1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/shared/adaptiveSizePolicy.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTableRS.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "gc/shared/collectorCounters.hpp"
  40 #include "gc/shared/gcId.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "gc/shared/gcPolicyCounters.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/gcVMOperations.hpp"
  46 #include "gc/shared/genCollectedHeap.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/generationSpec.hpp"
  49 #include "gc/shared/oopStorageParState.inline.hpp"
  50 #include "gc/shared/space.hpp"
  51 #include "gc/shared/strongRootsScope.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "gc/shared/workgroup.hpp"
  54 #include "memory/filemap.hpp"
  55 #include "memory/metaspaceCounters.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/flags/flagSetting.hpp"
  60 #include "runtime/handles.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/management.hpp"
  65 #include "services/memoryService.hpp"
  66 #include "utilities/debug.hpp"
  67 #include "utilities/formatBuffer.hpp"
  68 #include "utilities/macros.hpp"
  69 #include "utilities/stack.inline.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  73                                    Generation::Name young,
  74                                    Generation::Name old,
  75                                    const char* policy_counters_name) :
  76   CollectedHeap(),
  77   _young_gen_spec(new GenerationSpec(young,
  78                                      policy->initial_young_size(),
  79                                      policy->max_young_size(),
  80                                      policy->gen_alignment())),
  81   _old_gen_spec(new GenerationSpec(old,
  82                                    policy->initial_old_size(),
  83                                    policy->max_old_size(),
  84                                    policy->gen_alignment())),
  85   _rem_set(NULL),
  86   _gen_policy(policy),
  87   _soft_ref_gen_policy(),
  88   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  89   _full_collections_completed(0),
  90   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)) {
  91 }
  92 
  93 jint GenCollectedHeap::initialize() {
  94   // While there are no constraints in the GC code that HeapWordSize
  95   // be any particular value, there are multiple other areas in the
  96   // system which believe this to be true (e.g. oop->object_size in some
  97   // cases incorrectly returns the size in wordSize units rather than
  98   // HeapWordSize).
  99   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 100 
 101   // Allocate space for the heap.
 102 
 103   char* heap_address;
 104   ReservedSpace heap_rs;
 105 
 106   size_t heap_alignment = collector_policy()->heap_alignment();
 107 
 108   heap_address = allocate(heap_alignment, &heap_rs);
 109 
 110   if (!heap_rs.is_reserved()) {
 111     vm_shutdown_during_initialization(
 112       "Could not reserve enough space for object heap");
 113     return JNI_ENOMEM;
 114   }
 115 
 116   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 117 
 118   _rem_set = create_rem_set(reserved_region());
 119   _rem_set->initialize();
 120   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 121   bs->initialize();
 122   BarrierSet::set_barrier_set(bs);
 123 
 124   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 125   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 126   heap_rs = heap_rs.last_part(_young_gen_spec->max_size());
 127 
 128   ReservedSpace old_rs = heap_rs.first_part(_old_gen_spec->max_size(), false, false);
 129   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 130   clear_incremental_collection_failed();
 131 
 132   return JNI_OK;
 133 }
 134 
 135 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 136   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 137 }
 138 
 139 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 140                                               size_t init_promo_size,
 141                                               size_t init_survivor_size) {
 142   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 143   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 144                                         init_promo_size,
 145                                         init_survivor_size,
 146                                         max_gc_pause_sec,
 147                                         GCTimeRatio);
 148 }
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   // Now figure out the total size.
 153   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 154   assert(alignment % pageSize == 0, "Must be");
 155 
 156   // Check for overflow.
 157   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 158   if (total_reserved < _young_gen_spec->max_size()) {
 159     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 160                                   "the maximum representable size");
 161   }
 162   assert(total_reserved % alignment == 0,
 163          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 164          SIZE_FORMAT, total_reserved, alignment);
 165 
 166   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 167 
 168   os::trace_page_sizes("Heap",
 169                        collector_policy()->min_heap_byte_size(),
 170                        total_reserved,
 171                        alignment,
 172                        heap_rs->base(),
 173                        heap_rs->size());
 174 
 175   return heap_rs->base();
 176 }
 177 
 178 void GenCollectedHeap::post_initialize() {
 179   CollectedHeap::post_initialize();
 180   ref_processing_init();
 181 
 182   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 183 
 184   initialize_size_policy(def_new_gen->eden()->capacity(),
 185                          _old_gen->capacity(),
 186                          def_new_gen->from()->capacity());
 187 
 188   MarkSweep::initialize();
 189 }
 190 
 191 void GenCollectedHeap::ref_processing_init() {
 192   _young_gen->ref_processor_init();
 193   _old_gen->ref_processor_init();
 194 }
 195 
 196 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 197   return _young_gen_spec;
 198 }
 199 
 200 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 201   return _old_gen_spec;
 202 }
 203 
 204 size_t GenCollectedHeap::capacity() const {
 205   return _young_gen->capacity() + _old_gen->capacity();
 206 }
 207 
 208 size_t GenCollectedHeap::used() const {
 209   return _young_gen->used() + _old_gen->used();
 210 }
 211 
 212 void GenCollectedHeap::save_used_regions() {
 213   _old_gen->save_used_region();
 214   _young_gen->save_used_region();
 215 }
 216 
 217 size_t GenCollectedHeap::max_capacity() const {
 218   return _young_gen->max_capacity() + _old_gen->max_capacity();
 219 }
 220 
 221 // Update the _full_collections_completed counter
 222 // at the end of a stop-world full GC.
 223 unsigned int GenCollectedHeap::update_full_collections_completed() {
 224   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 225   assert(_full_collections_completed <= _total_full_collections,
 226          "Can't complete more collections than were started");
 227   _full_collections_completed = _total_full_collections;
 228   ml.notify_all();
 229   return _full_collections_completed;
 230 }
 231 
 232 // Update the _full_collections_completed counter, as appropriate,
 233 // at the end of a concurrent GC cycle. Note the conditional update
 234 // below to allow this method to be called by a concurrent collector
 235 // without synchronizing in any manner with the VM thread (which
 236 // may already have initiated a STW full collection "concurrently").
 237 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 238   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 239   assert((_full_collections_completed <= _total_full_collections) &&
 240          (count <= _total_full_collections),
 241          "Can't complete more collections than were started");
 242   if (count > _full_collections_completed) {
 243     _full_collections_completed = count;
 244     ml.notify_all();
 245   }
 246   return _full_collections_completed;
 247 }
 248 
 249 // Return true if any of the following is true:
 250 // . the allocation won't fit into the current young gen heap
 251 // . gc locker is occupied (jni critical section)
 252 // . heap memory is tight -- the most recent previous collection
 253 //   was a full collection because a partial collection (would
 254 //   have) failed and is likely to fail again
 255 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 256   size_t young_capacity = _young_gen->capacity_before_gc();
 257   return    (word_size > heap_word_size(young_capacity))
 258          || GCLocker::is_active_and_needs_gc()
 259          || incremental_collection_failed();
 260 }
 261 
 262 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 263   HeapWord* result = NULL;
 264   if (_old_gen->should_allocate(size, is_tlab)) {
 265     result = _old_gen->expand_and_allocate(size, is_tlab);
 266   }
 267   if (result == NULL) {
 268     if (_young_gen->should_allocate(size, is_tlab)) {
 269       result = _young_gen->expand_and_allocate(size, is_tlab);
 270     }
 271   }
 272   assert(result == NULL || is_in_reserved(result), "result not in heap");
 273   return result;
 274 }
 275 
 276 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 277                                               bool is_tlab,
 278                                               bool* gc_overhead_limit_was_exceeded) {
 279   // In general gc_overhead_limit_was_exceeded should be false so
 280   // set it so here and reset it to true only if the gc time
 281   // limit is being exceeded as checked below.
 282   *gc_overhead_limit_was_exceeded = false;
 283 
 284   HeapWord* result = NULL;
 285 
 286   // Loop until the allocation is satisfied, or unsatisfied after GC.
 287   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 288     HandleMark hm; // Discard any handles allocated in each iteration.
 289 
 290     // First allocation attempt is lock-free.
 291     Generation *young = _young_gen;
 292     assert(young->supports_inline_contig_alloc(),
 293       "Otherwise, must do alloc within heap lock");
 294     if (young->should_allocate(size, is_tlab)) {
 295       result = young->par_allocate(size, is_tlab);
 296       if (result != NULL) {
 297         assert(is_in_reserved(result), "result not in heap");
 298         return result;
 299       }
 300     }
 301     uint gc_count_before;  // Read inside the Heap_lock locked region.
 302     {
 303       MutexLocker ml(Heap_lock);
 304       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 305       // Note that only large objects get a shot at being
 306       // allocated in later generations.
 307       bool first_only = !should_try_older_generation_allocation(size);
 308 
 309       result = attempt_allocation(size, is_tlab, first_only);
 310       if (result != NULL) {
 311         assert(is_in_reserved(result), "result not in heap");
 312         return result;
 313       }
 314 
 315       if (GCLocker::is_active_and_needs_gc()) {
 316         if (is_tlab) {
 317           return NULL;  // Caller will retry allocating individual object.
 318         }
 319         if (!is_maximal_no_gc()) {
 320           // Try and expand heap to satisfy request.
 321           result = expand_heap_and_allocate(size, is_tlab);
 322           // Result could be null if we are out of space.
 323           if (result != NULL) {
 324             return result;
 325           }
 326         }
 327 
 328         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 329           return NULL; // We didn't get to do a GC and we didn't get any memory.
 330         }
 331 
 332         // If this thread is not in a jni critical section, we stall
 333         // the requestor until the critical section has cleared and
 334         // GC allowed. When the critical section clears, a GC is
 335         // initiated by the last thread exiting the critical section; so
 336         // we retry the allocation sequence from the beginning of the loop,
 337         // rather than causing more, now probably unnecessary, GC attempts.
 338         JavaThread* jthr = JavaThread::current();
 339         if (!jthr->in_critical()) {
 340           MutexUnlocker mul(Heap_lock);
 341           // Wait for JNI critical section to be exited
 342           GCLocker::stall_until_clear();
 343           gclocker_stalled_count += 1;
 344           continue;
 345         } else {
 346           if (CheckJNICalls) {
 347             fatal("Possible deadlock due to allocating while"
 348                   " in jni critical section");
 349           }
 350           return NULL;
 351         }
 352       }
 353 
 354       // Read the gc count while the heap lock is held.
 355       gc_count_before = total_collections();
 356     }
 357 
 358     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 359     VMThread::execute(&op);
 360     if (op.prologue_succeeded()) {
 361       result = op.result();
 362       if (op.gc_locked()) {
 363          assert(result == NULL, "must be NULL if gc_locked() is true");
 364          continue;  // Retry and/or stall as necessary.
 365       }
 366 
 367       // Allocation has failed and a collection
 368       // has been done.  If the gc time limit was exceeded the
 369       // this time, return NULL so that an out-of-memory
 370       // will be thrown.  Clear gc_overhead_limit_exceeded
 371       // so that the overhead exceeded does not persist.
 372 
 373       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 374       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 375 
 376       if (limit_exceeded && softrefs_clear) {
 377         *gc_overhead_limit_was_exceeded = true;
 378         size_policy()->set_gc_overhead_limit_exceeded(false);
 379         if (op.result() != NULL) {
 380           CollectedHeap::fill_with_object(op.result(), size);
 381         }
 382         return NULL;
 383       }
 384       assert(result == NULL || is_in_reserved(result),
 385              "result not in heap");
 386       return result;
 387     }
 388 
 389     // Give a warning if we seem to be looping forever.
 390     if ((QueuedAllocationWarningCount > 0) &&
 391         (try_count % QueuedAllocationWarningCount == 0)) {
 392           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 393                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 394     }
 395   }
 396 }
 397 
 398 #ifndef PRODUCT
 399 // Override of memory state checking method in CollectedHeap:
 400 // Some collectors (CMS for example) can't have badHeapWordVal written
 401 // in the first two words of an object. (For instance , in the case of
 402 // CMS these words hold state used to synchronize between certain
 403 // (concurrent) GC steps and direct allocating mutators.)
 404 // The skip_header_HeapWords() method below, allows us to skip
 405 // over the requisite number of HeapWord's. Note that (for
 406 // generational collectors) this means that those many words are
 407 // skipped in each object, irrespective of the generation in which
 408 // that object lives. The resultant loss of precision seems to be
 409 // harmless and the pain of avoiding that imprecision appears somewhat
 410 // higher than we are prepared to pay for such rudimentary debugging
 411 // support.
 412 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 413                                                          size_t size) {
 414   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 415     // We are asked to check a size in HeapWords,
 416     // but the memory is mangled in juint words.
 417     juint* start = (juint*) (addr + skip_header_HeapWords());
 418     juint* end   = (juint*) (addr + size);
 419     for (juint* slot = start; slot < end; slot += 1) {
 420       assert(*slot == badHeapWordVal,
 421              "Found non badHeapWordValue in pre-allocation check");
 422     }
 423   }
 424 }
 425 #endif
 426 
 427 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 428                                                bool is_tlab,
 429                                                bool first_only) {
 430   HeapWord* res = NULL;
 431 
 432   if (_young_gen->should_allocate(size, is_tlab)) {
 433     res = _young_gen->allocate(size, is_tlab);
 434     if (res != NULL || first_only) {
 435       return res;
 436     }
 437   }
 438 
 439   if (_old_gen->should_allocate(size, is_tlab)) {
 440     res = _old_gen->allocate(size, is_tlab);
 441   }
 442 
 443   return res;
 444 }
 445 
 446 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 447                                          bool* gc_overhead_limit_was_exceeded) {
 448   return mem_allocate_work(size,
 449                            false /* is_tlab */,
 450                            gc_overhead_limit_was_exceeded);
 451 }
 452 
 453 bool GenCollectedHeap::must_clear_all_soft_refs() {
 454   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 455          _gc_cause == GCCause::_wb_full_gc;
 456 }
 457 
 458 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 459                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 460                                           bool restore_marks_for_biased_locking) {
 461   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 462   GCTraceTime(Trace, gc, phases) t1(title);
 463   TraceCollectorStats tcs(gen->counters());
 464   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 465 
 466   gen->stat_record()->invocations++;
 467   gen->stat_record()->accumulated_time.start();
 468 
 469   // Must be done anew before each collection because
 470   // a previous collection will do mangling and will
 471   // change top of some spaces.
 472   record_gen_tops_before_GC();
 473 
 474   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 475 
 476   if (run_verification && VerifyBeforeGC) {
 477     HandleMark hm;  // Discard invalid handles created during verification
 478     Universe::verify("Before GC");
 479   }
 480   COMPILER2_PRESENT(DerivedPointerTable::clear());
 481 
 482   if (restore_marks_for_biased_locking) {
 483     // We perform this mark word preservation work lazily
 484     // because it's only at this point that we know whether we
 485     // absolutely have to do it; we want to avoid doing it for
 486     // scavenge-only collections where it's unnecessary
 487     BiasedLocking::preserve_marks();
 488   }
 489 
 490   // Do collection work
 491   {
 492     // Note on ref discovery: For what appear to be historical reasons,
 493     // GCH enables and disabled (by enqueing) refs discovery.
 494     // In the future this should be moved into the generation's
 495     // collect method so that ref discovery and enqueueing concerns
 496     // are local to a generation. The collect method could return
 497     // an appropriate indication in the case that notification on
 498     // the ref lock was needed. This will make the treatment of
 499     // weak refs more uniform (and indeed remove such concerns
 500     // from GCH). XXX
 501 
 502     HandleMark hm;  // Discard invalid handles created during gc
 503     save_marks();   // save marks for all gens
 504     // We want to discover references, but not process them yet.
 505     // This mode is disabled in process_discovered_references if the
 506     // generation does some collection work, or in
 507     // enqueue_discovered_references if the generation returns
 508     // without doing any work.
 509     ReferenceProcessor* rp = gen->ref_processor();
 510     // If the discovery of ("weak") refs in this generation is
 511     // atomic wrt other collectors in this configuration, we
 512     // are guaranteed to have empty discovered ref lists.
 513     if (rp->discovery_is_atomic()) {
 514       rp->enable_discovery();
 515       rp->setup_policy(clear_soft_refs);
 516     } else {
 517       // collect() below will enable discovery as appropriate
 518     }
 519     gen->collect(full, clear_soft_refs, size, is_tlab);
 520     if (!rp->enqueuing_is_done()) {
 521       rp->disable_discovery();
 522     } else {
 523       rp->set_enqueuing_is_done(false);
 524     }
 525     rp->verify_no_references_recorded();
 526   }
 527 
 528   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 529 
 530   gen->stat_record()->accumulated_time.stop();
 531 
 532   update_gc_stats(gen, full);
 533 
 534   if (run_verification && VerifyAfterGC) {
 535     HandleMark hm;  // Discard invalid handles created during verification
 536     Universe::verify("After GC");
 537   }
 538 }
 539 
 540 void GenCollectedHeap::do_collection(bool           full,
 541                                      bool           clear_all_soft_refs,
 542                                      size_t         size,
 543                                      bool           is_tlab,
 544                                      GenerationType max_generation) {
 545   ResourceMark rm;
 546   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 547 
 548   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 549   assert(my_thread->is_VM_thread() ||
 550          my_thread->is_ConcurrentGC_thread(),
 551          "incorrect thread type capability");
 552   assert(Heap_lock->is_locked(),
 553          "the requesting thread should have the Heap_lock");
 554   guarantee(!is_gc_active(), "collection is not reentrant");
 555 
 556   if (GCLocker::check_active_before_gc()) {
 557     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 558   }
 559 
 560   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 561                           soft_ref_policy()->should_clear_all_soft_refs();
 562 
 563   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 564 
 565   const size_t metadata_prev_used = MetaspaceUtils::used_bytes();
 566 
 567 
 568   FlagSetting fl(_is_gc_active, true);
 569 
 570   bool complete = full && (max_generation == OldGen);
 571   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 572   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 573 
 574   size_t young_prev_used = _young_gen->used();
 575   size_t old_prev_used = _old_gen->used();
 576 
 577   bool run_verification = total_collections() >= VerifyGCStartAt;
 578   bool prepared_for_verification = false;
 579   bool do_full_collection = false;
 580 
 581   if (do_young_collection) {
 582     GCIdMark gc_id_mark;
 583     GCTraceCPUTime tcpu;
 584     GCTraceTime(Info, gc) t("Pause Young", NULL, gc_cause(), true);
 585 
 586     print_heap_before_gc();
 587 
 588     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 589       prepare_for_verify();
 590       prepared_for_verification = true;
 591     }
 592 
 593     gc_prologue(complete);
 594     increment_total_collections(complete);
 595 
 596     collect_generation(_young_gen,
 597                        full,
 598                        size,
 599                        is_tlab,
 600                        run_verification && VerifyGCLevel <= 0,
 601                        do_clear_all_soft_refs,
 602                        false);
 603 
 604     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 605         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 606       // Allocation request was met by young GC.
 607       size = 0;
 608     }
 609 
 610     // Ask if young collection is enough. If so, do the final steps for young collection,
 611     // and fallthrough to the end.
 612     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 613     if (!do_full_collection) {
 614       // Adjust generation sizes.
 615       _young_gen->compute_new_size();
 616 
 617       print_heap_change(young_prev_used, old_prev_used);
 618       MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 619 
 620       // Track memory usage and detect low memory after GC finishes
 621       MemoryService::track_memory_usage();
 622 
 623       gc_epilogue(complete);
 624     }
 625 
 626     print_heap_after_gc();
 627 
 628   } else {
 629     // No young collection, ask if we need to perform Full collection.
 630     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 631   }
 632 
 633   if (do_full_collection) {
 634     GCIdMark gc_id_mark;
 635     GCTraceCPUTime tcpu;
 636     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 637 
 638     print_heap_before_gc();
 639 
 640     if (!prepared_for_verification && run_verification &&
 641         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 642       prepare_for_verify();
 643     }
 644 
 645     if (!do_young_collection) {
 646       gc_prologue(complete);
 647       increment_total_collections(complete);
 648     }
 649 
 650     // Accounting quirk: total full collections would be incremented when "complete"
 651     // is set, by calling increment_total_collections above. However, we also need to
 652     // account Full collections that had "complete" unset.
 653     if (!complete) {
 654       increment_total_full_collections();
 655     }
 656 
 657     collect_generation(_old_gen,
 658                        full,
 659                        size,
 660                        is_tlab,
 661                        run_verification && VerifyGCLevel <= 1,
 662                        do_clear_all_soft_refs,
 663                        true);
 664 
 665     // Adjust generation sizes.
 666     _old_gen->compute_new_size();
 667     _young_gen->compute_new_size();
 668 
 669     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 670     ClassLoaderDataGraph::purge();
 671     MetaspaceUtils::verify_metrics();
 672     // Resize the metaspace capacity after full collections
 673     MetaspaceGC::compute_new_size();
 674     update_full_collections_completed();
 675 
 676     print_heap_change(young_prev_used, old_prev_used);
 677     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 678 
 679     // Track memory usage and detect low memory after GC finishes
 680     MemoryService::track_memory_usage();
 681 
 682     gc_epilogue(complete);
 683 
 684     BiasedLocking::restore_marks();
 685 
 686     print_heap_after_gc();
 687   }
 688 
 689 #ifdef TRACESPINNING
 690   ParallelTaskTerminator::print_termination_counts();
 691 #endif
 692 }
 693 
 694 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 695                                                  GenCollectedHeap::GenerationType max_gen) const {
 696   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 697 }
 698 
 699 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 700   CodeCache::register_scavenge_root_nmethod(nm);
 701 }
 702 
 703 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 704   CodeCache::verify_scavenge_root_nmethod(nm);
 705 }
 706 
 707 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 708   GCCauseSetter x(this, GCCause::_allocation_failure);
 709   HeapWord* result = NULL;
 710 
 711   assert(size != 0, "Precondition violated");
 712   if (GCLocker::is_active_and_needs_gc()) {
 713     // GC locker is active; instead of a collection we will attempt
 714     // to expand the heap, if there's room for expansion.
 715     if (!is_maximal_no_gc()) {
 716       result = expand_heap_and_allocate(size, is_tlab);
 717     }
 718     return result;   // Could be null if we are out of space.
 719   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 720     // Do an incremental collection.
 721     do_collection(false,                     // full
 722                   false,                     // clear_all_soft_refs
 723                   size,                      // size
 724                   is_tlab,                   // is_tlab
 725                   GenCollectedHeap::OldGen); // max_generation
 726   } else {
 727     log_trace(gc)(" :: Trying full because partial may fail :: ");
 728     // Try a full collection; see delta for bug id 6266275
 729     // for the original code and why this has been simplified
 730     // with from-space allocation criteria modified and
 731     // such allocation moved out of the safepoint path.
 732     do_collection(true,                      // full
 733                   false,                     // clear_all_soft_refs
 734                   size,                      // size
 735                   is_tlab,                   // is_tlab
 736                   GenCollectedHeap::OldGen); // max_generation
 737   }
 738 
 739   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 740 
 741   if (result != NULL) {
 742     assert(is_in_reserved(result), "result not in heap");
 743     return result;
 744   }
 745 
 746   // OK, collection failed, try expansion.
 747   result = expand_heap_and_allocate(size, is_tlab);
 748   if (result != NULL) {
 749     return result;
 750   }
 751 
 752   // If we reach this point, we're really out of memory. Try every trick
 753   // we can to reclaim memory. Force collection of soft references. Force
 754   // a complete compaction of the heap. Any additional methods for finding
 755   // free memory should be here, especially if they are expensive. If this
 756   // attempt fails, an OOM exception will be thrown.
 757   {
 758     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 759 
 760     do_collection(true,                      // full
 761                   true,                      // clear_all_soft_refs
 762                   size,                      // size
 763                   is_tlab,                   // is_tlab
 764                   GenCollectedHeap::OldGen); // max_generation
 765   }
 766 
 767   result = attempt_allocation(size, is_tlab, false /* first_only */);
 768   if (result != NULL) {
 769     assert(is_in_reserved(result), "result not in heap");
 770     return result;
 771   }
 772 
 773   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 774     "Flag should have been handled and cleared prior to this point");
 775 
 776   // What else?  We might try synchronous finalization later.  If the total
 777   // space available is large enough for the allocation, then a more
 778   // complete compaction phase than we've tried so far might be
 779   // appropriate.
 780   return NULL;
 781 }
 782 
 783 #ifdef ASSERT
 784 class AssertNonScavengableClosure: public OopClosure {
 785 public:
 786   virtual void do_oop(oop* p) {
 787     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 788       "Referent should not be scavengable.");  }
 789   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 790 };
 791 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 792 #endif
 793 
 794 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 795                                      ScanningOption so,
 796                                      OopClosure* strong_roots,
 797                                      CLDClosure* strong_cld_closure,
 798                                      CLDClosure* weak_cld_closure,
 799                                      CodeBlobToOopClosure* code_roots) {
 800   // General roots.
 801   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 802   assert(code_roots != NULL, "code root closure should always be set");
 803   // _n_termination for _process_strong_tasks should be set up stream
 804   // in a method not running in a GC worker.  Otherwise the GC worker
 805   // could be trying to change the termination condition while the task
 806   // is executing in another GC worker.
 807 
 808   if (_process_strong_tasks->try_claim_task(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 809     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 810   }
 811 
 812   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 813   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 814 
 815   bool is_par = scope->n_threads() > 1;
 816   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 817 
 818   if (_process_strong_tasks->try_claim_task(GCH_PS_Universe_oops_do)) {
 819     Universe::oops_do(strong_roots);
 820   }
 821   // Global (strong) JNI handles
 822   if (_process_strong_tasks->try_claim_task(GCH_PS_JNIHandles_oops_do)) {
 823     JNIHandles::oops_do(strong_roots);
 824   }
 825 
 826   if (_process_strong_tasks->try_claim_task(GCH_PS_ObjectSynchronizer_oops_do)) {
 827     ObjectSynchronizer::oops_do(strong_roots);
 828   }
 829   if (_process_strong_tasks->try_claim_task(GCH_PS_Management_oops_do)) {
 830     Management::oops_do(strong_roots);
 831   }
 832   if (_process_strong_tasks->try_claim_task(GCH_PS_jvmti_oops_do)) {
 833     JvmtiExport::oops_do(strong_roots);
 834   }
 835   if (UseAOT && _process_strong_tasks->try_claim_task(GCH_PS_aot_oops_do)) {
 836     AOTLoader::oops_do(strong_roots);
 837   }
 838 
 839   if (_process_strong_tasks->try_claim_task(GCH_PS_SystemDictionary_oops_do)) {
 840     SystemDictionary::oops_do(strong_roots);
 841   }
 842 
 843   if (_process_strong_tasks->try_claim_task(GCH_PS_CodeCache_oops_do)) {
 844     if (so & SO_ScavengeCodeCache) {
 845       assert(code_roots != NULL, "must supply closure for code cache");
 846 
 847       // We only visit parts of the CodeCache when scavenging.
 848       CodeCache::scavenge_root_nmethods_do(code_roots);
 849     }
 850     if (so & SO_AllCodeCache) {
 851       assert(code_roots != NULL, "must supply closure for code cache");
 852 
 853       // CMSCollector uses this to do intermediate-strength collections.
 854       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 855       CodeCache::blobs_do(code_roots);
 856     }
 857     // Verify that the code cache contents are not subject to
 858     // movement by a scavenging collection.
 859     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 860     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 861   }
 862 }
 863 
 864 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 865                                            OopsInGenClosure* root_closure,
 866                                            OopsInGenClosure* old_gen_closure,
 867                                            CLDClosure* cld_closure) {
 868   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 869 
 870   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 871                 cld_closure, cld_closure, &mark_code_closure);
 872 
 873   if (_process_strong_tasks->try_claim_task(GCH_PS_younger_gens)) {
 874     root_closure->reset_generation();
 875   }
 876 
 877   // When collection is parallel, all threads get to cooperate to do
 878   // old generation scanning.
 879   old_gen_closure->set_generation(_old_gen);
 880   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 881   old_gen_closure->reset_generation();
 882 
 883   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 884 }
 885 
 886 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 887                                           bool is_adjust_phase,
 888                                           ScanningOption so,
 889                                           bool only_strong_roots,
 890                                           OopsInGenClosure* root_closure,
 891                                           CLDClosure* cld_closure) {
 892   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 893   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 894 
 895   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 896   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 897 }
 898 
 899 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 900   WeakProcessor::oops_do(root_closure);
 901   _young_gen->ref_processor()->weak_oops_do(root_closure);
 902   _old_gen->ref_processor()->weak_oops_do(root_closure);
 903 }
 904 
 905 bool GenCollectedHeap::no_allocs_since_save_marks() {
 906   return _young_gen->no_allocs_since_save_marks() &&
 907          _old_gen->no_allocs_since_save_marks();
 908 }
 909 
 910 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 911   return _young_gen->supports_inline_contig_alloc();
 912 }
 913 
 914 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 915   return _young_gen->top_addr();
 916 }
 917 
 918 HeapWord** GenCollectedHeap::end_addr() const {
 919   return _young_gen->end_addr();
 920 }
 921 
 922 // public collection interfaces
 923 
 924 void GenCollectedHeap::collect(GCCause::Cause cause) {
 925   if (cause == GCCause::_wb_young_gc) {
 926     // Young collection for the WhiteBox API.
 927     collect(cause, YoungGen);
 928   } else {
 929 #ifdef ASSERT
 930   if (cause == GCCause::_scavenge_alot) {
 931     // Young collection only.
 932     collect(cause, YoungGen);
 933   } else {
 934     // Stop-the-world full collection.
 935     collect(cause, OldGen);
 936   }
 937 #else
 938     // Stop-the-world full collection.
 939     collect(cause, OldGen);
 940 #endif
 941   }
 942 }
 943 
 944 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 945   // The caller doesn't have the Heap_lock
 946   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 947   MutexLocker ml(Heap_lock);
 948   collect_locked(cause, max_generation);
 949 }
 950 
 951 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 952   // The caller has the Heap_lock
 953   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 954   collect_locked(cause, OldGen);
 955 }
 956 
 957 // this is the private collection interface
 958 // The Heap_lock is expected to be held on entry.
 959 
 960 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 961   // Read the GC count while holding the Heap_lock
 962   unsigned int gc_count_before      = total_collections();
 963   unsigned int full_gc_count_before = total_full_collections();
 964   {
 965     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 966     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 967                          cause, max_generation);
 968     VMThread::execute(&op);
 969   }
 970 }
 971 
 972 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 973    do_full_collection(clear_all_soft_refs, OldGen);
 974 }
 975 
 976 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 977                                           GenerationType last_generation) {
 978   GenerationType local_last_generation;
 979   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 980       gc_cause() == GCCause::_gc_locker) {
 981     local_last_generation = YoungGen;
 982   } else {
 983     local_last_generation = last_generation;
 984   }
 985 
 986   do_collection(true,                   // full
 987                 clear_all_soft_refs,    // clear_all_soft_refs
 988                 0,                      // size
 989                 false,                  // is_tlab
 990                 local_last_generation); // last_generation
 991   // Hack XXX FIX ME !!!
 992   // A scavenge may not have been attempted, or may have
 993   // been attempted and failed, because the old gen was too full
 994   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 995       incremental_collection_will_fail(false /* don't consult_young */)) {
 996     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 997     // This time allow the old gen to be collected as well
 998     do_collection(true,                // full
 999                   clear_all_soft_refs, // clear_all_soft_refs
1000                   0,                   // size
1001                   false,               // is_tlab
1002                   OldGen);             // last_generation
1003   }
1004 }
1005 
1006 bool GenCollectedHeap::is_in_young(oop p) {
1007   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1008   assert(result == _young_gen->is_in_reserved(p),
1009          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1010   return result;
1011 }
1012 
1013 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1014 bool GenCollectedHeap::is_in(const void* p) const {
1015   return _young_gen->is_in(p) || _old_gen->is_in(p);
1016 }
1017 
1018 #ifdef ASSERT
1019 // Don't implement this by using is_in_young().  This method is used
1020 // in some cases to check that is_in_young() is correct.
1021 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1022   assert(is_in_reserved(p) || p == NULL,
1023     "Does not work if address is non-null and outside of the heap");
1024   return p < _young_gen->reserved().end() && p != NULL;
1025 }
1026 #endif
1027 
1028 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
1029   _young_gen->oop_iterate(cl);
1030   _old_gen->oop_iterate(cl);
1031 }
1032 
1033 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1034   _young_gen->object_iterate(cl);
1035   _old_gen->object_iterate(cl);
1036 }
1037 
1038 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1039   _young_gen->safe_object_iterate(cl);
1040   _old_gen->safe_object_iterate(cl);
1041 }
1042 
1043 Space* GenCollectedHeap::space_containing(const void* addr) const {
1044   Space* res = _young_gen->space_containing(addr);
1045   if (res != NULL) {
1046     return res;
1047   }
1048   res = _old_gen->space_containing(addr);
1049   assert(res != NULL, "Could not find containing space");
1050   return res;
1051 }
1052 
1053 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1054   assert(is_in_reserved(addr), "block_start of address outside of heap");
1055   if (_young_gen->is_in_reserved(addr)) {
1056     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1057     return _young_gen->block_start(addr);
1058   }
1059 
1060   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1061   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1062   return _old_gen->block_start(addr);
1063 }
1064 
1065 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1066   assert(is_in_reserved(addr), "block_size of address outside of heap");
1067   if (_young_gen->is_in_reserved(addr)) {
1068     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1069     return _young_gen->block_size(addr);
1070   }
1071 
1072   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1073   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1074   return _old_gen->block_size(addr);
1075 }
1076 
1077 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1078   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1079   assert(block_start(addr) == addr, "addr must be a block start");
1080   if (_young_gen->is_in_reserved(addr)) {
1081     return _young_gen->block_is_obj(addr);
1082   }
1083 
1084   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1085   return _old_gen->block_is_obj(addr);
1086 }
1087 
1088 bool GenCollectedHeap::supports_tlab_allocation() const {
1089   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1090   return _young_gen->supports_tlab_allocation();
1091 }
1092 
1093 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1094   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1095   if (_young_gen->supports_tlab_allocation()) {
1096     return _young_gen->tlab_capacity();
1097   }
1098   return 0;
1099 }
1100 
1101 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1102   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1103   if (_young_gen->supports_tlab_allocation()) {
1104     return _young_gen->tlab_used();
1105   }
1106   return 0;
1107 }
1108 
1109 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1110   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1111   if (_young_gen->supports_tlab_allocation()) {
1112     return _young_gen->unsafe_max_tlab_alloc();
1113   }
1114   return 0;
1115 }
1116 
1117 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1118                                               size_t requested_size,
1119                                               size_t* actual_size) {
1120   bool gc_overhead_limit_was_exceeded;
1121   HeapWord* result = mem_allocate_work(requested_size /* size */,
1122                                        true /* is_tlab */,
1123                                        &gc_overhead_limit_was_exceeded);
1124   if (result != NULL) {
1125     *actual_size = requested_size;
1126   }
1127 
1128   return result;
1129 }
1130 
1131 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1132 // from the list headed by "*prev_ptr".
1133 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1134   bool first = true;
1135   size_t min_size = 0;   // "first" makes this conceptually infinite.
1136   ScratchBlock **smallest_ptr, *smallest;
1137   ScratchBlock  *cur = *prev_ptr;
1138   while (cur) {
1139     assert(*prev_ptr == cur, "just checking");
1140     if (first || cur->num_words < min_size) {
1141       smallest_ptr = prev_ptr;
1142       smallest     = cur;
1143       min_size     = smallest->num_words;
1144       first        = false;
1145     }
1146     prev_ptr = &cur->next;
1147     cur     =  cur->next;
1148   }
1149   smallest      = *smallest_ptr;
1150   *smallest_ptr = smallest->next;
1151   return smallest;
1152 }
1153 
1154 // Sort the scratch block list headed by res into decreasing size order,
1155 // and set "res" to the result.
1156 static void sort_scratch_list(ScratchBlock*& list) {
1157   ScratchBlock* sorted = NULL;
1158   ScratchBlock* unsorted = list;
1159   while (unsorted) {
1160     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1161     smallest->next  = sorted;
1162     sorted          = smallest;
1163   }
1164   list = sorted;
1165 }
1166 
1167 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1168                                                size_t max_alloc_words) {
1169   ScratchBlock* res = NULL;
1170   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1171   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1172   sort_scratch_list(res);
1173   return res;
1174 }
1175 
1176 void GenCollectedHeap::release_scratch() {
1177   _young_gen->reset_scratch();
1178   _old_gen->reset_scratch();
1179 }
1180 
1181 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1182   void do_generation(Generation* gen) {
1183     gen->prepare_for_verify();
1184   }
1185 };
1186 
1187 void GenCollectedHeap::prepare_for_verify() {
1188   ensure_parsability(false);        // no need to retire TLABs
1189   GenPrepareForVerifyClosure blk;
1190   generation_iterate(&blk, false);
1191 }
1192 
1193 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1194                                           bool old_to_young) {
1195   if (old_to_young) {
1196     cl->do_generation(_old_gen);
1197     cl->do_generation(_young_gen);
1198   } else {
1199     cl->do_generation(_young_gen);
1200     cl->do_generation(_old_gen);
1201   }
1202 }
1203 
1204 bool GenCollectedHeap::is_maximal_no_gc() const {
1205   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1206 }
1207 
1208 void GenCollectedHeap::save_marks() {
1209   _young_gen->save_marks();
1210   _old_gen->save_marks();
1211 }
1212 
1213 GenCollectedHeap* GenCollectedHeap::heap() {
1214   CollectedHeap* heap = Universe::heap();
1215   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1216   assert(heap->kind() == CollectedHeap::Serial ||
1217          heap->kind() == CollectedHeap::CMS, "Invalid name");
1218   return (GenCollectedHeap*) heap;
1219 }
1220 
1221 #if INCLUDE_SERIALGC
1222 void GenCollectedHeap::prepare_for_compaction() {
1223   // Start by compacting into same gen.
1224   CompactPoint cp(_old_gen);
1225   _old_gen->prepare_for_compaction(&cp);
1226   _young_gen->prepare_for_compaction(&cp);
1227 }
1228 #endif // INCLUDE_SERIALGC
1229 
1230 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1231   log_debug(gc, verify)("%s", _old_gen->name());
1232   _old_gen->verify();
1233 
1234   log_debug(gc, verify)("%s", _old_gen->name());
1235   _young_gen->verify();
1236 
1237   log_debug(gc, verify)("RemSet");
1238   rem_set()->verify();
1239 }
1240 
1241 void GenCollectedHeap::print_on(outputStream* st) const {
1242   _young_gen->print_on(st);
1243   _old_gen->print_on(st);
1244   MetaspaceUtils::print_on(st);
1245 }
1246 
1247 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1248 }
1249 
1250 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1251 }
1252 
1253 void GenCollectedHeap::print_tracing_info() const {
1254   if (log_is_enabled(Debug, gc, heap, exit)) {
1255     LogStreamHandle(Debug, gc, heap, exit) lsh;
1256     _young_gen->print_summary_info_on(&lsh);
1257     _old_gen->print_summary_info_on(&lsh);
1258   }
1259 }
1260 
1261 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1262   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1263                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1264   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1265                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1266 }
1267 
1268 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1269  private:
1270   bool _full;
1271  public:
1272   void do_generation(Generation* gen) {
1273     gen->gc_prologue(_full);
1274   }
1275   GenGCPrologueClosure(bool full) : _full(full) {};
1276 };
1277 
1278 void GenCollectedHeap::gc_prologue(bool full) {
1279   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1280 
1281   // Fill TLAB's and such
1282   ensure_parsability(true);   // retire TLABs
1283 
1284   // Walk generations
1285   GenGCPrologueClosure blk(full);
1286   generation_iterate(&blk, false);  // not old-to-young.
1287 };
1288 
1289 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1290  private:
1291   bool _full;
1292  public:
1293   void do_generation(Generation* gen) {
1294     gen->gc_epilogue(_full);
1295   }
1296   GenGCEpilogueClosure(bool full) : _full(full) {};
1297 };
1298 
1299 void GenCollectedHeap::gc_epilogue(bool full) {
1300 #if COMPILER2_OR_JVMCI
1301   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1302   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1303   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1304 #endif // COMPILER2_OR_JVMCI
1305 
1306   resize_all_tlabs();
1307 
1308   GenGCEpilogueClosure blk(full);
1309   generation_iterate(&blk, false);  // not old-to-young.
1310 
1311   if (!CleanChunkPoolAsync) {
1312     Chunk::clean_chunk_pool();
1313   }
1314 
1315   MetaspaceCounters::update_performance_counters();
1316   CompressedClassSpaceCounters::update_performance_counters();
1317 };
1318 
1319 #ifndef PRODUCT
1320 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1321  private:
1322  public:
1323   void do_generation(Generation* gen) {
1324     gen->record_spaces_top();
1325   }
1326 };
1327 
1328 void GenCollectedHeap::record_gen_tops_before_GC() {
1329   if (ZapUnusedHeapArea) {
1330     GenGCSaveTopsBeforeGCClosure blk;
1331     generation_iterate(&blk, false);  // not old-to-young.
1332   }
1333 }
1334 #endif  // not PRODUCT
1335 
1336 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1337  public:
1338   void do_generation(Generation* gen) {
1339     gen->ensure_parsability();
1340   }
1341 };
1342 
1343 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1344   CollectedHeap::ensure_parsability(retire_tlabs);
1345   GenEnsureParsabilityClosure ep_cl;
1346   generation_iterate(&ep_cl, false);
1347 }
1348 
1349 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1350                                               oop obj,
1351                                               size_t obj_size) {
1352   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1353   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1354   HeapWord* result = NULL;
1355 
1356   result = old_gen->expand_and_allocate(obj_size, false);
1357 
1358   if (result != NULL) {
1359     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1360   }
1361   return oop(result);
1362 }
1363 
1364 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1365   jlong _time;   // in ms
1366   jlong _now;    // in ms
1367 
1368  public:
1369   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1370 
1371   jlong time() { return _time; }
1372 
1373   void do_generation(Generation* gen) {
1374     _time = MIN2(_time, gen->time_of_last_gc(_now));
1375   }
1376 };
1377 
1378 jlong GenCollectedHeap::millis_since_last_gc() {
1379   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1380   // provided the underlying platform provides such a time source
1381   // (and it is bug free). So we still have to guard against getting
1382   // back a time later than 'now'.
1383   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1384   GenTimeOfLastGCClosure tolgc_cl(now);
1385   // iterate over generations getting the oldest
1386   // time that a generation was collected
1387   generation_iterate(&tolgc_cl, false);
1388 
1389   jlong retVal = now - tolgc_cl.time();
1390   if (retVal < 0) {
1391     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1392        ". returning zero instead.", retVal);
1393     return 0;
1394   }
1395   return retVal;
1396 }