_string, root_closure);
 870   } else {
 871     StringTable::oops_do(root_closure);
 872   }
 873 }
 874 
 875 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 876                                            OopsInGenClosure* root_closure,
 877                                            OopsInGenClosure* old_gen_closure,
 878                                            CLDClosure* cld_closure,
 879                                            OopStorage::ParState<false, false>* par_state_string) {
 880   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 881 
 882   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 883                 cld_closure, cld_closure, &mark_code_closure);
 884   process_string_table_roots(scope, root_closure, par_state_string);
 885 
 886   if (_process_strong_tasks->try_claim_task(GCH_PS_younger_gens)) {
 887     root_closure->reset_generation();
 888   }
 889 
 890   // When collection is parallel, all threads get to cooperate to do
 891   // old generation scanning.
 892   old_gen_closure->set_generation(_old_gen);
 893   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 894   old_gen_closure->reset_generation();
 895 
 896   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 897 }
 898 
 899 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 900                                           bool is_adjust_phase,
 901                                           ScanningOption so,
 902                                           bool only_strong_roots,
 903                                           OopsInGenClosure* root_closure,
 904                                           CLDClosure* cld_closure,
 905                                           OopStorage::ParState<false, false>* par_state_string) {
 906   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 907   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 908 
 909   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 910   if (is_adjust_phase) {
 911     // We never treat the string table as roots during marking
 912     // for the full gc, so we only need to process it during
 913     // the adjust phase.
 914     process_string_table_roots(scope, root_closure, par_state_string);
 915   }
 916 
 917   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 918 }
 919 
 920 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 921   WeakProcessor::oops_do(root_closure);
 922   _young_gen->ref_processor()->weak_oops_do(root_closure);
 923   _old_gen->ref_processor()->weak_oops_do(root_closure);
 924 }
 925 
 926 bool GenCollectedHeap::no_allocs_since_save_marks() {
 927   return _young_gen->no_allocs_since_save_marks() &&
 928          _old_gen->no_allocs_since_save_marks();
 929 }
 930 
 931 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 932   return _young_gen->supports_inline_contig_alloc();
 933 }
 934 
 935 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 936   return _young_gen->top_addr();
 937 }
 938 
 939 HeapWord** GenCollectedHeap::end_addr() const {
 940   return _young_gen->end_addr();
 941 }
 942 
 943 // public collection interfaces
 944 
 945 void GenCollectedHeap::collect(GCCause::Cause cause) {
 946   if (cause == GCCause::_wb_young_gc) {
 947     // Young collection for the WhiteBox API.
 948     collect(cause, YoungGen);
 949   } else {
 950 #ifdef ASSERT
 951   if (cause == GCCause::_scavenge_alot) {
 952     // Young collection only.
 953     collect(cause, YoungGen);
 954   } else {
 955     // Stop-the-world full collection.
 956     collect(cause, OldGen);
 957   }
 958 #else
 959     // Stop-the-world full collection.
 960     collect(cause, OldGen);
 961 #endif
 962   }
 963 }
 964 
 965 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 966   // The caller doesn't have the Heap_lock
 967   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 968   MutexLocker ml(Heap_lock);
 969   collect_locked(cause, max_generation);
 970 }
 971 
 972 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 973   // The caller has the Heap_lock
 974   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 975   collect_locked(cause, OldGen);
 976 }
 977 
 978 // this is the private collection interface
 979 // The Heap_lock is expected to be held on entry.
 980 
 981 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 982   // Read the GC count while holding the Heap_lock
 983   unsigned int gc_count_before      = total_collections();
 984   unsigned int full_gc_count_before = total_full_collections();
 985   {
 986     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 987     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 988                          cause, max_generation);
 989     VMThread::execute(&op);
 990   }
 991 }
 992 
 993 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 994    do_full_collection(clear_all_soft_refs, OldGen);
 995 }
 996 
 997 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 998                                           GenerationType last_generation) {
 999   GenerationType local_last_generation;
1000   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
1001       gc_cause() == GCCause::_gc_locker) {
1002     local_last_generation = YoungGen;
1003   } else {
1004     local_last_generation = last_generation;
1005   }
1006 
1007   do_collection(true,                   // full
1008                 clear_all_soft_refs,    // clear_all_soft_refs
1009                 0,                      // size
1010                 false,                  // is_tlab
1011                 local_last_generation); // last_generation
1012   // Hack XXX FIX ME !!!
1013   // A scavenge may not have been attempted, or may have
1014   // been attempted and failed, because the old gen was too full
1015   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
1016       incremental_collection_will_fail(false /* don't consult_young */)) {
1017     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
1018     // This time allow the old gen to be collected as well
1019     do_collection(true,                // full
1020                   clear_all_soft_refs, // clear_all_soft_refs
1021                   0,                   // size
1022                   false,               // is_tlab
1023                   OldGen);             // last_generation
1024   }
1025 }
1026 
1027 bool GenCollectedHeap::is_in_young(oop p) {
1028   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1029   assert(result == _young_gen->is_in_reserved(p),
1030          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1031   return result;
1032 }
1033 
1034 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1035 bool GenCollectedHeap::is_in(const void* p) const {
1036   return _young_gen->is_in(p) || _old_gen->is_in(p);
1037 }
1038 
1039 #ifdef ASSERT
1040 // Don't implement this by using is_in_young().  This method is used
1041 // in some cases to check that is_in_young() is correct.
1042 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1043   assert(is_in_reserved(p) || p == NULL,
1044     "Does not work if address is non-null and outside of the heap");
1045   return p < _young_gen->reserved().end() && p != NULL;
1046 }
1047 #endif
1048 
1049 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
1050   _young_gen->oop_iterate(cl);
1051   _old_gen->oop_iterate(cl);
1052 }
1053 
1054 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1055   _young_gen->object_iterate(cl);
1056   _old_gen->object_iterate(cl);
1057 }
1058 
1059 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1060   _young_gen->safe_object_iterate(cl);
1061   _old_gen->safe_object_iterate(cl);
1062 }
1063 
1064 Space* GenCollectedHeap::space_containing(const void* addr) const {
1065   Space* res = _young_gen->space_containing(addr);
1066   if (res != NULL) {
1067     return res;
1068   }
1069   res = _old_gen->space_containing(addr);
1070   assert(res != NULL, "Could not find containing space");
1071   return res;
1072 }
1073 
1074 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1075   assert(is_in_reserved(addr), "block_start of address outside of heap");
1076   if (_young_gen->is_in_reserved(addr)) {
1077     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1078     return _young_gen->block_start(addr);
1079   }
1080 
1081   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1082   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1083   return _old_gen->block_start(addr);
1084 }
1085 
1086 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1087   assert(is_in_reserved(addr), "block_size of address outside of heap");
1088   if (_young_gen->is_in_reserved(addr)) {
1089     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1090     return _young_gen->block_size(addr);
1091   }
1092 
1093   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1094   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1095   return _old_gen->block_size(addr);
1096 }
1097 
1098 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1099   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1100   assert(block_start(addr) == addr, "addr must be a block start");
1101   if (_young_gen->is_in_reserved(addr)) {
1102     return _young_gen->block_is_obj(addr);
1103   }
1104 
1105   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1106   return _old_gen->block_is_obj(addr);
1107 }
1108 
1109 bool GenCollectedHeap::supports_tlab_allocation() const {
1110   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1111   return _young_gen->supports_tlab_allocation();
1112 }
1113 
1114 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1115   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1116   if (_young_gen->supports_tlab_allocation()) {
1117     return _young_gen->tlab_capacity();
1118   }
1119   return 0;
1120 }
1121 
1122 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1123   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1124   if (_young_gen->supports_tlab_allocation()) {
1125     return _young_gen->tlab_used();
1126   }
1127   return 0;
1128 }
1129 
1130 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1131   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1132   if (_young_gen->supports_tlab_allocation()) {
1133     return _young_gen->unsafe_max_tlab_alloc();
1134   }
1135   return 0;
1136 }
1137 
1138 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1139                                               size_t requested_size,
1140                                               size_t* actual_size) {
1141   bool gc_overhead_limit_was_exceeded;
1142   HeapWord* result = mem_allocate_work(requested_size /* size */,
1143                                        true /* is_tlab */,
1144                                        &gc_overhead_limit_was_exceeded);
1145   if (result != NULL) {
1146     *actual_size = requested_size;
1147   }
1148 
1149   return result;
1150 }
1151 
1152 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1153 // from the list headed by "*prev_ptr".
1154 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1155   bool first = true;
1156   size_t min_size = 0;   // "first" makes this conceptually infinite.
1157   ScratchBlock **smallest_ptr, *smallest;
1158   ScratchBlock  *cur = *prev_ptr;
1159   while (cur) {
1160     assert(*prev_ptr == cur, "just checking");
1161     if (first || cur->num_words < min_size) {
1162       smallest_ptr = prev_ptr;
1163       smallest     = cur;
1164       min_size     = smallest->num_words;
1165       first        = false;
1166     }
1167     prev_ptr = &cur->next;
1168     cur     =  cur->next;
1169   }
1170   smallest      = *smallest_ptr;
1171   *smallest_ptr = smallest->next;
1172   return smallest;
1173 }
1174 
1175 // Sort the scratch block list headed by res into decreasing size order,
1176 // and set "res" to the result.
1177 static void sort_scratch_list(ScratchBlock*& list) {
1178   ScratchBlock* sorted = NULL;
1179   ScratchBlock* unsorted = list;
1180   while (unsorted) {
1181     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1182     smallest->next  = sorted;
1183     sorted          = smallest;
1184   }
1185   list = sorted;
1186 }
1187 
1188 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1189                                                size_t max_alloc_words) {
1190   ScratchBlock* res = NULL;
1191   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1192   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1193   sort_scratch_list(res);
1194   return res;
1195 }
1196 
1197 void GenCollectedHeap::release_scratch() {
1198   _young_gen->reset_scratch();
1199   _old_gen->reset_scratch();
1200 }
1201 
1202 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1203   void do_generation(Generation* gen) {
1204     gen->prepare_for_verify();
1205   }
1206 };
1207 
1208 void GenCollectedHeap::prepare_for_verify() {
1209   ensure_parsability(false);        // no need to retire TLABs
1210   GenPrepareForVerifyClosure blk;
1211   generation_iterate(&blk, false);
1212 }
1213 
1214 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1215                                           bool old_to_young) {
1216   if (old_to_young) {
1217     cl->do_generation(_old_gen);
1218     cl->do_generation(_young_gen);
1219   } else {
1220     cl->do_generation(_young_gen);
1221     cl->do_generation(_old_gen);
1222   }
1223 }
1224 
1225 bool GenCollectedHeap::is_maximal_no_gc() const {
1226   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1227 }
1228 
1229 void GenCollectedHeap::save_marks() {
1230   _young_gen->save_marks();
1231   _old_gen->save_marks();
1232 }
1233 
1234 GenCollectedHeap* GenCollectedHeap::heap() {
1235   CollectedHeap* heap = Universe::heap();
1236   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1237   assert(heap->kind() == CollectedHeap::Serial ||
1238          heap->kind() == CollectedHeap::CMS, "Invalid name");
1239   return (GenCollectedHeap*) heap;
1240 }
1241 
1242 #if INCLUDE_SERIALGC
1243 void GenCollectedHeap::prepare_for_compaction() {
1244   // Start by compacting into same gen.
1245   CompactPoint cp(_old_gen);
1246   _old_gen->prepare_for_compaction(&cp);
1247   _young_gen->prepare_for_compaction(&cp);
1248 }
1249 #endif // INCLUDE_SERIALGC
1250 
1251 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1252   log_debug(gc, verify)("%s", _old_gen->name());
1253   _old_gen->verify();
1254 
1255   log_debug(gc, verify)("%s", _old_gen->name());
1256   _young_gen->verify();
1257 
1258   log_debug(gc, verify)("RemSet");
1259   rem_set()->verify();
1260 }
1261 
1262 void GenCollectedHeap::print_on(outputStream* st) const {
1263   _young_gen->print_on(st);
1264   _old_gen->print_on(st);
1265   MetaspaceUtils::print_on(st);
1266 }
1267 
1268 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1269 }
1270 
1271 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1272 }
1273 
1274 void GenCollectedHeap::print_tracing_info() const {
1275   if (log_is_enabled(Debug, gc, heap, exit)) {
1276     LogStreamHandle(Debug, gc, heap, exit) lsh;
1277     _young_gen->print_summary_info_on(&lsh);
1278     _old_gen->print_summary_info_on(&lsh);
1279   }
1280 }
1281 
1282 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1283   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1284                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1285   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1286                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1287 }
1288 
1289 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1290  private:
1291   bool _full;
1292  public:
1293   void do_generation(Generation* gen) {
1294     gen->gc_prologue(_full);
1295   }
1296   GenGCPrologueClosure(bool full) : _full(full) {};
1297 };
1298 
1299 void GenCollectedHeap::gc_prologue(bool full) {
1300   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1301 
1302   // Fill TLAB's and such
1303   ensure_parsability(true);   // retire TLABs
1304 
1305   // Walk generations
1306   GenGCPrologueClosure blk(full);
1307   generation_iterate(&blk, false);  // not old-to-young.
1308 };
1309 
1310 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1311  private:
1312   bool _full;
1313  public:
1314   void do_generation(Generation* gen) {
1315     gen->gc_epilogue(_full);
1316   }
1317   GenGCEpilogueClosure(bool full) : _full(full) {};
1318 };
1319 
1320 void GenCollectedHeap::gc_epilogue(bool full) {
1321 #if COMPILER2_OR_JVMCI
1322   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1323   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1324   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1325 #endif // COMPILER2_OR_JVMCI
1326 
1327   resize_all_tlabs();
1328 
1329   GenGCEpilogueClosure blk(full);
1330   generation_iterate(&blk, false);  // not old-to-young.
1331 
1332   if (!CleanChunkPoolAsync) {
1333     Chunk::clean_chunk_pool();
1334   }
1335 
1336   MetaspaceCounters::update_performance_counters();
1337   CompressedClassSpaceCounters::update_performance_counters();
1338 };
1339 
1340 #ifndef PRODUCT
1341 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1342  private:
1343  public:
1344   void do_generation(Generation* gen) {
1345     gen->record_spaces_top();
1346   }
1347 };
1348 
1349 void GenCollectedHeap::record_gen_tops_before_GC() {
1350   if (ZapUnusedHeapArea) {
1351     GenGCSaveTopsBeforeGCClosure blk;
1352     generation_iterate(&blk, false);  // not old-to-young.
1353   }
1354 }
1355 #endif  // not PRODUCT
1356 
1357 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1358  public:
1359   void do_generation(Generation* gen) {
1360     gen->ensure_parsability();
1361   }
1362 };
1363 
1364 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1365   CollectedHeap::ensure_parsability(retire_tlabs);
1366   GenEnsureParsabilityClosure ep_cl;
1367   generation_iterate(&ep_cl, false);
1368 }
1369 
1370 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1371                                               oop obj,
1372                                               size_t obj_size) {
1373   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1374   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1375   HeapWord* result = NULL;
1376 
1377   result = old_gen->expand_and_allocate(obj_size, false);
1378 
1379   if (result != NULL) {
1380     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1381   }
1382   return oop(result);
1383 }
1384 
1385 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1386   jlong _time;   // in ms
1387   jlong _now;    // in ms
1388 
1389  public:
1390   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1391 
1392   jlong time() { return _time; }
1393 
1394   void do_generation(Generation* gen) {
1395     _time = MIN2(_time, gen->time_of_last_gc(_now));
1396   }
1397 };
1398 
1399 jlong GenCollectedHeap::millis_since_last_gc() {
1400   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1401   // provided the underlying platform provides such a time source
1402   // (and it is bug free). So we still have to guard against getting
1403   // back a time later than 'now'.
1404   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1405   GenTimeOfLastGCClosure tolgc_cl(now);
1406   // iterate over generations getting the oldest
1407   // time that a generation was collected
1408   generation_iterate(&tolgc_cl, false);
1409 
1410   jlong retVal = now - tolgc_cl.time();
1411   if (retVal < 0) {
1412     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1413        ". returning zero instead.", retVal);
1414     return 0;
1415   }
1416   return retVal;
1417 }