/* * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_SHARED_BARRIERSET_HPP #define SHARE_VM_GC_SHARED_BARRIERSET_HPP #include "memory/memRegion.hpp" #include "oops/oopsHierarchy.hpp" #include "utilities/fakeRttiSupport.hpp" // This class provides the interface between a barrier implementation and // the rest of the system. class BarrierSet: public CHeapObj { friend class VMStructs; public: // Fake RTTI support. For a derived class T to participate // - T must have a corresponding Name entry. // - GetName must be specialized to return the corresponding Name // entry. // - If T is a base class, the constructor must have a FakeRtti // parameter and pass it up to its base class, with the tag set // augmented with the corresponding Name entry. // - If T is a concrete class, the constructor must create a // FakeRtti object whose tag set includes the corresponding Name // entry, and pass it up to its base class. enum Name { // associated class ModRef, // ModRefBarrierSet CardTableModRef, // CardTableModRefBS CardTableForRS, // CardTableModRefBSForCTRS CardTableExtension, // CardTableExtension G1SATBCT, // G1SATBCardTableModRefBS G1SATBCTLogging, // G1SATBCardTableLoggingModRefBS Epsilon, // EpsilonBarrierSet }; protected: typedef FakeRttiSupport FakeRtti; private: FakeRtti _fake_rtti; // Metafunction mapping a class derived from BarrierSet to the // corresponding Name enum tag. template struct GetName; // Downcast argument to a derived barrier set type. // The cast is checked in a debug build. // T must have a specialization for BarrierSet::GetName. template friend T* barrier_set_cast(BarrierSet* bs); public: // Note: This is not presently the Name corresponding to the // concrete class of this object. BarrierSet::Name kind() const { return _fake_rtti.concrete_tag(); } // Test whether this object is of the type corresponding to bsn. bool is_a(BarrierSet::Name bsn) const { return _fake_rtti.has_tag(bsn); } // End of fake RTTI support. public: enum Flags { None = 0, TargetUninitialized = 1 }; protected: // Some barrier sets create tables whose elements correspond to parts of // the heap; the CardTableModRefBS is an example. Such barrier sets will // normally reserve space for such tables, and commit parts of the table // "covering" parts of the heap that are committed. At most one covered // region per generation is needed. static const int _max_covered_regions = 2; BarrierSet(const FakeRtti& fake_rtti) : _fake_rtti(fake_rtti) { } ~BarrierSet() { } public: // These operations indicate what kind of barriers the BarrierSet has. virtual bool has_read_ref_barrier() = 0; virtual bool has_read_prim_barrier() = 0; virtual bool has_write_ref_barrier() = 0; virtual bool has_write_ref_pre_barrier() = 0; virtual bool has_write_prim_barrier() = 0; // These functions indicate whether a particular access of the given // kinds requires a barrier. virtual bool read_ref_needs_barrier(void* field) = 0; virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0; virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes, juint val1, juint val2) = 0; // The first four operations provide a direct implementation of the // barrier set. An interpreter loop, for example, could call these // directly, as appropriate. // Invoke the barrier, if any, necessary when reading the given ref field. virtual void read_ref_field(void* field) = 0; // Invoke the barrier, if any, necessary when reading the given primitive // "field" of "bytes" bytes in "obj". virtual void read_prim_field(HeapWord* field, size_t bytes) = 0; // Invoke the barrier, if any, necessary when writing "new_val" into the // ref field at "offset" in "obj". // (For efficiency reasons, this operation is specialized for certain // barrier types. Semantically, it should be thought of as a call to the // virtual "_work" function below, which must implement the barrier.) // First the pre-write versions... template inline void write_ref_field_pre(T* field, oop new_val); private: // Helper for write_ref_field_pre and friends, testing for specialized cases. bool devirtualize_reference_writes() const; // Keep this private so as to catch violations at build time. virtual void write_ref_field_pre_work( void* field, oop new_val) { guarantee(false, "Not needed"); }; protected: virtual void write_ref_field_pre_work( oop* field, oop new_val) {}; virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {}; public: // ...then the post-write version. inline void write_ref_field(void* field, oop new_val, bool release = false); protected: virtual void write_ref_field_work(void* field, oop new_val, bool release) = 0; public: // Invoke the barrier, if any, necessary when writing the "bytes"-byte // value(s) "val1" (and "val2") into the primitive "field". virtual void write_prim_field(HeapWord* field, size_t bytes, juint val1, juint val2) = 0; // Operations on arrays, or general regions (e.g., for "clone") may be // optimized by some barriers. // The first six operations tell whether such an optimization exists for // the particular barrier. virtual bool has_read_ref_array_opt() = 0; virtual bool has_read_prim_array_opt() = 0; virtual bool has_write_ref_array_pre_opt() { return true; } virtual bool has_write_ref_array_opt() = 0; virtual bool has_write_prim_array_opt() = 0; virtual bool has_read_region_opt() = 0; virtual bool has_write_region_opt() = 0; // These operations should assert false unless the corresponding operation // above returns true. Otherwise, they should perform an appropriate // barrier for an array whose elements are all in the given memory region. virtual void read_ref_array(MemRegion mr) = 0; virtual void read_prim_array(MemRegion mr) = 0; // Below length is the # array elements being written virtual void write_ref_array_pre(oop* dst, int length, bool dest_uninitialized = false) {} virtual void write_ref_array_pre(narrowOop* dst, int length, bool dest_uninitialized = false) {} // Below count is the # array elements being written, starting // at the address "start", which may not necessarily be HeapWord-aligned inline void write_ref_array(HeapWord* start, size_t count); // Static versions, suitable for calling from generated code; // count is # array elements being written, starting with "start", // which may not necessarily be HeapWord-aligned. static void static_write_ref_array_pre(HeapWord* start, size_t count); static void static_write_ref_array_post(HeapWord* start, size_t count); virtual void write_ref_nmethod_pre(oop* dst, nmethod* nm) {} virtual void write_ref_nmethod_post(oop* dst, nmethod* nm) {} protected: virtual void write_ref_array_work(MemRegion mr) = 0; public: virtual void write_prim_array(MemRegion mr) = 0; virtual void read_region(MemRegion mr) = 0; // (For efficiency reasons, this operation is specialized for certain // barrier types. Semantically, it should be thought of as a call to the // virtual "_work" function below, which must implement the barrier.) void write_region(MemRegion mr); protected: virtual void write_region_work(MemRegion mr) = 0; public: // Inform the BarrierSet that the the covered heap region that starts // with "base" has been changed to have the given size (possibly from 0, // for initialization.) virtual void resize_covered_region(MemRegion new_region) = 0; // If the barrier set imposes any alignment restrictions on boundaries // within the heap, this function tells whether they are met. virtual bool is_aligned(HeapWord* addr) = 0; // Print a description of the memory for the barrier set virtual void print_on(outputStream* st) const = 0; }; template inline T* barrier_set_cast(BarrierSet* bs) { assert(bs->is_a(BarrierSet::GetName::value), "wrong type of barrier set"); return static_cast(bs); } #endif // SHARE_VM_GC_SHARED_BARRIERSET_HPP