1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 #define __ _masm->
  42 
  43 // Global Register Names
  44 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  45 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  46 
  47 // Platform-dependent initialization
  48 void TemplateTable::pd_initialize() {
  49   // No x86 specific initialization
  50 }
  51 
  52 // Address Computation: local variables
  53 static inline Address iaddress(int n) {
  54   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  55 }
  56 
  57 static inline Address laddress(int n) {
  58   return iaddress(n + 1);
  59 }
  60 
  61 #ifndef _LP64
  62 static inline Address haddress(int n) {
  63   return iaddress(n + 0);
  64 }
  65 #endif
  66 
  67 static inline Address faddress(int n) {
  68   return iaddress(n);
  69 }
  70 
  71 static inline Address daddress(int n) {
  72   return laddress(n);
  73 }
  74 
  75 static inline Address aaddress(int n) {
  76   return iaddress(n);
  77 }
  78 
  79 static inline Address iaddress(Register r) {
  80   return Address(rlocals, r, Address::times_ptr);
  81 }
  82 
  83 static inline Address laddress(Register r) {
  84   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
  85 }
  86 
  87 #ifndef _LP64
  88 static inline Address haddress(Register r)       {
  89   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  90 }
  91 #endif
  92 
  93 static inline Address faddress(Register r) {
  94   return iaddress(r);
  95 }
  96 
  97 static inline Address daddress(Register r) {
  98   return laddress(r);
  99 }
 100 
 101 static inline Address aaddress(Register r) {
 102   return iaddress(r);
 103 }
 104 
 105 
 106 // expression stack
 107 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
 108 // data beyond the rsp which is potentially unsafe in an MT environment;
 109 // an interrupt may overwrite that data.)
 110 static inline Address at_rsp   () {
 111   return Address(rsp, 0);
 112 }
 113 
 114 // At top of Java expression stack which may be different than esp().  It
 115 // isn't for category 1 objects.
 116 static inline Address at_tos   () {
 117   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 118 }
 119 
 120 static inline Address at_tos_p1() {
 121   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 122 }
 123 
 124 static inline Address at_tos_p2() {
 125   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 126 }
 127 
 128 // Condition conversion
 129 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 130   switch (cc) {
 131   case TemplateTable::equal        : return Assembler::notEqual;
 132   case TemplateTable::not_equal    : return Assembler::equal;
 133   case TemplateTable::less         : return Assembler::greaterEqual;
 134   case TemplateTable::less_equal   : return Assembler::greater;
 135   case TemplateTable::greater      : return Assembler::lessEqual;
 136   case TemplateTable::greater_equal: return Assembler::less;
 137   }
 138   ShouldNotReachHere();
 139   return Assembler::zero;
 140 }
 141 
 142 
 143 
 144 // Miscelaneous helper routines
 145 // Store an oop (or NULL) at the address described by obj.
 146 // If val == noreg this means store a NULL
 147 
 148 
 149 static void do_oop_store(InterpreterMacroAssembler* _masm,
 150                          Address obj,
 151                          Register val,
 152                          BarrierSet::Name barrier,
 153                          bool precise) {
 154   assert(val == noreg || val == rax, "parameter is just for looks");
 155   switch (barrier) {
 156 #if INCLUDE_ALL_GCS
 157     case BarrierSet::G1SATBCTLogging:
 158       {
 159         // flatten object address if needed
 160         // We do it regardless of precise because we need the registers
 161         if (obj.index() == noreg && obj.disp() == 0) {
 162           if (obj.base() != rdx) {
 163             __ movptr(rdx, obj.base());
 164           }
 165         } else {
 166           __ lea(rdx, obj);
 167         }
 168 
 169         Register rtmp    = LP64_ONLY(r8)         NOT_LP64(rsi);
 170         Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 171 
 172         NOT_LP64(__ get_thread(rcx));
 173         NOT_LP64(__ save_bcp());
 174 
 175         __ g1_write_barrier_pre(rdx /* obj */,
 176                                 rbx /* pre_val */,
 177                                 rthread /* thread */,
 178                                 rtmp  /* tmp */,
 179                                 val != noreg /* tosca_live */,
 180                                 false /* expand_call */);
 181         if (val == noreg) {
 182           __ store_heap_oop_null(Address(rdx, 0));
 183         } else {
 184           // G1 barrier needs uncompressed oop for region cross check.
 185           Register new_val = val;
 186           if (UseCompressedOops) {
 187             new_val = rbx;
 188             __ movptr(new_val, val);
 189           }
 190           __ store_heap_oop(Address(rdx, 0), val);
 191           __ g1_write_barrier_post(rdx /* store_adr */,
 192                                    new_val /* new_val */,
 193                                    rthread /* thread */,
 194                                    rtmp /* tmp */,
 195                                    rbx /* tmp2 */);
 196         }
 197         NOT_LP64( __ restore_bcp());
 198       }
 199       break;
 200 #endif // INCLUDE_ALL_GCS
 201     case BarrierSet::CardTableForRS:
 202     case BarrierSet::CardTableExtension:
 203       {
 204         if (val == noreg) {
 205           __ store_heap_oop_null(obj);
 206         } else {
 207           __ store_heap_oop(obj, val);
 208           // flatten object address if needed
 209           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 210             __ store_check(obj.base());
 211           } else {
 212             __ lea(rdx, obj);
 213             __ store_check(rdx);
 214           }
 215         }
 216       }
 217       break;
 218     case BarrierSet::ModRef:
 219       if (val == noreg) {
 220         __ store_heap_oop_null(obj);
 221       } else {
 222         __ store_heap_oop(obj, val);
 223       }
 224       break;
 225     default      :
 226       ShouldNotReachHere();
 227 
 228   }
 229 }
 230 
 231 Address TemplateTable::at_bcp(int offset) {
 232   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 233   return Address(rbcp, offset);
 234 }
 235 
 236 
 237 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 238                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 239                                    int byte_no) {
 240   if (!RewriteBytecodes)  return;
 241   Label L_patch_done;
 242 
 243   switch (bc) {
 244   case Bytecodes::_fast_aputfield:
 245   case Bytecodes::_fast_bputfield:
 246   case Bytecodes::_fast_zputfield:
 247   case Bytecodes::_fast_cputfield:
 248   case Bytecodes::_fast_dputfield:
 249   case Bytecodes::_fast_fputfield:
 250   case Bytecodes::_fast_iputfield:
 251   case Bytecodes::_fast_lputfield:
 252   case Bytecodes::_fast_sputfield:
 253     {
 254       // We skip bytecode quickening for putfield instructions when
 255       // the put_code written to the constant pool cache is zero.
 256       // This is required so that every execution of this instruction
 257       // calls out to InterpreterRuntime::resolve_get_put to do
 258       // additional, required work.
 259       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 260       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 261       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 262       __ movl(bc_reg, bc);
 263       __ cmpl(temp_reg, (int) 0);
 264       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 265     }
 266     break;
 267   default:
 268     assert(byte_no == -1, "sanity");
 269     // the pair bytecodes have already done the load.
 270     if (load_bc_into_bc_reg) {
 271       __ movl(bc_reg, bc);
 272     }
 273   }
 274 
 275   if (JvmtiExport::can_post_breakpoint()) {
 276     Label L_fast_patch;
 277     // if a breakpoint is present we can't rewrite the stream directly
 278     __ movzbl(temp_reg, at_bcp(0));
 279     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 280     __ jcc(Assembler::notEqual, L_fast_patch);
 281     __ get_method(temp_reg);
 282     // Let breakpoint table handling rewrite to quicker bytecode
 283     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
 284 #ifndef ASSERT
 285     __ jmpb(L_patch_done);
 286 #else
 287     __ jmp(L_patch_done);
 288 #endif
 289     __ bind(L_fast_patch);
 290   }
 291 
 292 #ifdef ASSERT
 293   Label L_okay;
 294   __ load_unsigned_byte(temp_reg, at_bcp(0));
 295   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 296   __ jcc(Assembler::equal, L_okay);
 297   __ cmpl(temp_reg, bc_reg);
 298   __ jcc(Assembler::equal, L_okay);
 299   __ stop("patching the wrong bytecode");
 300   __ bind(L_okay);
 301 #endif
 302 
 303   // patch bytecode
 304   __ movb(at_bcp(0), bc_reg);
 305   __ bind(L_patch_done);
 306 }
 307 // Individual instructions
 308 
 309 
 310 void TemplateTable::nop() {
 311   transition(vtos, vtos);
 312   // nothing to do
 313 }
 314 
 315 void TemplateTable::shouldnotreachhere() {
 316   transition(vtos, vtos);
 317   __ stop("shouldnotreachhere bytecode");
 318 }
 319 
 320 void TemplateTable::aconst_null() {
 321   transition(vtos, atos);
 322   __ xorl(rax, rax);
 323 }
 324 
 325 void TemplateTable::iconst(int value) {
 326   transition(vtos, itos);
 327   if (value == 0) {
 328     __ xorl(rax, rax);
 329   } else {
 330     __ movl(rax, value);
 331   }
 332 }
 333 
 334 void TemplateTable::lconst(int value) {
 335   transition(vtos, ltos);
 336   if (value == 0) {
 337     __ xorl(rax, rax);
 338   } else {
 339     __ movl(rax, value);
 340   }
 341 #ifndef _LP64
 342   assert(value >= 0, "check this code");
 343   __ xorptr(rdx, rdx);
 344 #endif
 345 }
 346 
 347 
 348 
 349 void TemplateTable::fconst(int value) {
 350   transition(vtos, ftos);
 351   if (UseSSE >= 1) {
 352     static float one = 1.0f, two = 2.0f;
 353     switch (value) {
 354     case 0:
 355       __ xorps(xmm0, xmm0);
 356       break;
 357     case 1:
 358       __ movflt(xmm0, ExternalAddress((address) &one));
 359       break;
 360     case 2:
 361       __ movflt(xmm0, ExternalAddress((address) &two));
 362       break;
 363     default:
 364       ShouldNotReachHere();
 365       break;
 366     }
 367   } else {
 368 #ifdef _LP64
 369     ShouldNotReachHere();
 370 #else
 371            if (value == 0) { __ fldz();
 372     } else if (value == 1) { __ fld1();
 373     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 374     } else                 { ShouldNotReachHere();
 375     }
 376 #endif // _LP64
 377   }
 378 }
 379 
 380 void TemplateTable::dconst(int value) {
 381   transition(vtos, dtos);
 382   if (UseSSE >= 2) {
 383     static double one = 1.0;
 384     switch (value) {
 385     case 0:
 386       __ xorpd(xmm0, xmm0);
 387       break;
 388     case 1:
 389       __ movdbl(xmm0, ExternalAddress((address) &one));
 390       break;
 391     default:
 392       ShouldNotReachHere();
 393       break;
 394     }
 395   } else {
 396 #ifdef _LP64
 397     ShouldNotReachHere();
 398 #else
 399            if (value == 0) { __ fldz();
 400     } else if (value == 1) { __ fld1();
 401     } else                 { ShouldNotReachHere();
 402     }
 403 #endif
 404   }
 405 }
 406 
 407 void TemplateTable::bipush() {
 408   transition(vtos, itos);
 409   __ load_signed_byte(rax, at_bcp(1));
 410 }
 411 
 412 void TemplateTable::sipush() {
 413   transition(vtos, itos);
 414   __ load_unsigned_short(rax, at_bcp(1));
 415   __ bswapl(rax);
 416   __ sarl(rax, 16);
 417 }
 418 
 419 void TemplateTable::ldc(bool wide) {
 420   transition(vtos, vtos);
 421   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 422   Label call_ldc, notFloat, notClass, Done;
 423 
 424   if (wide) {
 425     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 426   } else {
 427     __ load_unsigned_byte(rbx, at_bcp(1));
 428   }
 429 
 430   __ get_cpool_and_tags(rcx, rax);
 431   const int base_offset = ConstantPool::header_size() * wordSize;
 432   const int tags_offset = Array<u1>::base_offset_in_bytes();
 433 
 434   // get type
 435   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 436 
 437   // unresolved class - get the resolved class
 438   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 439   __ jccb(Assembler::equal, call_ldc);
 440 
 441   // unresolved class in error state - call into runtime to throw the error
 442   // from the first resolution attempt
 443   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 444   __ jccb(Assembler::equal, call_ldc);
 445 
 446   // resolved class - need to call vm to get java mirror of the class
 447   __ cmpl(rdx, JVM_CONSTANT_Class);
 448   __ jcc(Assembler::notEqual, notClass);
 449 
 450   __ bind(call_ldc);
 451 
 452   __ movl(rarg, wide);
 453   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
 454 
 455   __ push(atos);
 456   __ jmp(Done);
 457 
 458   __ bind(notClass);
 459   __ cmpl(rdx, JVM_CONSTANT_Float);
 460   __ jccb(Assembler::notEqual, notFloat);
 461 
 462   // ftos
 463   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
 464   __ push(ftos);
 465   __ jmp(Done);
 466 
 467   __ bind(notFloat);
 468 #ifdef ASSERT
 469   {
 470     Label L;
 471     __ cmpl(rdx, JVM_CONSTANT_Integer);
 472     __ jcc(Assembler::equal, L);
 473     // String and Object are rewritten to fast_aldc
 474     __ stop("unexpected tag type in ldc");
 475     __ bind(L);
 476   }
 477 #endif
 478   // itos JVM_CONSTANT_Integer only
 479   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 480   __ push(itos);
 481   __ bind(Done);
 482 }
 483 
 484 // Fast path for caching oop constants.
 485 void TemplateTable::fast_aldc(bool wide) {
 486   transition(vtos, atos);
 487 
 488   Register result = rax;
 489   Register tmp = rdx;
 490   int index_size = wide ? sizeof(u2) : sizeof(u1);
 491 
 492   Label resolved;
 493 
 494   // We are resolved if the resolved reference cache entry contains a
 495   // non-null object (String, MethodType, etc.)
 496   assert_different_registers(result, tmp);
 497   __ get_cache_index_at_bcp(tmp, 1, index_size);
 498   __ load_resolved_reference_at_index(result, tmp);
 499   __ testl(result, result);
 500   __ jcc(Assembler::notZero, resolved);
 501 
 502   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 503 
 504   // first time invocation - must resolve first
 505   __ movl(tmp, (int)bytecode());
 506   __ call_VM(result, entry, tmp);
 507 
 508   __ bind(resolved);
 509 
 510   if (VerifyOops) {
 511     __ verify_oop(result);
 512   }
 513 }
 514 
 515 void TemplateTable::ldc2_w() {
 516   transition(vtos, vtos);
 517   Label Long, Done;
 518   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 519 
 520   __ get_cpool_and_tags(rcx, rax);
 521   const int base_offset = ConstantPool::header_size() * wordSize;
 522   const int tags_offset = Array<u1>::base_offset_in_bytes();
 523 
 524   // get type
 525   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 526           JVM_CONSTANT_Double);
 527   __ jccb(Assembler::notEqual, Long);
 528 
 529   // dtos
 530   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
 531   __ push(dtos);
 532 
 533   __ jmpb(Done);
 534   __ bind(Long);
 535 
 536   // ltos
 537   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 538   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 539   __ push(ltos);
 540 
 541   __ bind(Done);
 542 }
 543 
 544 void TemplateTable::locals_index(Register reg, int offset) {
 545   __ load_unsigned_byte(reg, at_bcp(offset));
 546   __ negptr(reg);
 547 }
 548 
 549 void TemplateTable::iload() {
 550   iload_internal();
 551 }
 552 
 553 void TemplateTable::nofast_iload() {
 554   iload_internal(may_not_rewrite);
 555 }
 556 
 557 void TemplateTable::iload_internal(RewriteControl rc) {
 558   transition(vtos, itos);
 559   if (RewriteFrequentPairs && rc == may_rewrite) {
 560     Label rewrite, done;
 561     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 562     LP64_ONLY(assert(rbx != bc, "register damaged"));
 563 
 564     // get next byte
 565     __ load_unsigned_byte(rbx,
 566                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 567     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 568     // last two iloads in a pair.  Comparing against fast_iload means that
 569     // the next bytecode is neither an iload or a caload, and therefore
 570     // an iload pair.
 571     __ cmpl(rbx, Bytecodes::_iload);
 572     __ jcc(Assembler::equal, done);
 573 
 574     __ cmpl(rbx, Bytecodes::_fast_iload);
 575     __ movl(bc, Bytecodes::_fast_iload2);
 576 
 577     __ jccb(Assembler::equal, rewrite);
 578 
 579     // if _caload, rewrite to fast_icaload
 580     __ cmpl(rbx, Bytecodes::_caload);
 581     __ movl(bc, Bytecodes::_fast_icaload);
 582     __ jccb(Assembler::equal, rewrite);
 583 
 584     // rewrite so iload doesn't check again.
 585     __ movl(bc, Bytecodes::_fast_iload);
 586 
 587     // rewrite
 588     // bc: fast bytecode
 589     __ bind(rewrite);
 590     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 591     __ bind(done);
 592   }
 593 
 594   // Get the local value into tos
 595   locals_index(rbx);
 596   __ movl(rax, iaddress(rbx));
 597 }
 598 
 599 void TemplateTable::fast_iload2() {
 600   transition(vtos, itos);
 601   locals_index(rbx);
 602   __ movl(rax, iaddress(rbx));
 603   __ push(itos);
 604   locals_index(rbx, 3);
 605   __ movl(rax, iaddress(rbx));
 606 }
 607 
 608 void TemplateTable::fast_iload() {
 609   transition(vtos, itos);
 610   locals_index(rbx);
 611   __ movl(rax, iaddress(rbx));
 612 }
 613 
 614 void TemplateTable::lload() {
 615   transition(vtos, ltos);
 616   locals_index(rbx);
 617   __ movptr(rax, laddress(rbx));
 618   NOT_LP64(__ movl(rdx, haddress(rbx)));
 619 }
 620 
 621 void TemplateTable::fload() {
 622   transition(vtos, ftos);
 623   locals_index(rbx);
 624   __ load_float(faddress(rbx));
 625 }
 626 
 627 void TemplateTable::dload() {
 628   transition(vtos, dtos);
 629   locals_index(rbx);
 630   __ load_double(daddress(rbx));
 631 }
 632 
 633 void TemplateTable::aload() {
 634   transition(vtos, atos);
 635   locals_index(rbx);
 636   __ movptr(rax, aaddress(rbx));
 637 }
 638 
 639 void TemplateTable::locals_index_wide(Register reg) {
 640   __ load_unsigned_short(reg, at_bcp(2));
 641   __ bswapl(reg);
 642   __ shrl(reg, 16);
 643   __ negptr(reg);
 644 }
 645 
 646 void TemplateTable::wide_iload() {
 647   transition(vtos, itos);
 648   locals_index_wide(rbx);
 649   __ movl(rax, iaddress(rbx));
 650 }
 651 
 652 void TemplateTable::wide_lload() {
 653   transition(vtos, ltos);
 654   locals_index_wide(rbx);
 655   __ movptr(rax, laddress(rbx));
 656   NOT_LP64(__ movl(rdx, haddress(rbx)));
 657 }
 658 
 659 void TemplateTable::wide_fload() {
 660   transition(vtos, ftos);
 661   locals_index_wide(rbx);
 662   __ load_float(faddress(rbx));
 663 }
 664 
 665 void TemplateTable::wide_dload() {
 666   transition(vtos, dtos);
 667   locals_index_wide(rbx);
 668   __ load_double(daddress(rbx));
 669 }
 670 
 671 void TemplateTable::wide_aload() {
 672   transition(vtos, atos);
 673   locals_index_wide(rbx);
 674   __ movptr(rax, aaddress(rbx));
 675 }
 676 
 677 void TemplateTable::index_check(Register array, Register index) {
 678   // Pop ptr into array
 679   __ pop_ptr(array);
 680   index_check_without_pop(array, index);
 681 }
 682 
 683 void TemplateTable::index_check_without_pop(Register array, Register index) {
 684   // destroys rbx
 685   // check array
 686   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 687   // sign extend index for use by indexed load
 688   __ movl2ptr(index, index);
 689   // check index
 690   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 691   if (index != rbx) {
 692     // ??? convention: move aberrant index into rbx for exception message
 693     assert(rbx != array, "different registers");
 694     __ movl(rbx, index);
 695   }
 696   __ jump_cc(Assembler::aboveEqual,
 697              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 698 }
 699 
 700 
 701 void TemplateTable::iaload() {
 702   transition(itos, itos);
 703   // rax: index
 704   // rdx: array
 705   index_check(rdx, rax); // kills rbx
 706   __ movl(rax, Address(rdx, rax,
 707                        Address::times_4,
 708                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 709 }
 710 
 711 void TemplateTable::laload() {
 712   transition(itos, ltos);
 713   // rax: index
 714   // rdx: array
 715   index_check(rdx, rax); // kills rbx
 716   NOT_LP64(__ mov(rbx, rax));
 717   // rbx,: index
 718   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 719   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 720 }
 721 
 722 
 723 
 724 void TemplateTable::faload() {
 725   transition(itos, ftos);
 726   // rax: index
 727   // rdx: array
 728   index_check(rdx, rax); // kills rbx
 729   __ load_float(Address(rdx, rax,
 730                         Address::times_4,
 731                         arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 732 }
 733 
 734 void TemplateTable::daload() {
 735   transition(itos, dtos);
 736   // rax: index
 737   // rdx: array
 738   index_check(rdx, rax); // kills rbx
 739   __ load_double(Address(rdx, rax,
 740                          Address::times_8,
 741                          arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 742 }
 743 
 744 void TemplateTable::aaload() {
 745   transition(itos, atos);
 746   // rax: index
 747   // rdx: array
 748   index_check(rdx, rax); // kills rbx
 749   __ load_heap_oop(rax, Address(rdx, rax,
 750                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 751                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 752 }
 753 
 754 void TemplateTable::baload() {
 755   transition(itos, itos);
 756   // rax: index
 757   // rdx: array
 758   index_check(rdx, rax); // kills rbx
 759   __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 760 }
 761 
 762 void TemplateTable::caload() {
 763   transition(itos, itos);
 764   // rax: index
 765   // rdx: array
 766   index_check(rdx, rax); // kills rbx
 767   __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 768 }
 769 
 770 // iload followed by caload frequent pair
 771 void TemplateTable::fast_icaload() {
 772   transition(vtos, itos);
 773   // load index out of locals
 774   locals_index(rbx);
 775   __ movl(rax, iaddress(rbx));
 776 
 777   // rax: index
 778   // rdx: array
 779   index_check(rdx, rax); // kills rbx
 780   __ load_unsigned_short(rax,
 781                          Address(rdx, rax,
 782                                  Address::times_2,
 783                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 784 }
 785 
 786 
 787 void TemplateTable::saload() {
 788   transition(itos, itos);
 789   // rax: index
 790   // rdx: array
 791   index_check(rdx, rax); // kills rbx
 792   __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 793 }
 794 
 795 void TemplateTable::iload(int n) {
 796   transition(vtos, itos);
 797   __ movl(rax, iaddress(n));
 798 }
 799 
 800 void TemplateTable::lload(int n) {
 801   transition(vtos, ltos);
 802   __ movptr(rax, laddress(n));
 803   NOT_LP64(__ movptr(rdx, haddress(n)));
 804 }
 805 
 806 void TemplateTable::fload(int n) {
 807   transition(vtos, ftos);
 808   __ load_float(faddress(n));
 809 }
 810 
 811 void TemplateTable::dload(int n) {
 812   transition(vtos, dtos);
 813   __ load_double(daddress(n));
 814 }
 815 
 816 void TemplateTable::aload(int n) {
 817   transition(vtos, atos);
 818   __ movptr(rax, aaddress(n));
 819 }
 820 
 821 void TemplateTable::aload_0() {
 822   aload_0_internal();
 823 }
 824 
 825 void TemplateTable::nofast_aload_0() {
 826   aload_0_internal(may_not_rewrite);
 827 }
 828 
 829 void TemplateTable::aload_0_internal(RewriteControl rc) {
 830   transition(vtos, atos);
 831   // According to bytecode histograms, the pairs:
 832   //
 833   // _aload_0, _fast_igetfield
 834   // _aload_0, _fast_agetfield
 835   // _aload_0, _fast_fgetfield
 836   //
 837   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 838   // _aload_0 bytecode checks if the next bytecode is either
 839   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 840   // rewrites the current bytecode into a pair bytecode; otherwise it
 841   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 842   // the pair check anymore.
 843   //
 844   // Note: If the next bytecode is _getfield, the rewrite must be
 845   //       delayed, otherwise we may miss an opportunity for a pair.
 846   //
 847   // Also rewrite frequent pairs
 848   //   aload_0, aload_1
 849   //   aload_0, iload_1
 850   // These bytecodes with a small amount of code are most profitable
 851   // to rewrite
 852   if (RewriteFrequentPairs && rc == may_rewrite) {
 853     Label rewrite, done;
 854 
 855     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 856     LP64_ONLY(assert(rbx != bc, "register damaged"));
 857 
 858     // get next byte
 859     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 860 
 861     // if _getfield then wait with rewrite
 862     __ cmpl(rbx, Bytecodes::_getfield);
 863     __ jcc(Assembler::equal, done);
 864 
 865     // if _igetfield then rewrite to _fast_iaccess_0
 866     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 867     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 868     __ movl(bc, Bytecodes::_fast_iaccess_0);
 869     __ jccb(Assembler::equal, rewrite);
 870 
 871     // if _agetfield then rewrite to _fast_aaccess_0
 872     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 873     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 874     __ movl(bc, Bytecodes::_fast_aaccess_0);
 875     __ jccb(Assembler::equal, rewrite);
 876 
 877     // if _fgetfield then rewrite to _fast_faccess_0
 878     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 879     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 880     __ movl(bc, Bytecodes::_fast_faccess_0);
 881     __ jccb(Assembler::equal, rewrite);
 882 
 883     // else rewrite to _fast_aload0
 884     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 885     __ movl(bc, Bytecodes::_fast_aload_0);
 886 
 887     // rewrite
 888     // bc: fast bytecode
 889     __ bind(rewrite);
 890     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 891 
 892     __ bind(done);
 893   }
 894 
 895   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 896   aload(0);
 897 }
 898 
 899 void TemplateTable::istore() {
 900   transition(itos, vtos);
 901   locals_index(rbx);
 902   __ movl(iaddress(rbx), rax);
 903 }
 904 
 905 
 906 void TemplateTable::lstore() {
 907   transition(ltos, vtos);
 908   locals_index(rbx);
 909   __ movptr(laddress(rbx), rax);
 910   NOT_LP64(__ movptr(haddress(rbx), rdx));
 911 }
 912 
 913 void TemplateTable::fstore() {
 914   transition(ftos, vtos);
 915   locals_index(rbx);
 916   __ store_float(faddress(rbx));
 917 }
 918 
 919 void TemplateTable::dstore() {
 920   transition(dtos, vtos);
 921   locals_index(rbx);
 922   __ store_double(daddress(rbx));
 923 }
 924 
 925 void TemplateTable::astore() {
 926   transition(vtos, vtos);
 927   __ pop_ptr(rax);
 928   locals_index(rbx);
 929   __ movptr(aaddress(rbx), rax);
 930 }
 931 
 932 void TemplateTable::wide_istore() {
 933   transition(vtos, vtos);
 934   __ pop_i();
 935   locals_index_wide(rbx);
 936   __ movl(iaddress(rbx), rax);
 937 }
 938 
 939 void TemplateTable::wide_lstore() {
 940   transition(vtos, vtos);
 941   NOT_LP64(__ pop_l(rax, rdx));
 942   LP64_ONLY(__ pop_l());
 943   locals_index_wide(rbx);
 944   __ movptr(laddress(rbx), rax);
 945   NOT_LP64(__ movl(haddress(rbx), rdx));
 946 }
 947 
 948 void TemplateTable::wide_fstore() {
 949 #ifdef _LP64
 950   transition(vtos, vtos);
 951   __ pop_f(xmm0);
 952   locals_index_wide(rbx);
 953   __ movflt(faddress(rbx), xmm0);
 954 #else
 955   wide_istore();
 956 #endif
 957 }
 958 
 959 void TemplateTable::wide_dstore() {
 960 #ifdef _LP64
 961   transition(vtos, vtos);
 962   __ pop_d(xmm0);
 963   locals_index_wide(rbx);
 964   __ movdbl(daddress(rbx), xmm0);
 965 #else
 966   wide_lstore();
 967 #endif
 968 }
 969 
 970 void TemplateTable::wide_astore() {
 971   transition(vtos, vtos);
 972   __ pop_ptr(rax);
 973   locals_index_wide(rbx);
 974   __ movptr(aaddress(rbx), rax);
 975 }
 976 
 977 void TemplateTable::iastore() {
 978   transition(itos, vtos);
 979   __ pop_i(rbx);
 980   // rax: value
 981   // rbx: index
 982   // rdx: array
 983   index_check(rdx, rbx); // prefer index in rbx
 984   __ movl(Address(rdx, rbx,
 985                   Address::times_4,
 986                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 987           rax);
 988 }
 989 
 990 void TemplateTable::lastore() {
 991   transition(ltos, vtos);
 992   __ pop_i(rbx);
 993   // rax,: low(value)
 994   // rcx: array
 995   // rdx: high(value)
 996   index_check(rcx, rbx);  // prefer index in rbx,
 997   // rbx,: index
 998   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
 999   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
1000 }
1001 
1002 
1003 void TemplateTable::fastore() {
1004   transition(ftos, vtos);
1005   __ pop_i(rbx);
1006   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1007   // rbx:  index
1008   // rdx:  array
1009   index_check(rdx, rbx); // prefer index in rbx
1010   __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
1011 }
1012 
1013 void TemplateTable::dastore() {
1014   transition(dtos, vtos);
1015   __ pop_i(rbx);
1016   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1017   // rbx:  index
1018   // rdx:  array
1019   index_check(rdx, rbx); // prefer index in rbx
1020   __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1021 }
1022 
1023 void TemplateTable::aastore() {
1024   Label is_null, ok_is_subtype, done;
1025   transition(vtos, vtos);
1026   // stack: ..., array, index, value
1027   __ movptr(rax, at_tos());    // value
1028   __ movl(rcx, at_tos_p1()); // index
1029   __ movptr(rdx, at_tos_p2()); // array
1030 
1031   Address element_address(rdx, rcx,
1032                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1033                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1034 
1035   index_check_without_pop(rdx, rcx);     // kills rbx
1036   __ testptr(rax, rax);
1037   __ jcc(Assembler::zero, is_null);
1038 
1039   // Move subklass into rbx
1040   __ load_klass(rbx, rax);
1041   // Move superklass into rax
1042   __ load_klass(rax, rdx);
1043   __ movptr(rax, Address(rax,
1044                          ObjArrayKlass::element_klass_offset()));
1045   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1046   __ lea(rdx, element_address);
1047 
1048   // Generate subtype check.  Blows rcx, rdi
1049   // Superklass in rax.  Subklass in rbx.
1050   __ gen_subtype_check(rbx, ok_is_subtype);
1051 
1052   // Come here on failure
1053   // object is at TOS
1054   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1055 
1056   // Come here on success
1057   __ bind(ok_is_subtype);
1058 
1059   // Get the value we will store
1060   __ movptr(rax, at_tos());
1061   // Now store using the appropriate barrier
1062   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1063   __ jmp(done);
1064 
1065   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1066   __ bind(is_null);
1067   __ profile_null_seen(rbx);
1068 
1069   // Store a NULL
1070   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1071 
1072   // Pop stack arguments
1073   __ bind(done);
1074   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1075 }
1076 
1077 void TemplateTable::bastore() {
1078   transition(itos, vtos);
1079   __ pop_i(rbx);
1080   // rax: value
1081   // rbx: index
1082   // rdx: array
1083   index_check(rdx, rbx); // prefer index in rbx
1084   // Need to check whether array is boolean or byte
1085   // since both types share the bastore bytecode.
1086   __ load_klass(rcx, rdx);
1087   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1088   int diffbit = Klass::layout_helper_boolean_diffbit();
1089   __ testl(rcx, diffbit);
1090   Label L_skip;
1091   __ jccb(Assembler::zero, L_skip);
1092   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1093   __ bind(L_skip);
1094   __ movb(Address(rdx, rbx,
1095                   Address::times_1,
1096                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1097           rax);
1098 }
1099 
1100 void TemplateTable::castore() {
1101   transition(itos, vtos);
1102   __ pop_i(rbx);
1103   // rax: value
1104   // rbx: index
1105   // rdx: array
1106   index_check(rdx, rbx);  // prefer index in rbx
1107   __ movw(Address(rdx, rbx,
1108                   Address::times_2,
1109                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1110           rax);
1111 }
1112 
1113 
1114 void TemplateTable::sastore() {
1115   castore();
1116 }
1117 
1118 void TemplateTable::istore(int n) {
1119   transition(itos, vtos);
1120   __ movl(iaddress(n), rax);
1121 }
1122 
1123 void TemplateTable::lstore(int n) {
1124   transition(ltos, vtos);
1125   __ movptr(laddress(n), rax);
1126   NOT_LP64(__ movptr(haddress(n), rdx));
1127 }
1128 
1129 void TemplateTable::fstore(int n) {
1130   transition(ftos, vtos);
1131   __ store_float(faddress(n));
1132 }
1133 
1134 void TemplateTable::dstore(int n) {
1135   transition(dtos, vtos);
1136   __ store_double(daddress(n));
1137 }
1138 
1139 
1140 void TemplateTable::astore(int n) {
1141   transition(vtos, vtos);
1142   __ pop_ptr(rax);
1143   __ movptr(aaddress(n), rax);
1144 }
1145 
1146 void TemplateTable::pop() {
1147   transition(vtos, vtos);
1148   __ addptr(rsp, Interpreter::stackElementSize);
1149 }
1150 
1151 void TemplateTable::pop2() {
1152   transition(vtos, vtos);
1153   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1154 }
1155 
1156 
1157 void TemplateTable::dup() {
1158   transition(vtos, vtos);
1159   __ load_ptr(0, rax);
1160   __ push_ptr(rax);
1161   // stack: ..., a, a
1162 }
1163 
1164 void TemplateTable::dup_x1() {
1165   transition(vtos, vtos);
1166   // stack: ..., a, b
1167   __ load_ptr( 0, rax);  // load b
1168   __ load_ptr( 1, rcx);  // load a
1169   __ store_ptr(1, rax);  // store b
1170   __ store_ptr(0, rcx);  // store a
1171   __ push_ptr(rax);      // push b
1172   // stack: ..., b, a, b
1173 }
1174 
1175 void TemplateTable::dup_x2() {
1176   transition(vtos, vtos);
1177   // stack: ..., a, b, c
1178   __ load_ptr( 0, rax);  // load c
1179   __ load_ptr( 2, rcx);  // load a
1180   __ store_ptr(2, rax);  // store c in a
1181   __ push_ptr(rax);      // push c
1182   // stack: ..., c, b, c, c
1183   __ load_ptr( 2, rax);  // load b
1184   __ store_ptr(2, rcx);  // store a in b
1185   // stack: ..., c, a, c, c
1186   __ store_ptr(1, rax);  // store b in c
1187   // stack: ..., c, a, b, c
1188 }
1189 
1190 void TemplateTable::dup2() {
1191   transition(vtos, vtos);
1192   // stack: ..., a, b
1193   __ load_ptr(1, rax);  // load a
1194   __ push_ptr(rax);     // push a
1195   __ load_ptr(1, rax);  // load b
1196   __ push_ptr(rax);     // push b
1197   // stack: ..., a, b, a, b
1198 }
1199 
1200 
1201 void TemplateTable::dup2_x1() {
1202   transition(vtos, vtos);
1203   // stack: ..., a, b, c
1204   __ load_ptr( 0, rcx);  // load c
1205   __ load_ptr( 1, rax);  // load b
1206   __ push_ptr(rax);      // push b
1207   __ push_ptr(rcx);      // push c
1208   // stack: ..., a, b, c, b, c
1209   __ store_ptr(3, rcx);  // store c in b
1210   // stack: ..., a, c, c, b, c
1211   __ load_ptr( 4, rcx);  // load a
1212   __ store_ptr(2, rcx);  // store a in 2nd c
1213   // stack: ..., a, c, a, b, c
1214   __ store_ptr(4, rax);  // store b in a
1215   // stack: ..., b, c, a, b, c
1216 }
1217 
1218 void TemplateTable::dup2_x2() {
1219   transition(vtos, vtos);
1220   // stack: ..., a, b, c, d
1221   __ load_ptr( 0, rcx);  // load d
1222   __ load_ptr( 1, rax);  // load c
1223   __ push_ptr(rax);      // push c
1224   __ push_ptr(rcx);      // push d
1225   // stack: ..., a, b, c, d, c, d
1226   __ load_ptr( 4, rax);  // load b
1227   __ store_ptr(2, rax);  // store b in d
1228   __ store_ptr(4, rcx);  // store d in b
1229   // stack: ..., a, d, c, b, c, d
1230   __ load_ptr( 5, rcx);  // load a
1231   __ load_ptr( 3, rax);  // load c
1232   __ store_ptr(3, rcx);  // store a in c
1233   __ store_ptr(5, rax);  // store c in a
1234   // stack: ..., c, d, a, b, c, d
1235 }
1236 
1237 void TemplateTable::swap() {
1238   transition(vtos, vtos);
1239   // stack: ..., a, b
1240   __ load_ptr( 1, rcx);  // load a
1241   __ load_ptr( 0, rax);  // load b
1242   __ store_ptr(0, rcx);  // store a in b
1243   __ store_ptr(1, rax);  // store b in a
1244   // stack: ..., b, a
1245 }
1246 
1247 void TemplateTable::iop2(Operation op) {
1248   transition(itos, itos);
1249   switch (op) {
1250   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1251   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1252   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1253   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1254   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1255   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1256   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1257   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1258   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1259   default   : ShouldNotReachHere();
1260   }
1261 }
1262 
1263 void TemplateTable::lop2(Operation op) {
1264   transition(ltos, ltos);
1265 #ifdef _LP64
1266   switch (op) {
1267   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1268   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1269   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1270   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1271   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1272   default   : ShouldNotReachHere();
1273   }
1274 #else
1275   __ pop_l(rbx, rcx);
1276   switch (op) {
1277     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1278     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1279                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1280     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1281     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1282     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1283     default   : ShouldNotReachHere();
1284   }
1285 #endif
1286 }
1287 
1288 void TemplateTable::idiv() {
1289   transition(itos, itos);
1290   __ movl(rcx, rax);
1291   __ pop_i(rax);
1292   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1293   //       they are not equal, one could do a normal division (no correction
1294   //       needed), which may speed up this implementation for the common case.
1295   //       (see also JVM spec., p.243 & p.271)
1296   __ corrected_idivl(rcx);
1297 }
1298 
1299 void TemplateTable::irem() {
1300   transition(itos, itos);
1301   __ movl(rcx, rax);
1302   __ pop_i(rax);
1303   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1304   //       they are not equal, one could do a normal division (no correction
1305   //       needed), which may speed up this implementation for the common case.
1306   //       (see also JVM spec., p.243 & p.271)
1307   __ corrected_idivl(rcx);
1308   __ movl(rax, rdx);
1309 }
1310 
1311 void TemplateTable::lmul() {
1312   transition(ltos, ltos);
1313 #ifdef _LP64
1314   __ pop_l(rdx);
1315   __ imulq(rax, rdx);
1316 #else
1317   __ pop_l(rbx, rcx);
1318   __ push(rcx); __ push(rbx);
1319   __ push(rdx); __ push(rax);
1320   __ lmul(2 * wordSize, 0);
1321   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1322 #endif
1323 }
1324 
1325 void TemplateTable::ldiv() {
1326   transition(ltos, ltos);
1327 #ifdef _LP64
1328   __ mov(rcx, rax);
1329   __ pop_l(rax);
1330   // generate explicit div0 check
1331   __ testq(rcx, rcx);
1332   __ jump_cc(Assembler::zero,
1333              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1334   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1335   //       they are not equal, one could do a normal division (no correction
1336   //       needed), which may speed up this implementation for the common case.
1337   //       (see also JVM spec., p.243 & p.271)
1338   __ corrected_idivq(rcx); // kills rbx
1339 #else
1340   __ pop_l(rbx, rcx);
1341   __ push(rcx); __ push(rbx);
1342   __ push(rdx); __ push(rax);
1343   // check if y = 0
1344   __ orl(rax, rdx);
1345   __ jump_cc(Assembler::zero,
1346              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1347   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1348   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1349 #endif
1350 }
1351 
1352 void TemplateTable::lrem() {
1353   transition(ltos, ltos);
1354 #ifdef _LP64
1355   __ mov(rcx, rax);
1356   __ pop_l(rax);
1357   __ testq(rcx, rcx);
1358   __ jump_cc(Assembler::zero,
1359              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1360   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1361   //       they are not equal, one could do a normal division (no correction
1362   //       needed), which may speed up this implementation for the common case.
1363   //       (see also JVM spec., p.243 & p.271)
1364   __ corrected_idivq(rcx); // kills rbx
1365   __ mov(rax, rdx);
1366 #else
1367   __ pop_l(rbx, rcx);
1368   __ push(rcx); __ push(rbx);
1369   __ push(rdx); __ push(rax);
1370   // check if y = 0
1371   __ orl(rax, rdx);
1372   __ jump_cc(Assembler::zero,
1373              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1374   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1375   __ addptr(rsp, 4 * wordSize);
1376 #endif
1377 }
1378 
1379 void TemplateTable::lshl() {
1380   transition(itos, ltos);
1381   __ movl(rcx, rax);                             // get shift count
1382   #ifdef _LP64
1383   __ pop_l(rax);                                 // get shift value
1384   __ shlq(rax);
1385 #else
1386   __ pop_l(rax, rdx);                            // get shift value
1387   __ lshl(rdx, rax);
1388 #endif
1389 }
1390 
1391 void TemplateTable::lshr() {
1392 #ifdef _LP64
1393   transition(itos, ltos);
1394   __ movl(rcx, rax);                             // get shift count
1395   __ pop_l(rax);                                 // get shift value
1396   __ sarq(rax);
1397 #else
1398   transition(itos, ltos);
1399   __ mov(rcx, rax);                              // get shift count
1400   __ pop_l(rax, rdx);                            // get shift value
1401   __ lshr(rdx, rax, true);
1402 #endif
1403 }
1404 
1405 void TemplateTable::lushr() {
1406   transition(itos, ltos);
1407 #ifdef _LP64
1408   __ movl(rcx, rax);                             // get shift count
1409   __ pop_l(rax);                                 // get shift value
1410   __ shrq(rax);
1411 #else
1412   __ mov(rcx, rax);                              // get shift count
1413   __ pop_l(rax, rdx);                            // get shift value
1414   __ lshr(rdx, rax);
1415 #endif
1416 }
1417 
1418 void TemplateTable::fop2(Operation op) {
1419   transition(ftos, ftos);
1420 
1421   if (UseSSE >= 1) {
1422     switch (op) {
1423     case add:
1424       __ addss(xmm0, at_rsp());
1425       __ addptr(rsp, Interpreter::stackElementSize);
1426       break;
1427     case sub:
1428       __ movflt(xmm1, xmm0);
1429       __ pop_f(xmm0);
1430       __ subss(xmm0, xmm1);
1431       break;
1432     case mul:
1433       __ mulss(xmm0, at_rsp());
1434       __ addptr(rsp, Interpreter::stackElementSize);
1435       break;
1436     case div:
1437       __ movflt(xmm1, xmm0);
1438       __ pop_f(xmm0);
1439       __ divss(xmm0, xmm1);
1440       break;
1441     case rem:
1442       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1443       // modulo operation. The frem method calls the function
1444       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1445       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1446       // (signalling or quiet) is returned.
1447       //
1448       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1449       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1450       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1451       // The fprem instruction used on x86_32 is functionally equivalent to
1452       // SharedRuntime::frem in that it returns a NaN.
1453 #ifdef _LP64
1454       __ movflt(xmm1, xmm0);
1455       __ pop_f(xmm0);
1456       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1457 #else
1458       __ push_f(xmm0);
1459       __ pop_f();
1460       __ fld_s(at_rsp());
1461       __ fremr(rax);
1462       __ f2ieee();
1463       __ pop(rax);  // pop second operand off the stack
1464       __ push_f();
1465       __ pop_f(xmm0);
1466 #endif
1467       break;
1468     default:
1469       ShouldNotReachHere();
1470       break;
1471     }
1472   } else {
1473 #ifdef _LP64
1474     ShouldNotReachHere();
1475 #else
1476     switch (op) {
1477     case add: __ fadd_s (at_rsp());                break;
1478     case sub: __ fsubr_s(at_rsp());                break;
1479     case mul: __ fmul_s (at_rsp());                break;
1480     case div: __ fdivr_s(at_rsp());                break;
1481     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1482     default : ShouldNotReachHere();
1483     }
1484     __ f2ieee();
1485     __ pop(rax);  // pop second operand off the stack
1486 #endif // _LP64
1487   }
1488 }
1489 
1490 void TemplateTable::dop2(Operation op) {
1491   transition(dtos, dtos);
1492   if (UseSSE >= 2) {
1493     switch (op) {
1494     case add:
1495       __ addsd(xmm0, at_rsp());
1496       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1497       break;
1498     case sub:
1499       __ movdbl(xmm1, xmm0);
1500       __ pop_d(xmm0);
1501       __ subsd(xmm0, xmm1);
1502       break;
1503     case mul:
1504       __ mulsd(xmm0, at_rsp());
1505       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1506       break;
1507     case div:
1508       __ movdbl(xmm1, xmm0);
1509       __ pop_d(xmm0);
1510       __ divsd(xmm0, xmm1);
1511       break;
1512     case rem:
1513       // Similar to fop2(), the modulo operation is performed using the
1514       // SharedRuntime::drem method (on x86_64 platforms) or using the
1515       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1516 #ifdef _LP64
1517       __ movdbl(xmm1, xmm0);
1518       __ pop_d(xmm0);
1519       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1520 #else
1521       __ push_d(xmm0);
1522       __ pop_d();
1523       __ fld_d(at_rsp());
1524       __ fremr(rax);
1525       __ d2ieee();
1526       __ pop(rax);
1527       __ pop(rdx);
1528       __ push_d();
1529       __ pop_d(xmm0);
1530 #endif
1531       break;
1532     default:
1533       ShouldNotReachHere();
1534       break;
1535     }
1536   } else {
1537 #ifdef _LP64
1538     ShouldNotReachHere();
1539 #else
1540     switch (op) {
1541     case add: __ fadd_d (at_rsp());                break;
1542     case sub: __ fsubr_d(at_rsp());                break;
1543     case mul: {
1544       Label L_strict;
1545       Label L_join;
1546       const Address access_flags      (rcx, Method::access_flags_offset());
1547       __ get_method(rcx);
1548       __ movl(rcx, access_flags);
1549       __ testl(rcx, JVM_ACC_STRICT);
1550       __ jccb(Assembler::notZero, L_strict);
1551       __ fmul_d (at_rsp());
1552       __ jmpb(L_join);
1553       __ bind(L_strict);
1554       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1555       __ fmulp();
1556       __ fmul_d (at_rsp());
1557       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1558       __ fmulp();
1559       __ bind(L_join);
1560       break;
1561     }
1562     case div: {
1563       Label L_strict;
1564       Label L_join;
1565       const Address access_flags      (rcx, Method::access_flags_offset());
1566       __ get_method(rcx);
1567       __ movl(rcx, access_flags);
1568       __ testl(rcx, JVM_ACC_STRICT);
1569       __ jccb(Assembler::notZero, L_strict);
1570       __ fdivr_d(at_rsp());
1571       __ jmp(L_join);
1572       __ bind(L_strict);
1573       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1574       __ fmul_d (at_rsp());
1575       __ fdivrp();
1576       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1577       __ fmulp();
1578       __ bind(L_join);
1579       break;
1580     }
1581     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1582     default : ShouldNotReachHere();
1583     }
1584     __ d2ieee();
1585     // Pop double precision number from rsp.
1586     __ pop(rax);
1587     __ pop(rdx);
1588 #endif
1589   }
1590 }
1591 
1592 void TemplateTable::ineg() {
1593   transition(itos, itos);
1594   __ negl(rax);
1595 }
1596 
1597 void TemplateTable::lneg() {
1598   transition(ltos, ltos);
1599   LP64_ONLY(__ negq(rax));
1600   NOT_LP64(__ lneg(rdx, rax));
1601 }
1602 
1603 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1604 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1605   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1606   // of 128-bits operands for SSE instructions.
1607   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1608   // Store the value to a 128-bits operand.
1609   operand[0] = lo;
1610   operand[1] = hi;
1611   return operand;
1612 }
1613 
1614 // Buffer for 128-bits masks used by SSE instructions.
1615 static jlong float_signflip_pool[2*2];
1616 static jlong double_signflip_pool[2*2];
1617 
1618 void TemplateTable::fneg() {
1619   transition(ftos, ftos);
1620   if (UseSSE >= 1) {
1621     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1622     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1623   } else {
1624     LP64_ONLY(ShouldNotReachHere());
1625     NOT_LP64(__ fchs());
1626   }
1627 }
1628 
1629 void TemplateTable::dneg() {
1630   transition(dtos, dtos);
1631   if (UseSSE >= 2) {
1632     static jlong *double_signflip =
1633       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1634     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1635   } else {
1636 #ifdef _LP64
1637     ShouldNotReachHere();
1638 #else
1639     __ fchs();
1640 #endif
1641   }
1642 }
1643 
1644 void TemplateTable::iinc() {
1645   transition(vtos, vtos);
1646   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1647   locals_index(rbx);
1648   __ addl(iaddress(rbx), rdx);
1649 }
1650 
1651 void TemplateTable::wide_iinc() {
1652   transition(vtos, vtos);
1653   __ movl(rdx, at_bcp(4)); // get constant
1654   locals_index_wide(rbx);
1655   __ bswapl(rdx); // swap bytes & sign-extend constant
1656   __ sarl(rdx, 16);
1657   __ addl(iaddress(rbx), rdx);
1658   // Note: should probably use only one movl to get both
1659   //       the index and the constant -> fix this
1660 }
1661 
1662 void TemplateTable::convert() {
1663 #ifdef _LP64
1664   // Checking
1665 #ifdef ASSERT
1666   {
1667     TosState tos_in  = ilgl;
1668     TosState tos_out = ilgl;
1669     switch (bytecode()) {
1670     case Bytecodes::_i2l: // fall through
1671     case Bytecodes::_i2f: // fall through
1672     case Bytecodes::_i2d: // fall through
1673     case Bytecodes::_i2b: // fall through
1674     case Bytecodes::_i2c: // fall through
1675     case Bytecodes::_i2s: tos_in = itos; break;
1676     case Bytecodes::_l2i: // fall through
1677     case Bytecodes::_l2f: // fall through
1678     case Bytecodes::_l2d: tos_in = ltos; break;
1679     case Bytecodes::_f2i: // fall through
1680     case Bytecodes::_f2l: // fall through
1681     case Bytecodes::_f2d: tos_in = ftos; break;
1682     case Bytecodes::_d2i: // fall through
1683     case Bytecodes::_d2l: // fall through
1684     case Bytecodes::_d2f: tos_in = dtos; break;
1685     default             : ShouldNotReachHere();
1686     }
1687     switch (bytecode()) {
1688     case Bytecodes::_l2i: // fall through
1689     case Bytecodes::_f2i: // fall through
1690     case Bytecodes::_d2i: // fall through
1691     case Bytecodes::_i2b: // fall through
1692     case Bytecodes::_i2c: // fall through
1693     case Bytecodes::_i2s: tos_out = itos; break;
1694     case Bytecodes::_i2l: // fall through
1695     case Bytecodes::_f2l: // fall through
1696     case Bytecodes::_d2l: tos_out = ltos; break;
1697     case Bytecodes::_i2f: // fall through
1698     case Bytecodes::_l2f: // fall through
1699     case Bytecodes::_d2f: tos_out = ftos; break;
1700     case Bytecodes::_i2d: // fall through
1701     case Bytecodes::_l2d: // fall through
1702     case Bytecodes::_f2d: tos_out = dtos; break;
1703     default             : ShouldNotReachHere();
1704     }
1705     transition(tos_in, tos_out);
1706   }
1707 #endif // ASSERT
1708 
1709   static const int64_t is_nan = 0x8000000000000000L;
1710 
1711   // Conversion
1712   switch (bytecode()) {
1713   case Bytecodes::_i2l:
1714     __ movslq(rax, rax);
1715     break;
1716   case Bytecodes::_i2f:
1717     __ cvtsi2ssl(xmm0, rax);
1718     break;
1719   case Bytecodes::_i2d:
1720     __ cvtsi2sdl(xmm0, rax);
1721     break;
1722   case Bytecodes::_i2b:
1723     __ movsbl(rax, rax);
1724     break;
1725   case Bytecodes::_i2c:
1726     __ movzwl(rax, rax);
1727     break;
1728   case Bytecodes::_i2s:
1729     __ movswl(rax, rax);
1730     break;
1731   case Bytecodes::_l2i:
1732     __ movl(rax, rax);
1733     break;
1734   case Bytecodes::_l2f:
1735     __ cvtsi2ssq(xmm0, rax);
1736     break;
1737   case Bytecodes::_l2d:
1738     __ cvtsi2sdq(xmm0, rax);
1739     break;
1740   case Bytecodes::_f2i:
1741   {
1742     Label L;
1743     __ cvttss2sil(rax, xmm0);
1744     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1745     __ jcc(Assembler::notEqual, L);
1746     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1747     __ bind(L);
1748   }
1749     break;
1750   case Bytecodes::_f2l:
1751   {
1752     Label L;
1753     __ cvttss2siq(rax, xmm0);
1754     // NaN or overflow/underflow?
1755     __ cmp64(rax, ExternalAddress((address) &is_nan));
1756     __ jcc(Assembler::notEqual, L);
1757     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1758     __ bind(L);
1759   }
1760     break;
1761   case Bytecodes::_f2d:
1762     __ cvtss2sd(xmm0, xmm0);
1763     break;
1764   case Bytecodes::_d2i:
1765   {
1766     Label L;
1767     __ cvttsd2sil(rax, xmm0);
1768     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1769     __ jcc(Assembler::notEqual, L);
1770     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1771     __ bind(L);
1772   }
1773     break;
1774   case Bytecodes::_d2l:
1775   {
1776     Label L;
1777     __ cvttsd2siq(rax, xmm0);
1778     // NaN or overflow/underflow?
1779     __ cmp64(rax, ExternalAddress((address) &is_nan));
1780     __ jcc(Assembler::notEqual, L);
1781     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1782     __ bind(L);
1783   }
1784     break;
1785   case Bytecodes::_d2f:
1786     __ cvtsd2ss(xmm0, xmm0);
1787     break;
1788   default:
1789     ShouldNotReachHere();
1790   }
1791 #else
1792   // Checking
1793 #ifdef ASSERT
1794   { TosState tos_in  = ilgl;
1795     TosState tos_out = ilgl;
1796     switch (bytecode()) {
1797       case Bytecodes::_i2l: // fall through
1798       case Bytecodes::_i2f: // fall through
1799       case Bytecodes::_i2d: // fall through
1800       case Bytecodes::_i2b: // fall through
1801       case Bytecodes::_i2c: // fall through
1802       case Bytecodes::_i2s: tos_in = itos; break;
1803       case Bytecodes::_l2i: // fall through
1804       case Bytecodes::_l2f: // fall through
1805       case Bytecodes::_l2d: tos_in = ltos; break;
1806       case Bytecodes::_f2i: // fall through
1807       case Bytecodes::_f2l: // fall through
1808       case Bytecodes::_f2d: tos_in = ftos; break;
1809       case Bytecodes::_d2i: // fall through
1810       case Bytecodes::_d2l: // fall through
1811       case Bytecodes::_d2f: tos_in = dtos; break;
1812       default             : ShouldNotReachHere();
1813     }
1814     switch (bytecode()) {
1815       case Bytecodes::_l2i: // fall through
1816       case Bytecodes::_f2i: // fall through
1817       case Bytecodes::_d2i: // fall through
1818       case Bytecodes::_i2b: // fall through
1819       case Bytecodes::_i2c: // fall through
1820       case Bytecodes::_i2s: tos_out = itos; break;
1821       case Bytecodes::_i2l: // fall through
1822       case Bytecodes::_f2l: // fall through
1823       case Bytecodes::_d2l: tos_out = ltos; break;
1824       case Bytecodes::_i2f: // fall through
1825       case Bytecodes::_l2f: // fall through
1826       case Bytecodes::_d2f: tos_out = ftos; break;
1827       case Bytecodes::_i2d: // fall through
1828       case Bytecodes::_l2d: // fall through
1829       case Bytecodes::_f2d: tos_out = dtos; break;
1830       default             : ShouldNotReachHere();
1831     }
1832     transition(tos_in, tos_out);
1833   }
1834 #endif // ASSERT
1835 
1836   // Conversion
1837   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1838   switch (bytecode()) {
1839     case Bytecodes::_i2l:
1840       __ extend_sign(rdx, rax);
1841       break;
1842     case Bytecodes::_i2f:
1843       if (UseSSE >= 1) {
1844         __ cvtsi2ssl(xmm0, rax);
1845       } else {
1846         __ push(rax);          // store int on tos
1847         __ fild_s(at_rsp());   // load int to ST0
1848         __ f2ieee();           // truncate to float size
1849         __ pop(rcx);           // adjust rsp
1850       }
1851       break;
1852     case Bytecodes::_i2d:
1853       if (UseSSE >= 2) {
1854         __ cvtsi2sdl(xmm0, rax);
1855       } else {
1856       __ push(rax);          // add one slot for d2ieee()
1857       __ push(rax);          // store int on tos
1858       __ fild_s(at_rsp());   // load int to ST0
1859       __ d2ieee();           // truncate to double size
1860       __ pop(rcx);           // adjust rsp
1861       __ pop(rcx);
1862       }
1863       break;
1864     case Bytecodes::_i2b:
1865       __ shll(rax, 24);      // truncate upper 24 bits
1866       __ sarl(rax, 24);      // and sign-extend byte
1867       LP64_ONLY(__ movsbl(rax, rax));
1868       break;
1869     case Bytecodes::_i2c:
1870       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1871       LP64_ONLY(__ movzwl(rax, rax));
1872       break;
1873     case Bytecodes::_i2s:
1874       __ shll(rax, 16);      // truncate upper 16 bits
1875       __ sarl(rax, 16);      // and sign-extend short
1876       LP64_ONLY(__ movswl(rax, rax));
1877       break;
1878     case Bytecodes::_l2i:
1879       /* nothing to do */
1880       break;
1881     case Bytecodes::_l2f:
1882       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1883       // 64-bit long values to floats. On 32-bit platforms it is not possible
1884       // to use that instruction with 64-bit operands, therefore the FPU is
1885       // used to perform the conversion.
1886       __ push(rdx);          // store long on tos
1887       __ push(rax);
1888       __ fild_d(at_rsp());   // load long to ST0
1889       __ f2ieee();           // truncate to float size
1890       __ pop(rcx);           // adjust rsp
1891       __ pop(rcx);
1892       if (UseSSE >= 1) {
1893         __ push_f();
1894         __ pop_f(xmm0);
1895       }
1896       break;
1897     case Bytecodes::_l2d:
1898       // On 32-bit platforms the FPU is used for conversion because on
1899       // 32-bit platforms it is not not possible to use the cvtsi2sdq
1900       // instruction with 64-bit operands.
1901       __ push(rdx);          // store long on tos
1902       __ push(rax);
1903       __ fild_d(at_rsp());   // load long to ST0
1904       __ d2ieee();           // truncate to double size
1905       __ pop(rcx);           // adjust rsp
1906       __ pop(rcx);
1907       if (UseSSE >= 2) {
1908         __ push_d();
1909         __ pop_d(xmm0);
1910       }
1911       break;
1912     case Bytecodes::_f2i:
1913       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
1914       // as it returns 0 for any NaN.
1915       if (UseSSE >= 1) {
1916         __ push_f(xmm0);
1917       } else {
1918         __ push(rcx);          // reserve space for argument
1919         __ fstp_s(at_rsp());   // pass float argument on stack
1920       }
1921       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1922       break;
1923     case Bytecodes::_f2l:
1924       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
1925       // as it returns 0 for any NaN.
1926       if (UseSSE >= 1) {
1927        __ push_f(xmm0);
1928       } else {
1929         __ push(rcx);          // reserve space for argument
1930         __ fstp_s(at_rsp());   // pass float argument on stack
1931       }
1932       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1933       break;
1934     case Bytecodes::_f2d:
1935       if (UseSSE < 1) {
1936         /* nothing to do */
1937       } else if (UseSSE == 1) {
1938         __ push_f(xmm0);
1939         __ pop_f();
1940       } else { // UseSSE >= 2
1941         __ cvtss2sd(xmm0, xmm0);
1942       }
1943       break;
1944     case Bytecodes::_d2i:
1945       if (UseSSE >= 2) {
1946         __ push_d(xmm0);
1947       } else {
1948         __ push(rcx);          // reserve space for argument
1949         __ push(rcx);
1950         __ fstp_d(at_rsp());   // pass double argument on stack
1951       }
1952       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1953       break;
1954     case Bytecodes::_d2l:
1955       if (UseSSE >= 2) {
1956         __ push_d(xmm0);
1957       } else {
1958         __ push(rcx);          // reserve space for argument
1959         __ push(rcx);
1960         __ fstp_d(at_rsp());   // pass double argument on stack
1961       }
1962       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1963       break;
1964     case Bytecodes::_d2f:
1965       if (UseSSE <= 1) {
1966         __ push(rcx);          // reserve space for f2ieee()
1967         __ f2ieee();           // truncate to float size
1968         __ pop(rcx);           // adjust rsp
1969         if (UseSSE == 1) {
1970           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
1971           // the conversion is performed using the FPU in this case.
1972           __ push_f();
1973           __ pop_f(xmm0);
1974         }
1975       } else { // UseSSE >= 2
1976         __ cvtsd2ss(xmm0, xmm0);
1977       }
1978       break;
1979     default             :
1980       ShouldNotReachHere();
1981   }
1982 #endif
1983 }
1984 
1985 void TemplateTable::lcmp() {
1986   transition(ltos, itos);
1987 #ifdef _LP64
1988   Label done;
1989   __ pop_l(rdx);
1990   __ cmpq(rdx, rax);
1991   __ movl(rax, -1);
1992   __ jccb(Assembler::less, done);
1993   __ setb(Assembler::notEqual, rax);
1994   __ movzbl(rax, rax);
1995   __ bind(done);
1996 #else
1997 
1998   // y = rdx:rax
1999   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2000   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2001   __ mov(rax, rcx);
2002 #endif
2003 }
2004 
2005 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2006   if ((is_float && UseSSE >= 1) ||
2007       (!is_float && UseSSE >= 2)) {
2008     Label done;
2009     if (is_float) {
2010       // XXX get rid of pop here, use ... reg, mem32
2011       __ pop_f(xmm1);
2012       __ ucomiss(xmm1, xmm0);
2013     } else {
2014       // XXX get rid of pop here, use ... reg, mem64
2015       __ pop_d(xmm1);
2016       __ ucomisd(xmm1, xmm0);
2017     }
2018     if (unordered_result < 0) {
2019       __ movl(rax, -1);
2020       __ jccb(Assembler::parity, done);
2021       __ jccb(Assembler::below, done);
2022       __ setb(Assembler::notEqual, rdx);
2023       __ movzbl(rax, rdx);
2024     } else {
2025       __ movl(rax, 1);
2026       __ jccb(Assembler::parity, done);
2027       __ jccb(Assembler::above, done);
2028       __ movl(rax, 0);
2029       __ jccb(Assembler::equal, done);
2030       __ decrementl(rax);
2031     }
2032     __ bind(done);
2033   } else {
2034 #ifdef _LP64
2035     ShouldNotReachHere();
2036 #else
2037     if (is_float) {
2038       __ fld_s(at_rsp());
2039     } else {
2040       __ fld_d(at_rsp());
2041       __ pop(rdx);
2042     }
2043     __ pop(rcx);
2044     __ fcmp2int(rax, unordered_result < 0);
2045 #endif // _LP64
2046   }
2047 }
2048 
2049 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2050   __ get_method(rcx); // rcx holds method
2051   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2052                                      // holds bumped taken count
2053 
2054   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2055                              InvocationCounter::counter_offset();
2056   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2057                               InvocationCounter::counter_offset();
2058 
2059   // Load up edx with the branch displacement
2060   if (is_wide) {
2061     __ movl(rdx, at_bcp(1));
2062   } else {
2063     __ load_signed_short(rdx, at_bcp(1));
2064   }
2065   __ bswapl(rdx);
2066 
2067   if (!is_wide) {
2068     __ sarl(rdx, 16);
2069   }
2070   LP64_ONLY(__ movl2ptr(rdx, rdx));
2071 
2072   // Handle all the JSR stuff here, then exit.
2073   // It's much shorter and cleaner than intermingling with the non-JSR
2074   // normal-branch stuff occurring below.
2075   if (is_jsr) {
2076     // Pre-load the next target bytecode into rbx
2077     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2078 
2079     // compute return address as bci in rax
2080     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2081                         in_bytes(ConstMethod::codes_offset())));
2082     __ subptr(rax, Address(rcx, Method::const_offset()));
2083     // Adjust the bcp in r13 by the displacement in rdx
2084     __ addptr(rbcp, rdx);
2085     // jsr returns atos that is not an oop
2086     __ push_i(rax);
2087     __ dispatch_only(vtos);
2088     return;
2089   }
2090 
2091   // Normal (non-jsr) branch handling
2092 
2093   // Adjust the bcp in r13 by the displacement in rdx
2094   __ addptr(rbcp, rdx);
2095 
2096   assert(UseLoopCounter || !UseOnStackReplacement,
2097          "on-stack-replacement requires loop counters");
2098   Label backedge_counter_overflow;
2099   Label profile_method;
2100   Label dispatch;
2101   if (UseLoopCounter) {
2102     // increment backedge counter for backward branches
2103     // rax: MDO
2104     // rbx: MDO bumped taken-count
2105     // rcx: method
2106     // rdx: target offset
2107     // r13: target bcp
2108     // r14: locals pointer
2109     __ testl(rdx, rdx);             // check if forward or backward branch
2110     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2111 
2112     // check if MethodCounters exists
2113     Label has_counters;
2114     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2115     __ testptr(rax, rax);
2116     __ jcc(Assembler::notZero, has_counters);
2117     __ push(rdx);
2118     __ push(rcx);
2119     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2120                rcx);
2121     __ pop(rcx);
2122     __ pop(rdx);
2123     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2124     __ testptr(rax, rax);
2125     __ jcc(Assembler::zero, dispatch);
2126     __ bind(has_counters);
2127 
2128     if (TieredCompilation) {
2129       Label no_mdo;
2130       int increment = InvocationCounter::count_increment;
2131       if (ProfileInterpreter) {
2132         // Are we profiling?
2133         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2134         __ testptr(rbx, rbx);
2135         __ jccb(Assembler::zero, no_mdo);
2136         // Increment the MDO backedge counter
2137         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2138                                            in_bytes(InvocationCounter::counter_offset()));
2139         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2140         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2141                                    rax, false, Assembler::zero, &backedge_counter_overflow);
2142         __ jmp(dispatch);
2143       }
2144       __ bind(no_mdo);
2145       // Increment backedge counter in MethodCounters*
2146       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2147       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2148       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2149                                  rax, false, Assembler::zero, &backedge_counter_overflow);
2150     } else { // not TieredCompilation
2151       // increment counter
2152       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2153       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2154       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2155       __ movl(Address(rcx, be_offset), rax);        // store counter
2156 
2157       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2158 
2159       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2160       __ addl(rax, Address(rcx, be_offset));        // add both counters
2161 
2162       if (ProfileInterpreter) {
2163         // Test to see if we should create a method data oop
2164         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2165         __ jcc(Assembler::less, dispatch);
2166 
2167         // if no method data exists, go to profile method
2168         __ test_method_data_pointer(rax, profile_method);
2169 
2170         if (UseOnStackReplacement) {
2171           // check for overflow against rbx which is the MDO taken count
2172           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2173           __ jcc(Assembler::below, dispatch);
2174 
2175           // When ProfileInterpreter is on, the backedge_count comes
2176           // from the MethodData*, which value does not get reset on
2177           // the call to frequency_counter_overflow().  To avoid
2178           // excessive calls to the overflow routine while the method is
2179           // being compiled, add a second test to make sure the overflow
2180           // function is called only once every overflow_frequency.
2181           const int overflow_frequency = 1024;
2182           __ andl(rbx, overflow_frequency - 1);
2183           __ jcc(Assembler::zero, backedge_counter_overflow);
2184 
2185         }
2186       } else {
2187         if (UseOnStackReplacement) {
2188           // check for overflow against rax, which is the sum of the
2189           // counters
2190           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2191           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2192 
2193         }
2194       }
2195     }
2196     __ bind(dispatch);
2197   }
2198 
2199   // Pre-load the next target bytecode into rbx
2200   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2201 
2202   // continue with the bytecode @ target
2203   // rax: return bci for jsr's, unused otherwise
2204   // rbx: target bytecode
2205   // r13: target bcp
2206   __ dispatch_only(vtos);
2207 
2208   if (UseLoopCounter) {
2209     if (ProfileInterpreter) {
2210       // Out-of-line code to allocate method data oop.
2211       __ bind(profile_method);
2212       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2213       __ load_unsigned_byte(rbx, Address(rbcp, 0));  // restore target bytecode
2214       __ set_method_data_pointer_for_bcp();
2215       __ jmp(dispatch);
2216     }
2217 
2218     if (UseOnStackReplacement) {
2219       // invocation counter overflow
2220       __ bind(backedge_counter_overflow);
2221       __ negptr(rdx);
2222       __ addptr(rdx, rbcp); // branch bcp
2223       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2224       __ call_VM(noreg,
2225                  CAST_FROM_FN_PTR(address,
2226                                   InterpreterRuntime::frequency_counter_overflow),
2227                  rdx);
2228       __ load_unsigned_byte(rbx, Address(rbcp, 0));  // restore target bytecode
2229 
2230       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2231       // rbx: target bytecode
2232       // rdx: scratch
2233       // r14: locals pointer
2234       // r13: bcp
2235       __ testptr(rax, rax);                        // test result
2236       __ jcc(Assembler::zero, dispatch);         // no osr if null
2237       // nmethod may have been invalidated (VM may block upon call_VM return)
2238       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2239       __ jcc(Assembler::notEqual, dispatch);
2240 
2241       // We have the address of an on stack replacement routine in rax
2242       // We need to prepare to execute the OSR method. First we must
2243       // migrate the locals and monitors off of the stack.
2244 
2245       LP64_ONLY(__ mov(r13, rax));                             // save the nmethod
2246       NOT_LP64(__ mov(rbx, rax));                             // save the nmethod
2247       NOT_LP64(__ get_thread(rcx));
2248 
2249       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2250 
2251       // rax is OSR buffer, move it to expected parameter location
2252       LP64_ONLY(__ mov(j_rarg0, rax));
2253       NOT_LP64(__ mov(rcx, rax));
2254       // We use j_rarg definitions here so that registers don't conflict as parameter
2255       // registers change across platforms as we are in the midst of a calling
2256       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2257 
2258       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2259       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2260 
2261 
2262       // pop the interpreter frame
2263       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2264       __ leave();                                // remove frame anchor
2265       __ pop(retaddr);                           // get return address
2266       __ mov(rsp, sender_sp);                   // set sp to sender sp
2267       // Ensure compiled code always sees stack at proper alignment
2268       __ andptr(rsp, -(StackAlignmentInBytes));
2269 
2270       // unlike x86 we need no specialized return from compiled code
2271       // to the interpreter or the call stub.
2272 
2273       // push the return address
2274       __ push(retaddr);
2275 
2276       // and begin the OSR nmethod
2277       LP64_ONLY(__ jmp(Address(r13, nmethod::osr_entry_point_offset())));
2278       NOT_LP64(__ jmp(Address(rbx, nmethod::osr_entry_point_offset())));
2279     }
2280   }
2281 }
2282 
2283 void TemplateTable::if_0cmp(Condition cc) {
2284   transition(itos, vtos);
2285   // assume branch is more often taken than not (loops use backward branches)
2286   Label not_taken;
2287   __ testl(rax, rax);
2288   __ jcc(j_not(cc), not_taken);
2289   branch(false, false);
2290   __ bind(not_taken);
2291   __ profile_not_taken_branch(rax);
2292 }
2293 
2294 void TemplateTable::if_icmp(Condition cc) {
2295   transition(itos, vtos);
2296   // assume branch is more often taken than not (loops use backward branches)
2297   Label not_taken;
2298   __ pop_i(rdx);
2299   __ cmpl(rdx, rax);
2300   __ jcc(j_not(cc), not_taken);
2301   branch(false, false);
2302   __ bind(not_taken);
2303   __ profile_not_taken_branch(rax);
2304 }
2305 
2306 void TemplateTable::if_nullcmp(Condition cc) {
2307   transition(atos, vtos);
2308   // assume branch is more often taken than not (loops use backward branches)
2309   Label not_taken;
2310   __ testptr(rax, rax);
2311   __ jcc(j_not(cc), not_taken);
2312   branch(false, false);
2313   __ bind(not_taken);
2314   __ profile_not_taken_branch(rax);
2315 }
2316 
2317 void TemplateTable::if_acmp(Condition cc) {
2318   transition(atos, vtos);
2319   // assume branch is more often taken than not (loops use backward branches)
2320   Label not_taken;
2321   __ pop_ptr(rdx);
2322   __ cmpptr(rdx, rax);
2323   __ jcc(j_not(cc), not_taken);
2324   branch(false, false);
2325   __ bind(not_taken);
2326   __ profile_not_taken_branch(rax);
2327 }
2328 
2329 void TemplateTable::ret() {
2330   transition(vtos, vtos);
2331   locals_index(rbx);
2332   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2333   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2334   __ profile_ret(rbx, rcx);
2335   __ get_method(rax);
2336   __ movptr(rbcp, Address(rax, Method::const_offset()));
2337   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2338                       ConstMethod::codes_offset()));
2339   __ dispatch_next(vtos);
2340 }
2341 
2342 void TemplateTable::wide_ret() {
2343   transition(vtos, vtos);
2344   locals_index_wide(rbx);
2345   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2346   __ profile_ret(rbx, rcx);
2347   __ get_method(rax);
2348   __ movptr(rbcp, Address(rax, Method::const_offset()));
2349   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2350   __ dispatch_next(vtos);
2351 }
2352 
2353 void TemplateTable::tableswitch() {
2354   Label default_case, continue_execution;
2355   transition(itos, vtos);
2356 
2357   // align r13/rsi
2358   __ lea(rbx, at_bcp(BytesPerInt));
2359   __ andptr(rbx, -BytesPerInt);
2360   // load lo & hi
2361   __ movl(rcx, Address(rbx, BytesPerInt));
2362   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2363   __ bswapl(rcx);
2364   __ bswapl(rdx);
2365   // check against lo & hi
2366   __ cmpl(rax, rcx);
2367   __ jcc(Assembler::less, default_case);
2368   __ cmpl(rax, rdx);
2369   __ jcc(Assembler::greater, default_case);
2370   // lookup dispatch offset
2371   __ subl(rax, rcx);
2372   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2373   __ profile_switch_case(rax, rbx, rcx);
2374   // continue execution
2375   __ bind(continue_execution);
2376   __ bswapl(rdx);
2377   LP64_ONLY(__ movl2ptr(rdx, rdx));
2378   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2379   __ addptr(rbcp, rdx);
2380   __ dispatch_only(vtos);
2381   // handle default
2382   __ bind(default_case);
2383   __ profile_switch_default(rax);
2384   __ movl(rdx, Address(rbx, 0));
2385   __ jmp(continue_execution);
2386 }
2387 
2388 void TemplateTable::lookupswitch() {
2389   transition(itos, itos);
2390   __ stop("lookupswitch bytecode should have been rewritten");
2391 }
2392 
2393 void TemplateTable::fast_linearswitch() {
2394   transition(itos, vtos);
2395   Label loop_entry, loop, found, continue_execution;
2396   // bswap rax so we can avoid bswapping the table entries
2397   __ bswapl(rax);
2398   // align r13
2399   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2400                                     // this instruction (change offsets
2401                                     // below)
2402   __ andptr(rbx, -BytesPerInt);
2403   // set counter
2404   __ movl(rcx, Address(rbx, BytesPerInt));
2405   __ bswapl(rcx);
2406   __ jmpb(loop_entry);
2407   // table search
2408   __ bind(loop);
2409   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2410   __ jcc(Assembler::equal, found);
2411   __ bind(loop_entry);
2412   __ decrementl(rcx);
2413   __ jcc(Assembler::greaterEqual, loop);
2414   // default case
2415   __ profile_switch_default(rax);
2416   __ movl(rdx, Address(rbx, 0));
2417   __ jmp(continue_execution);
2418   // entry found -> get offset
2419   __ bind(found);
2420   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2421   __ profile_switch_case(rcx, rax, rbx);
2422   // continue execution
2423   __ bind(continue_execution);
2424   __ bswapl(rdx);
2425   __ movl2ptr(rdx, rdx);
2426   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2427   __ addptr(rbcp, rdx);
2428   __ dispatch_only(vtos);
2429 }
2430 
2431 void TemplateTable::fast_binaryswitch() {
2432   transition(itos, vtos);
2433   // Implementation using the following core algorithm:
2434   //
2435   // int binary_search(int key, LookupswitchPair* array, int n) {
2436   //   // Binary search according to "Methodik des Programmierens" by
2437   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2438   //   int i = 0;
2439   //   int j = n;
2440   //   while (i+1 < j) {
2441   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2442   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2443   //     // where a stands for the array and assuming that the (inexisting)
2444   //     // element a[n] is infinitely big.
2445   //     int h = (i + j) >> 1;
2446   //     // i < h < j
2447   //     if (key < array[h].fast_match()) {
2448   //       j = h;
2449   //     } else {
2450   //       i = h;
2451   //     }
2452   //   }
2453   //   // R: a[i] <= key < a[i+1] or Q
2454   //   // (i.e., if key is within array, i is the correct index)
2455   //   return i;
2456   // }
2457 
2458   // Register allocation
2459   const Register key   = rax; // already set (tosca)
2460   const Register array = rbx;
2461   const Register i     = rcx;
2462   const Register j     = rdx;
2463   const Register h     = rdi;
2464   const Register temp  = rsi;
2465 
2466   // Find array start
2467   NOT_LP64(__ save_bcp());
2468 
2469   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2470                                           // get rid of this
2471                                           // instruction (change
2472                                           // offsets below)
2473   __ andptr(array, -BytesPerInt);
2474 
2475   // Initialize i & j
2476   __ xorl(i, i);                            // i = 0;
2477   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2478 
2479   // Convert j into native byteordering
2480   __ bswapl(j);
2481 
2482   // And start
2483   Label entry;
2484   __ jmp(entry);
2485 
2486   // binary search loop
2487   {
2488     Label loop;
2489     __ bind(loop);
2490     // int h = (i + j) >> 1;
2491     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2492     __ sarl(h, 1);                               // h = (i + j) >> 1;
2493     // if (key < array[h].fast_match()) {
2494     //   j = h;
2495     // } else {
2496     //   i = h;
2497     // }
2498     // Convert array[h].match to native byte-ordering before compare
2499     __ movl(temp, Address(array, h, Address::times_8));
2500     __ bswapl(temp);
2501     __ cmpl(key, temp);
2502     // j = h if (key <  array[h].fast_match())
2503     __ cmov32(Assembler::less, j, h);
2504     // i = h if (key >= array[h].fast_match())
2505     __ cmov32(Assembler::greaterEqual, i, h);
2506     // while (i+1 < j)
2507     __ bind(entry);
2508     __ leal(h, Address(i, 1)); // i+1
2509     __ cmpl(h, j);             // i+1 < j
2510     __ jcc(Assembler::less, loop);
2511   }
2512 
2513   // end of binary search, result index is i (must check again!)
2514   Label default_case;
2515   // Convert array[i].match to native byte-ordering before compare
2516   __ movl(temp, Address(array, i, Address::times_8));
2517   __ bswapl(temp);
2518   __ cmpl(key, temp);
2519   __ jcc(Assembler::notEqual, default_case);
2520 
2521   // entry found -> j = offset
2522   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2523   __ profile_switch_case(i, key, array);
2524   __ bswapl(j);
2525   LP64_ONLY(__ movslq(j, j));
2526 
2527   NOT_LP64(__ restore_bcp());
2528   NOT_LP64(__ restore_locals());                           // restore rdi
2529 
2530   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2531   __ addptr(rbcp, j);
2532   __ dispatch_only(vtos);
2533 
2534   // default case -> j = default offset
2535   __ bind(default_case);
2536   __ profile_switch_default(i);
2537   __ movl(j, Address(array, -2 * BytesPerInt));
2538   __ bswapl(j);
2539   LP64_ONLY(__ movslq(j, j));
2540 
2541   NOT_LP64(__ restore_bcp());
2542   NOT_LP64(__ restore_locals());
2543 
2544   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2545   __ addptr(rbcp, j);
2546   __ dispatch_only(vtos);
2547 }
2548 
2549 void TemplateTable::_return(TosState state) {
2550   transition(state, state);
2551 
2552   assert(_desc->calls_vm(),
2553          "inconsistent calls_vm information"); // call in remove_activation
2554 
2555   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2556     assert(state == vtos, "only valid state");
2557     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2558     __ movptr(robj, aaddress(0));
2559     __ load_klass(rdi, robj);
2560     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2561     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2562     Label skip_register_finalizer;
2563     __ jcc(Assembler::zero, skip_register_finalizer);
2564 
2565     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2566 
2567     __ bind(skip_register_finalizer);
2568   }
2569 
2570   // Narrow result if state is itos but result type is smaller.
2571   // Need to narrow in the return bytecode rather than in generate_return_entry
2572   // since compiled code callers expect the result to already be narrowed.
2573   if (state == itos) {
2574     __ narrow(rax);
2575   }
2576   __ remove_activation(state, rbcp);
2577 
2578   __ jmp(rbcp);
2579 }
2580 
2581 // ----------------------------------------------------------------------------
2582 // Volatile variables demand their effects be made known to all CPU's
2583 // in order.  Store buffers on most chips allow reads & writes to
2584 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2585 // without some kind of memory barrier (i.e., it's not sufficient that
2586 // the interpreter does not reorder volatile references, the hardware
2587 // also must not reorder them).
2588 //
2589 // According to the new Java Memory Model (JMM):
2590 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2591 //     writes act as aquire & release, so:
2592 // (2) A read cannot let unrelated NON-volatile memory refs that
2593 //     happen after the read float up to before the read.  It's OK for
2594 //     non-volatile memory refs that happen before the volatile read to
2595 //     float down below it.
2596 // (3) Similar a volatile write cannot let unrelated NON-volatile
2597 //     memory refs that happen BEFORE the write float down to after the
2598 //     write.  It's OK for non-volatile memory refs that happen after the
2599 //     volatile write to float up before it.
2600 //
2601 // We only put in barriers around volatile refs (they are expensive),
2602 // not _between_ memory refs (that would require us to track the
2603 // flavor of the previous memory refs).  Requirements (2) and (3)
2604 // require some barriers before volatile stores and after volatile
2605 // loads.  These nearly cover requirement (1) but miss the
2606 // volatile-store-volatile-load case.  This final case is placed after
2607 // volatile-stores although it could just as well go before
2608 // volatile-loads.
2609 
2610 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2611   // Helper function to insert a is-volatile test and memory barrier
2612   if(!os::is_MP()) return;    // Not needed on single CPU
2613   __ membar(order_constraint);
2614 }
2615 
2616 void TemplateTable::resolve_cache_and_index(int byte_no,
2617                                             Register Rcache,
2618                                             Register index,
2619                                             size_t index_size) {
2620   const Register temp = rbx;
2621   assert_different_registers(Rcache, index, temp);
2622 
2623   Label resolved;
2624 
2625   Bytecodes::Code code = bytecode();
2626   switch (code) {
2627   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2628   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2629   }
2630 
2631   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2632   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2633   __ cmpl(temp, code);  // have we resolved this bytecode?
2634   __ jcc(Assembler::equal, resolved);
2635 
2636   // resolve first time through
2637   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2638   __ movl(temp, code);
2639   __ call_VM(noreg, entry, temp);
2640   // Update registers with resolved info
2641   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2642   __ bind(resolved);
2643 }
2644 
2645 // The cache and index registers must be set before call
2646 void TemplateTable::load_field_cp_cache_entry(Register obj,
2647                                               Register cache,
2648                                               Register index,
2649                                               Register off,
2650                                               Register flags,
2651                                               bool is_static = false) {
2652   assert_different_registers(cache, index, flags, off);
2653 
2654   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2655   // Field offset
2656   __ movptr(off, Address(cache, index, Address::times_ptr,
2657                          in_bytes(cp_base_offset +
2658                                   ConstantPoolCacheEntry::f2_offset())));
2659   // Flags
2660   __ movl(flags, Address(cache, index, Address::times_ptr,
2661                          in_bytes(cp_base_offset +
2662                                   ConstantPoolCacheEntry::flags_offset())));
2663 
2664   // klass overwrite register
2665   if (is_static) {
2666     __ movptr(obj, Address(cache, index, Address::times_ptr,
2667                            in_bytes(cp_base_offset +
2668                                     ConstantPoolCacheEntry::f1_offset())));
2669     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2670     __ movptr(obj, Address(obj, mirror_offset));
2671   }
2672 }
2673 
2674 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2675                                                Register method,
2676                                                Register itable_index,
2677                                                Register flags,
2678                                                bool is_invokevirtual,
2679                                                bool is_invokevfinal, /*unused*/
2680                                                bool is_invokedynamic) {
2681   // setup registers
2682   const Register cache = rcx;
2683   const Register index = rdx;
2684   assert_different_registers(method, flags);
2685   assert_different_registers(method, cache, index);
2686   assert_different_registers(itable_index, flags);
2687   assert_different_registers(itable_index, cache, index);
2688   // determine constant pool cache field offsets
2689   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2690   const int method_offset = in_bytes(
2691     ConstantPoolCache::base_offset() +
2692       ((byte_no == f2_byte)
2693        ? ConstantPoolCacheEntry::f2_offset()
2694        : ConstantPoolCacheEntry::f1_offset()));
2695   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2696                                     ConstantPoolCacheEntry::flags_offset());
2697   // access constant pool cache fields
2698   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2699                                     ConstantPoolCacheEntry::f2_offset());
2700 
2701   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2702   resolve_cache_and_index(byte_no, cache, index, index_size);
2703     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2704 
2705   if (itable_index != noreg) {
2706     // pick up itable or appendix index from f2 also:
2707     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2708   }
2709   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2710 }
2711 
2712 // The registers cache and index expected to be set before call.
2713 // Correct values of the cache and index registers are preserved.
2714 void TemplateTable::jvmti_post_field_access(Register cache,
2715                                             Register index,
2716                                             bool is_static,
2717                                             bool has_tos) {
2718   if (JvmtiExport::can_post_field_access()) {
2719     // Check to see if a field access watch has been set before we take
2720     // the time to call into the VM.
2721     Label L1;
2722     assert_different_registers(cache, index, rax);
2723     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2724     __ testl(rax,rax);
2725     __ jcc(Assembler::zero, L1);
2726 
2727     // cache entry pointer
2728     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2729     __ shll(index, LogBytesPerWord);
2730     __ addptr(cache, index);
2731     if (is_static) {
2732       __ xorptr(rax, rax);      // NULL object reference
2733     } else {
2734       __ pop(atos);         // Get the object
2735       __ verify_oop(rax);
2736       __ push(atos);        // Restore stack state
2737     }
2738     // rax,:   object pointer or NULL
2739     // cache: cache entry pointer
2740     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2741                rax, cache);
2742     __ get_cache_and_index_at_bcp(cache, index, 1);
2743     __ bind(L1);
2744   }
2745 }
2746 
2747 void TemplateTable::pop_and_check_object(Register r) {
2748   __ pop_ptr(r);
2749   __ null_check(r);  // for field access must check obj.
2750   __ verify_oop(r);
2751 }
2752 
2753 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2754   transition(vtos, vtos);
2755 
2756   const Register cache = rcx;
2757   const Register index = rdx;
2758   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2759   const Register off   = rbx;
2760   const Register flags = rax;
2761   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2762 
2763   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2764   jvmti_post_field_access(cache, index, is_static, false);
2765   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2766 
2767   if (!is_static) pop_and_check_object(obj);
2768 
2769   const Address field(obj, off, Address::times_1, 0*wordSize);
2770   NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
2771 
2772   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2773 
2774   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2775   // Make sure we don't need to mask edx after the above shift
2776   assert(btos == 0, "change code, btos != 0");
2777 
2778   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2779 
2780   __ jcc(Assembler::notZero, notByte);
2781   // btos
2782   __ load_signed_byte(rax, field);
2783   __ push(btos);
2784   // Rewrite bytecode to be faster
2785   if (!is_static && rc == may_rewrite) {
2786     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2787   }
2788   __ jmp(Done);
2789 
2790   __ bind(notByte);
2791   __ cmpl(flags, ztos);
2792   __ jcc(Assembler::notEqual, notBool);
2793 
2794   // ztos (same code as btos)
2795   __ load_signed_byte(rax, field);
2796   __ push(ztos);
2797   // Rewrite bytecode to be faster
2798   if (!is_static && rc == may_rewrite) {
2799     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2800     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2801   }
2802   __ jmp(Done);
2803 
2804   __ bind(notBool);
2805   __ cmpl(flags, atos);
2806   __ jcc(Assembler::notEqual, notObj);
2807   // atos
2808   __ load_heap_oop(rax, field);
2809   __ push(atos);
2810   if (!is_static && rc == may_rewrite) {
2811     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2812   }
2813   __ jmp(Done);
2814 
2815   __ bind(notObj);
2816   __ cmpl(flags, itos);
2817   __ jcc(Assembler::notEqual, notInt);
2818   // itos
2819   __ movl(rax, field);
2820   __ push(itos);
2821   // Rewrite bytecode to be faster
2822   if (!is_static && rc == may_rewrite) {
2823     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2824   }
2825   __ jmp(Done);
2826 
2827   __ bind(notInt);
2828   __ cmpl(flags, ctos);
2829   __ jcc(Assembler::notEqual, notChar);
2830   // ctos
2831   __ load_unsigned_short(rax, field);
2832   __ push(ctos);
2833   // Rewrite bytecode to be faster
2834   if (!is_static && rc == may_rewrite) {
2835     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2836   }
2837   __ jmp(Done);
2838 
2839   __ bind(notChar);
2840   __ cmpl(flags, stos);
2841   __ jcc(Assembler::notEqual, notShort);
2842   // stos
2843   __ load_signed_short(rax, field);
2844   __ push(stos);
2845   // Rewrite bytecode to be faster
2846   if (!is_static && rc == may_rewrite) {
2847     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2848   }
2849   __ jmp(Done);
2850 
2851   __ bind(notShort);
2852   __ cmpl(flags, ltos);
2853   __ jcc(Assembler::notEqual, notLong);
2854   // ltos
2855 
2856 #ifndef _LP64
2857   // Generate code as if volatile.  There just aren't enough registers to
2858   // save that information and this code is faster than the test.
2859   __ fild_d(field);                // Must load atomically
2860   __ subptr(rsp,2*wordSize);    // Make space for store
2861   __ fistp_d(Address(rsp,0));
2862   __ pop(rax);
2863   __ pop(rdx);
2864 #else
2865   __ movq(rax, field);
2866 #endif
2867 
2868   __ push(ltos);
2869   // Rewrite bytecode to be faster
2870   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2871   __ jmp(Done);
2872 
2873   __ bind(notLong);
2874   __ cmpl(flags, ftos);
2875   __ jcc(Assembler::notEqual, notFloat);
2876   // ftos
2877 
2878   __ load_float(field);
2879   __ push(ftos);
2880   // Rewrite bytecode to be faster
2881   if (!is_static && rc == may_rewrite) {
2882     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2883   }
2884   __ jmp(Done);
2885 
2886   __ bind(notFloat);
2887 #ifdef ASSERT
2888   __ cmpl(flags, dtos);
2889   __ jcc(Assembler::notEqual, notDouble);
2890 #endif
2891   // dtos
2892   __ load_double(field);
2893   __ push(dtos);
2894   // Rewrite bytecode to be faster
2895   if (!is_static && rc == may_rewrite) {
2896     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2897   }
2898 #ifdef ASSERT
2899   __ jmp(Done);
2900 
2901 
2902   __ bind(notDouble);
2903   __ stop("Bad state");
2904 #endif
2905 
2906   __ bind(Done);
2907   // [jk] not needed currently
2908   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2909   //                                              Assembler::LoadStore));
2910 }
2911 
2912 void TemplateTable::getfield(int byte_no) {
2913   getfield_or_static(byte_no, false);
2914 }
2915 
2916 void TemplateTable::nofast_getfield(int byte_no) {
2917   getfield_or_static(byte_no, false, may_not_rewrite);
2918 }
2919 
2920 void TemplateTable::getstatic(int byte_no) {
2921   getfield_or_static(byte_no, true);
2922 }
2923 
2924 
2925 // The registers cache and index expected to be set before call.
2926 // The function may destroy various registers, just not the cache and index registers.
2927 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2928 
2929   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
2930   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
2931   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
2932   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
2933 
2934   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2935 
2936   if (JvmtiExport::can_post_field_modification()) {
2937     // Check to see if a field modification watch has been set before
2938     // we take the time to call into the VM.
2939     Label L1;
2940     assert_different_registers(cache, index, rax);
2941     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2942     __ testl(rax, rax);
2943     __ jcc(Assembler::zero, L1);
2944 
2945     __ get_cache_and_index_at_bcp(robj, RDX, 1);
2946 
2947 
2948     if (is_static) {
2949       // Life is simple.  Null out the object pointer.
2950       __ xorl(RBX, RBX);
2951 
2952     } else {
2953       // Life is harder. The stack holds the value on top, followed by
2954       // the object.  We don't know the size of the value, though; it
2955       // could be one or two words depending on its type. As a result,
2956       // we must find the type to determine where the object is.
2957 #ifndef _LP64
2958       Label two_word, valsize_known;
2959 #endif
2960       __ movl(RCX, Address(robj, RDX,
2961                            Address::times_ptr,
2962                            in_bytes(cp_base_offset +
2963                                      ConstantPoolCacheEntry::flags_offset())));
2964       NOT_LP64(__ mov(rbx, rsp));
2965       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
2966 
2967       // Make sure we don't need to mask rcx after the above shift
2968       ConstantPoolCacheEntry::verify_tos_state_shift();
2969 #ifdef _LP64
2970       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2971       __ cmpl(c_rarg3, ltos);
2972       __ cmovptr(Assembler::equal,
2973                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2974       __ cmpl(c_rarg3, dtos);
2975       __ cmovptr(Assembler::equal,
2976                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2977 #else
2978       __ cmpl(rcx, ltos);
2979       __ jccb(Assembler::equal, two_word);
2980       __ cmpl(rcx, dtos);
2981       __ jccb(Assembler::equal, two_word);
2982       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2983       __ jmpb(valsize_known);
2984 
2985       __ bind(two_word);
2986       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2987 
2988       __ bind(valsize_known);
2989       // setup object pointer
2990       __ movptr(rbx, Address(rbx, 0));
2991 #endif
2992     }
2993     // cache entry pointer
2994     __ addptr(robj, in_bytes(cp_base_offset));
2995     __ shll(RDX, LogBytesPerWord);
2996     __ addptr(robj, RDX);
2997     // object (tos)
2998     __ mov(RCX, rsp);
2999     // c_rarg1: object pointer set up above (NULL if static)
3000     // c_rarg2: cache entry pointer
3001     // c_rarg3: jvalue object on the stack
3002     __ call_VM(noreg,
3003                CAST_FROM_FN_PTR(address,
3004                                 InterpreterRuntime::post_field_modification),
3005                RBX, robj, RCX);
3006     __ get_cache_and_index_at_bcp(cache, index, 1);
3007     __ bind(L1);
3008   }
3009 }
3010 
3011 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3012   transition(vtos, vtos);
3013 
3014   const Register cache = rcx;
3015   const Register index = rdx;
3016   const Register obj   = rcx;
3017   const Register off   = rbx;
3018   const Register flags = rax;
3019   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3020 
3021   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3022   jvmti_post_field_mod(cache, index, is_static);
3023   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3024 
3025   // [jk] not needed currently
3026   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3027   //                                              Assembler::StoreStore));
3028 
3029   Label notVolatile, Done;
3030   __ movl(rdx, flags);
3031   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3032   __ andl(rdx, 0x1);
3033 
3034   // field addresses
3035   const Address field(obj, off, Address::times_1, 0*wordSize);
3036   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3037 
3038   Label notByte, notBool, notInt, notShort, notChar,
3039         notLong, notFloat, notObj, notDouble;
3040 
3041   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3042 
3043   assert(btos == 0, "change code, btos != 0");
3044   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3045   __ jcc(Assembler::notZero, notByte);
3046 
3047   // btos
3048   {
3049     __ pop(btos);
3050     if (!is_static) pop_and_check_object(obj);
3051     __ movb(field, rax);
3052     if (!is_static && rc == may_rewrite) {
3053       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3054     }
3055     __ jmp(Done);
3056   }
3057 
3058   __ bind(notByte);
3059   __ cmpl(flags, ztos);
3060   __ jcc(Assembler::notEqual, notBool);
3061 
3062   // ztos
3063   {
3064     __ pop(ztos);
3065     if (!is_static) pop_and_check_object(obj);
3066     __ andl(rax, 0x1);
3067     __ movb(field, rax);
3068     if (!is_static && rc == may_rewrite) {
3069       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3070     }
3071     __ jmp(Done);
3072   }
3073 
3074   __ bind(notBool);
3075   __ cmpl(flags, atos);
3076   __ jcc(Assembler::notEqual, notObj);
3077 
3078   // atos
3079   {
3080     __ pop(atos);
3081     if (!is_static) pop_and_check_object(obj);
3082     // Store into the field
3083     do_oop_store(_masm, field, rax, _bs->kind(), false);
3084     if (!is_static && rc == may_rewrite) {
3085       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3086     }
3087     __ jmp(Done);
3088   }
3089 
3090   __ bind(notObj);
3091   __ cmpl(flags, itos);
3092   __ jcc(Assembler::notEqual, notInt);
3093 
3094   // itos
3095   {
3096     __ pop(itos);
3097     if (!is_static) pop_and_check_object(obj);
3098     __ movl(field, rax);
3099     if (!is_static && rc == may_rewrite) {
3100       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3101     }
3102     __ jmp(Done);
3103   }
3104 
3105   __ bind(notInt);
3106   __ cmpl(flags, ctos);
3107   __ jcc(Assembler::notEqual, notChar);
3108 
3109   // ctos
3110   {
3111     __ pop(ctos);
3112     if (!is_static) pop_and_check_object(obj);
3113     __ movw(field, rax);
3114     if (!is_static && rc == may_rewrite) {
3115       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3116     }
3117     __ jmp(Done);
3118   }
3119 
3120   __ bind(notChar);
3121   __ cmpl(flags, stos);
3122   __ jcc(Assembler::notEqual, notShort);
3123 
3124   // stos
3125   {
3126     __ pop(stos);
3127     if (!is_static) pop_and_check_object(obj);
3128     __ movw(field, rax);
3129     if (!is_static && rc == may_rewrite) {
3130       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3131     }
3132     __ jmp(Done);
3133   }
3134 
3135   __ bind(notShort);
3136   __ cmpl(flags, ltos);
3137   __ jcc(Assembler::notEqual, notLong);
3138 
3139   // ltos
3140 #ifdef _LP64
3141   {
3142     __ pop(ltos);
3143     if (!is_static) pop_and_check_object(obj);
3144     __ movq(field, rax);
3145     if (!is_static && rc == may_rewrite) {
3146       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3147     }
3148     __ jmp(Done);
3149   }
3150 #else
3151   {
3152     Label notVolatileLong;
3153     __ testl(rdx, rdx);
3154     __ jcc(Assembler::zero, notVolatileLong);
3155 
3156     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
3157     if (!is_static) pop_and_check_object(obj);
3158 
3159     // Replace with real volatile test
3160     __ push(rdx);
3161     __ push(rax);                 // Must update atomically with FIST
3162     __ fild_d(Address(rsp,0));    // So load into FPU register
3163     __ fistp_d(field);            // and put into memory atomically
3164     __ addptr(rsp, 2*wordSize);
3165     // volatile_barrier();
3166     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3167                                                  Assembler::StoreStore));
3168     // Don't rewrite volatile version
3169     __ jmp(notVolatile);
3170 
3171     __ bind(notVolatileLong);
3172 
3173     __ pop(ltos);  // overwrites rdx
3174     if (!is_static) pop_and_check_object(obj);
3175     __ movptr(hi, rdx);
3176     __ movptr(field, rax);
3177     // Don't rewrite to _fast_lputfield for potential volatile case.
3178     __ jmp(notVolatile);
3179   }
3180 #endif // _LP64
3181 
3182   __ bind(notLong);
3183   __ cmpl(flags, ftos);
3184   __ jcc(Assembler::notEqual, notFloat);
3185 
3186   // ftos
3187   {
3188     __ pop(ftos);
3189     if (!is_static) pop_and_check_object(obj);
3190     __ store_float(field);
3191     if (!is_static && rc == may_rewrite) {
3192       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3193     }
3194     __ jmp(Done);
3195   }
3196 
3197   __ bind(notFloat);
3198 #ifdef ASSERT
3199   __ cmpl(flags, dtos);
3200   __ jcc(Assembler::notEqual, notDouble);
3201 #endif
3202 
3203   // dtos
3204   {
3205     __ pop(dtos);
3206     if (!is_static) pop_and_check_object(obj);
3207     __ store_double(field);
3208     if (!is_static && rc == may_rewrite) {
3209       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3210     }
3211   }
3212 
3213 #ifdef ASSERT
3214   __ jmp(Done);
3215 
3216   __ bind(notDouble);
3217   __ stop("Bad state");
3218 #endif
3219 
3220   __ bind(Done);
3221 
3222   // Check for volatile store
3223   __ testl(rdx, rdx);
3224   __ jcc(Assembler::zero, notVolatile);
3225   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3226                                                Assembler::StoreStore));
3227   __ bind(notVolatile);
3228 }
3229 
3230 void TemplateTable::putfield(int byte_no) {
3231   putfield_or_static(byte_no, false);
3232 }
3233 
3234 void TemplateTable::nofast_putfield(int byte_no) {
3235   putfield_or_static(byte_no, false, may_not_rewrite);
3236 }
3237 
3238 void TemplateTable::putstatic(int byte_no) {
3239   putfield_or_static(byte_no, true);
3240 }
3241 
3242 void TemplateTable::jvmti_post_fast_field_mod() {
3243 
3244   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3245 
3246   if (JvmtiExport::can_post_field_modification()) {
3247     // Check to see if a field modification watch has been set before
3248     // we take the time to call into the VM.
3249     Label L2;
3250     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3251     __ testl(scratch, scratch);
3252     __ jcc(Assembler::zero, L2);
3253     __ pop_ptr(rbx);                  // copy the object pointer from tos
3254     __ verify_oop(rbx);
3255     __ push_ptr(rbx);                 // put the object pointer back on tos
3256     // Save tos values before call_VM() clobbers them. Since we have
3257     // to do it for every data type, we use the saved values as the
3258     // jvalue object.
3259     switch (bytecode()) {          // load values into the jvalue object
3260     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3261     case Bytecodes::_fast_bputfield: // fall through
3262     case Bytecodes::_fast_zputfield: // fall through
3263     case Bytecodes::_fast_sputfield: // fall through
3264     case Bytecodes::_fast_cputfield: // fall through
3265     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3266     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3267     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3268     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3269 
3270     default:
3271       ShouldNotReachHere();
3272     }
3273     __ mov(scratch, rsp);             // points to jvalue on the stack
3274     // access constant pool cache entry
3275     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3276     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3277     __ verify_oop(rbx);
3278     // rbx: object pointer copied above
3279     // c_rarg2: cache entry pointer
3280     // c_rarg3: jvalue object on the stack
3281     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3282     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3283 
3284     switch (bytecode()) {             // restore tos values
3285     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3286     case Bytecodes::_fast_bputfield: // fall through
3287     case Bytecodes::_fast_zputfield: // fall through
3288     case Bytecodes::_fast_sputfield: // fall through
3289     case Bytecodes::_fast_cputfield: // fall through
3290     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3291     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3292     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3293     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3294     }
3295     __ bind(L2);
3296   }
3297 }
3298 
3299 void TemplateTable::fast_storefield(TosState state) {
3300   transition(state, vtos);
3301 
3302   ByteSize base = ConstantPoolCache::base_offset();
3303 
3304   jvmti_post_fast_field_mod();
3305 
3306   // access constant pool cache
3307   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3308 
3309   // test for volatile with rdx but rdx is tos register for lputfield.
3310   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3311                        in_bytes(base +
3312                                 ConstantPoolCacheEntry::flags_offset())));
3313 
3314   // replace index with field offset from cache entry
3315   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3316                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3317 
3318   // [jk] not needed currently
3319   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3320   //                                              Assembler::StoreStore));
3321 
3322   Label notVolatile;
3323   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3324   __ andl(rdx, 0x1);
3325 
3326   // Get object from stack
3327   pop_and_check_object(rcx);
3328 
3329   // field address
3330   const Address field(rcx, rbx, Address::times_1);
3331 
3332   // access field
3333   switch (bytecode()) {
3334   case Bytecodes::_fast_aputfield:
3335     do_oop_store(_masm, field, rax, _bs->kind(), false);
3336     break;
3337   case Bytecodes::_fast_lputfield:
3338 #ifdef _LP64
3339   __ movq(field, rax);
3340 #else
3341   __ stop("should not be rewritten");
3342 #endif
3343     break;
3344   case Bytecodes::_fast_iputfield:
3345     __ movl(field, rax);
3346     break;
3347   case Bytecodes::_fast_zputfield:
3348     __ andl(rax, 0x1);  // boolean is true if LSB is 1
3349     // fall through to bputfield
3350   case Bytecodes::_fast_bputfield:
3351     __ movb(field, rax);
3352     break;
3353   case Bytecodes::_fast_sputfield:
3354     // fall through
3355   case Bytecodes::_fast_cputfield:
3356     __ movw(field, rax);
3357     break;
3358   case Bytecodes::_fast_fputfield:
3359     __ store_float(field);
3360     break;
3361   case Bytecodes::_fast_dputfield:
3362     __ store_double(field);
3363     break;
3364   default:
3365     ShouldNotReachHere();
3366   }
3367 
3368   // Check for volatile store
3369   __ testl(rdx, rdx);
3370   __ jcc(Assembler::zero, notVolatile);
3371   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3372                                                Assembler::StoreStore));
3373   __ bind(notVolatile);
3374 }
3375 
3376 void TemplateTable::fast_accessfield(TosState state) {
3377   transition(atos, state);
3378 
3379   // Do the JVMTI work here to avoid disturbing the register state below
3380   if (JvmtiExport::can_post_field_access()) {
3381     // Check to see if a field access watch has been set before we
3382     // take the time to call into the VM.
3383     Label L1;
3384     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3385     __ testl(rcx, rcx);
3386     __ jcc(Assembler::zero, L1);
3387     // access constant pool cache entry
3388     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3389     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3390     __ verify_oop(rax);
3391     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3392     LP64_ONLY(__ mov(c_rarg1, rax));
3393     // c_rarg1: object pointer copied above
3394     // c_rarg2: cache entry pointer
3395     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3396     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3397     __ pop_ptr(rax); // restore object pointer
3398     __ bind(L1);
3399   }
3400 
3401   // access constant pool cache
3402   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3403   // replace index with field offset from cache entry
3404   // [jk] not needed currently
3405   // if (os::is_MP()) {
3406   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
3407   //                        in_bytes(ConstantPoolCache::base_offset() +
3408   //                                 ConstantPoolCacheEntry::flags_offset())));
3409   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3410   //   __ andl(rdx, 0x1);
3411   // }
3412   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3413                          in_bytes(ConstantPoolCache::base_offset() +
3414                                   ConstantPoolCacheEntry::f2_offset())));
3415 
3416   // rax: object
3417   __ verify_oop(rax);
3418   __ null_check(rax);
3419   Address field(rax, rbx, Address::times_1);
3420 
3421   // access field
3422   switch (bytecode()) {
3423   case Bytecodes::_fast_agetfield:
3424     __ load_heap_oop(rax, field);
3425     __ verify_oop(rax);
3426     break;
3427   case Bytecodes::_fast_lgetfield:
3428 #ifdef _LP64
3429   __ movq(rax, field);
3430 #else
3431   __ stop("should not be rewritten");
3432 #endif
3433     break;
3434   case Bytecodes::_fast_igetfield:
3435     __ movl(rax, field);
3436     break;
3437   case Bytecodes::_fast_bgetfield:
3438     __ movsbl(rax, field);
3439     break;
3440   case Bytecodes::_fast_sgetfield:
3441     __ load_signed_short(rax, field);
3442     break;
3443   case Bytecodes::_fast_cgetfield:
3444     __ load_unsigned_short(rax, field);
3445     break;
3446   case Bytecodes::_fast_fgetfield:
3447     __ load_float(field);
3448     break;
3449   case Bytecodes::_fast_dgetfield:
3450     __ load_double(field);
3451     break;
3452   default:
3453     ShouldNotReachHere();
3454   }
3455   // [jk] not needed currently
3456   // if (os::is_MP()) {
3457   //   Label notVolatile;
3458   //   __ testl(rdx, rdx);
3459   //   __ jcc(Assembler::zero, notVolatile);
3460   //   __ membar(Assembler::LoadLoad);
3461   //   __ bind(notVolatile);
3462   //};
3463 }
3464 
3465 void TemplateTable::fast_xaccess(TosState state) {
3466   transition(vtos, state);
3467 
3468   // get receiver
3469   __ movptr(rax, aaddress(0));
3470   // access constant pool cache
3471   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3472   __ movptr(rbx,
3473             Address(rcx, rdx, Address::times_ptr,
3474                     in_bytes(ConstantPoolCache::base_offset() +
3475                              ConstantPoolCacheEntry::f2_offset())));
3476   // make sure exception is reported in correct bcp range (getfield is
3477   // next instruction)
3478   __ increment(rbcp);
3479   __ null_check(rax);
3480   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3481   switch (state) {
3482   case itos:
3483     __ movl(rax, field);
3484     break;
3485   case atos:
3486     __ load_heap_oop(rax, field);
3487     __ verify_oop(rax);
3488     break;
3489   case ftos:
3490     __ load_float(field);
3491     break;
3492   default:
3493     ShouldNotReachHere();
3494   }
3495 
3496   // [jk] not needed currently
3497   // if (os::is_MP()) {
3498   //   Label notVolatile;
3499   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
3500   //                        in_bytes(ConstantPoolCache::base_offset() +
3501   //                                 ConstantPoolCacheEntry::flags_offset())));
3502   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3503   //   __ testl(rdx, 0x1);
3504   //   __ jcc(Assembler::zero, notVolatile);
3505   //   __ membar(Assembler::LoadLoad);
3506   //   __ bind(notVolatile);
3507   // }
3508 
3509   __ decrement(rbcp);
3510 }
3511 
3512 //-----------------------------------------------------------------------------
3513 // Calls
3514 
3515 void TemplateTable::count_calls(Register method, Register temp) {
3516   // implemented elsewhere
3517   ShouldNotReachHere();
3518 }
3519 
3520 void TemplateTable::prepare_invoke(int byte_no,
3521                                    Register method,  // linked method (or i-klass)
3522                                    Register index,   // itable index, MethodType, etc.
3523                                    Register recv,    // if caller wants to see it
3524                                    Register flags    // if caller wants to test it
3525                                    ) {
3526   // determine flags
3527   const Bytecodes::Code code = bytecode();
3528   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3529   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3530   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3531   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3532   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3533   const bool load_receiver       = (recv  != noreg);
3534   const bool save_flags          = (flags != noreg);
3535   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3536   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3537   assert(flags == noreg || flags == rdx, "");
3538   assert(recv  == noreg || recv  == rcx, "");
3539 
3540   // setup registers & access constant pool cache
3541   if (recv  == noreg)  recv  = rcx;
3542   if (flags == noreg)  flags = rdx;
3543   assert_different_registers(method, index, recv, flags);
3544 
3545   // save 'interpreter return address'
3546   __ save_bcp();
3547 
3548   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3549 
3550   // maybe push appendix to arguments (just before return address)
3551   if (is_invokedynamic || is_invokehandle) {
3552     Label L_no_push;
3553     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3554     __ jcc(Assembler::zero, L_no_push);
3555     // Push the appendix as a trailing parameter.
3556     // This must be done before we get the receiver,
3557     // since the parameter_size includes it.
3558     __ push(rbx);
3559     __ mov(rbx, index);
3560     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3561     __ load_resolved_reference_at_index(index, rbx);
3562     __ pop(rbx);
3563     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3564     __ bind(L_no_push);
3565   }
3566 
3567   // load receiver if needed (after appendix is pushed so parameter size is correct)
3568   // Note: no return address pushed yet
3569   if (load_receiver) {
3570     __ movl(recv, flags);
3571     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3572     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3573     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3574     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3575     __ movptr(recv, recv_addr);
3576     __ verify_oop(recv);
3577   }
3578 
3579   if (save_flags) {
3580     __ movl(rbcp, flags);
3581   }
3582 
3583   // compute return type
3584   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3585   // Make sure we don't need to mask flags after the above shift
3586   ConstantPoolCacheEntry::verify_tos_state_shift();
3587   // load return address
3588   {
3589     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3590     ExternalAddress table(table_addr);
3591     LP64_ONLY(__ lea(rscratch1, table));
3592     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
3593     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
3594   }
3595 
3596   // push return address
3597   __ push(flags);
3598 
3599   // Restore flags value from the constant pool cache, and restore rsi
3600   // for later null checks.  r13 is the bytecode pointer
3601   if (save_flags) {
3602     __ movl(flags, rbcp);
3603     __ restore_bcp();
3604   }
3605 }
3606 
3607 void TemplateTable::invokevirtual_helper(Register index,
3608                                          Register recv,
3609                                          Register flags) {
3610   // Uses temporary registers rax, rdx
3611   assert_different_registers(index, recv, rax, rdx);
3612   assert(index == rbx, "");
3613   assert(recv  == rcx, "");
3614 
3615   // Test for an invoke of a final method
3616   Label notFinal;
3617   __ movl(rax, flags);
3618   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3619   __ jcc(Assembler::zero, notFinal);
3620 
3621   const Register method = index;  // method must be rbx
3622   assert(method == rbx,
3623          "Method* must be rbx for interpreter calling convention");
3624 
3625   // do the call - the index is actually the method to call
3626   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3627 
3628   // It's final, need a null check here!
3629   __ null_check(recv);
3630 
3631   // profile this call
3632   __ profile_final_call(rax);
3633   __ profile_arguments_type(rax, method, rbcp, true);
3634 
3635   __ jump_from_interpreted(method, rax);
3636 
3637   __ bind(notFinal);
3638 
3639   // get receiver klass
3640   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3641   __ load_klass(rax, recv);
3642 
3643   // profile this call
3644   __ profile_virtual_call(rax, rlocals, rdx);
3645   // get target Method* & entry point
3646   __ lookup_virtual_method(rax, index, method);
3647   __ profile_called_method(method, rdx, rbcp);
3648 
3649   __ profile_arguments_type(rdx, method, rbcp, true);
3650   __ jump_from_interpreted(method, rdx);
3651 }
3652 
3653 void TemplateTable::invokevirtual(int byte_no) {
3654   transition(vtos, vtos);
3655   assert(byte_no == f2_byte, "use this argument");
3656   prepare_invoke(byte_no,
3657                  rbx,    // method or vtable index
3658                  noreg,  // unused itable index
3659                  rcx, rdx); // recv, flags
3660 
3661   // rbx: index
3662   // rcx: receiver
3663   // rdx: flags
3664 
3665   invokevirtual_helper(rbx, rcx, rdx);
3666 }
3667 
3668 void TemplateTable::invokespecial(int byte_no) {
3669   transition(vtos, vtos);
3670   assert(byte_no == f1_byte, "use this argument");
3671   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3672                  rcx);  // get receiver also for null check
3673   __ verify_oop(rcx);
3674   __ null_check(rcx);
3675   // do the call
3676   __ profile_call(rax);
3677   __ profile_arguments_type(rax, rbx, rbcp, false);
3678   __ jump_from_interpreted(rbx, rax);
3679 }
3680 
3681 void TemplateTable::invokestatic(int byte_no) {
3682   transition(vtos, vtos);
3683   assert(byte_no == f1_byte, "use this argument");
3684   prepare_invoke(byte_no, rbx);  // get f1 Method*
3685   // do the call
3686   __ profile_call(rax);
3687   __ profile_arguments_type(rax, rbx, rbcp, false);
3688   __ jump_from_interpreted(rbx, rax);
3689 }
3690 
3691 
3692 void TemplateTable::fast_invokevfinal(int byte_no) {
3693   transition(vtos, vtos);
3694   assert(byte_no == f2_byte, "use this argument");
3695   __ stop("fast_invokevfinal not used on x86");
3696 }
3697 
3698 
3699 void TemplateTable::invokeinterface(int byte_no) {
3700   transition(vtos, vtos);
3701   assert(byte_no == f1_byte, "use this argument");
3702   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
3703                  rcx, rdx); // recv, flags
3704 
3705   // rax: interface klass (from f1)
3706   // rbx: itable index (from f2)
3707   // rcx: receiver
3708   // rdx: flags
3709 
3710   // Special case of invokeinterface called for virtual method of
3711   // java.lang.Object.  See cpCacheOop.cpp for details.
3712   // This code isn't produced by javac, but could be produced by
3713   // another compliant java compiler.
3714   Label notMethod;
3715   __ movl(rlocals, rdx);
3716   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3717 
3718   __ jcc(Assembler::zero, notMethod);
3719 
3720   invokevirtual_helper(rbx, rcx, rdx);
3721   __ bind(notMethod);
3722 
3723   // Get receiver klass into rdx - also a null check
3724   __ restore_locals();  // restore r14
3725   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3726   __ load_klass(rdx, rcx);
3727 
3728   // profile this call
3729   __ profile_virtual_call(rdx, rbcp, rlocals);
3730 
3731   Label no_such_interface, no_such_method;
3732 
3733   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3734                              rdx, rax, rbx,
3735                              // outputs: method, scan temp. reg
3736                              rbx, rbcp,
3737                              no_such_interface);
3738 
3739   // rbx: Method* to call
3740   // rcx: receiver
3741   // Check for abstract method error
3742   // Note: This should be done more efficiently via a throw_abstract_method_error
3743   //       interpreter entry point and a conditional jump to it in case of a null
3744   //       method.
3745   __ testptr(rbx, rbx);
3746   __ jcc(Assembler::zero, no_such_method);
3747 
3748   __ profile_called_method(rbx, rbcp, rdx);
3749   __ profile_arguments_type(rdx, rbx, rbcp, true);
3750 
3751   // do the call
3752   // rcx: receiver
3753   // rbx,: Method*
3754   __ jump_from_interpreted(rbx, rdx);
3755   __ should_not_reach_here();
3756 
3757   // exception handling code follows...
3758   // note: must restore interpreter registers to canonical
3759   //       state for exception handling to work correctly!
3760 
3761   __ bind(no_such_method);
3762   // throw exception
3763   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3764   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3765   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3766   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3767   // the call_VM checks for exception, so we should never return here.
3768   __ should_not_reach_here();
3769 
3770   __ bind(no_such_interface);
3771   // throw exception
3772   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3773   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3774   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3775   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3776                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3777   // the call_VM checks for exception, so we should never return here.
3778   __ should_not_reach_here();
3779 }
3780 
3781 void TemplateTable::invokehandle(int byte_no) {
3782   transition(vtos, vtos);
3783   assert(byte_no == f1_byte, "use this argument");
3784   const Register rbx_method = rbx;
3785   const Register rax_mtype  = rax;
3786   const Register rcx_recv   = rcx;
3787   const Register rdx_flags  = rdx;
3788 
3789   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3790   __ verify_method_ptr(rbx_method);
3791   __ verify_oop(rcx_recv);
3792   __ null_check(rcx_recv);
3793 
3794   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3795   // rbx: MH.invokeExact_MT method (from f2)
3796 
3797   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3798 
3799   // FIXME: profile the LambdaForm also
3800   __ profile_final_call(rax);
3801   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3802 
3803   __ jump_from_interpreted(rbx_method, rdx);
3804 }
3805 
3806 void TemplateTable::invokedynamic(int byte_no) {
3807   transition(vtos, vtos);
3808   assert(byte_no == f1_byte, "use this argument");
3809 
3810   const Register rbx_method   = rbx;
3811   const Register rax_callsite = rax;
3812 
3813   prepare_invoke(byte_no, rbx_method, rax_callsite);
3814 
3815   // rax: CallSite object (from cpool->resolved_references[f1])
3816   // rbx: MH.linkToCallSite method (from f2)
3817 
3818   // Note:  rax_callsite is already pushed by prepare_invoke
3819 
3820   // %%% should make a type profile for any invokedynamic that takes a ref argument
3821   // profile this call
3822   __ profile_call(rbcp);
3823   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3824 
3825   __ verify_oop(rax_callsite);
3826 
3827   __ jump_from_interpreted(rbx_method, rdx);
3828 }
3829 
3830 //-----------------------------------------------------------------------------
3831 // Allocation
3832 
3833 void TemplateTable::_new() {
3834   transition(vtos, atos);
3835   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3836   Label slow_case;
3837   Label slow_case_no_pop;
3838   Label done;
3839   Label initialize_header;
3840   Label initialize_object;  // including clearing the fields
3841   Label allocate_shared;
3842 
3843   __ get_cpool_and_tags(rcx, rax);
3844 
3845   // Make sure the class we're about to instantiate has been resolved.
3846   // This is done before loading InstanceKlass to be consistent with the order
3847   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3848   const int tags_offset = Array<u1>::base_offset_in_bytes();
3849   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3850   __ jcc(Assembler::notEqual, slow_case_no_pop);
3851 
3852   // get InstanceKlass
3853   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
3854   __ push(rcx);  // save the contexts of klass for initializing the header
3855 
3856   // make sure klass is initialized & doesn't have finalizer
3857   // make sure klass is fully initialized
3858   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3859   __ jcc(Assembler::notEqual, slow_case);
3860 
3861   // get instance_size in InstanceKlass (scaled to a count of bytes)
3862   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3863   // test to see if it has a finalizer or is malformed in some way
3864   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3865   __ jcc(Assembler::notZero, slow_case);
3866 
3867   //
3868   // Allocate the instance
3869   // 1) Try to allocate in the TLAB
3870   // 2) if fail and the object is large allocate in the shared Eden
3871   // 3) if the above fails (or is not applicable), go to a slow case
3872   // (creates a new TLAB, etc.)
3873 
3874   const bool allow_shared_alloc =
3875     Universe::heap()->supports_inline_contig_alloc();
3876 
3877   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
3878 #ifndef _LP64
3879   if (UseTLAB || allow_shared_alloc) {
3880     __ get_thread(thread);
3881   }
3882 #endif // _LP64
3883 
3884   if (UseTLAB) {
3885     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3886     __ lea(rbx, Address(rax, rdx, Address::times_1));
3887     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3888     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3889     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3890     if (ZeroTLAB) {
3891       // the fields have been already cleared
3892       __ jmp(initialize_header);
3893     } else {
3894       // initialize both the header and fields
3895       __ jmp(initialize_object);
3896     }
3897   }
3898 
3899   // Allocation in the shared Eden, if allowed.
3900   //
3901   // rdx: instance size in bytes
3902   if (allow_shared_alloc) {
3903     __ bind(allocate_shared);
3904 
3905     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3906     ExternalAddress heap_end((address)Universe::heap()->end_addr());
3907 
3908     Label retry;
3909     __ bind(retry);
3910     __ movptr(rax, heap_top);
3911     __ lea(rbx, Address(rax, rdx, Address::times_1));
3912     __ cmpptr(rbx, heap_end);
3913     __ jcc(Assembler::above, slow_case);
3914 
3915     // Compare rax, with the top addr, and if still equal, store the new
3916     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3917     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3918     //
3919     // rax,: object begin
3920     // rbx,: object end
3921     // rdx: instance size in bytes
3922     __ locked_cmpxchgptr(rbx, heap_top);
3923 
3924     // if someone beat us on the allocation, try again, otherwise continue
3925     __ jcc(Assembler::notEqual, retry);
3926 
3927     __ incr_allocated_bytes(thread, rdx, 0);
3928   }
3929 
3930   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3931     // The object is initialized before the header.  If the object size is
3932     // zero, go directly to the header initialization.
3933     __ bind(initialize_object);
3934     __ decrement(rdx, sizeof(oopDesc));
3935     __ jcc(Assembler::zero, initialize_header);
3936 
3937     // Initialize topmost object field, divide rdx by 8, check if odd and
3938     // test if zero.
3939     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3940     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3941 
3942     // rdx must have been multiple of 8
3943 #ifdef ASSERT
3944     // make sure rdx was multiple of 8
3945     Label L;
3946     // Ignore partial flag stall after shrl() since it is debug VM
3947     __ jccb(Assembler::carryClear, L);
3948     __ stop("object size is not multiple of 2 - adjust this code");
3949     __ bind(L);
3950     // rdx must be > 0, no extra check needed here
3951 #endif
3952 
3953     // initialize remaining object fields: rdx was a multiple of 8
3954     { Label loop;
3955     __ bind(loop);
3956     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3957     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3958     __ decrement(rdx);
3959     __ jcc(Assembler::notZero, loop);
3960     }
3961 
3962     // initialize object header only.
3963     __ bind(initialize_header);
3964     if (UseBiasedLocking) {
3965       __ pop(rcx);   // get saved klass back in the register.
3966       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
3967       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3968     } else {
3969       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3970                 (intptr_t)markOopDesc::prototype()); // header
3971       __ pop(rcx);   // get saved klass back in the register.
3972     }
3973 #ifdef _LP64
3974     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
3975     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
3976 #endif
3977     __ store_klass(rax, rcx);  // klass
3978 
3979     {
3980       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3981       // Trigger dtrace event for fastpath
3982       __ push(atos);
3983       __ call_VM_leaf(
3984            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3985       __ pop(atos);
3986     }
3987 
3988     __ jmp(done);
3989   }
3990 
3991   // slow case
3992   __ bind(slow_case);
3993   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3994   __ bind(slow_case_no_pop);
3995 
3996   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
3997   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
3998 
3999   __ get_constant_pool(rarg1);
4000   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4001   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4002    __ verify_oop(rax);
4003 
4004   // continue
4005   __ bind(done);
4006 }
4007 
4008 void TemplateTable::newarray() {
4009   transition(itos, atos);
4010   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4011   __ load_unsigned_byte(rarg1, at_bcp(1));
4012   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4013           rarg1, rax);
4014 }
4015 
4016 void TemplateTable::anewarray() {
4017   transition(itos, atos);
4018 
4019   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4020   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4021 
4022   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4023   __ get_constant_pool(rarg1);
4024   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4025           rarg1, rarg2, rax);
4026 }
4027 
4028 void TemplateTable::arraylength() {
4029   transition(atos, itos);
4030   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4031   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4032 }
4033 
4034 void TemplateTable::checkcast() {
4035   transition(atos, atos);
4036   Label done, is_null, ok_is_subtype, quicked, resolved;
4037   __ testptr(rax, rax); // object is in rax
4038   __ jcc(Assembler::zero, is_null);
4039 
4040   // Get cpool & tags index
4041   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4042   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4043   // See if bytecode has already been quicked
4044   __ cmpb(Address(rdx, rbx,
4045                   Address::times_1,
4046                   Array<u1>::base_offset_in_bytes()),
4047           JVM_CONSTANT_Class);
4048   __ jcc(Assembler::equal, quicked);
4049   __ push(atos); // save receiver for result, and for GC
4050   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4051 
4052   // vm_result_2 has metadata result
4053 #ifndef _LP64
4054   // borrow rdi from locals
4055   __ get_thread(rdi);
4056   __ get_vm_result_2(rax, rdi);
4057   __ restore_locals();
4058 #else
4059   __ get_vm_result_2(rax, r15_thread);
4060 #endif
4061 
4062   __ pop_ptr(rdx); // restore receiver
4063   __ jmpb(resolved);
4064 
4065   // Get superklass in rax and subklass in rbx
4066   __ bind(quicked);
4067   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4068   __ movptr(rax, Address(rcx, rbx,
4069                        Address::times_ptr, sizeof(ConstantPool)));
4070 
4071   __ bind(resolved);
4072   __ load_klass(rbx, rdx);
4073 
4074   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4075   // Superklass in rax.  Subklass in rbx.
4076   __ gen_subtype_check(rbx, ok_is_subtype);
4077 
4078   // Come here on failure
4079   __ push_ptr(rdx);
4080   // object is at TOS
4081   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4082 
4083   // Come here on success
4084   __ bind(ok_is_subtype);
4085   __ mov(rax, rdx); // Restore object in rdx
4086 
4087   // Collect counts on whether this check-cast sees NULLs a lot or not.
4088   if (ProfileInterpreter) {
4089     __ jmp(done);
4090     __ bind(is_null);
4091     __ profile_null_seen(rcx);
4092   } else {
4093     __ bind(is_null);   // same as 'done'
4094   }
4095   __ bind(done);
4096 }
4097 
4098 void TemplateTable::instanceof() {
4099   transition(atos, itos);
4100   Label done, is_null, ok_is_subtype, quicked, resolved;
4101   __ testptr(rax, rax);
4102   __ jcc(Assembler::zero, is_null);
4103 
4104   // Get cpool & tags index
4105   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4106   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4107   // See if bytecode has already been quicked
4108   __ cmpb(Address(rdx, rbx,
4109                   Address::times_1,
4110                   Array<u1>::base_offset_in_bytes()),
4111           JVM_CONSTANT_Class);
4112   __ jcc(Assembler::equal, quicked);
4113 
4114   __ push(atos); // save receiver for result, and for GC
4115   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4116   // vm_result_2 has metadata result
4117 
4118 #ifndef _LP64
4119   // borrow rdi from locals
4120   __ get_thread(rdi);
4121   __ get_vm_result_2(rax, rdi);
4122   __ restore_locals();
4123 #else
4124   __ get_vm_result_2(rax, r15_thread);
4125 #endif
4126 
4127   __ pop_ptr(rdx); // restore receiver
4128   __ verify_oop(rdx);
4129   __ load_klass(rdx, rdx);
4130   __ jmpb(resolved);
4131 
4132   // Get superklass in rax and subklass in rdx
4133   __ bind(quicked);
4134   __ load_klass(rdx, rax);
4135   __ movptr(rax, Address(rcx, rbx,
4136                          Address::times_ptr, sizeof(ConstantPool)));
4137 
4138   __ bind(resolved);
4139 
4140   // Generate subtype check.  Blows rcx, rdi
4141   // Superklass in rax.  Subklass in rdx.
4142   __ gen_subtype_check(rdx, ok_is_subtype);
4143 
4144   // Come here on failure
4145   __ xorl(rax, rax);
4146   __ jmpb(done);
4147   // Come here on success
4148   __ bind(ok_is_subtype);
4149   __ movl(rax, 1);
4150 
4151   // Collect counts on whether this test sees NULLs a lot or not.
4152   if (ProfileInterpreter) {
4153     __ jmp(done);
4154     __ bind(is_null);
4155     __ profile_null_seen(rcx);
4156   } else {
4157     __ bind(is_null);   // same as 'done'
4158   }
4159   __ bind(done);
4160   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4161   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4162 }
4163 
4164 
4165 //----------------------------------------------------------------------------------------------------
4166 // Breakpoints
4167 void TemplateTable::_breakpoint() {
4168   // Note: We get here even if we are single stepping..
4169   // jbug insists on setting breakpoints at every bytecode
4170   // even if we are in single step mode.
4171 
4172   transition(vtos, vtos);
4173 
4174   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4175 
4176   // get the unpatched byte code
4177   __ get_method(rarg);
4178   __ call_VM(noreg,
4179              CAST_FROM_FN_PTR(address,
4180                               InterpreterRuntime::get_original_bytecode_at),
4181              rarg, rbcp);
4182   __ mov(rbx, rax);  // why?
4183 
4184   // post the breakpoint event
4185   __ get_method(rarg);
4186   __ call_VM(noreg,
4187              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4188              rarg, rbcp);
4189 
4190   // complete the execution of original bytecode
4191   __ dispatch_only_normal(vtos);
4192 }
4193 
4194 //-----------------------------------------------------------------------------
4195 // Exceptions
4196 
4197 void TemplateTable::athrow() {
4198   transition(atos, vtos);
4199   __ null_check(rax);
4200   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4201 }
4202 
4203 //-----------------------------------------------------------------------------
4204 // Synchronization
4205 //
4206 // Note: monitorenter & exit are symmetric routines; which is reflected
4207 //       in the assembly code structure as well
4208 //
4209 // Stack layout:
4210 //
4211 // [expressions  ] <--- rsp               = expression stack top
4212 // ..
4213 // [expressions  ]
4214 // [monitor entry] <--- monitor block top = expression stack bot
4215 // ..
4216 // [monitor entry]
4217 // [frame data   ] <--- monitor block bot
4218 // ...
4219 // [saved rbp    ] <--- rbp
4220 void TemplateTable::monitorenter() {
4221   transition(atos, vtos);
4222 
4223   // check for NULL object
4224   __ null_check(rax);
4225 
4226   const Address monitor_block_top(
4227         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4228   const Address monitor_block_bot(
4229         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4230   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4231 
4232   Label allocated;
4233 
4234   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4235   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4236   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4237 
4238   // initialize entry pointer
4239   __ xorl(rmon, rmon); // points to free slot or NULL
4240 
4241   // find a free slot in the monitor block (result in rmon)
4242   {
4243     Label entry, loop, exit;
4244     __ movptr(rtop, monitor_block_top); // points to current entry,
4245                                         // starting with top-most entry
4246     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4247                                         // of monitor block
4248     __ jmpb(entry);
4249 
4250     __ bind(loop);
4251     // check if current entry is used
4252     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4253     // if not used then remember entry in rmon
4254     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4255     // check if current entry is for same object
4256     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4257     // if same object then stop searching
4258     __ jccb(Assembler::equal, exit);
4259     // otherwise advance to next entry
4260     __ addptr(rtop, entry_size);
4261     __ bind(entry);
4262     // check if bottom reached
4263     __ cmpptr(rtop, rbot);
4264     // if not at bottom then check this entry
4265     __ jcc(Assembler::notEqual, loop);
4266     __ bind(exit);
4267   }
4268 
4269   __ testptr(rmon, rmon); // check if a slot has been found
4270   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4271 
4272   // allocate one if there's no free slot
4273   {
4274     Label entry, loop;
4275     // 1. compute new pointers          // rsp: old expression stack top
4276     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4277     __ subptr(rsp, entry_size);         // move expression stack top
4278     __ subptr(rmon, entry_size);        // move expression stack bottom
4279     __ mov(rtop, rsp);                  // set start value for copy loop
4280     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4281     __ jmp(entry);
4282     // 2. move expression stack contents
4283     __ bind(loop);
4284     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4285                                                 // word from old location
4286     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4287     __ addptr(rtop, wordSize);                  // advance to next word
4288     __ bind(entry);
4289     __ cmpptr(rtop, rmon);                      // check if bottom reached
4290     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4291                                                 // copy next word
4292   }
4293 
4294   // call run-time routine
4295   // rmon: points to monitor entry
4296   __ bind(allocated);
4297 
4298   // Increment bcp to point to the next bytecode, so exception
4299   // handling for async. exceptions work correctly.
4300   // The object has already been poped from the stack, so the
4301   // expression stack looks correct.
4302   __ increment(rbcp);
4303 
4304   // store object
4305   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4306   __ lock_object(rmon);
4307 
4308   // check to make sure this monitor doesn't cause stack overflow after locking
4309   __ save_bcp();  // in case of exception
4310   __ generate_stack_overflow_check(0);
4311 
4312   // The bcp has already been incremented. Just need to dispatch to
4313   // next instruction.
4314   __ dispatch_next(vtos);
4315 }
4316 
4317 void TemplateTable::monitorexit() {
4318   transition(atos, vtos);
4319 
4320   // check for NULL object
4321   __ null_check(rax);
4322 
4323   const Address monitor_block_top(
4324         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4325   const Address monitor_block_bot(
4326         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4327   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4328 
4329   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4330   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4331 
4332   Label found;
4333 
4334   // find matching slot
4335   {
4336     Label entry, loop;
4337     __ movptr(rtop, monitor_block_top); // points to current entry,
4338                                         // starting with top-most entry
4339     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4340                                         // of monitor block
4341     __ jmpb(entry);
4342 
4343     __ bind(loop);
4344     // check if current entry is for same object
4345     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4346     // if same object then stop searching
4347     __ jcc(Assembler::equal, found);
4348     // otherwise advance to next entry
4349     __ addptr(rtop, entry_size);
4350     __ bind(entry);
4351     // check if bottom reached
4352     __ cmpptr(rtop, rbot);
4353     // if not at bottom then check this entry
4354     __ jcc(Assembler::notEqual, loop);
4355   }
4356 
4357   // error handling. Unlocking was not block-structured
4358   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4359                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4360   __ should_not_reach_here();
4361 
4362   // call run-time routine
4363   __ bind(found);
4364   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4365   __ unlock_object(rtop);
4366   __ pop_ptr(rax); // discard object
4367 }
4368 
4369 // Wide instructions
4370 void TemplateTable::wide() {
4371   transition(vtos, vtos);
4372   __ load_unsigned_byte(rbx, at_bcp(1));
4373   ExternalAddress wtable((address)Interpreter::_wentry_point);
4374   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4375   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4376 }
4377 
4378 // Multi arrays
4379 void TemplateTable::multianewarray() {
4380   transition(vtos, atos);
4381 
4382   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4383   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4384   // last dim is on top of stack; we want address of first one:
4385   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4386   // the latter wordSize to point to the beginning of the array.
4387   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4388   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4389   __ load_unsigned_byte(rbx, at_bcp(3));
4390   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4391 }