1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 #ifdef TRACE_HAVE_INTRINSICS
  47 #include "trace/traceMacros.hpp"
  48 #endif
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->
  54 #endif
  55 
  56 #ifndef PATCHED_ADDR
  57 #define PATCHED_ADDR  (max_jint)
  58 #endif
  59 
  60 void PhiResolverState::reset(int max_vregs) {
  61   // Initialize array sizes
  62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _virtual_operands.trunc_to(0);
  64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _other_operands.trunc_to(0);
  66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _vreg_table.trunc_to(0);
  68 }
  69 
  70 
  71 
  72 //--------------------------------------------------------------
  73 // PhiResolver
  74 
  75 // Resolves cycles:
  76 //
  77 //  r1 := r2  becomes  temp := r1
  78 //  r2 := r1           r1 := r2
  79 //                     r2 := temp
  80 // and orders moves:
  81 //
  82 //  r2 := r3  becomes  r1 := r2
  83 //  r1 := r2           r2 := r3
  84 
  85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  86  : _gen(gen)
  87  , _state(gen->resolver_state())
  88  , _temp(LIR_OprFact::illegalOpr)
  89 {
  90   // reinitialize the shared state arrays
  91   _state.reset(max_vregs);
  92 }
  93 
  94 
  95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  96   assert(src->is_valid(), "");
  97   assert(dest->is_valid(), "");
  98   __ move(src, dest);
  99 }
 100 
 101 
 102 void PhiResolver::move_temp_to(LIR_Opr dest) {
 103   assert(_temp->is_valid(), "");
 104   emit_move(_temp, dest);
 105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 106 }
 107 
 108 
 109 void PhiResolver::move_to_temp(LIR_Opr src) {
 110   assert(_temp->is_illegal(), "");
 111   _temp = _gen->new_register(src->type());
 112   emit_move(src, _temp);
 113 }
 114 
 115 
 116 // Traverse assignment graph in depth first order and generate moves in post order
 117 // ie. two assignments: b := c, a := b start with node c:
 118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 119 // Generates moves in this order: move b to a and move c to b
 120 // ie. cycle a := b, b := a start with node a
 121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 122 // Generates moves in this order: move b to temp, move a to b, move temp to a
 123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 124   if (!dest->visited()) {
 125     dest->set_visited();
 126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 127       move(dest, dest->destination_at(i));
 128     }
 129   } else if (!dest->start_node()) {
 130     // cylce in graph detected
 131     assert(_loop == NULL, "only one loop valid!");
 132     _loop = dest;
 133     move_to_temp(src->operand());
 134     return;
 135   } // else dest is a start node
 136 
 137   if (!dest->assigned()) {
 138     if (_loop == dest) {
 139       move_temp_to(dest->operand());
 140       dest->set_assigned();
 141     } else if (src != NULL) {
 142       emit_move(src->operand(), dest->operand());
 143       dest->set_assigned();
 144     }
 145   }
 146 }
 147 
 148 
 149 PhiResolver::~PhiResolver() {
 150   int i;
 151   // resolve any cycles in moves from and to virtual registers
 152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 153     ResolveNode* node = virtual_operands().at(i);
 154     if (!node->visited()) {
 155       _loop = NULL;
 156       move(NULL, node);
 157       node->set_start_node();
 158       assert(_temp->is_illegal(), "move_temp_to() call missing");
 159     }
 160   }
 161 
 162   // generate move for move from non virtual register to abitrary destination
 163   for (i = other_operands().length() - 1; i >= 0; i --) {
 164     ResolveNode* node = other_operands().at(i);
 165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 166       emit_move(node->operand(), node->destination_at(j)->operand());
 167     }
 168   }
 169 }
 170 
 171 
 172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 173   ResolveNode* node;
 174   if (opr->is_virtual()) {
 175     int vreg_num = opr->vreg_number();
 176     node = vreg_table().at_grow(vreg_num, NULL);
 177     assert(node == NULL || node->operand() == opr, "");
 178     if (node == NULL) {
 179       node = new ResolveNode(opr);
 180       vreg_table().at_put(vreg_num, node);
 181     }
 182     // Make sure that all virtual operands show up in the list when
 183     // they are used as the source of a move.
 184     if (source && !virtual_operands().contains(node)) {
 185       virtual_operands().append(node);
 186     }
 187   } else {
 188     assert(source, "");
 189     node = new ResolveNode(opr);
 190     other_operands().append(node);
 191   }
 192   return node;
 193 }
 194 
 195 
 196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 197   assert(dest->is_virtual(), "");
 198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 199   assert(src->is_valid(), "");
 200   assert(dest->is_valid(), "");
 201   ResolveNode* source = source_node(src);
 202   source->append(destination_node(dest));
 203 }
 204 
 205 
 206 //--------------------------------------------------------------
 207 // LIRItem
 208 
 209 void LIRItem::set_result(LIR_Opr opr) {
 210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 211   value()->set_operand(opr);
 212 
 213   if (opr->is_virtual()) {
 214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 215   }
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   if (result()->is_illegal()) {
 222     // update the items result
 223     _result = value()->operand();
 224   }
 225   if (!result()->is_register()) {
 226     LIR_Opr reg = _gen->new_register(value()->type());
 227     __ move(result(), reg);
 228     if (result()->is_constant()) {
 229       _result = reg;
 230     } else {
 231       set_result(reg);
 232     }
 233   }
 234 }
 235 
 236 
 237 void LIRItem::load_for_store(BasicType type) {
 238   if (_gen->can_store_as_constant(value(), type)) {
 239     _result = value()->operand();
 240     if (!_result->is_constant()) {
 241       _result = LIR_OprFact::value_type(value()->type());
 242     }
 243   } else if (type == T_BYTE || type == T_BOOLEAN) {
 244     load_byte_item();
 245   } else {
 246     load_item();
 247   }
 248 }
 249 
 250 void LIRItem::load_item_force(LIR_Opr reg) {
 251   LIR_Opr r = result();
 252   if (r != reg) {
 253 #if !defined(ARM) && !defined(E500V2)
 254     if (r->type() != reg->type()) {
 255       // moves between different types need an intervening spill slot
 256       r = _gen->force_to_spill(r, reg->type());
 257     }
 258 #endif
 259     __ move(r, reg);
 260     _result = reg;
 261   }
 262 }
 263 
 264 ciObject* LIRItem::get_jobject_constant() const {
 265   ObjectType* oc = type()->as_ObjectType();
 266   if (oc) {
 267     return oc->constant_value();
 268   }
 269   return NULL;
 270 }
 271 
 272 
 273 jint LIRItem::get_jint_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_IntConstant() != NULL, "type check");
 276   return type()->as_IntConstant()->value();
 277 }
 278 
 279 
 280 jint LIRItem::get_address_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_AddressConstant() != NULL, "type check");
 283   return type()->as_AddressConstant()->value();
 284 }
 285 
 286 
 287 jfloat LIRItem::get_jfloat_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_FloatConstant() != NULL, "type check");
 290   return type()->as_FloatConstant()->value();
 291 }
 292 
 293 
 294 jdouble LIRItem::get_jdouble_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_DoubleConstant() != NULL, "type check");
 297   return type()->as_DoubleConstant()->value();
 298 }
 299 
 300 
 301 jlong LIRItem::get_jlong_constant() const {
 302   assert(is_constant() && value() != NULL, "");
 303   assert(type()->as_LongConstant() != NULL, "type check");
 304   return type()->as_LongConstant()->value();
 305 }
 306 
 307 
 308 
 309 //--------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::init() {
 313   _bs = Universe::heap()->barrier_set();
 314 }
 315 
 316 
 317 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 318 #ifndef PRODUCT
 319   if (PrintIRWithLIR) {
 320     block->print();
 321   }
 322 #endif
 323 
 324   // set up the list of LIR instructions
 325   assert(block->lir() == NULL, "LIR list already computed for this block");
 326   _lir = new LIR_List(compilation(), block);
 327   block->set_lir(_lir);
 328 
 329   __ branch_destination(block->label());
 330 
 331   if (LIRTraceExecution &&
 332       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 333       !block->is_set(BlockBegin::exception_entry_flag)) {
 334     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 335     trace_block_entry(block);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 341 #ifndef PRODUCT
 342   if (PrintIRWithLIR) {
 343     tty->cr();
 344   }
 345 #endif
 346 
 347   // LIR_Opr for unpinned constants shouldn't be referenced by other
 348   // blocks so clear them out after processing the block.
 349   for (int i = 0; i < _unpinned_constants.length(); i++) {
 350     _unpinned_constants.at(i)->clear_operand();
 351   }
 352   _unpinned_constants.trunc_to(0);
 353 
 354   // clear our any registers for other local constants
 355   _constants.trunc_to(0);
 356   _reg_for_constants.trunc_to(0);
 357 }
 358 
 359 
 360 void LIRGenerator::block_do(BlockBegin* block) {
 361   CHECK_BAILOUT();
 362 
 363   block_do_prolog(block);
 364   set_block(block);
 365 
 366   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 367     if (instr->is_pinned()) do_root(instr);
 368   }
 369 
 370   set_block(NULL);
 371   block_do_epilog(block);
 372 }
 373 
 374 
 375 //-------------------------LIRGenerator-----------------------------
 376 
 377 // This is where the tree-walk starts; instr must be root;
 378 void LIRGenerator::do_root(Value instr) {
 379   CHECK_BAILOUT();
 380 
 381   InstructionMark im(compilation(), instr);
 382 
 383   assert(instr->is_pinned(), "use only with roots");
 384   assert(instr->subst() == instr, "shouldn't have missed substitution");
 385 
 386   instr->visit(this);
 387 
 388   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 389          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 390 }
 391 
 392 
 393 // This is called for each node in tree; the walk stops if a root is reached
 394 void LIRGenerator::walk(Value instr) {
 395   InstructionMark im(compilation(), instr);
 396   //stop walk when encounter a root
 397   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 398     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 399   } else {
 400     assert(instr->subst() == instr, "shouldn't have missed substitution");
 401     instr->visit(this);
 402     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 403   }
 404 }
 405 
 406 
 407 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 408   assert(state != NULL, "state must be defined");
 409 
 410 #ifndef PRODUCT
 411   state->verify();
 412 #endif
 413 
 414   ValueStack* s = state;
 415   for_each_state(s) {
 416     if (s->kind() == ValueStack::EmptyExceptionState) {
 417       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 418       continue;
 419     }
 420 
 421     int index;
 422     Value value;
 423     for_each_stack_value(s, index, value) {
 424       assert(value->subst() == value, "missed substitution");
 425       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 426         walk(value);
 427         assert(value->operand()->is_valid(), "must be evaluated now");
 428       }
 429     }
 430 
 431     int bci = s->bci();
 432     IRScope* scope = s->scope();
 433     ciMethod* method = scope->method();
 434 
 435     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 436     if (bci == SynchronizationEntryBCI) {
 437       if (x->as_ExceptionObject() || x->as_Throw()) {
 438         // all locals are dead on exit from the synthetic unlocker
 439         liveness.clear();
 440       } else {
 441         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 442       }
 443     }
 444     if (!liveness.is_valid()) {
 445       // Degenerate or breakpointed method.
 446       bailout("Degenerate or breakpointed method");
 447     } else {
 448       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 449       for_each_local_value(s, index, value) {
 450         assert(value->subst() == value, "missed substition");
 451         if (liveness.at(index) && !value->type()->is_illegal()) {
 452           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 453             walk(value);
 454             assert(value->operand()->is_valid(), "must be evaluated now");
 455           }
 456         } else {
 457           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 458           s->invalidate_local(index);
 459         }
 460       }
 461     }
 462   }
 463 
 464   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 465 }
 466 
 467 
 468 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 469   return state_for(x, x->exception_state());
 470 }
 471 
 472 
 473 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 474   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 475    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 476    * the class. */
 477   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 478     assert(info != NULL, "info must be set if class is not loaded");
 479     __ klass2reg_patch(NULL, r, info);
 480   } else {
 481     // no patching needed
 482     __ metadata2reg(obj->constant_encoding(), r);
 483   }
 484 }
 485 
 486 
 487 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 488                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 489   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 490   if (index->is_constant()) {
 491     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 492                 index->as_jint(), null_check_info);
 493     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 494   } else {
 495     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 496                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 497     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 498   }
 499 }
 500 
 501 
 502 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 503   CodeStub* stub = new RangeCheckStub(info, index, true);
 504   if (index->is_constant()) {
 505     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 506     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 507   } else {
 508     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 509                 java_nio_Buffer::limit_offset(), T_INT, info);
 510     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 511   }
 512   __ move(index, result);
 513 }
 514 
 515 
 516 
 517 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 518   LIR_Opr result_op = result;
 519   LIR_Opr left_op   = left;
 520   LIR_Opr right_op  = right;
 521 
 522   if (TwoOperandLIRForm && left_op != result_op) {
 523     assert(right_op != result_op, "malformed");
 524     __ move(left_op, result_op);
 525     left_op = result_op;
 526   }
 527 
 528   switch(code) {
 529     case Bytecodes::_dadd:
 530     case Bytecodes::_fadd:
 531     case Bytecodes::_ladd:
 532     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 533     case Bytecodes::_fmul:
 534     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_dmul:
 537       {
 538         if (is_strictfp) {
 539           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 540         } else {
 541           __ mul(left_op, right_op, result_op); break;
 542         }
 543       }
 544       break;
 545 
 546     case Bytecodes::_imul:
 547       {
 548         bool    did_strength_reduce = false;
 549 
 550         if (right->is_constant()) {
 551           int c = right->as_jint();
 552           if (is_power_of_2(c)) {
 553             // do not need tmp here
 554             __ shift_left(left_op, exact_log2(c), result_op);
 555             did_strength_reduce = true;
 556           } else {
 557             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 558           }
 559         }
 560         // we couldn't strength reduce so just emit the multiply
 561         if (!did_strength_reduce) {
 562           __ mul(left_op, right_op, result_op);
 563         }
 564       }
 565       break;
 566 
 567     case Bytecodes::_dsub:
 568     case Bytecodes::_fsub:
 569     case Bytecodes::_lsub:
 570     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 571 
 572     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 573     // ldiv and lrem are implemented with a direct runtime call
 574 
 575     case Bytecodes::_ddiv:
 576       {
 577         if (is_strictfp) {
 578           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 579         } else {
 580           __ div (left_op, right_op, result_op); break;
 581         }
 582       }
 583       break;
 584 
 585     case Bytecodes::_drem:
 586     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 587 
 588     default: ShouldNotReachHere();
 589   }
 590 }
 591 
 592 
 593 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 594   arithmetic_op(code, result, left, right, false, tmp);
 595 }
 596 
 597 
 598 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 599   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 600 }
 601 
 602 
 603 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 604   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 605 }
 606 
 607 
 608 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 609 
 610   if (TwoOperandLIRForm && value != result_op
 611       // Only 32bit right shifts require two operand form on S390.
 612       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 613     assert(count != result_op, "malformed");
 614     __ move(value, result_op);
 615     value = result_op;
 616   }
 617 
 618   assert(count->is_constant() || count->is_register(), "must be");
 619   switch(code) {
 620   case Bytecodes::_ishl:
 621   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 622   case Bytecodes::_ishr:
 623   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 624   case Bytecodes::_iushr:
 625   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 626   default: ShouldNotReachHere();
 627   }
 628 }
 629 
 630 
 631 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 632   if (TwoOperandLIRForm && left_op != result_op) {
 633     assert(right_op != result_op, "malformed");
 634     __ move(left_op, result_op);
 635     left_op = result_op;
 636   }
 637 
 638   switch(code) {
 639     case Bytecodes::_iand:
 640     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 641 
 642     case Bytecodes::_ior:
 643     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 644 
 645     case Bytecodes::_ixor:
 646     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 647 
 648     default: ShouldNotReachHere();
 649   }
 650 }
 651 
 652 
 653 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 654   if (!GenerateSynchronizationCode) return;
 655   // for slow path, use debug info for state after successful locking
 656   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 657   __ load_stack_address_monitor(monitor_no, lock);
 658   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 659   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 660 }
 661 
 662 
 663 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 664   if (!GenerateSynchronizationCode) return;
 665   // setup registers
 666   LIR_Opr hdr = lock;
 667   lock = new_hdr;
 668   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 669   __ load_stack_address_monitor(monitor_no, lock);
 670   __ unlock_object(hdr, object, lock, scratch, slow_path);
 671 }
 672 
 673 #ifndef PRODUCT
 674 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 675   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 676     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 677   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 678     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 679   }
 680 }
 681 #endif
 682 
 683 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 684   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 685   // If klass is not loaded we do not know if the klass has finalizers:
 686   if (UseFastNewInstance && klass->is_loaded()
 687       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 688 
 689     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 690 
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 692 
 693     assert(klass->is_loaded(), "must be loaded");
 694     // allocate space for instance
 695     assert(klass->size_helper() >= 0, "illegal instance size");
 696     const int instance_size = align_object_size(klass->size_helper());
 697     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 698                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 699   } else {
 700     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 701     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 702     __ branch_destination(slow_path->continuation());
 703   }
 704 }
 705 
 706 
 707 static bool is_constant_zero(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() == 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static bool positive_constant(Instruction* inst) {
 717   IntConstant* c = inst->type()->as_IntConstant();
 718   if (c) {
 719     return (c->value() >= 0);
 720   }
 721   return false;
 722 }
 723 
 724 
 725 static ciArrayKlass* as_array_klass(ciType* type) {
 726   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 727     return (ciArrayKlass*)type;
 728   } else {
 729     return NULL;
 730   }
 731 }
 732 
 733 static ciType* phi_declared_type(Phi* phi) {
 734   ciType* t = phi->operand_at(0)->declared_type();
 735   if (t == NULL) {
 736     return NULL;
 737   }
 738   for(int i = 1; i < phi->operand_count(); i++) {
 739     if (t != phi->operand_at(i)->declared_type()) {
 740       return NULL;
 741     }
 742   }
 743   return t;
 744 }
 745 
 746 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 747   Instruction* src     = x->argument_at(0);
 748   Instruction* src_pos = x->argument_at(1);
 749   Instruction* dst     = x->argument_at(2);
 750   Instruction* dst_pos = x->argument_at(3);
 751   Instruction* length  = x->argument_at(4);
 752 
 753   // first try to identify the likely type of the arrays involved
 754   ciArrayKlass* expected_type = NULL;
 755   bool is_exact = false, src_objarray = false, dst_objarray = false;
 756   {
 757     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 758     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 759     Phi* phi;
 760     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 761       src_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 764     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 765     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 766       dst_declared_type = as_array_klass(phi_declared_type(phi));
 767     }
 768 
 769     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 770       // the types exactly match so the type is fully known
 771       is_exact = true;
 772       expected_type = src_exact_type;
 773     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 774       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 775       ciArrayKlass* src_type = NULL;
 776       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 777         src_type = (ciArrayKlass*) src_exact_type;
 778       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 779         src_type = (ciArrayKlass*) src_declared_type;
 780       }
 781       if (src_type != NULL) {
 782         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 783           is_exact = true;
 784           expected_type = dst_type;
 785         }
 786       }
 787     }
 788     // at least pass along a good guess
 789     if (expected_type == NULL) expected_type = dst_exact_type;
 790     if (expected_type == NULL) expected_type = src_declared_type;
 791     if (expected_type == NULL) expected_type = dst_declared_type;
 792 
 793     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 794     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 795   }
 796 
 797   // if a probable array type has been identified, figure out if any
 798   // of the required checks for a fast case can be elided.
 799   int flags = LIR_OpArrayCopy::all_flags;
 800 
 801   if (!src_objarray)
 802     flags &= ~LIR_OpArrayCopy::src_objarray;
 803   if (!dst_objarray)
 804     flags &= ~LIR_OpArrayCopy::dst_objarray;
 805 
 806   if (!x->arg_needs_null_check(0))
 807     flags &= ~LIR_OpArrayCopy::src_null_check;
 808   if (!x->arg_needs_null_check(2))
 809     flags &= ~LIR_OpArrayCopy::dst_null_check;
 810 
 811 
 812   if (expected_type != NULL) {
 813     Value length_limit = NULL;
 814 
 815     IfOp* ifop = length->as_IfOp();
 816     if (ifop != NULL) {
 817       // look for expressions like min(v, a.length) which ends up as
 818       //   x > y ? y : x  or  x >= y ? y : x
 819       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 820           ifop->x() == ifop->fval() &&
 821           ifop->y() == ifop->tval()) {
 822         length_limit = ifop->y();
 823       }
 824     }
 825 
 826     // try to skip null checks and range checks
 827     NewArray* src_array = src->as_NewArray();
 828     if (src_array != NULL) {
 829       flags &= ~LIR_OpArrayCopy::src_null_check;
 830       if (length_limit != NULL &&
 831           src_array->length() == length_limit &&
 832           is_constant_zero(src_pos)) {
 833         flags &= ~LIR_OpArrayCopy::src_range_check;
 834       }
 835     }
 836 
 837     NewArray* dst_array = dst->as_NewArray();
 838     if (dst_array != NULL) {
 839       flags &= ~LIR_OpArrayCopy::dst_null_check;
 840       if (length_limit != NULL &&
 841           dst_array->length() == length_limit &&
 842           is_constant_zero(dst_pos)) {
 843         flags &= ~LIR_OpArrayCopy::dst_range_check;
 844       }
 845     }
 846 
 847     // check from incoming constant values
 848     if (positive_constant(src_pos))
 849       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 850     if (positive_constant(dst_pos))
 851       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 852     if (positive_constant(length))
 853       flags &= ~LIR_OpArrayCopy::length_positive_check;
 854 
 855     // see if the range check can be elided, which might also imply
 856     // that src or dst is non-null.
 857     ArrayLength* al = length->as_ArrayLength();
 858     if (al != NULL) {
 859       if (al->array() == src) {
 860         // it's the length of the source array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::src_null_check;
 863         if (is_constant_zero(src_pos))
 864           flags &= ~LIR_OpArrayCopy::src_range_check;
 865       }
 866       if (al->array() == dst) {
 867         // it's the length of the destination array
 868         flags &= ~LIR_OpArrayCopy::length_positive_check;
 869         flags &= ~LIR_OpArrayCopy::dst_null_check;
 870         if (is_constant_zero(dst_pos))
 871           flags &= ~LIR_OpArrayCopy::dst_range_check;
 872       }
 873     }
 874     if (is_exact) {
 875       flags &= ~LIR_OpArrayCopy::type_check;
 876     }
 877   }
 878 
 879   IntConstant* src_int = src_pos->type()->as_IntConstant();
 880   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 881   if (src_int && dst_int) {
 882     int s_offs = src_int->value();
 883     int d_offs = dst_int->value();
 884     if (src_int->value() >= dst_int->value()) {
 885       flags &= ~LIR_OpArrayCopy::overlapping;
 886     }
 887     if (expected_type != NULL) {
 888       BasicType t = expected_type->element_type()->basic_type();
 889       int element_size = type2aelembytes(t);
 890       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 891           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 892         flags &= ~LIR_OpArrayCopy::unaligned;
 893       }
 894     }
 895   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 896     // src and dest positions are the same, or dst is zero so assume
 897     // nonoverlapping copy.
 898     flags &= ~LIR_OpArrayCopy::overlapping;
 899   }
 900 
 901   if (src == dst) {
 902     // moving within a single array so no type checks are needed
 903     if (flags & LIR_OpArrayCopy::type_check) {
 904       flags &= ~LIR_OpArrayCopy::type_check;
 905     }
 906   }
 907   *flagsp = flags;
 908   *expected_typep = (ciArrayKlass*)expected_type;
 909 }
 910 
 911 
 912 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 913   assert(opr->is_register(), "why spill if item is not register?");
 914 
 915   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 916     LIR_Opr result = new_register(T_FLOAT);
 917     set_vreg_flag(result, must_start_in_memory);
 918     assert(opr->is_register(), "only a register can be spilled");
 919     assert(opr->value_type()->is_float(), "rounding only for floats available");
 920     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 921     return result;
 922   }
 923   return opr;
 924 }
 925 
 926 
 927 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 928   assert(type2size[t] == type2size[value->type()],
 929          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 930   if (!value->is_register()) {
 931     // force into a register
 932     LIR_Opr r = new_register(value->type());
 933     __ move(value, r);
 934     value = r;
 935   }
 936 
 937   // create a spill location
 938   LIR_Opr tmp = new_register(t);
 939   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 940 
 941   // move from register to spill
 942   __ move(value, tmp);
 943   return tmp;
 944 }
 945 
 946 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 947   if (if_instr->should_profile()) {
 948     ciMethod* method = if_instr->profiled_method();
 949     assert(method != NULL, "method should be set if branch is profiled");
 950     ciMethodData* md = method->method_data_or_null();
 951     assert(md != NULL, "Sanity");
 952     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 953     assert(data != NULL, "must have profiling data");
 954     assert(data->is_BranchData(), "need BranchData for two-way branches");
 955     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 956     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 957     if (if_instr->is_swapped()) {
 958       int t = taken_count_offset;
 959       taken_count_offset = not_taken_count_offset;
 960       not_taken_count_offset = t;
 961     }
 962 
 963     LIR_Opr md_reg = new_register(T_METADATA);
 964     __ metadata2reg(md->constant_encoding(), md_reg);
 965 
 966     LIR_Opr data_offset_reg = new_pointer_register();
 967     __ cmove(lir_cond(cond),
 968              LIR_OprFact::intptrConst(taken_count_offset),
 969              LIR_OprFact::intptrConst(not_taken_count_offset),
 970              data_offset_reg, as_BasicType(if_instr->x()->type()));
 971 
 972     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 973     LIR_Opr data_reg = new_pointer_register();
 974     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 975     __ move(data_addr, data_reg);
 976     // Use leal instead of add to avoid destroying condition codes on x86
 977     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 978     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 979     __ move(data_reg, data_addr);
 980   }
 981 }
 982 
 983 // Phi technique:
 984 // This is about passing live values from one basic block to the other.
 985 // In code generated with Java it is rather rare that more than one
 986 // value is on the stack from one basic block to the other.
 987 // We optimize our technique for efficient passing of one value
 988 // (of type long, int, double..) but it can be extended.
 989 // When entering or leaving a basic block, all registers and all spill
 990 // slots are release and empty. We use the released registers
 991 // and spill slots to pass the live values from one block
 992 // to the other. The topmost value, i.e., the value on TOS of expression
 993 // stack is passed in registers. All other values are stored in spilling
 994 // area. Every Phi has an index which designates its spill slot
 995 // At exit of a basic block, we fill the register(s) and spill slots.
 996 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 997 // and locks necessary registers and spilling slots.
 998 
 999 
1000 // move current value to referenced phi function
1001 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1002   Phi* phi = sux_val->as_Phi();
1003   // cur_val can be null without phi being null in conjunction with inlining
1004   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1005     Phi* cur_phi = cur_val->as_Phi();
1006     if (cur_phi != NULL && cur_phi->is_illegal()) {
1007       // Phi and local would need to get invalidated
1008       // (which is unexpected for Linear Scan).
1009       // But this case is very rare so we simply bail out.
1010       bailout("propagation of illegal phi");
1011       return;
1012     }
1013     LIR_Opr operand = cur_val->operand();
1014     if (operand->is_illegal()) {
1015       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1016              "these can be produced lazily");
1017       operand = operand_for_instruction(cur_val);
1018     }
1019     resolver->move(operand, operand_for_instruction(phi));
1020   }
1021 }
1022 
1023 
1024 // Moves all stack values into their PHI position
1025 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1026   BlockBegin* bb = block();
1027   if (bb->number_of_sux() == 1) {
1028     BlockBegin* sux = bb->sux_at(0);
1029     assert(sux->number_of_preds() > 0, "invalid CFG");
1030 
1031     // a block with only one predecessor never has phi functions
1032     if (sux->number_of_preds() > 1) {
1033       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1034       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1035 
1036       ValueStack* sux_state = sux->state();
1037       Value sux_value;
1038       int index;
1039 
1040       assert(cur_state->scope() == sux_state->scope(), "not matching");
1041       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1042       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1043 
1044       for_each_stack_value(sux_state, index, sux_value) {
1045         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1046       }
1047 
1048       for_each_local_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1050       }
1051 
1052       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1053     }
1054   }
1055 }
1056 
1057 
1058 LIR_Opr LIRGenerator::new_register(BasicType type) {
1059   int vreg = _virtual_register_number;
1060   // add a little fudge factor for the bailout, since the bailout is
1061   // only checked periodically.  This gives a few extra registers to
1062   // hand out before we really run out, which helps us keep from
1063   // tripping over assertions.
1064   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1065     bailout("out of virtual registers");
1066     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1067       // wrap it around
1068       _virtual_register_number = LIR_OprDesc::vreg_base;
1069     }
1070   }
1071   _virtual_register_number += 1;
1072   return LIR_OprFact::virtual_register(vreg, type);
1073 }
1074 
1075 
1076 // Try to lock using register in hint
1077 LIR_Opr LIRGenerator::rlock(Value instr) {
1078   return new_register(instr->type());
1079 }
1080 
1081 
1082 // does an rlock and sets result
1083 LIR_Opr LIRGenerator::rlock_result(Value x) {
1084   LIR_Opr reg = rlock(x);
1085   set_result(x, reg);
1086   return reg;
1087 }
1088 
1089 
1090 // does an rlock and sets result
1091 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1092   LIR_Opr reg;
1093   switch (type) {
1094   case T_BYTE:
1095   case T_BOOLEAN:
1096     reg = rlock_byte(type);
1097     break;
1098   default:
1099     reg = rlock(x);
1100     break;
1101   }
1102 
1103   set_result(x, reg);
1104   return reg;
1105 }
1106 
1107 
1108 //---------------------------------------------------------------------
1109 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1110   ObjectType* oc = value->type()->as_ObjectType();
1111   if (oc) {
1112     return oc->constant_value();
1113   }
1114   return NULL;
1115 }
1116 
1117 
1118 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1119   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1120   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1121 
1122   // no moves are created for phi functions at the begin of exception
1123   // handlers, so assign operands manually here
1124   for_each_phi_fun(block(), phi,
1125                    operand_for_instruction(phi));
1126 
1127   LIR_Opr thread_reg = getThreadPointer();
1128   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1129                exceptionOopOpr());
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1132   __ move_wide(LIR_OprFact::oopConst(NULL),
1133                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1134 
1135   LIR_Opr result = new_register(T_OBJECT);
1136   __ move(exceptionOopOpr(), result);
1137   set_result(x, result);
1138 }
1139 
1140 
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //                        visitor functions
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //----------------------------------------------------------------------
1150 
1151 void LIRGenerator::do_Phi(Phi* x) {
1152   // phi functions are never visited directly
1153   ShouldNotReachHere();
1154 }
1155 
1156 
1157 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1158 void LIRGenerator::do_Constant(Constant* x) {
1159   if (x->state_before() != NULL) {
1160     // Any constant with a ValueStack requires patching so emit the patch here
1161     LIR_Opr reg = rlock_result(x);
1162     CodeEmitInfo* info = state_for(x, x->state_before());
1163     __ oop2reg_patch(NULL, reg, info);
1164   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1165     if (!x->is_pinned()) {
1166       // unpinned constants are handled specially so that they can be
1167       // put into registers when they are used multiple times within a
1168       // block.  After the block completes their operand will be
1169       // cleared so that other blocks can't refer to that register.
1170       set_result(x, load_constant(x));
1171     } else {
1172       LIR_Opr res = x->operand();
1173       if (!res->is_valid()) {
1174         res = LIR_OprFact::value_type(x->type());
1175       }
1176       if (res->is_constant()) {
1177         LIR_Opr reg = rlock_result(x);
1178         __ move(res, reg);
1179       } else {
1180         set_result(x, res);
1181       }
1182     }
1183   } else {
1184     set_result(x, LIR_OprFact::value_type(x->type()));
1185   }
1186 }
1187 
1188 
1189 void LIRGenerator::do_Local(Local* x) {
1190   // operand_for_instruction has the side effect of setting the result
1191   // so there's no need to do it here.
1192   operand_for_instruction(x);
1193 }
1194 
1195 
1196 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1197   Unimplemented();
1198 }
1199 
1200 
1201 void LIRGenerator::do_Return(Return* x) {
1202   if (compilation()->env()->dtrace_method_probes()) {
1203     BasicTypeList signature;
1204     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1205     signature.append(T_METADATA); // Method*
1206     LIR_OprList* args = new LIR_OprList();
1207     args->append(getThreadPointer());
1208     LIR_Opr meth = new_register(T_METADATA);
1209     __ metadata2reg(method()->constant_encoding(), meth);
1210     args->append(meth);
1211     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1212   }
1213 
1214   if (x->type()->is_void()) {
1215     __ return_op(LIR_OprFact::illegalOpr);
1216   } else {
1217     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1218     LIRItem result(x->result(), this);
1219 
1220     result.load_item_force(reg);
1221     __ return_op(result.result());
1222   }
1223   set_no_result(x);
1224 }
1225 
1226 // Examble: ref.get()
1227 // Combination of LoadField and g1 pre-write barrier
1228 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1229 
1230   const int referent_offset = java_lang_ref_Reference::referent_offset;
1231   guarantee(referent_offset > 0, "referent offset not initialized");
1232 
1233   assert(x->number_of_arguments() == 1, "wrong type");
1234 
1235   LIRItem reference(x->argument_at(0), this);
1236   reference.load_item();
1237 
1238   // need to perform the null check on the reference objecy
1239   CodeEmitInfo* info = NULL;
1240   if (x->needs_null_check()) {
1241     info = state_for(x);
1242   }
1243 
1244   LIR_Address* referent_field_adr =
1245     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1246 
1247   LIR_Opr result = rlock_result(x);
1248 
1249   __ load(referent_field_adr, result, info);
1250 
1251   // Register the value in the referent field with the pre-barrier
1252   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1253               result /* pre_val */,
1254               false  /* do_load */,
1255               false  /* patch */,
1256               NULL   /* info */);
1257 }
1258 
1259 // Example: clazz.isInstance(object)
1260 void LIRGenerator::do_isInstance(Intrinsic* x) {
1261   assert(x->number_of_arguments() == 2, "wrong type");
1262 
1263   // TODO could try to substitute this node with an equivalent InstanceOf
1264   // if clazz is known to be a constant Class. This will pick up newly found
1265   // constants after HIR construction. I'll leave this to a future change.
1266 
1267   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1268   // could follow the aastore example in a future change.
1269 
1270   LIRItem clazz(x->argument_at(0), this);
1271   LIRItem object(x->argument_at(1), this);
1272   clazz.load_item();
1273   object.load_item();
1274   LIR_Opr result = rlock_result(x);
1275 
1276   // need to perform null check on clazz
1277   if (x->needs_null_check()) {
1278     CodeEmitInfo* info = state_for(x);
1279     __ null_check(clazz.result(), info);
1280   }
1281 
1282   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1283                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1284                                      x->type(),
1285                                      NULL); // NULL CodeEmitInfo results in a leaf call
1286   __ move(call_result, result);
1287 }
1288 
1289 // Example: object.getClass ()
1290 void LIRGenerator::do_getClass(Intrinsic* x) {
1291   assert(x->number_of_arguments() == 1, "wrong type");
1292 
1293   LIRItem rcvr(x->argument_at(0), this);
1294   rcvr.load_item();
1295   LIR_Opr temp = new_register(T_METADATA);
1296   LIR_Opr result = rlock_result(x);
1297 
1298   // need to perform the null check on the rcvr
1299   CodeEmitInfo* info = NULL;
1300   if (x->needs_null_check()) {
1301     info = state_for(x);
1302   }
1303 
1304   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1305   // meaning of these two is mixed up (see JDK-8026837).
1306   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1307   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1308 }
1309 
1310 // java.lang.Class::isPrimitive()
1311 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1312   assert(x->number_of_arguments() == 1, "wrong type");
1313 
1314   LIRItem rcvr(x->argument_at(0), this);
1315   rcvr.load_item();
1316   LIR_Opr temp = new_register(T_METADATA);
1317   LIR_Opr result = rlock_result(x);
1318 
1319   CodeEmitInfo* info = NULL;
1320   if (x->needs_null_check()) {
1321     info = state_for(x);
1322   }
1323 
1324   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1325   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1326   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1327 }
1328 
1329 
1330 // Example: Thread.currentThread()
1331 void LIRGenerator::do_currentThread(Intrinsic* x) {
1332   assert(x->number_of_arguments() == 0, "wrong type");
1333   LIR_Opr reg = rlock_result(x);
1334   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1335 }
1336 
1337 
1338 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1339   assert(x->number_of_arguments() == 1, "wrong type");
1340   LIRItem receiver(x->argument_at(0), this);
1341 
1342   receiver.load_item();
1343   BasicTypeList signature;
1344   signature.append(T_OBJECT); // receiver
1345   LIR_OprList* args = new LIR_OprList();
1346   args->append(receiver.result());
1347   CodeEmitInfo* info = state_for(x, x->state());
1348   call_runtime(&signature, args,
1349                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1350                voidType, info);
1351 
1352   set_no_result(x);
1353 }
1354 
1355 
1356 //------------------------local access--------------------------------------
1357 
1358 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1359   if (x->operand()->is_illegal()) {
1360     Constant* c = x->as_Constant();
1361     if (c != NULL) {
1362       x->set_operand(LIR_OprFact::value_type(c->type()));
1363     } else {
1364       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1365       // allocate a virtual register for this local or phi
1366       x->set_operand(rlock(x));
1367       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1368     }
1369   }
1370   return x->operand();
1371 }
1372 
1373 
1374 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1375   if (opr->is_virtual()) {
1376     return instruction_for_vreg(opr->vreg_number());
1377   }
1378   return NULL;
1379 }
1380 
1381 
1382 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1383   if (reg_num < _instruction_for_operand.length()) {
1384     return _instruction_for_operand.at(reg_num);
1385   }
1386   return NULL;
1387 }
1388 
1389 
1390 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1391   if (_vreg_flags.size_in_bits() == 0) {
1392     BitMap2D temp(100, num_vreg_flags);
1393     _vreg_flags = temp;
1394   }
1395   _vreg_flags.at_put_grow(vreg_num, f, true);
1396 }
1397 
1398 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1399   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1400     return false;
1401   }
1402   return _vreg_flags.at(vreg_num, f);
1403 }
1404 
1405 
1406 // Block local constant handling.  This code is useful for keeping
1407 // unpinned constants and constants which aren't exposed in the IR in
1408 // registers.  Unpinned Constant instructions have their operands
1409 // cleared when the block is finished so that other blocks can't end
1410 // up referring to their registers.
1411 
1412 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1413   assert(!x->is_pinned(), "only for unpinned constants");
1414   _unpinned_constants.append(x);
1415   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1416 }
1417 
1418 
1419 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1420   BasicType t = c->type();
1421   for (int i = 0; i < _constants.length(); i++) {
1422     LIR_Const* other = _constants.at(i);
1423     if (t == other->type()) {
1424       switch (t) {
1425       case T_INT:
1426       case T_FLOAT:
1427         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1428         break;
1429       case T_LONG:
1430       case T_DOUBLE:
1431         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1432         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1433         break;
1434       case T_OBJECT:
1435         if (c->as_jobject() != other->as_jobject()) continue;
1436         break;
1437       }
1438       return _reg_for_constants.at(i);
1439     }
1440   }
1441 
1442   LIR_Opr result = new_register(t);
1443   __ move((LIR_Opr)c, result);
1444   _constants.append(c);
1445   _reg_for_constants.append(result);
1446   return result;
1447 }
1448 
1449 // Various barriers
1450 
1451 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1452                                bool do_load, bool patch, CodeEmitInfo* info) {
1453   // Do the pre-write barrier, if any.
1454   switch (_bs->kind()) {
1455 #if INCLUDE_ALL_GCS
1456     case BarrierSet::G1SATBCTLogging:
1457       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1458       break;
1459 #endif // INCLUDE_ALL_GCS
1460     case BarrierSet::CardTableForRS:
1461     case BarrierSet::CardTableExtension:
1462       // No pre barriers
1463       break;
1464     case BarrierSet::ModRef:
1465     case BarrierSet::Epsilon:
1466       // No pre barriers
1467       break;
1468     default      :
1469       ShouldNotReachHere();
1470 
1471   }
1472 }
1473 
1474 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1475   switch (_bs->kind()) {
1476 #if INCLUDE_ALL_GCS
1477     case BarrierSet::G1SATBCTLogging:
1478       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1479       break;
1480 #endif // INCLUDE_ALL_GCS
1481     case BarrierSet::CardTableForRS:
1482     case BarrierSet::CardTableExtension:
1483       CardTableModRef_post_barrier(addr,  new_val);
1484       break;
1485     case BarrierSet::ModRef:
1486     case BarrierSet::Epsilon:
1487       // No post barriers
1488       break;
1489     default      :
1490       ShouldNotReachHere();
1491     }
1492 }
1493 
1494 ////////////////////////////////////////////////////////////////////////
1495 #if INCLUDE_ALL_GCS
1496 
1497 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1498                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1499   // First we test whether marking is in progress.
1500   BasicType flag_type;
1501   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1502     flag_type = T_INT;
1503   } else {
1504     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1505               "Assumption");
1506     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1507     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1508     flag_type = T_BOOLEAN;
1509   }
1510   LIR_Opr thrd = getThreadPointer();
1511   LIR_Address* mark_active_flag_addr =
1512     new LIR_Address(thrd,
1513                     in_bytes(JavaThread::satb_mark_queue_offset() +
1514                              SATBMarkQueue::byte_offset_of_active()),
1515                     flag_type);
1516   // Read the marking-in-progress flag.
1517   LIR_Opr flag_val = new_register(T_INT);
1518   __ load(mark_active_flag_addr, flag_val);
1519   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1520 
1521   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1522 
1523   CodeStub* slow;
1524 
1525   if (do_load) {
1526     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1527     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1528 
1529     if (patch)
1530       pre_val_patch_code = lir_patch_normal;
1531 
1532     pre_val = new_register(T_OBJECT);
1533 
1534     if (!addr_opr->is_address()) {
1535       assert(addr_opr->is_register(), "must be");
1536       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1537     }
1538     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1539   } else {
1540     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1541     assert(pre_val->is_register(), "must be");
1542     assert(pre_val->type() == T_OBJECT, "must be an object");
1543     assert(info == NULL, "sanity");
1544 
1545     slow = new G1PreBarrierStub(pre_val);
1546   }
1547 
1548   __ branch(lir_cond_notEqual, T_INT, slow);
1549   __ branch_destination(slow->continuation());
1550 }
1551 
1552 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1553   // If the "new_val" is a constant NULL, no barrier is necessary.
1554   if (new_val->is_constant() &&
1555       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1556 
1557   if (!new_val->is_register()) {
1558     LIR_Opr new_val_reg = new_register(T_OBJECT);
1559     if (new_val->is_constant()) {
1560       __ move(new_val, new_val_reg);
1561     } else {
1562       __ leal(new_val, new_val_reg);
1563     }
1564     new_val = new_val_reg;
1565   }
1566   assert(new_val->is_register(), "must be a register at this point");
1567 
1568   if (addr->is_address()) {
1569     LIR_Address* address = addr->as_address_ptr();
1570     LIR_Opr ptr = new_pointer_register();
1571     if (!address->index()->is_valid() && address->disp() == 0) {
1572       __ move(address->base(), ptr);
1573     } else {
1574       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1575       __ leal(addr, ptr);
1576     }
1577     addr = ptr;
1578   }
1579   assert(addr->is_register(), "must be a register at this point");
1580 
1581   LIR_Opr xor_res = new_pointer_register();
1582   LIR_Opr xor_shift_res = new_pointer_register();
1583   if (TwoOperandLIRForm ) {
1584     __ move(addr, xor_res);
1585     __ logical_xor(xor_res, new_val, xor_res);
1586     __ move(xor_res, xor_shift_res);
1587     __ unsigned_shift_right(xor_shift_res,
1588                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1589                             xor_shift_res,
1590                             LIR_OprDesc::illegalOpr());
1591   } else {
1592     __ logical_xor(addr, new_val, xor_res);
1593     __ unsigned_shift_right(xor_res,
1594                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1595                             xor_shift_res,
1596                             LIR_OprDesc::illegalOpr());
1597   }
1598 
1599   if (!new_val->is_register()) {
1600     LIR_Opr new_val_reg = new_register(T_OBJECT);
1601     __ leal(new_val, new_val_reg);
1602     new_val = new_val_reg;
1603   }
1604   assert(new_val->is_register(), "must be a register at this point");
1605 
1606   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1607 
1608   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1609   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1610   __ branch_destination(slow->continuation());
1611 }
1612 
1613 #endif // INCLUDE_ALL_GCS
1614 ////////////////////////////////////////////////////////////////////////
1615 
1616 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1617   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1618   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1619   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1620   if (addr->is_address()) {
1621     LIR_Address* address = addr->as_address_ptr();
1622     // ptr cannot be an object because we use this barrier for array card marks
1623     // and addr can point in the middle of an array.
1624     LIR_Opr ptr = new_pointer_register();
1625     if (!address->index()->is_valid() && address->disp() == 0) {
1626       __ move(address->base(), ptr);
1627     } else {
1628       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1629       __ leal(addr, ptr);
1630     }
1631     addr = ptr;
1632   }
1633   assert(addr->is_register(), "must be a register at this point");
1634 
1635 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1636   CardTableModRef_post_barrier_helper(addr, card_table_base);
1637 #else
1638   LIR_Opr tmp = new_pointer_register();
1639   if (TwoOperandLIRForm) {
1640     __ move(addr, tmp);
1641     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1642   } else {
1643     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1644   }
1645 
1646   LIR_Address* card_addr;
1647   if (can_inline_as_constant(card_table_base)) {
1648     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1649   } else {
1650     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1651   }
1652 
1653   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1654   if (UseCondCardMark) {
1655     LIR_Opr cur_value = new_register(T_INT);
1656     if (UseConcMarkSweepGC) {
1657       __ membar_storeload();
1658     }
1659     __ move(card_addr, cur_value);
1660 
1661     LabelObj* L_already_dirty = new LabelObj();
1662     __ cmp(lir_cond_equal, cur_value, dirty);
1663     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1664     __ move(dirty, card_addr);
1665     __ branch_destination(L_already_dirty->label());
1666   } else {
1667     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1668       __ membar_storestore();
1669     }
1670     __ move(dirty, card_addr);
1671   }
1672 #endif
1673 }
1674 
1675 
1676 //------------------------field access--------------------------------------
1677 
1678 // Comment copied form templateTable_i486.cpp
1679 // ----------------------------------------------------------------------------
1680 // Volatile variables demand their effects be made known to all CPU's in
1681 // order.  Store buffers on most chips allow reads & writes to reorder; the
1682 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1683 // memory barrier (i.e., it's not sufficient that the interpreter does not
1684 // reorder volatile references, the hardware also must not reorder them).
1685 //
1686 // According to the new Java Memory Model (JMM):
1687 // (1) All volatiles are serialized wrt to each other.
1688 // ALSO reads & writes act as aquire & release, so:
1689 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1690 // the read float up to before the read.  It's OK for non-volatile memory refs
1691 // that happen before the volatile read to float down below it.
1692 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1693 // that happen BEFORE the write float down to after the write.  It's OK for
1694 // non-volatile memory refs that happen after the volatile write to float up
1695 // before it.
1696 //
1697 // We only put in barriers around volatile refs (they are expensive), not
1698 // _between_ memory refs (that would require us to track the flavor of the
1699 // previous memory refs).  Requirements (2) and (3) require some barriers
1700 // before volatile stores and after volatile loads.  These nearly cover
1701 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1702 // case is placed after volatile-stores although it could just as well go
1703 // before volatile-loads.
1704 
1705 
1706 void LIRGenerator::do_StoreField(StoreField* x) {
1707   bool needs_patching = x->needs_patching();
1708   bool is_volatile = x->field()->is_volatile();
1709   BasicType field_type = x->field_type();
1710   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1711 
1712   CodeEmitInfo* info = NULL;
1713   if (needs_patching) {
1714     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1715     info = state_for(x, x->state_before());
1716   } else if (x->needs_null_check()) {
1717     NullCheck* nc = x->explicit_null_check();
1718     if (nc == NULL) {
1719       info = state_for(x);
1720     } else {
1721       info = state_for(nc);
1722     }
1723   }
1724 
1725 
1726   LIRItem object(x->obj(), this);
1727   LIRItem value(x->value(),  this);
1728 
1729   object.load_item();
1730 
1731   if (is_volatile || needs_patching) {
1732     // load item if field is volatile (fewer special cases for volatiles)
1733     // load item if field not initialized
1734     // load item if field not constant
1735     // because of code patching we cannot inline constants
1736     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1737       value.load_byte_item();
1738     } else  {
1739       value.load_item();
1740     }
1741   } else {
1742     value.load_for_store(field_type);
1743   }
1744 
1745   set_no_result(x);
1746 
1747 #ifndef PRODUCT
1748   if (PrintNotLoaded && needs_patching) {
1749     tty->print_cr("   ###class not loaded at store_%s bci %d",
1750                   x->is_static() ?  "static" : "field", x->printable_bci());
1751   }
1752 #endif
1753 
1754   if (x->needs_null_check() &&
1755       (needs_patching ||
1756        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1757     // emit an explicit null check because the offset is too large
1758     __ null_check(object.result(), new CodeEmitInfo(info));
1759   }
1760 
1761   LIR_Address* address;
1762   if (needs_patching) {
1763     // we need to patch the offset in the instruction so don't allow
1764     // generate_address to try to be smart about emitting the -1.
1765     // Otherwise the patching code won't know how to find the
1766     // instruction to patch.
1767     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1768   } else {
1769     address = generate_address(object.result(), x->offset(), field_type);
1770   }
1771 
1772   if (is_volatile && os::is_MP()) {
1773     __ membar_release();
1774   }
1775 
1776   if (is_oop) {
1777     // Do the pre-write barrier, if any.
1778     pre_barrier(LIR_OprFact::address(address),
1779                 LIR_OprFact::illegalOpr /* pre_val */,
1780                 true /* do_load*/,
1781                 needs_patching,
1782                 (info ? new CodeEmitInfo(info) : NULL));
1783   }
1784 
1785   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1786   if (needs_atomic_access && !needs_patching) {
1787     volatile_field_store(value.result(), address, info);
1788   } else {
1789     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1790     __ store(value.result(), address, info, patch_code);
1791   }
1792 
1793   if (is_oop) {
1794     // Store to object so mark the card of the header
1795     post_barrier(object.result(), value.result());
1796   }
1797 
1798   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1799     __ membar();
1800   }
1801 }
1802 
1803 
1804 void LIRGenerator::do_LoadField(LoadField* x) {
1805   bool needs_patching = x->needs_patching();
1806   bool is_volatile = x->field()->is_volatile();
1807   BasicType field_type = x->field_type();
1808 
1809   CodeEmitInfo* info = NULL;
1810   if (needs_patching) {
1811     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1812     info = state_for(x, x->state_before());
1813   } else if (x->needs_null_check()) {
1814     NullCheck* nc = x->explicit_null_check();
1815     if (nc == NULL) {
1816       info = state_for(x);
1817     } else {
1818       info = state_for(nc);
1819     }
1820   }
1821 
1822   LIRItem object(x->obj(), this);
1823 
1824   object.load_item();
1825 
1826 #ifndef PRODUCT
1827   if (PrintNotLoaded && needs_patching) {
1828     tty->print_cr("   ###class not loaded at load_%s bci %d",
1829                   x->is_static() ?  "static" : "field", x->printable_bci());
1830   }
1831 #endif
1832 
1833   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1834   if (x->needs_null_check() &&
1835       (needs_patching ||
1836        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1837        stress_deopt)) {
1838     LIR_Opr obj = object.result();
1839     if (stress_deopt) {
1840       obj = new_register(T_OBJECT);
1841       __ move(LIR_OprFact::oopConst(NULL), obj);
1842     }
1843     // emit an explicit null check because the offset is too large
1844     __ null_check(obj, new CodeEmitInfo(info));
1845   }
1846 
1847   LIR_Opr reg = rlock_result(x, field_type);
1848   LIR_Address* address;
1849   if (needs_patching) {
1850     // we need to patch the offset in the instruction so don't allow
1851     // generate_address to try to be smart about emitting the -1.
1852     // Otherwise the patching code won't know how to find the
1853     // instruction to patch.
1854     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1855   } else {
1856     address = generate_address(object.result(), x->offset(), field_type);
1857   }
1858 
1859   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1860     __ membar();
1861   }
1862 
1863   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1864   if (needs_atomic_access && !needs_patching) {
1865     volatile_field_load(address, reg, info);
1866   } else {
1867     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1868     __ load(address, reg, info, patch_code);
1869   }
1870 
1871   if (is_volatile && os::is_MP()) {
1872     __ membar_acquire();
1873   }
1874 }
1875 
1876 
1877 //------------------------java.nio.Buffer.checkIndex------------------------
1878 
1879 // int java.nio.Buffer.checkIndex(int)
1880 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1881   // NOTE: by the time we are in checkIndex() we are guaranteed that
1882   // the buffer is non-null (because checkIndex is package-private and
1883   // only called from within other methods in the buffer).
1884   assert(x->number_of_arguments() == 2, "wrong type");
1885   LIRItem buf  (x->argument_at(0), this);
1886   LIRItem index(x->argument_at(1), this);
1887   buf.load_item();
1888   index.load_item();
1889 
1890   LIR_Opr result = rlock_result(x);
1891   if (GenerateRangeChecks) {
1892     CodeEmitInfo* info = state_for(x);
1893     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1894     if (index.result()->is_constant()) {
1895       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1896       __ branch(lir_cond_belowEqual, T_INT, stub);
1897     } else {
1898       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1899                   java_nio_Buffer::limit_offset(), T_INT, info);
1900       __ branch(lir_cond_aboveEqual, T_INT, stub);
1901     }
1902     __ move(index.result(), result);
1903   } else {
1904     // Just load the index into the result register
1905     __ move(index.result(), result);
1906   }
1907 }
1908 
1909 
1910 //------------------------array access--------------------------------------
1911 
1912 
1913 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1914   LIRItem array(x->array(), this);
1915   array.load_item();
1916   LIR_Opr reg = rlock_result(x);
1917 
1918   CodeEmitInfo* info = NULL;
1919   if (x->needs_null_check()) {
1920     NullCheck* nc = x->explicit_null_check();
1921     if (nc == NULL) {
1922       info = state_for(x);
1923     } else {
1924       info = state_for(nc);
1925     }
1926     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1927       LIR_Opr obj = new_register(T_OBJECT);
1928       __ move(LIR_OprFact::oopConst(NULL), obj);
1929       __ null_check(obj, new CodeEmitInfo(info));
1930     }
1931   }
1932   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1933 }
1934 
1935 
1936 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1937   bool use_length = x->length() != NULL;
1938   LIRItem array(x->array(), this);
1939   LIRItem index(x->index(), this);
1940   LIRItem length(this);
1941   bool needs_range_check = x->compute_needs_range_check();
1942 
1943   if (use_length && needs_range_check) {
1944     length.set_instruction(x->length());
1945     length.load_item();
1946   }
1947 
1948   array.load_item();
1949   if (index.is_constant() && can_inline_as_constant(x->index())) {
1950     // let it be a constant
1951     index.dont_load_item();
1952   } else {
1953     index.load_item();
1954   }
1955 
1956   CodeEmitInfo* range_check_info = state_for(x);
1957   CodeEmitInfo* null_check_info = NULL;
1958   if (x->needs_null_check()) {
1959     NullCheck* nc = x->explicit_null_check();
1960     if (nc != NULL) {
1961       null_check_info = state_for(nc);
1962     } else {
1963       null_check_info = range_check_info;
1964     }
1965     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1966       LIR_Opr obj = new_register(T_OBJECT);
1967       __ move(LIR_OprFact::oopConst(NULL), obj);
1968       __ null_check(obj, new CodeEmitInfo(null_check_info));
1969     }
1970   }
1971 
1972   // emit array address setup early so it schedules better
1973   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1974 
1975   if (GenerateRangeChecks && needs_range_check) {
1976     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1977       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1978     } else if (use_length) {
1979       // TODO: use a (modified) version of array_range_check that does not require a
1980       //       constant length to be loaded to a register
1981       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1982       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1983     } else {
1984       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1985       // The range check performs the null check, so clear it out for the load
1986       null_check_info = NULL;
1987     }
1988   }
1989 
1990   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1991 }
1992 
1993 
1994 void LIRGenerator::do_NullCheck(NullCheck* x) {
1995   if (x->can_trap()) {
1996     LIRItem value(x->obj(), this);
1997     value.load_item();
1998     CodeEmitInfo* info = state_for(x);
1999     __ null_check(value.result(), info);
2000   }
2001 }
2002 
2003 
2004 void LIRGenerator::do_TypeCast(TypeCast* x) {
2005   LIRItem value(x->obj(), this);
2006   value.load_item();
2007   // the result is the same as from the node we are casting
2008   set_result(x, value.result());
2009 }
2010 
2011 
2012 void LIRGenerator::do_Throw(Throw* x) {
2013   LIRItem exception(x->exception(), this);
2014   exception.load_item();
2015   set_no_result(x);
2016   LIR_Opr exception_opr = exception.result();
2017   CodeEmitInfo* info = state_for(x, x->state());
2018 
2019 #ifndef PRODUCT
2020   if (PrintC1Statistics) {
2021     increment_counter(Runtime1::throw_count_address(), T_INT);
2022   }
2023 #endif
2024 
2025   // check if the instruction has an xhandler in any of the nested scopes
2026   bool unwind = false;
2027   if (info->exception_handlers()->length() == 0) {
2028     // this throw is not inside an xhandler
2029     unwind = true;
2030   } else {
2031     // get some idea of the throw type
2032     bool type_is_exact = true;
2033     ciType* throw_type = x->exception()->exact_type();
2034     if (throw_type == NULL) {
2035       type_is_exact = false;
2036       throw_type = x->exception()->declared_type();
2037     }
2038     if (throw_type != NULL && throw_type->is_instance_klass()) {
2039       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2040       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2041     }
2042   }
2043 
2044   // do null check before moving exception oop into fixed register
2045   // to avoid a fixed interval with an oop during the null check.
2046   // Use a copy of the CodeEmitInfo because debug information is
2047   // different for null_check and throw.
2048   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2049     // if the exception object wasn't created using new then it might be null.
2050     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2051   }
2052 
2053   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2054     // we need to go through the exception lookup path to get JVMTI
2055     // notification done
2056     unwind = false;
2057   }
2058 
2059   // move exception oop into fixed register
2060   __ move(exception_opr, exceptionOopOpr());
2061 
2062   if (unwind) {
2063     __ unwind_exception(exceptionOopOpr());
2064   } else {
2065     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2066   }
2067 }
2068 
2069 
2070 void LIRGenerator::do_RoundFP(RoundFP* x) {
2071   LIRItem input(x->input(), this);
2072   input.load_item();
2073   LIR_Opr input_opr = input.result();
2074   assert(input_opr->is_register(), "why round if value is not in a register?");
2075   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2076   if (input_opr->is_single_fpu()) {
2077     set_result(x, round_item(input_opr)); // This code path not currently taken
2078   } else {
2079     LIR_Opr result = new_register(T_DOUBLE);
2080     set_vreg_flag(result, must_start_in_memory);
2081     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2082     set_result(x, result);
2083   }
2084 }
2085 
2086 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2087 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2088 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2089   LIRItem base(x->base(), this);
2090   LIRItem idx(this);
2091 
2092   base.load_item();
2093   if (x->has_index()) {
2094     idx.set_instruction(x->index());
2095     idx.load_nonconstant();
2096   }
2097 
2098   LIR_Opr reg = rlock_result(x, x->basic_type());
2099 
2100   int   log2_scale = 0;
2101   if (x->has_index()) {
2102     log2_scale = x->log2_scale();
2103   }
2104 
2105   assert(!x->has_index() || idx.value() == x->index(), "should match");
2106 
2107   LIR_Opr base_op = base.result();
2108   LIR_Opr index_op = idx.result();
2109 #ifndef _LP64
2110   if (base_op->type() == T_LONG) {
2111     base_op = new_register(T_INT);
2112     __ convert(Bytecodes::_l2i, base.result(), base_op);
2113   }
2114   if (x->has_index()) {
2115     if (index_op->type() == T_LONG) {
2116       LIR_Opr long_index_op = index_op;
2117       if (index_op->is_constant()) {
2118         long_index_op = new_register(T_LONG);
2119         __ move(index_op, long_index_op);
2120       }
2121       index_op = new_register(T_INT);
2122       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2123     } else {
2124       assert(x->index()->type()->tag() == intTag, "must be");
2125     }
2126   }
2127   // At this point base and index should be all ints.
2128   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2129   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2130 #else
2131   if (x->has_index()) {
2132     if (index_op->type() == T_INT) {
2133       if (!index_op->is_constant()) {
2134         index_op = new_register(T_LONG);
2135         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2136       }
2137     } else {
2138       assert(index_op->type() == T_LONG, "must be");
2139       if (index_op->is_constant()) {
2140         index_op = new_register(T_LONG);
2141         __ move(idx.result(), index_op);
2142       }
2143     }
2144   }
2145   // At this point base is a long non-constant
2146   // Index is a long register or a int constant.
2147   // We allow the constant to stay an int because that would allow us a more compact encoding by
2148   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2149   // move it into a register first.
2150   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2151   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2152                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2153 #endif
2154 
2155   BasicType dst_type = x->basic_type();
2156 
2157   LIR_Address* addr;
2158   if (index_op->is_constant()) {
2159     assert(log2_scale == 0, "must not have a scale");
2160     assert(index_op->type() == T_INT, "only int constants supported");
2161     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2162   } else {
2163 #ifdef X86
2164     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2165 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2166     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2167 #else
2168     if (index_op->is_illegal() || log2_scale == 0) {
2169       addr = new LIR_Address(base_op, index_op, dst_type);
2170     } else {
2171       LIR_Opr tmp = new_pointer_register();
2172       __ shift_left(index_op, log2_scale, tmp);
2173       addr = new LIR_Address(base_op, tmp, dst_type);
2174     }
2175 #endif
2176   }
2177 
2178   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2179     __ unaligned_move(addr, reg);
2180   } else {
2181     if (dst_type == T_OBJECT && x->is_wide()) {
2182       __ move_wide(addr, reg);
2183     } else {
2184       __ move(addr, reg);
2185     }
2186   }
2187 }
2188 
2189 
2190 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2191   int  log2_scale = 0;
2192   BasicType type = x->basic_type();
2193 
2194   if (x->has_index()) {
2195     log2_scale = x->log2_scale();
2196   }
2197 
2198   LIRItem base(x->base(), this);
2199   LIRItem value(x->value(), this);
2200   LIRItem idx(this);
2201 
2202   base.load_item();
2203   if (x->has_index()) {
2204     idx.set_instruction(x->index());
2205     idx.load_item();
2206   }
2207 
2208   if (type == T_BYTE || type == T_BOOLEAN) {
2209     value.load_byte_item();
2210   } else {
2211     value.load_item();
2212   }
2213 
2214   set_no_result(x);
2215 
2216   LIR_Opr base_op = base.result();
2217   LIR_Opr index_op = idx.result();
2218 
2219 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2220   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2221 #else
2222 #ifndef _LP64
2223   if (base_op->type() == T_LONG) {
2224     base_op = new_register(T_INT);
2225     __ convert(Bytecodes::_l2i, base.result(), base_op);
2226   }
2227   if (x->has_index()) {
2228     if (index_op->type() == T_LONG) {
2229       index_op = new_register(T_INT);
2230       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2231     }
2232   }
2233   // At this point base and index should be all ints and not constants
2234   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2235   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2236 #else
2237   if (x->has_index()) {
2238     if (index_op->type() == T_INT) {
2239       index_op = new_register(T_LONG);
2240       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2241     }
2242   }
2243   // At this point base and index are long and non-constant
2244   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2245   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2246 #endif
2247 
2248   if (log2_scale != 0) {
2249     // temporary fix (platform dependent code without shift on Intel would be better)
2250     // TODO: ARM also allows embedded shift in the address
2251     LIR_Opr tmp = new_pointer_register();
2252     if (TwoOperandLIRForm) {
2253       __ move(index_op, tmp);
2254       index_op = tmp;
2255     }
2256     __ shift_left(index_op, log2_scale, tmp);
2257     if (!TwoOperandLIRForm) {
2258       index_op = tmp;
2259     }
2260   }
2261 
2262   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2263 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2264   __ move(value.result(), addr);
2265 }
2266 
2267 
2268 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2269   BasicType type = x->basic_type();
2270   LIRItem src(x->object(), this);
2271   LIRItem off(x->offset(), this);
2272 
2273   off.load_item();
2274   src.load_item();
2275 
2276   LIR_Opr value = rlock_result(x, x->basic_type());
2277 
2278   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2279     __ membar();
2280   }
2281 
2282   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2283 
2284 #if INCLUDE_ALL_GCS
2285   // We might be reading the value of the referent field of a
2286   // Reference object in order to attach it back to the live
2287   // object graph. If G1 is enabled then we need to record
2288   // the value that is being returned in an SATB log buffer.
2289   //
2290   // We need to generate code similar to the following...
2291   //
2292   // if (offset == java_lang_ref_Reference::referent_offset) {
2293   //   if (src != NULL) {
2294   //     if (klass(src)->reference_type() != REF_NONE) {
2295   //       pre_barrier(..., value, ...);
2296   //     }
2297   //   }
2298   // }
2299 
2300   if (UseG1GC && type == T_OBJECT) {
2301     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2302     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2303     bool gen_source_check = true;    // Assume we need to check the src object for null.
2304     bool gen_type_check = true;      // Assume we need to check the reference_type.
2305 
2306     if (off.is_constant()) {
2307       jlong off_con = (off.type()->is_int() ?
2308                         (jlong) off.get_jint_constant() :
2309                         off.get_jlong_constant());
2310 
2311 
2312       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2313         // The constant offset is something other than referent_offset.
2314         // We can skip generating/checking the remaining guards and
2315         // skip generation of the code stub.
2316         gen_pre_barrier = false;
2317       } else {
2318         // The constant offset is the same as referent_offset -
2319         // we do not need to generate a runtime offset check.
2320         gen_offset_check = false;
2321       }
2322     }
2323 
2324     // We don't need to generate stub if the source object is an array
2325     if (gen_pre_barrier && src.type()->is_array()) {
2326       gen_pre_barrier = false;
2327     }
2328 
2329     if (gen_pre_barrier) {
2330       // We still need to continue with the checks.
2331       if (src.is_constant()) {
2332         ciObject* src_con = src.get_jobject_constant();
2333         guarantee(src_con != NULL, "no source constant");
2334 
2335         if (src_con->is_null_object()) {
2336           // The constant src object is null - We can skip
2337           // generating the code stub.
2338           gen_pre_barrier = false;
2339         } else {
2340           // Non-null constant source object. We still have to generate
2341           // the slow stub - but we don't need to generate the runtime
2342           // null object check.
2343           gen_source_check = false;
2344         }
2345       }
2346     }
2347     if (gen_pre_barrier && !PatchALot) {
2348       // Can the klass of object be statically determined to be
2349       // a sub-class of Reference?
2350       ciType* type = src.value()->declared_type();
2351       if ((type != NULL) && type->is_loaded()) {
2352         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2353           gen_type_check = false;
2354         } else if (type->is_klass() &&
2355                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2356           // Not Reference and not Object klass.
2357           gen_pre_barrier = false;
2358         }
2359       }
2360     }
2361 
2362     if (gen_pre_barrier) {
2363       LabelObj* Lcont = new LabelObj();
2364 
2365       // We can have generate one runtime check here. Let's start with
2366       // the offset check.
2367       if (gen_offset_check) {
2368         // if (offset != referent_offset) -> continue
2369         // If offset is an int then we can do the comparison with the
2370         // referent_offset constant; otherwise we need to move
2371         // referent_offset into a temporary register and generate
2372         // a reg-reg compare.
2373 
2374         LIR_Opr referent_off;
2375 
2376         if (off.type()->is_int()) {
2377           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2378         } else {
2379           assert(off.type()->is_long(), "what else?");
2380           referent_off = new_register(T_LONG);
2381           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2382         }
2383         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2384         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2385       }
2386       if (gen_source_check) {
2387         // offset is a const and equals referent offset
2388         // if (source == null) -> continue
2389         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2390         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2391       }
2392       LIR_Opr src_klass = new_register(T_OBJECT);
2393       if (gen_type_check) {
2394         // We have determined that offset == referent_offset && src != null.
2395         // if (src->_klass->_reference_type == REF_NONE) -> continue
2396         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2397         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2398         LIR_Opr reference_type = new_register(T_INT);
2399         __ move(reference_type_addr, reference_type);
2400         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2401         __ branch(lir_cond_equal, T_INT, Lcont->label());
2402       }
2403       {
2404         // We have determined that src->_klass->_reference_type != REF_NONE
2405         // so register the value in the referent field with the pre-barrier.
2406         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2407                     value  /* pre_val */,
2408                     false  /* do_load */,
2409                     false  /* patch */,
2410                     NULL   /* info */);
2411       }
2412       __ branch_destination(Lcont->label());
2413     }
2414   }
2415 #endif // INCLUDE_ALL_GCS
2416 
2417   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2418 
2419   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2420   if (type == T_BOOLEAN) {
2421     LabelObj* equalZeroLabel = new LabelObj();
2422     __ cmp(lir_cond_equal, value, 0);
2423     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2424     __ move(LIR_OprFact::intConst(1), value);
2425     __ branch_destination(equalZeroLabel->label());
2426   }
2427 }
2428 
2429 
2430 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2431   BasicType type = x->basic_type();
2432   LIRItem src(x->object(), this);
2433   LIRItem off(x->offset(), this);
2434   LIRItem data(x->value(), this);
2435 
2436   src.load_item();
2437   if (type == T_BOOLEAN || type == T_BYTE) {
2438     data.load_byte_item();
2439   } else {
2440     data.load_item();
2441   }
2442   off.load_item();
2443 
2444   set_no_result(x);
2445 
2446   if (x->is_volatile() && os::is_MP()) __ membar_release();
2447   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2448   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2449 }
2450 
2451 
2452 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2453   int lng = x->length();
2454 
2455   for (int i = 0; i < lng; i++) {
2456     SwitchRange* one_range = x->at(i);
2457     int low_key = one_range->low_key();
2458     int high_key = one_range->high_key();
2459     BlockBegin* dest = one_range->sux();
2460     if (low_key == high_key) {
2461       __ cmp(lir_cond_equal, value, low_key);
2462       __ branch(lir_cond_equal, T_INT, dest);
2463     } else if (high_key - low_key == 1) {
2464       __ cmp(lir_cond_equal, value, low_key);
2465       __ branch(lir_cond_equal, T_INT, dest);
2466       __ cmp(lir_cond_equal, value, high_key);
2467       __ branch(lir_cond_equal, T_INT, dest);
2468     } else {
2469       LabelObj* L = new LabelObj();
2470       __ cmp(lir_cond_less, value, low_key);
2471       __ branch(lir_cond_less, T_INT, L->label());
2472       __ cmp(lir_cond_lessEqual, value, high_key);
2473       __ branch(lir_cond_lessEqual, T_INT, dest);
2474       __ branch_destination(L->label());
2475     }
2476   }
2477   __ jump(default_sux);
2478 }
2479 
2480 
2481 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2482   SwitchRangeList* res = new SwitchRangeList();
2483   int len = x->length();
2484   if (len > 0) {
2485     BlockBegin* sux = x->sux_at(0);
2486     int key = x->lo_key();
2487     BlockBegin* default_sux = x->default_sux();
2488     SwitchRange* range = new SwitchRange(key, sux);
2489     for (int i = 0; i < len; i++, key++) {
2490       BlockBegin* new_sux = x->sux_at(i);
2491       if (sux == new_sux) {
2492         // still in same range
2493         range->set_high_key(key);
2494       } else {
2495         // skip tests which explicitly dispatch to the default
2496         if (sux != default_sux) {
2497           res->append(range);
2498         }
2499         range = new SwitchRange(key, new_sux);
2500       }
2501       sux = new_sux;
2502     }
2503     if (res->length() == 0 || res->last() != range)  res->append(range);
2504   }
2505   return res;
2506 }
2507 
2508 
2509 // we expect the keys to be sorted by increasing value
2510 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2511   SwitchRangeList* res = new SwitchRangeList();
2512   int len = x->length();
2513   if (len > 0) {
2514     BlockBegin* default_sux = x->default_sux();
2515     int key = x->key_at(0);
2516     BlockBegin* sux = x->sux_at(0);
2517     SwitchRange* range = new SwitchRange(key, sux);
2518     for (int i = 1; i < len; i++) {
2519       int new_key = x->key_at(i);
2520       BlockBegin* new_sux = x->sux_at(i);
2521       if (key+1 == new_key && sux == new_sux) {
2522         // still in same range
2523         range->set_high_key(new_key);
2524       } else {
2525         // skip tests which explicitly dispatch to the default
2526         if (range->sux() != default_sux) {
2527           res->append(range);
2528         }
2529         range = new SwitchRange(new_key, new_sux);
2530       }
2531       key = new_key;
2532       sux = new_sux;
2533     }
2534     if (res->length() == 0 || res->last() != range)  res->append(range);
2535   }
2536   return res;
2537 }
2538 
2539 
2540 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2541   LIRItem tag(x->tag(), this);
2542   tag.load_item();
2543   set_no_result(x);
2544 
2545   if (x->is_safepoint()) {
2546     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2547   }
2548 
2549   // move values into phi locations
2550   move_to_phi(x->state());
2551 
2552   int lo_key = x->lo_key();
2553   int hi_key = x->hi_key();
2554   int len = x->length();
2555   LIR_Opr value = tag.result();
2556   if (UseTableRanges) {
2557     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2558   } else {
2559     for (int i = 0; i < len; i++) {
2560       __ cmp(lir_cond_equal, value, i + lo_key);
2561       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2562     }
2563     __ jump(x->default_sux());
2564   }
2565 }
2566 
2567 
2568 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2569   LIRItem tag(x->tag(), this);
2570   tag.load_item();
2571   set_no_result(x);
2572 
2573   if (x->is_safepoint()) {
2574     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2575   }
2576 
2577   // move values into phi locations
2578   move_to_phi(x->state());
2579 
2580   LIR_Opr value = tag.result();
2581   if (UseTableRanges) {
2582     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2583   } else {
2584     int len = x->length();
2585     for (int i = 0; i < len; i++) {
2586       __ cmp(lir_cond_equal, value, x->key_at(i));
2587       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2588     }
2589     __ jump(x->default_sux());
2590   }
2591 }
2592 
2593 
2594 void LIRGenerator::do_Goto(Goto* x) {
2595   set_no_result(x);
2596 
2597   if (block()->next()->as_OsrEntry()) {
2598     // need to free up storage used for OSR entry point
2599     LIR_Opr osrBuffer = block()->next()->operand();
2600     BasicTypeList signature;
2601     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2602     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2603     __ move(osrBuffer, cc->args()->at(0));
2604     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2605                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2606   }
2607 
2608   if (x->is_safepoint()) {
2609     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2610 
2611     // increment backedge counter if needed
2612     CodeEmitInfo* info = state_for(x, state);
2613     increment_backedge_counter(info, x->profiled_bci());
2614     CodeEmitInfo* safepoint_info = state_for(x, state);
2615     __ safepoint(safepoint_poll_register(), safepoint_info);
2616   }
2617 
2618   // Gotos can be folded Ifs, handle this case.
2619   if (x->should_profile()) {
2620     ciMethod* method = x->profiled_method();
2621     assert(method != NULL, "method should be set if branch is profiled");
2622     ciMethodData* md = method->method_data_or_null();
2623     assert(md != NULL, "Sanity");
2624     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2625     assert(data != NULL, "must have profiling data");
2626     int offset;
2627     if (x->direction() == Goto::taken) {
2628       assert(data->is_BranchData(), "need BranchData for two-way branches");
2629       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2630     } else if (x->direction() == Goto::not_taken) {
2631       assert(data->is_BranchData(), "need BranchData for two-way branches");
2632       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2633     } else {
2634       assert(data->is_JumpData(), "need JumpData for branches");
2635       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2636     }
2637     LIR_Opr md_reg = new_register(T_METADATA);
2638     __ metadata2reg(md->constant_encoding(), md_reg);
2639 
2640     increment_counter(new LIR_Address(md_reg, offset,
2641                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2642   }
2643 
2644   // emit phi-instruction move after safepoint since this simplifies
2645   // describing the state as the safepoint.
2646   move_to_phi(x->state());
2647 
2648   __ jump(x->default_sux());
2649 }
2650 
2651 /**
2652  * Emit profiling code if needed for arguments, parameters, return value types
2653  *
2654  * @param md                    MDO the code will update at runtime
2655  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2656  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2657  * @param profiled_k            current profile
2658  * @param obj                   IR node for the object to be profiled
2659  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2660  *                              Set once we find an update to make and use for next ones.
2661  * @param not_null              true if we know obj cannot be null
2662  * @param signature_at_call_k   signature at call for obj
2663  * @param callee_signature_k    signature of callee for obj
2664  *                              at call and callee signatures differ at method handle call
2665  * @return                      the only klass we know will ever be seen at this profile point
2666  */
2667 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2668                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2669                                     ciKlass* callee_signature_k) {
2670   ciKlass* result = NULL;
2671   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2672   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2673   // known not to be null or null bit already set and already set to
2674   // unknown: nothing we can do to improve profiling
2675   if (!do_null && !do_update) {
2676     return result;
2677   }
2678 
2679   ciKlass* exact_klass = NULL;
2680   Compilation* comp = Compilation::current();
2681   if (do_update) {
2682     // try to find exact type, using CHA if possible, so that loading
2683     // the klass from the object can be avoided
2684     ciType* type = obj->exact_type();
2685     if (type == NULL) {
2686       type = obj->declared_type();
2687       type = comp->cha_exact_type(type);
2688     }
2689     assert(type == NULL || type->is_klass(), "type should be class");
2690     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2691 
2692     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2693   }
2694 
2695   if (!do_null && !do_update) {
2696     return result;
2697   }
2698 
2699   ciKlass* exact_signature_k = NULL;
2700   if (do_update) {
2701     // Is the type from the signature exact (the only one possible)?
2702     exact_signature_k = signature_at_call_k->exact_klass();
2703     if (exact_signature_k == NULL) {
2704       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2705     } else {
2706       result = exact_signature_k;
2707       // Known statically. No need to emit any code: prevent
2708       // LIR_Assembler::emit_profile_type() from emitting useless code
2709       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2710     }
2711     // exact_klass and exact_signature_k can be both non NULL but
2712     // different if exact_klass is loaded after the ciObject for
2713     // exact_signature_k is created.
2714     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2715       // sometimes the type of the signature is better than the best type
2716       // the compiler has
2717       exact_klass = exact_signature_k;
2718     }
2719     if (callee_signature_k != NULL &&
2720         callee_signature_k != signature_at_call_k) {
2721       ciKlass* improved_klass = callee_signature_k->exact_klass();
2722       if (improved_klass == NULL) {
2723         improved_klass = comp->cha_exact_type(callee_signature_k);
2724       }
2725       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2726         exact_klass = exact_signature_k;
2727       }
2728     }
2729     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2730   }
2731 
2732   if (!do_null && !do_update) {
2733     return result;
2734   }
2735 
2736   if (mdp == LIR_OprFact::illegalOpr) {
2737     mdp = new_register(T_METADATA);
2738     __ metadata2reg(md->constant_encoding(), mdp);
2739     if (md_base_offset != 0) {
2740       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2741       mdp = new_pointer_register();
2742       __ leal(LIR_OprFact::address(base_type_address), mdp);
2743     }
2744   }
2745   LIRItem value(obj, this);
2746   value.load_item();
2747   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2748                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2749   return result;
2750 }
2751 
2752 // profile parameters on entry to the root of the compilation
2753 void LIRGenerator::profile_parameters(Base* x) {
2754   if (compilation()->profile_parameters()) {
2755     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2756     ciMethodData* md = scope()->method()->method_data_or_null();
2757     assert(md != NULL, "Sanity");
2758 
2759     if (md->parameters_type_data() != NULL) {
2760       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2761       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2762       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2763       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2764         LIR_Opr src = args->at(i);
2765         assert(!src->is_illegal(), "check");
2766         BasicType t = src->type();
2767         if (t == T_OBJECT || t == T_ARRAY) {
2768           intptr_t profiled_k = parameters->type(j);
2769           Local* local = x->state()->local_at(java_index)->as_Local();
2770           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2771                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2772                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2773           // If the profile is known statically set it once for all and do not emit any code
2774           if (exact != NULL) {
2775             md->set_parameter_type(j, exact);
2776           }
2777           j++;
2778         }
2779         java_index += type2size[t];
2780       }
2781     }
2782   }
2783 }
2784 
2785 void LIRGenerator::do_Base(Base* x) {
2786   __ std_entry(LIR_OprFact::illegalOpr);
2787   // Emit moves from physical registers / stack slots to virtual registers
2788   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2789   IRScope* irScope = compilation()->hir()->top_scope();
2790   int java_index = 0;
2791   for (int i = 0; i < args->length(); i++) {
2792     LIR_Opr src = args->at(i);
2793     assert(!src->is_illegal(), "check");
2794     BasicType t = src->type();
2795 
2796     // Types which are smaller than int are passed as int, so
2797     // correct the type which passed.
2798     switch (t) {
2799     case T_BYTE:
2800     case T_BOOLEAN:
2801     case T_SHORT:
2802     case T_CHAR:
2803       t = T_INT;
2804       break;
2805     }
2806 
2807     LIR_Opr dest = new_register(t);
2808     __ move(src, dest);
2809 
2810     // Assign new location to Local instruction for this local
2811     Local* local = x->state()->local_at(java_index)->as_Local();
2812     assert(local != NULL, "Locals for incoming arguments must have been created");
2813 #ifndef __SOFTFP__
2814     // The java calling convention passes double as long and float as int.
2815     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2816 #endif // __SOFTFP__
2817     local->set_operand(dest);
2818     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2819     java_index += type2size[t];
2820   }
2821 
2822   if (compilation()->env()->dtrace_method_probes()) {
2823     BasicTypeList signature;
2824     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2825     signature.append(T_METADATA); // Method*
2826     LIR_OprList* args = new LIR_OprList();
2827     args->append(getThreadPointer());
2828     LIR_Opr meth = new_register(T_METADATA);
2829     __ metadata2reg(method()->constant_encoding(), meth);
2830     args->append(meth);
2831     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2832   }
2833 
2834   if (method()->is_synchronized()) {
2835     LIR_Opr obj;
2836     if (method()->is_static()) {
2837       obj = new_register(T_OBJECT);
2838       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2839     } else {
2840       Local* receiver = x->state()->local_at(0)->as_Local();
2841       assert(receiver != NULL, "must already exist");
2842       obj = receiver->operand();
2843     }
2844     assert(obj->is_valid(), "must be valid");
2845 
2846     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2847       LIR_Opr lock = syncLockOpr();
2848       __ load_stack_address_monitor(0, lock);
2849 
2850       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2851       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2852 
2853       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2854       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2855     }
2856   }
2857   if (compilation()->age_code()) {
2858     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2859     decrement_age(info);
2860   }
2861   // increment invocation counters if needed
2862   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2863     profile_parameters(x);
2864     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2865     increment_invocation_counter(info);
2866   }
2867 
2868   // all blocks with a successor must end with an unconditional jump
2869   // to the successor even if they are consecutive
2870   __ jump(x->default_sux());
2871 }
2872 
2873 
2874 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2875   // construct our frame and model the production of incoming pointer
2876   // to the OSR buffer.
2877   __ osr_entry(LIR_Assembler::osrBufferPointer());
2878   LIR_Opr result = rlock_result(x);
2879   __ move(LIR_Assembler::osrBufferPointer(), result);
2880 }
2881 
2882 
2883 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2884   assert(args->length() == arg_list->length(),
2885          "args=%d, arg_list=%d", args->length(), arg_list->length());
2886   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2887     LIRItem* param = args->at(i);
2888     LIR_Opr loc = arg_list->at(i);
2889     if (loc->is_register()) {
2890       param->load_item_force(loc);
2891     } else {
2892       LIR_Address* addr = loc->as_address_ptr();
2893       param->load_for_store(addr->type());
2894       if (addr->type() == T_OBJECT) {
2895         __ move_wide(param->result(), addr);
2896       } else
2897         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2898           __ unaligned_move(param->result(), addr);
2899         } else {
2900           __ move(param->result(), addr);
2901         }
2902     }
2903   }
2904 
2905   if (x->has_receiver()) {
2906     LIRItem* receiver = args->at(0);
2907     LIR_Opr loc = arg_list->at(0);
2908     if (loc->is_register()) {
2909       receiver->load_item_force(loc);
2910     } else {
2911       assert(loc->is_address(), "just checking");
2912       receiver->load_for_store(T_OBJECT);
2913       __ move_wide(receiver->result(), loc->as_address_ptr());
2914     }
2915   }
2916 }
2917 
2918 
2919 // Visits all arguments, returns appropriate items without loading them
2920 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2921   LIRItemList* argument_items = new LIRItemList();
2922   if (x->has_receiver()) {
2923     LIRItem* receiver = new LIRItem(x->receiver(), this);
2924     argument_items->append(receiver);
2925   }
2926   for (int i = 0; i < x->number_of_arguments(); i++) {
2927     LIRItem* param = new LIRItem(x->argument_at(i), this);
2928     argument_items->append(param);
2929   }
2930   return argument_items;
2931 }
2932 
2933 
2934 // The invoke with receiver has following phases:
2935 //   a) traverse and load/lock receiver;
2936 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2937 //   c) push receiver on stack
2938 //   d) load each of the items and push on stack
2939 //   e) unlock receiver
2940 //   f) move receiver into receiver-register %o0
2941 //   g) lock result registers and emit call operation
2942 //
2943 // Before issuing a call, we must spill-save all values on stack
2944 // that are in caller-save register. "spill-save" moves those registers
2945 // either in a free callee-save register or spills them if no free
2946 // callee save register is available.
2947 //
2948 // The problem is where to invoke spill-save.
2949 // - if invoked between e) and f), we may lock callee save
2950 //   register in "spill-save" that destroys the receiver register
2951 //   before f) is executed
2952 // - if we rearrange f) to be earlier (by loading %o0) it
2953 //   may destroy a value on the stack that is currently in %o0
2954 //   and is waiting to be spilled
2955 // - if we keep the receiver locked while doing spill-save,
2956 //   we cannot spill it as it is spill-locked
2957 //
2958 void LIRGenerator::do_Invoke(Invoke* x) {
2959   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2960 
2961   LIR_OprList* arg_list = cc->args();
2962   LIRItemList* args = invoke_visit_arguments(x);
2963   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2964 
2965   // setup result register
2966   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2967   if (x->type() != voidType) {
2968     result_register = result_register_for(x->type());
2969   }
2970 
2971   CodeEmitInfo* info = state_for(x, x->state());
2972 
2973   invoke_load_arguments(x, args, arg_list);
2974 
2975   if (x->has_receiver()) {
2976     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2977     receiver = args->at(0)->result();
2978   }
2979 
2980   // emit invoke code
2981   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2982 
2983   // JSR 292
2984   // Preserve the SP over MethodHandle call sites, if needed.
2985   ciMethod* target = x->target();
2986   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2987                                   target->is_method_handle_intrinsic() ||
2988                                   target->is_compiled_lambda_form());
2989   if (is_method_handle_invoke) {
2990     info->set_is_method_handle_invoke(true);
2991     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2992         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2993     }
2994   }
2995 
2996   switch (x->code()) {
2997     case Bytecodes::_invokestatic:
2998       __ call_static(target, result_register,
2999                      SharedRuntime::get_resolve_static_call_stub(),
3000                      arg_list, info);
3001       break;
3002     case Bytecodes::_invokespecial:
3003     case Bytecodes::_invokevirtual:
3004     case Bytecodes::_invokeinterface:
3005       // for loaded and final (method or class) target we still produce an inline cache,
3006       // in order to be able to call mixed mode
3007       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3008         __ call_opt_virtual(target, receiver, result_register,
3009                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3010                             arg_list, info);
3011       } else if (x->vtable_index() < 0) {
3012         __ call_icvirtual(target, receiver, result_register,
3013                           SharedRuntime::get_resolve_virtual_call_stub(),
3014                           arg_list, info);
3015       } else {
3016         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3017         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3018         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3019       }
3020       break;
3021     case Bytecodes::_invokedynamic: {
3022       __ call_dynamic(target, receiver, result_register,
3023                       SharedRuntime::get_resolve_static_call_stub(),
3024                       arg_list, info);
3025       break;
3026     }
3027     default:
3028       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3029       break;
3030   }
3031 
3032   // JSR 292
3033   // Restore the SP after MethodHandle call sites, if needed.
3034   if (is_method_handle_invoke
3035       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3036     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3037   }
3038 
3039   if (x->type()->is_float() || x->type()->is_double()) {
3040     // Force rounding of results from non-strictfp when in strictfp
3041     // scope (or when we don't know the strictness of the callee, to
3042     // be safe.)
3043     if (method()->is_strict()) {
3044       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3045         result_register = round_item(result_register);
3046       }
3047     }
3048   }
3049 
3050   if (result_register->is_valid()) {
3051     LIR_Opr result = rlock_result(x);
3052     __ move(result_register, result);
3053   }
3054 }
3055 
3056 
3057 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3058   assert(x->number_of_arguments() == 1, "wrong type");
3059   LIRItem value       (x->argument_at(0), this);
3060   LIR_Opr reg = rlock_result(x);
3061   value.load_item();
3062   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3063   __ move(tmp, reg);
3064 }
3065 
3066 
3067 
3068 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3069 void LIRGenerator::do_IfOp(IfOp* x) {
3070 #ifdef ASSERT
3071   {
3072     ValueTag xtag = x->x()->type()->tag();
3073     ValueTag ttag = x->tval()->type()->tag();
3074     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3075     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3076     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3077   }
3078 #endif
3079 
3080   LIRItem left(x->x(), this);
3081   LIRItem right(x->y(), this);
3082   left.load_item();
3083   if (can_inline_as_constant(right.value())) {
3084     right.dont_load_item();
3085   } else {
3086     right.load_item();
3087   }
3088 
3089   LIRItem t_val(x->tval(), this);
3090   LIRItem f_val(x->fval(), this);
3091   t_val.dont_load_item();
3092   f_val.dont_load_item();
3093   LIR_Opr reg = rlock_result(x);
3094 
3095   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3096   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3097 }
3098 
3099 #ifdef TRACE_HAVE_INTRINSICS
3100 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3101   CodeEmitInfo* info = state_for(x);
3102   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3103 
3104   assert(info != NULL, "must have info");
3105   LIRItem arg(x->argument_at(0), this);
3106 
3107   arg.load_item();
3108   LIR_Opr klass = new_register(T_METADATA);
3109   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3110   LIR_Opr id = new_register(T_LONG);
3111   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3112   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3113 
3114   __ move(trace_id_addr, id);
3115   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3116   __ store(id, trace_id_addr);
3117 
3118 #ifdef TRACE_ID_META_BITS
3119   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3120 #endif
3121 #ifdef TRACE_ID_CLASS_SHIFT
3122   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3123 #endif
3124 
3125   __ move(id, rlock_result(x));
3126 }
3127 
3128 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3129   LabelObj* L_end = new LabelObj();
3130 
3131   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3132                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3133                                            T_OBJECT);
3134   LIR_Opr result = rlock_result(x);
3135   __ move_wide(jobj_addr, result);
3136   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3137   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3138   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3139 
3140   __ branch_destination(L_end->label());
3141 }
3142 
3143 #endif
3144 
3145 
3146 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3147   assert(x->number_of_arguments() == 0, "wrong type");
3148   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3149   BasicTypeList signature;
3150   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3151   LIR_Opr reg = result_register_for(x->type());
3152   __ call_runtime_leaf(routine, getThreadTemp(),
3153                        reg, new LIR_OprList());
3154   LIR_Opr result = rlock_result(x);
3155   __ move(reg, result);
3156 }
3157 
3158 
3159 
3160 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3161   switch (x->id()) {
3162   case vmIntrinsics::_intBitsToFloat      :
3163   case vmIntrinsics::_doubleToRawLongBits :
3164   case vmIntrinsics::_longBitsToDouble    :
3165   case vmIntrinsics::_floatToRawIntBits   : {
3166     do_FPIntrinsics(x);
3167     break;
3168   }
3169 
3170 #ifdef TRACE_HAVE_INTRINSICS
3171   case vmIntrinsics::_getClassId:
3172     do_ClassIDIntrinsic(x);
3173     break;
3174   case vmIntrinsics::_getBufferWriter:
3175     do_getBufferWriter(x);
3176     break;
3177   case vmIntrinsics::_counterTime:
3178     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3179     break;
3180 #endif
3181 
3182   case vmIntrinsics::_currentTimeMillis:
3183     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3184     break;
3185 
3186   case vmIntrinsics::_nanoTime:
3187     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3188     break;
3189 
3190   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3191   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3192   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3193   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3194   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3195 
3196   case vmIntrinsics::_dlog:           // fall through
3197   case vmIntrinsics::_dlog10:         // fall through
3198   case vmIntrinsics::_dabs:           // fall through
3199   case vmIntrinsics::_dsqrt:          // fall through
3200   case vmIntrinsics::_dtan:           // fall through
3201   case vmIntrinsics::_dsin :          // fall through
3202   case vmIntrinsics::_dcos :          // fall through
3203   case vmIntrinsics::_dexp :          // fall through
3204   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3205   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3206 
3207   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3208   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3209 
3210   // java.nio.Buffer.checkIndex
3211   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3212 
3213   case vmIntrinsics::_compareAndSwapObject:
3214     do_CompareAndSwap(x, objectType);
3215     break;
3216   case vmIntrinsics::_compareAndSwapInt:
3217     do_CompareAndSwap(x, intType);
3218     break;
3219   case vmIntrinsics::_compareAndSwapLong:
3220     do_CompareAndSwap(x, longType);
3221     break;
3222 
3223   case vmIntrinsics::_loadFence :
3224     if (os::is_MP()) __ membar_acquire();
3225     break;
3226   case vmIntrinsics::_storeFence:
3227     if (os::is_MP()) __ membar_release();
3228     break;
3229   case vmIntrinsics::_fullFence :
3230     if (os::is_MP()) __ membar();
3231     break;
3232   case vmIntrinsics::_onSpinWait:
3233     __ on_spin_wait();
3234     break;
3235   case vmIntrinsics::_Reference_get:
3236     do_Reference_get(x);
3237     break;
3238 
3239   case vmIntrinsics::_updateCRC32:
3240   case vmIntrinsics::_updateBytesCRC32:
3241   case vmIntrinsics::_updateByteBufferCRC32:
3242     do_update_CRC32(x);
3243     break;
3244 
3245   case vmIntrinsics::_updateBytesCRC32C:
3246   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3247     do_update_CRC32C(x);
3248     break;
3249 
3250   case vmIntrinsics::_vectorizedMismatch:
3251     do_vectorizedMismatch(x);
3252     break;
3253 
3254   default: ShouldNotReachHere(); break;
3255   }
3256 }
3257 
3258 void LIRGenerator::profile_arguments(ProfileCall* x) {
3259   if (compilation()->profile_arguments()) {
3260     int bci = x->bci_of_invoke();
3261     ciMethodData* md = x->method()->method_data_or_null();
3262     ciProfileData* data = md->bci_to_data(bci);
3263     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3264         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3265       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3266       int base_offset = md->byte_offset_of_slot(data, extra);
3267       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3268       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3269 
3270       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3271       int start = 0;
3272       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3273       if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3274         // first argument is not profiled at call (method handle invoke)
3275         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3276         start = 1;
3277       }
3278       ciSignature* callee_signature = x->callee()->signature();
3279       // method handle call to virtual method
3280       bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3281       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3282 
3283       bool ignored_will_link;
3284       ciSignature* signature_at_call = NULL;
3285       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3286       ciSignatureStream signature_at_call_stream(signature_at_call);
3287 
3288       // if called through method handle invoke, some arguments may have been popped
3289       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3290         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3291         ciKlass* exact = profile_type(md, base_offset, off,
3292                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3293                                       !x->arg_needs_null_check(i+start),
3294                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3295         if (exact != NULL) {
3296           md->set_argument_type(bci, i, exact);
3297         }
3298       }
3299     } else {
3300 #ifdef ASSERT
3301       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3302       int n = x->nb_profiled_args();
3303       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3304                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3305              "only at JSR292 bytecodes");
3306 #endif
3307     }
3308   }
3309 }
3310 
3311 // profile parameters on entry to an inlined method
3312 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3313   if (compilation()->profile_parameters() && x->inlined()) {
3314     ciMethodData* md = x->callee()->method_data_or_null();
3315     if (md != NULL) {
3316       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3317       if (parameters_type_data != NULL) {
3318         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3319         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3320         bool has_receiver = !x->callee()->is_static();
3321         ciSignature* sig = x->callee()->signature();
3322         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3323         int i = 0; // to iterate on the Instructions
3324         Value arg = x->recv();
3325         bool not_null = false;
3326         int bci = x->bci_of_invoke();
3327         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3328         // The first parameter is the receiver so that's what we start
3329         // with if it exists. One exception is method handle call to
3330         // virtual method: the receiver is in the args list
3331         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3332           i = 1;
3333           arg = x->profiled_arg_at(0);
3334           not_null = !x->arg_needs_null_check(0);
3335         }
3336         int k = 0; // to iterate on the profile data
3337         for (;;) {
3338           intptr_t profiled_k = parameters->type(k);
3339           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3340                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3341                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3342           // If the profile is known statically set it once for all and do not emit any code
3343           if (exact != NULL) {
3344             md->set_parameter_type(k, exact);
3345           }
3346           k++;
3347           if (k >= parameters_type_data->number_of_parameters()) {
3348 #ifdef ASSERT
3349             int extra = 0;
3350             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3351                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3352                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3353               extra += 1;
3354             }
3355             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3356 #endif
3357             break;
3358           }
3359           arg = x->profiled_arg_at(i);
3360           not_null = !x->arg_needs_null_check(i);
3361           i++;
3362         }
3363       }
3364     }
3365   }
3366 }
3367 
3368 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3369   // Need recv in a temporary register so it interferes with the other temporaries
3370   LIR_Opr recv = LIR_OprFact::illegalOpr;
3371   LIR_Opr mdo = new_register(T_OBJECT);
3372   // tmp is used to hold the counters on SPARC
3373   LIR_Opr tmp = new_pointer_register();
3374 
3375   if (x->nb_profiled_args() > 0) {
3376     profile_arguments(x);
3377   }
3378 
3379   // profile parameters on inlined method entry including receiver
3380   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3381     profile_parameters_at_call(x);
3382   }
3383 
3384   if (x->recv() != NULL) {
3385     LIRItem value(x->recv(), this);
3386     value.load_item();
3387     recv = new_register(T_OBJECT);
3388     __ move(value.result(), recv);
3389   }
3390   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3391 }
3392 
3393 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3394   int bci = x->bci_of_invoke();
3395   ciMethodData* md = x->method()->method_data_or_null();
3396   ciProfileData* data = md->bci_to_data(bci);
3397   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3398   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3399   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3400 
3401   bool ignored_will_link;
3402   ciSignature* signature_at_call = NULL;
3403   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3404 
3405   // The offset within the MDO of the entry to update may be too large
3406   // to be used in load/store instructions on some platforms. So have
3407   // profile_type() compute the address of the profile in a register.
3408   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3409                                 ret->type(), x->ret(), mdp,
3410                                 !x->needs_null_check(),
3411                                 signature_at_call->return_type()->as_klass(),
3412                                 x->callee()->signature()->return_type()->as_klass());
3413   if (exact != NULL) {
3414     md->set_return_type(bci, exact);
3415   }
3416 }
3417 
3418 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3419   // We can safely ignore accessors here, since c2 will inline them anyway,
3420   // accessors are also always mature.
3421   if (!x->inlinee()->is_accessor()) {
3422     CodeEmitInfo* info = state_for(x, x->state(), true);
3423     // Notify the runtime very infrequently only to take care of counter overflows
3424     int freq_log = Tier23InlineeNotifyFreqLog;
3425     double scale;
3426     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3427       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3428     }
3429     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3430   }
3431 }
3432 
3433 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3434   int freq_log = 0;
3435   int level = compilation()->env()->comp_level();
3436   if (level == CompLevel_limited_profile) {
3437     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3438   } else if (level == CompLevel_full_profile) {
3439     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3440   } else {
3441     ShouldNotReachHere();
3442   }
3443   // Increment the appropriate invocation/backedge counter and notify the runtime.
3444   double scale;
3445   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3446     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3447   }
3448   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3449 }
3450 
3451 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3452   ciMethod* method = info->scope()->method();
3453   MethodCounters* mc_adr = method->ensure_method_counters();
3454   if (mc_adr != NULL) {
3455     LIR_Opr mc = new_pointer_register();
3456     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3457     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3458     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3459     LIR_Opr result = new_register(T_INT);
3460     __ load(counter, result);
3461     __ sub(result, LIR_OprFact::intConst(1), result);
3462     __ store(result, counter);
3463     // DeoptimizeStub will reexecute from the current state in code info.
3464     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3465                                          Deoptimization::Action_make_not_entrant);
3466     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3467     __ branch(lir_cond_lessEqual, T_INT, deopt);
3468   }
3469 }
3470 
3471 
3472 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3473                                                 ciMethod *method, int frequency,
3474                                                 int bci, bool backedge, bool notify) {
3475   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3476   int level = _compilation->env()->comp_level();
3477   assert(level > CompLevel_simple, "Shouldn't be here");
3478 
3479   int offset = -1;
3480   LIR_Opr counter_holder = NULL;
3481   if (level == CompLevel_limited_profile) {
3482     MethodCounters* counters_adr = method->ensure_method_counters();
3483     if (counters_adr == NULL) {
3484       bailout("method counters allocation failed");
3485       return;
3486     }
3487     counter_holder = new_pointer_register();
3488     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3489     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3490                                  MethodCounters::invocation_counter_offset());
3491   } else if (level == CompLevel_full_profile) {
3492     counter_holder = new_register(T_METADATA);
3493     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3494                                  MethodData::invocation_counter_offset());
3495     ciMethodData* md = method->method_data_or_null();
3496     assert(md != NULL, "Sanity");
3497     __ metadata2reg(md->constant_encoding(), counter_holder);
3498   } else {
3499     ShouldNotReachHere();
3500   }
3501   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3502   LIR_Opr result = new_register(T_INT);
3503   __ load(counter, result);
3504   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3505   __ store(result, counter);
3506   if (notify && (!backedge || UseOnStackReplacement)) {
3507     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3508     // The bci for info can point to cmp for if's we want the if bci
3509     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3510     int freq = frequency << InvocationCounter::count_shift;
3511     if (freq == 0) {
3512       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3513     } else {
3514       LIR_Opr mask = load_immediate(freq, T_INT);
3515       __ logical_and(result, mask, result);
3516       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3517       __ branch(lir_cond_equal, T_INT, overflow);
3518     }
3519     __ branch_destination(overflow->continuation());
3520   }
3521 }
3522 
3523 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3524   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3525   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3526 
3527   if (x->pass_thread()) {
3528     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3529     args->append(getThreadPointer());
3530   }
3531 
3532   for (int i = 0; i < x->number_of_arguments(); i++) {
3533     Value a = x->argument_at(i);
3534     LIRItem* item = new LIRItem(a, this);
3535     item->load_item();
3536     args->append(item->result());
3537     signature->append(as_BasicType(a->type()));
3538   }
3539 
3540   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3541   if (x->type() == voidType) {
3542     set_no_result(x);
3543   } else {
3544     __ move(result, rlock_result(x));
3545   }
3546 }
3547 
3548 #ifdef ASSERT
3549 void LIRGenerator::do_Assert(Assert *x) {
3550   ValueTag tag = x->x()->type()->tag();
3551   If::Condition cond = x->cond();
3552 
3553   LIRItem xitem(x->x(), this);
3554   LIRItem yitem(x->y(), this);
3555   LIRItem* xin = &xitem;
3556   LIRItem* yin = &yitem;
3557 
3558   assert(tag == intTag, "Only integer assertions are valid!");
3559 
3560   xin->load_item();
3561   yin->dont_load_item();
3562 
3563   set_no_result(x);
3564 
3565   LIR_Opr left = xin->result();
3566   LIR_Opr right = yin->result();
3567 
3568   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3569 }
3570 #endif
3571 
3572 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3573 
3574 
3575   Instruction *a = x->x();
3576   Instruction *b = x->y();
3577   if (!a || StressRangeCheckElimination) {
3578     assert(!b || StressRangeCheckElimination, "B must also be null");
3579 
3580     CodeEmitInfo *info = state_for(x, x->state());
3581     CodeStub* stub = new PredicateFailedStub(info);
3582 
3583     __ jump(stub);
3584   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3585     int a_int = a->type()->as_IntConstant()->value();
3586     int b_int = b->type()->as_IntConstant()->value();
3587 
3588     bool ok = false;
3589 
3590     switch(x->cond()) {
3591       case Instruction::eql: ok = (a_int == b_int); break;
3592       case Instruction::neq: ok = (a_int != b_int); break;
3593       case Instruction::lss: ok = (a_int < b_int); break;
3594       case Instruction::leq: ok = (a_int <= b_int); break;
3595       case Instruction::gtr: ok = (a_int > b_int); break;
3596       case Instruction::geq: ok = (a_int >= b_int); break;
3597       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3598       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3599       default: ShouldNotReachHere();
3600     }
3601 
3602     if (ok) {
3603 
3604       CodeEmitInfo *info = state_for(x, x->state());
3605       CodeStub* stub = new PredicateFailedStub(info);
3606 
3607       __ jump(stub);
3608     }
3609   } else {
3610 
3611     ValueTag tag = x->x()->type()->tag();
3612     If::Condition cond = x->cond();
3613     LIRItem xitem(x->x(), this);
3614     LIRItem yitem(x->y(), this);
3615     LIRItem* xin = &xitem;
3616     LIRItem* yin = &yitem;
3617 
3618     assert(tag == intTag, "Only integer deoptimizations are valid!");
3619 
3620     xin->load_item();
3621     yin->dont_load_item();
3622     set_no_result(x);
3623 
3624     LIR_Opr left = xin->result();
3625     LIR_Opr right = yin->result();
3626 
3627     CodeEmitInfo *info = state_for(x, x->state());
3628     CodeStub* stub = new PredicateFailedStub(info);
3629 
3630     __ cmp(lir_cond(cond), left, right);
3631     __ branch(lir_cond(cond), right->type(), stub);
3632   }
3633 }
3634 
3635 
3636 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3637   LIRItemList args(1);
3638   LIRItem value(arg1, this);
3639   args.append(&value);
3640   BasicTypeList signature;
3641   signature.append(as_BasicType(arg1->type()));
3642 
3643   return call_runtime(&signature, &args, entry, result_type, info);
3644 }
3645 
3646 
3647 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3648   LIRItemList args(2);
3649   LIRItem value1(arg1, this);
3650   LIRItem value2(arg2, this);
3651   args.append(&value1);
3652   args.append(&value2);
3653   BasicTypeList signature;
3654   signature.append(as_BasicType(arg1->type()));
3655   signature.append(as_BasicType(arg2->type()));
3656 
3657   return call_runtime(&signature, &args, entry, result_type, info);
3658 }
3659 
3660 
3661 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3662                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3663   // get a result register
3664   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3665   LIR_Opr result = LIR_OprFact::illegalOpr;
3666   if (result_type->tag() != voidTag) {
3667     result = new_register(result_type);
3668     phys_reg = result_register_for(result_type);
3669   }
3670 
3671   // move the arguments into the correct location
3672   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3673   assert(cc->length() == args->length(), "argument mismatch");
3674   for (int i = 0; i < args->length(); i++) {
3675     LIR_Opr arg = args->at(i);
3676     LIR_Opr loc = cc->at(i);
3677     if (loc->is_register()) {
3678       __ move(arg, loc);
3679     } else {
3680       LIR_Address* addr = loc->as_address_ptr();
3681 //           if (!can_store_as_constant(arg)) {
3682 //             LIR_Opr tmp = new_register(arg->type());
3683 //             __ move(arg, tmp);
3684 //             arg = tmp;
3685 //           }
3686       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3687         __ unaligned_move(arg, addr);
3688       } else {
3689         __ move(arg, addr);
3690       }
3691     }
3692   }
3693 
3694   if (info) {
3695     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3696   } else {
3697     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3698   }
3699   if (result->is_valid()) {
3700     __ move(phys_reg, result);
3701   }
3702   return result;
3703 }
3704 
3705 
3706 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3707                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3708   // get a result register
3709   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3710   LIR_Opr result = LIR_OprFact::illegalOpr;
3711   if (result_type->tag() != voidTag) {
3712     result = new_register(result_type);
3713     phys_reg = result_register_for(result_type);
3714   }
3715 
3716   // move the arguments into the correct location
3717   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3718 
3719   assert(cc->length() == args->length(), "argument mismatch");
3720   for (int i = 0; i < args->length(); i++) {
3721     LIRItem* arg = args->at(i);
3722     LIR_Opr loc = cc->at(i);
3723     if (loc->is_register()) {
3724       arg->load_item_force(loc);
3725     } else {
3726       LIR_Address* addr = loc->as_address_ptr();
3727       arg->load_for_store(addr->type());
3728       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3729         __ unaligned_move(arg->result(), addr);
3730       } else {
3731         __ move(arg->result(), addr);
3732       }
3733     }
3734   }
3735 
3736   if (info) {
3737     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3738   } else {
3739     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3740   }
3741   if (result->is_valid()) {
3742     __ move(phys_reg, result);
3743   }
3744   return result;
3745 }
3746 
3747 void LIRGenerator::do_MemBar(MemBar* x) {
3748   if (os::is_MP()) {
3749     LIR_Code code = x->code();
3750     switch(code) {
3751       case lir_membar_acquire   : __ membar_acquire(); break;
3752       case lir_membar_release   : __ membar_release(); break;
3753       case lir_membar           : __ membar(); break;
3754       case lir_membar_loadload  : __ membar_loadload(); break;
3755       case lir_membar_storestore: __ membar_storestore(); break;
3756       case lir_membar_loadstore : __ membar_loadstore(); break;
3757       case lir_membar_storeload : __ membar_storeload(); break;
3758       default                   : ShouldNotReachHere(); break;
3759     }
3760   }
3761 }
3762 
3763 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3764   if (x->check_boolean()) {
3765     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3766     if (TwoOperandLIRForm) {
3767       __ move(value, value_fixed);
3768       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3769     } else {
3770       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3771     }
3772     LIR_Opr klass = new_register(T_METADATA);
3773     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3774     null_check_info = NULL;
3775     LIR_Opr layout = new_register(T_INT);
3776     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3777     int diffbit = Klass::layout_helper_boolean_diffbit();
3778     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3779     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3780     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3781     value = value_fixed;
3782   }
3783   return value;
3784 }
--- EOF ---