1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/vm_version.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/macros.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1ThreadLocalData.hpp"
  48 #include "gc/g1/heapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 #ifdef TRACE_HAVE_INTRINSICS
  51 #include "trace/traceMacros.hpp"
  52 #endif
  53 
  54 #ifdef ASSERT
  55 #define __ gen()->lir(__FILE__, __LINE__)->
  56 #else
  57 #define __ gen()->lir()->
  58 #endif
  59 
  60 #ifndef PATCHED_ADDR
  61 #define PATCHED_ADDR  (max_jint)
  62 #endif
  63 
  64 void PhiResolverState::reset(int max_vregs) {
  65   // Initialize array sizes
  66   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _virtual_operands.trunc_to(0);
  68   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  69   _other_operands.trunc_to(0);
  70   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  71   _vreg_table.trunc_to(0);
  72 }
  73 
  74 
  75 
  76 //--------------------------------------------------------------
  77 // PhiResolver
  78 
  79 // Resolves cycles:
  80 //
  81 //  r1 := r2  becomes  temp := r1
  82 //  r2 := r1           r1 := r2
  83 //                     r2 := temp
  84 // and orders moves:
  85 //
  86 //  r2 := r3  becomes  r1 := r2
  87 //  r1 := r2           r2 := r3
  88 
  89 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  90  : _gen(gen)
  91  , _state(gen->resolver_state())
  92  , _temp(LIR_OprFact::illegalOpr)
  93 {
  94   // reinitialize the shared state arrays
  95   _state.reset(max_vregs);
  96 }
  97 
  98 
  99 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
 100   assert(src->is_valid(), "");
 101   assert(dest->is_valid(), "");
 102   __ move(src, dest);
 103 }
 104 
 105 
 106 void PhiResolver::move_temp_to(LIR_Opr dest) {
 107   assert(_temp->is_valid(), "");
 108   emit_move(_temp, dest);
 109   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 110 }
 111 
 112 
 113 void PhiResolver::move_to_temp(LIR_Opr src) {
 114   assert(_temp->is_illegal(), "");
 115   _temp = _gen->new_register(src->type());
 116   emit_move(src, _temp);
 117 }
 118 
 119 
 120 // Traverse assignment graph in depth first order and generate moves in post order
 121 // ie. two assignments: b := c, a := b start with node c:
 122 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 123 // Generates moves in this order: move b to a and move c to b
 124 // ie. cycle a := b, b := a start with node a
 125 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 126 // Generates moves in this order: move b to temp, move a to b, move temp to a
 127 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 128   if (!dest->visited()) {
 129     dest->set_visited();
 130     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 131       move(dest, dest->destination_at(i));
 132     }
 133   } else if (!dest->start_node()) {
 134     // cylce in graph detected
 135     assert(_loop == NULL, "only one loop valid!");
 136     _loop = dest;
 137     move_to_temp(src->operand());
 138     return;
 139   } // else dest is a start node
 140 
 141   if (!dest->assigned()) {
 142     if (_loop == dest) {
 143       move_temp_to(dest->operand());
 144       dest->set_assigned();
 145     } else if (src != NULL) {
 146       emit_move(src->operand(), dest->operand());
 147       dest->set_assigned();
 148     }
 149   }
 150 }
 151 
 152 
 153 PhiResolver::~PhiResolver() {
 154   int i;
 155   // resolve any cycles in moves from and to virtual registers
 156   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = virtual_operands().at(i);
 158     if (!node->visited()) {
 159       _loop = NULL;
 160       move(NULL, node);
 161       node->set_start_node();
 162       assert(_temp->is_illegal(), "move_temp_to() call missing");
 163     }
 164   }
 165 
 166   // generate move for move from non virtual register to abitrary destination
 167   for (i = other_operands().length() - 1; i >= 0; i --) {
 168     ResolveNode* node = other_operands().at(i);
 169     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 170       emit_move(node->operand(), node->destination_at(j)->operand());
 171     }
 172   }
 173 }
 174 
 175 
 176 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 177   ResolveNode* node;
 178   if (opr->is_virtual()) {
 179     int vreg_num = opr->vreg_number();
 180     node = vreg_table().at_grow(vreg_num, NULL);
 181     assert(node == NULL || node->operand() == opr, "");
 182     if (node == NULL) {
 183       node = new ResolveNode(opr);
 184       vreg_table().at_put(vreg_num, node);
 185     }
 186     // Make sure that all virtual operands show up in the list when
 187     // they are used as the source of a move.
 188     if (source && !virtual_operands().contains(node)) {
 189       virtual_operands().append(node);
 190     }
 191   } else {
 192     assert(source, "");
 193     node = new ResolveNode(opr);
 194     other_operands().append(node);
 195   }
 196   return node;
 197 }
 198 
 199 
 200 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 201   assert(dest->is_virtual(), "");
 202   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 203   assert(src->is_valid(), "");
 204   assert(dest->is_valid(), "");
 205   ResolveNode* source = source_node(src);
 206   source->append(destination_node(dest));
 207 }
 208 
 209 
 210 //--------------------------------------------------------------
 211 // LIRItem
 212 
 213 void LIRItem::set_result(LIR_Opr opr) {
 214   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 215   value()->set_operand(opr);
 216 
 217   if (opr->is_virtual()) {
 218     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 219   }
 220 
 221   _result = opr;
 222 }
 223 
 224 void LIRItem::load_item() {
 225   if (result()->is_illegal()) {
 226     // update the items result
 227     _result = value()->operand();
 228   }
 229   if (!result()->is_register()) {
 230     LIR_Opr reg = _gen->new_register(value()->type());
 231     __ move(result(), reg);
 232     if (result()->is_constant()) {
 233       _result = reg;
 234     } else {
 235       set_result(reg);
 236     }
 237   }
 238 }
 239 
 240 
 241 void LIRItem::load_for_store(BasicType type) {
 242   if (_gen->can_store_as_constant(value(), type)) {
 243     _result = value()->operand();
 244     if (!_result->is_constant()) {
 245       _result = LIR_OprFact::value_type(value()->type());
 246     }
 247   } else if (type == T_BYTE || type == T_BOOLEAN) {
 248     load_byte_item();
 249   } else {
 250     load_item();
 251   }
 252 }
 253 
 254 void LIRItem::load_item_force(LIR_Opr reg) {
 255   LIR_Opr r = result();
 256   if (r != reg) {
 257 #if !defined(ARM) && !defined(E500V2)
 258     if (r->type() != reg->type()) {
 259       // moves between different types need an intervening spill slot
 260       r = _gen->force_to_spill(r, reg->type());
 261     }
 262 #endif
 263     __ move(r, reg);
 264     _result = reg;
 265   }
 266 }
 267 
 268 ciObject* LIRItem::get_jobject_constant() const {
 269   ObjectType* oc = type()->as_ObjectType();
 270   if (oc) {
 271     return oc->constant_value();
 272   }
 273   return NULL;
 274 }
 275 
 276 
 277 jint LIRItem::get_jint_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_IntConstant() != NULL, "type check");
 280   return type()->as_IntConstant()->value();
 281 }
 282 
 283 
 284 jint LIRItem::get_address_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_AddressConstant() != NULL, "type check");
 287   return type()->as_AddressConstant()->value();
 288 }
 289 
 290 
 291 jfloat LIRItem::get_jfloat_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_FloatConstant() != NULL, "type check");
 294   return type()->as_FloatConstant()->value();
 295 }
 296 
 297 
 298 jdouble LIRItem::get_jdouble_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_DoubleConstant() != NULL, "type check");
 301   return type()->as_DoubleConstant()->value();
 302 }
 303 
 304 
 305 jlong LIRItem::get_jlong_constant() const {
 306   assert(is_constant() && value() != NULL, "");
 307   assert(type()->as_LongConstant() != NULL, "type check");
 308   return type()->as_LongConstant()->value();
 309 }
 310 
 311 
 312 
 313 //--------------------------------------------------------------
 314 
 315 
 316 void LIRGenerator::init() {
 317   _bs = BarrierSet::barrier_set();
 318 }
 319 
 320 
 321 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 322 #ifndef PRODUCT
 323   if (PrintIRWithLIR) {
 324     block->print();
 325   }
 326 #endif
 327 
 328   // set up the list of LIR instructions
 329   assert(block->lir() == NULL, "LIR list already computed for this block");
 330   _lir = new LIR_List(compilation(), block);
 331   block->set_lir(_lir);
 332 
 333   __ branch_destination(block->label());
 334 
 335   if (LIRTraceExecution &&
 336       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 337       !block->is_set(BlockBegin::exception_entry_flag)) {
 338     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 339     trace_block_entry(block);
 340   }
 341 }
 342 
 343 
 344 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 345 #ifndef PRODUCT
 346   if (PrintIRWithLIR) {
 347     tty->cr();
 348   }
 349 #endif
 350 
 351   // LIR_Opr for unpinned constants shouldn't be referenced by other
 352   // blocks so clear them out after processing the block.
 353   for (int i = 0; i < _unpinned_constants.length(); i++) {
 354     _unpinned_constants.at(i)->clear_operand();
 355   }
 356   _unpinned_constants.trunc_to(0);
 357 
 358   // clear our any registers for other local constants
 359   _constants.trunc_to(0);
 360   _reg_for_constants.trunc_to(0);
 361 }
 362 
 363 
 364 void LIRGenerator::block_do(BlockBegin* block) {
 365   CHECK_BAILOUT();
 366 
 367   block_do_prolog(block);
 368   set_block(block);
 369 
 370   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 371     if (instr->is_pinned()) do_root(instr);
 372   }
 373 
 374   set_block(NULL);
 375   block_do_epilog(block);
 376 }
 377 
 378 
 379 //-------------------------LIRGenerator-----------------------------
 380 
 381 // This is where the tree-walk starts; instr must be root;
 382 void LIRGenerator::do_root(Value instr) {
 383   CHECK_BAILOUT();
 384 
 385   InstructionMark im(compilation(), instr);
 386 
 387   assert(instr->is_pinned(), "use only with roots");
 388   assert(instr->subst() == instr, "shouldn't have missed substitution");
 389 
 390   instr->visit(this);
 391 
 392   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 393          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 394 }
 395 
 396 
 397 // This is called for each node in tree; the walk stops if a root is reached
 398 void LIRGenerator::walk(Value instr) {
 399   InstructionMark im(compilation(), instr);
 400   //stop walk when encounter a root
 401   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 402     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 403   } else {
 404     assert(instr->subst() == instr, "shouldn't have missed substitution");
 405     instr->visit(this);
 406     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 407   }
 408 }
 409 
 410 
 411 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 412   assert(state != NULL, "state must be defined");
 413 
 414 #ifndef PRODUCT
 415   state->verify();
 416 #endif
 417 
 418   ValueStack* s = state;
 419   for_each_state(s) {
 420     if (s->kind() == ValueStack::EmptyExceptionState) {
 421       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 422       continue;
 423     }
 424 
 425     int index;
 426     Value value;
 427     for_each_stack_value(s, index, value) {
 428       assert(value->subst() == value, "missed substitution");
 429       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 430         walk(value);
 431         assert(value->operand()->is_valid(), "must be evaluated now");
 432       }
 433     }
 434 
 435     int bci = s->bci();
 436     IRScope* scope = s->scope();
 437     ciMethod* method = scope->method();
 438 
 439     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 440     if (bci == SynchronizationEntryBCI) {
 441       if (x->as_ExceptionObject() || x->as_Throw()) {
 442         // all locals are dead on exit from the synthetic unlocker
 443         liveness.clear();
 444       } else {
 445         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 446       }
 447     }
 448     if (!liveness.is_valid()) {
 449       // Degenerate or breakpointed method.
 450       bailout("Degenerate or breakpointed method");
 451     } else {
 452       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 453       for_each_local_value(s, index, value) {
 454         assert(value->subst() == value, "missed substition");
 455         if (liveness.at(index) && !value->type()->is_illegal()) {
 456           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 457             walk(value);
 458             assert(value->operand()->is_valid(), "must be evaluated now");
 459           }
 460         } else {
 461           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 462           s->invalidate_local(index);
 463         }
 464       }
 465     }
 466   }
 467 
 468   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 469 }
 470 
 471 
 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 473   return state_for(x, x->exception_state());
 474 }
 475 
 476 
 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 478   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 479    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 480    * the class. */
 481   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 482     assert(info != NULL, "info must be set if class is not loaded");
 483     __ klass2reg_patch(NULL, r, info);
 484   } else {
 485     // no patching needed
 486     __ metadata2reg(obj->constant_encoding(), r);
 487   }
 488 }
 489 
 490 
 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 492                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 493   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 494   if (index->is_constant()) {
 495     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 496                 index->as_jint(), null_check_info);
 497     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 500                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 501     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 502   }
 503 }
 504 
 505 
 506 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 507   CodeStub* stub = new RangeCheckStub(info, index, true);
 508   if (index->is_constant()) {
 509     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 510     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 511   } else {
 512     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 513                 java_nio_Buffer::limit_offset(), T_INT, info);
 514     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 515   }
 516   __ move(index, result);
 517 }
 518 
 519 
 520 
 521 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 522   LIR_Opr result_op = result;
 523   LIR_Opr left_op   = left;
 524   LIR_Opr right_op  = right;
 525 
 526   if (TwoOperandLIRForm && left_op != result_op) {
 527     assert(right_op != result_op, "malformed");
 528     __ move(left_op, result_op);
 529     left_op = result_op;
 530   }
 531 
 532   switch(code) {
 533     case Bytecodes::_dadd:
 534     case Bytecodes::_fadd:
 535     case Bytecodes::_ladd:
 536     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 537     case Bytecodes::_fmul:
 538     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 539 
 540     case Bytecodes::_dmul:
 541       {
 542         if (is_strictfp) {
 543           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 544         } else {
 545           __ mul(left_op, right_op, result_op); break;
 546         }
 547       }
 548       break;
 549 
 550     case Bytecodes::_imul:
 551       {
 552         bool did_strength_reduce = false;
 553 
 554         if (right->is_constant()) {
 555           jint c = right->as_jint();
 556           if (c > 0 && is_power_of_2(c)) {
 557             // do not need tmp here
 558             __ shift_left(left_op, exact_log2(c), result_op);
 559             did_strength_reduce = true;
 560           } else {
 561             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 562           }
 563         }
 564         // we couldn't strength reduce so just emit the multiply
 565         if (!did_strength_reduce) {
 566           __ mul(left_op, right_op, result_op);
 567         }
 568       }
 569       break;
 570 
 571     case Bytecodes::_dsub:
 572     case Bytecodes::_fsub:
 573     case Bytecodes::_lsub:
 574     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 575 
 576     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 577     // ldiv and lrem are implemented with a direct runtime call
 578 
 579     case Bytecodes::_ddiv:
 580       {
 581         if (is_strictfp) {
 582           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 583         } else {
 584           __ div (left_op, right_op, result_op); break;
 585         }
 586       }
 587       break;
 588 
 589     case Bytecodes::_drem:
 590     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 591 
 592     default: ShouldNotReachHere();
 593   }
 594 }
 595 
 596 
 597 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 598   arithmetic_op(code, result, left, right, false, tmp);
 599 }
 600 
 601 
 602 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 603   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 604 }
 605 
 606 
 607 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 608   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 609 }
 610 
 611 
 612 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 613 
 614   if (TwoOperandLIRForm && value != result_op
 615       // Only 32bit right shifts require two operand form on S390.
 616       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 617     assert(count != result_op, "malformed");
 618     __ move(value, result_op);
 619     value = result_op;
 620   }
 621 
 622   assert(count->is_constant() || count->is_register(), "must be");
 623   switch(code) {
 624   case Bytecodes::_ishl:
 625   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 626   case Bytecodes::_ishr:
 627   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 628   case Bytecodes::_iushr:
 629   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 630   default: ShouldNotReachHere();
 631   }
 632 }
 633 
 634 
 635 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 636   if (TwoOperandLIRForm && left_op != result_op) {
 637     assert(right_op != result_op, "malformed");
 638     __ move(left_op, result_op);
 639     left_op = result_op;
 640   }
 641 
 642   switch(code) {
 643     case Bytecodes::_iand:
 644     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 645 
 646     case Bytecodes::_ior:
 647     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 648 
 649     case Bytecodes::_ixor:
 650     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 651 
 652     default: ShouldNotReachHere();
 653   }
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 658   if (!GenerateSynchronizationCode) return;
 659   // for slow path, use debug info for state after successful locking
 660   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 661   __ load_stack_address_monitor(monitor_no, lock);
 662   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 663   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 664 }
 665 
 666 
 667 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 668   if (!GenerateSynchronizationCode) return;
 669   // setup registers
 670   LIR_Opr hdr = lock;
 671   lock = new_hdr;
 672   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 673   __ load_stack_address_monitor(monitor_no, lock);
 674   __ unlock_object(hdr, object, lock, scratch, slow_path);
 675 }
 676 
 677 #ifndef PRODUCT
 678 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 679   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 680     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 681   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 682     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 683   }
 684 }
 685 #endif
 686 
 687 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 688   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 689   // If klass is not loaded we do not know if the klass has finalizers:
 690   if (UseFastNewInstance && klass->is_loaded()
 691       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 692 
 693     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 694 
 695     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 696 
 697     assert(klass->is_loaded(), "must be loaded");
 698     // allocate space for instance
 699     assert(klass->size_helper() >= 0, "illegal instance size");
 700     const int instance_size = align_object_size(klass->size_helper());
 701     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 702                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 703   } else {
 704     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 705     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 706     __ branch_destination(slow_path->continuation());
 707   }
 708 }
 709 
 710 
 711 static bool is_constant_zero(Instruction* inst) {
 712   IntConstant* c = inst->type()->as_IntConstant();
 713   if (c) {
 714     return (c->value() == 0);
 715   }
 716   return false;
 717 }
 718 
 719 
 720 static bool positive_constant(Instruction* inst) {
 721   IntConstant* c = inst->type()->as_IntConstant();
 722   if (c) {
 723     return (c->value() >= 0);
 724   }
 725   return false;
 726 }
 727 
 728 
 729 static ciArrayKlass* as_array_klass(ciType* type) {
 730   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 731     return (ciArrayKlass*)type;
 732   } else {
 733     return NULL;
 734   }
 735 }
 736 
 737 static ciType* phi_declared_type(Phi* phi) {
 738   ciType* t = phi->operand_at(0)->declared_type();
 739   if (t == NULL) {
 740     return NULL;
 741   }
 742   for(int i = 1; i < phi->operand_count(); i++) {
 743     if (t != phi->operand_at(i)->declared_type()) {
 744       return NULL;
 745     }
 746   }
 747   return t;
 748 }
 749 
 750 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 751   Instruction* src     = x->argument_at(0);
 752   Instruction* src_pos = x->argument_at(1);
 753   Instruction* dst     = x->argument_at(2);
 754   Instruction* dst_pos = x->argument_at(3);
 755   Instruction* length  = x->argument_at(4);
 756 
 757   // first try to identify the likely type of the arrays involved
 758   ciArrayKlass* expected_type = NULL;
 759   bool is_exact = false, src_objarray = false, dst_objarray = false;
 760   {
 761     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 762     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 763     Phi* phi;
 764     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 765       src_declared_type = as_array_klass(phi_declared_type(phi));
 766     }
 767     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 768     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 769     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 770       dst_declared_type = as_array_klass(phi_declared_type(phi));
 771     }
 772 
 773     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 774       // the types exactly match so the type is fully known
 775       is_exact = true;
 776       expected_type = src_exact_type;
 777     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 778       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 779       ciArrayKlass* src_type = NULL;
 780       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 781         src_type = (ciArrayKlass*) src_exact_type;
 782       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 783         src_type = (ciArrayKlass*) src_declared_type;
 784       }
 785       if (src_type != NULL) {
 786         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 787           is_exact = true;
 788           expected_type = dst_type;
 789         }
 790       }
 791     }
 792     // at least pass along a good guess
 793     if (expected_type == NULL) expected_type = dst_exact_type;
 794     if (expected_type == NULL) expected_type = src_declared_type;
 795     if (expected_type == NULL) expected_type = dst_declared_type;
 796 
 797     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 798     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 799   }
 800 
 801   // if a probable array type has been identified, figure out if any
 802   // of the required checks for a fast case can be elided.
 803   int flags = LIR_OpArrayCopy::all_flags;
 804 
 805   if (!src_objarray)
 806     flags &= ~LIR_OpArrayCopy::src_objarray;
 807   if (!dst_objarray)
 808     flags &= ~LIR_OpArrayCopy::dst_objarray;
 809 
 810   if (!x->arg_needs_null_check(0))
 811     flags &= ~LIR_OpArrayCopy::src_null_check;
 812   if (!x->arg_needs_null_check(2))
 813     flags &= ~LIR_OpArrayCopy::dst_null_check;
 814 
 815 
 816   if (expected_type != NULL) {
 817     Value length_limit = NULL;
 818 
 819     IfOp* ifop = length->as_IfOp();
 820     if (ifop != NULL) {
 821       // look for expressions like min(v, a.length) which ends up as
 822       //   x > y ? y : x  or  x >= y ? y : x
 823       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 824           ifop->x() == ifop->fval() &&
 825           ifop->y() == ifop->tval()) {
 826         length_limit = ifop->y();
 827       }
 828     }
 829 
 830     // try to skip null checks and range checks
 831     NewArray* src_array = src->as_NewArray();
 832     if (src_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::src_null_check;
 834       if (length_limit != NULL &&
 835           src_array->length() == length_limit &&
 836           is_constant_zero(src_pos)) {
 837         flags &= ~LIR_OpArrayCopy::src_range_check;
 838       }
 839     }
 840 
 841     NewArray* dst_array = dst->as_NewArray();
 842     if (dst_array != NULL) {
 843       flags &= ~LIR_OpArrayCopy::dst_null_check;
 844       if (length_limit != NULL &&
 845           dst_array->length() == length_limit &&
 846           is_constant_zero(dst_pos)) {
 847         flags &= ~LIR_OpArrayCopy::dst_range_check;
 848       }
 849     }
 850 
 851     // check from incoming constant values
 852     if (positive_constant(src_pos))
 853       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 854     if (positive_constant(dst_pos))
 855       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 856     if (positive_constant(length))
 857       flags &= ~LIR_OpArrayCopy::length_positive_check;
 858 
 859     // see if the range check can be elided, which might also imply
 860     // that src or dst is non-null.
 861     ArrayLength* al = length->as_ArrayLength();
 862     if (al != NULL) {
 863       if (al->array() == src) {
 864         // it's the length of the source array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::src_null_check;
 867         if (is_constant_zero(src_pos))
 868           flags &= ~LIR_OpArrayCopy::src_range_check;
 869       }
 870       if (al->array() == dst) {
 871         // it's the length of the destination array
 872         flags &= ~LIR_OpArrayCopy::length_positive_check;
 873         flags &= ~LIR_OpArrayCopy::dst_null_check;
 874         if (is_constant_zero(dst_pos))
 875           flags &= ~LIR_OpArrayCopy::dst_range_check;
 876       }
 877     }
 878     if (is_exact) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882 
 883   IntConstant* src_int = src_pos->type()->as_IntConstant();
 884   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 885   if (src_int && dst_int) {
 886     int s_offs = src_int->value();
 887     int d_offs = dst_int->value();
 888     if (src_int->value() >= dst_int->value()) {
 889       flags &= ~LIR_OpArrayCopy::overlapping;
 890     }
 891     if (expected_type != NULL) {
 892       BasicType t = expected_type->element_type()->basic_type();
 893       int element_size = type2aelembytes(t);
 894       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 895           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 896         flags &= ~LIR_OpArrayCopy::unaligned;
 897       }
 898     }
 899   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 900     // src and dest positions are the same, or dst is zero so assume
 901     // nonoverlapping copy.
 902     flags &= ~LIR_OpArrayCopy::overlapping;
 903   }
 904 
 905   if (src == dst) {
 906     // moving within a single array so no type checks are needed
 907     if (flags & LIR_OpArrayCopy::type_check) {
 908       flags &= ~LIR_OpArrayCopy::type_check;
 909     }
 910   }
 911   *flagsp = flags;
 912   *expected_typep = (ciArrayKlass*)expected_type;
 913 }
 914 
 915 
 916 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 917   assert(opr->is_register(), "why spill if item is not register?");
 918 
 919   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 920     LIR_Opr result = new_register(T_FLOAT);
 921     set_vreg_flag(result, must_start_in_memory);
 922     assert(opr->is_register(), "only a register can be spilled");
 923     assert(opr->value_type()->is_float(), "rounding only for floats available");
 924     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 925     return result;
 926   }
 927   return opr;
 928 }
 929 
 930 
 931 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 932   assert(type2size[t] == type2size[value->type()],
 933          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 934   if (!value->is_register()) {
 935     // force into a register
 936     LIR_Opr r = new_register(value->type());
 937     __ move(value, r);
 938     value = r;
 939   }
 940 
 941   // create a spill location
 942   LIR_Opr tmp = new_register(t);
 943   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 944 
 945   // move from register to spill
 946   __ move(value, tmp);
 947   return tmp;
 948 }
 949 
 950 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 951   if (if_instr->should_profile()) {
 952     ciMethod* method = if_instr->profiled_method();
 953     assert(method != NULL, "method should be set if branch is profiled");
 954     ciMethodData* md = method->method_data_or_null();
 955     assert(md != NULL, "Sanity");
 956     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 957     assert(data != NULL, "must have profiling data");
 958     assert(data->is_BranchData(), "need BranchData for two-way branches");
 959     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 960     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 961     if (if_instr->is_swapped()) {
 962       int t = taken_count_offset;
 963       taken_count_offset = not_taken_count_offset;
 964       not_taken_count_offset = t;
 965     }
 966 
 967     LIR_Opr md_reg = new_register(T_METADATA);
 968     __ metadata2reg(md->constant_encoding(), md_reg);
 969 
 970     LIR_Opr data_offset_reg = new_pointer_register();
 971     __ cmove(lir_cond(cond),
 972              LIR_OprFact::intptrConst(taken_count_offset),
 973              LIR_OprFact::intptrConst(not_taken_count_offset),
 974              data_offset_reg, as_BasicType(if_instr->x()->type()));
 975 
 976     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 977     LIR_Opr data_reg = new_pointer_register();
 978     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 979     __ move(data_addr, data_reg);
 980     // Use leal instead of add to avoid destroying condition codes on x86
 981     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 982     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 983     __ move(data_reg, data_addr);
 984   }
 985 }
 986 
 987 // Phi technique:
 988 // This is about passing live values from one basic block to the other.
 989 // In code generated with Java it is rather rare that more than one
 990 // value is on the stack from one basic block to the other.
 991 // We optimize our technique for efficient passing of one value
 992 // (of type long, int, double..) but it can be extended.
 993 // When entering or leaving a basic block, all registers and all spill
 994 // slots are release and empty. We use the released registers
 995 // and spill slots to pass the live values from one block
 996 // to the other. The topmost value, i.e., the value on TOS of expression
 997 // stack is passed in registers. All other values are stored in spilling
 998 // area. Every Phi has an index which designates its spill slot
 999 // At exit of a basic block, we fill the register(s) and spill slots.
1000 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1001 // and locks necessary registers and spilling slots.
1002 
1003 
1004 // move current value to referenced phi function
1005 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1006   Phi* phi = sux_val->as_Phi();
1007   // cur_val can be null without phi being null in conjunction with inlining
1008   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1009     Phi* cur_phi = cur_val->as_Phi();
1010     if (cur_phi != NULL && cur_phi->is_illegal()) {
1011       // Phi and local would need to get invalidated
1012       // (which is unexpected for Linear Scan).
1013       // But this case is very rare so we simply bail out.
1014       bailout("propagation of illegal phi");
1015       return;
1016     }
1017     LIR_Opr operand = cur_val->operand();
1018     if (operand->is_illegal()) {
1019       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1020              "these can be produced lazily");
1021       operand = operand_for_instruction(cur_val);
1022     }
1023     resolver->move(operand, operand_for_instruction(phi));
1024   }
1025 }
1026 
1027 
1028 // Moves all stack values into their PHI position
1029 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1030   BlockBegin* bb = block();
1031   if (bb->number_of_sux() == 1) {
1032     BlockBegin* sux = bb->sux_at(0);
1033     assert(sux->number_of_preds() > 0, "invalid CFG");
1034 
1035     // a block with only one predecessor never has phi functions
1036     if (sux->number_of_preds() > 1) {
1037       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1038       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1039 
1040       ValueStack* sux_state = sux->state();
1041       Value sux_value;
1042       int index;
1043 
1044       assert(cur_state->scope() == sux_state->scope(), "not matching");
1045       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1046       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1047 
1048       for_each_stack_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1050       }
1051 
1052       for_each_local_value(sux_state, index, sux_value) {
1053         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1054       }
1055 
1056       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1057     }
1058   }
1059 }
1060 
1061 
1062 LIR_Opr LIRGenerator::new_register(BasicType type) {
1063   int vreg = _virtual_register_number;
1064   // add a little fudge factor for the bailout, since the bailout is
1065   // only checked periodically.  This gives a few extra registers to
1066   // hand out before we really run out, which helps us keep from
1067   // tripping over assertions.
1068   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1069     bailout("out of virtual registers");
1070     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1071       // wrap it around
1072       _virtual_register_number = LIR_OprDesc::vreg_base;
1073     }
1074   }
1075   _virtual_register_number += 1;
1076   return LIR_OprFact::virtual_register(vreg, type);
1077 }
1078 
1079 
1080 // Try to lock using register in hint
1081 LIR_Opr LIRGenerator::rlock(Value instr) {
1082   return new_register(instr->type());
1083 }
1084 
1085 
1086 // does an rlock and sets result
1087 LIR_Opr LIRGenerator::rlock_result(Value x) {
1088   LIR_Opr reg = rlock(x);
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1096   LIR_Opr reg;
1097   switch (type) {
1098   case T_BYTE:
1099   case T_BOOLEAN:
1100     reg = rlock_byte(type);
1101     break;
1102   default:
1103     reg = rlock(x);
1104     break;
1105   }
1106 
1107   set_result(x, reg);
1108   return reg;
1109 }
1110 
1111 
1112 //---------------------------------------------------------------------
1113 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1114   ObjectType* oc = value->type()->as_ObjectType();
1115   if (oc) {
1116     return oc->constant_value();
1117   }
1118   return NULL;
1119 }
1120 
1121 
1122 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1123   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1124   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1125 
1126   // no moves are created for phi functions at the begin of exception
1127   // handlers, so assign operands manually here
1128   for_each_phi_fun(block(), phi,
1129                    operand_for_instruction(phi));
1130 
1131   LIR_Opr thread_reg = getThreadPointer();
1132   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1133                exceptionOopOpr());
1134   __ move_wide(LIR_OprFact::oopConst(NULL),
1135                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1136   __ move_wide(LIR_OprFact::oopConst(NULL),
1137                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1138 
1139   LIR_Opr result = new_register(T_OBJECT);
1140   __ move(exceptionOopOpr(), result);
1141   set_result(x, result);
1142 }
1143 
1144 
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //                        visitor functions
1150 //----------------------------------------------------------------------
1151 //----------------------------------------------------------------------
1152 //----------------------------------------------------------------------
1153 //----------------------------------------------------------------------
1154 
1155 void LIRGenerator::do_Phi(Phi* x) {
1156   // phi functions are never visited directly
1157   ShouldNotReachHere();
1158 }
1159 
1160 
1161 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1162 void LIRGenerator::do_Constant(Constant* x) {
1163   if (x->state_before() != NULL) {
1164     // Any constant with a ValueStack requires patching so emit the patch here
1165     LIR_Opr reg = rlock_result(x);
1166     CodeEmitInfo* info = state_for(x, x->state_before());
1167     __ oop2reg_patch(NULL, reg, info);
1168   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1169     if (!x->is_pinned()) {
1170       // unpinned constants are handled specially so that they can be
1171       // put into registers when they are used multiple times within a
1172       // block.  After the block completes their operand will be
1173       // cleared so that other blocks can't refer to that register.
1174       set_result(x, load_constant(x));
1175     } else {
1176       LIR_Opr res = x->operand();
1177       if (!res->is_valid()) {
1178         res = LIR_OprFact::value_type(x->type());
1179       }
1180       if (res->is_constant()) {
1181         LIR_Opr reg = rlock_result(x);
1182         __ move(res, reg);
1183       } else {
1184         set_result(x, res);
1185       }
1186     }
1187   } else {
1188     set_result(x, LIR_OprFact::value_type(x->type()));
1189   }
1190 }
1191 
1192 
1193 void LIRGenerator::do_Local(Local* x) {
1194   // operand_for_instruction has the side effect of setting the result
1195   // so there's no need to do it here.
1196   operand_for_instruction(x);
1197 }
1198 
1199 
1200 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1201   Unimplemented();
1202 }
1203 
1204 
1205 void LIRGenerator::do_Return(Return* x) {
1206   if (compilation()->env()->dtrace_method_probes()) {
1207     BasicTypeList signature;
1208     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1209     signature.append(T_METADATA); // Method*
1210     LIR_OprList* args = new LIR_OprList();
1211     args->append(getThreadPointer());
1212     LIR_Opr meth = new_register(T_METADATA);
1213     __ metadata2reg(method()->constant_encoding(), meth);
1214     args->append(meth);
1215     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1216   }
1217 
1218   if (x->type()->is_void()) {
1219     __ return_op(LIR_OprFact::illegalOpr);
1220   } else {
1221     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1222     LIRItem result(x->result(), this);
1223 
1224     result.load_item_force(reg);
1225     __ return_op(result.result());
1226   }
1227   set_no_result(x);
1228 }
1229 
1230 // Examble: ref.get()
1231 // Combination of LoadField and g1 pre-write barrier
1232 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1233 
1234   const int referent_offset = java_lang_ref_Reference::referent_offset;
1235   guarantee(referent_offset > 0, "referent offset not initialized");
1236 
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem reference(x->argument_at(0), this);
1240   reference.load_item();
1241 
1242   // need to perform the null check on the reference objecy
1243   CodeEmitInfo* info = NULL;
1244   if (x->needs_null_check()) {
1245     info = state_for(x);
1246   }
1247 
1248   LIR_Address* referent_field_adr =
1249     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1250 
1251   LIR_Opr result = rlock_result(x);
1252 
1253   __ load(referent_field_adr, result, info);
1254 
1255   // Register the value in the referent field with the pre-barrier
1256   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1257               result /* pre_val */,
1258               false  /* do_load */,
1259               false  /* patch */,
1260               NULL   /* info */);
1261 }
1262 
1263 // Example: clazz.isInstance(object)
1264 void LIRGenerator::do_isInstance(Intrinsic* x) {
1265   assert(x->number_of_arguments() == 2, "wrong type");
1266 
1267   // TODO could try to substitute this node with an equivalent InstanceOf
1268   // if clazz is known to be a constant Class. This will pick up newly found
1269   // constants after HIR construction. I'll leave this to a future change.
1270 
1271   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1272   // could follow the aastore example in a future change.
1273 
1274   LIRItem clazz(x->argument_at(0), this);
1275   LIRItem object(x->argument_at(1), this);
1276   clazz.load_item();
1277   object.load_item();
1278   LIR_Opr result = rlock_result(x);
1279 
1280   // need to perform null check on clazz
1281   if (x->needs_null_check()) {
1282     CodeEmitInfo* info = state_for(x);
1283     __ null_check(clazz.result(), info);
1284   }
1285 
1286   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1287                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1288                                      x->type(),
1289                                      NULL); // NULL CodeEmitInfo results in a leaf call
1290   __ move(call_result, result);
1291 }
1292 
1293 // Example: object.getClass ()
1294 void LIRGenerator::do_getClass(Intrinsic* x) {
1295   assert(x->number_of_arguments() == 1, "wrong type");
1296 
1297   LIRItem rcvr(x->argument_at(0), this);
1298   rcvr.load_item();
1299   LIR_Opr temp = new_register(T_METADATA);
1300   LIR_Opr result = rlock_result(x);
1301 
1302   // need to perform the null check on the rcvr
1303   CodeEmitInfo* info = NULL;
1304   if (x->needs_null_check()) {
1305     info = state_for(x);
1306   }
1307 
1308   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1309   // meaning of these two is mixed up (see JDK-8026837).
1310   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1311   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1312   // mirror = ((OopHandle)mirror)->resolve();
1313   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1314 }
1315 
1316 // java.lang.Class::isPrimitive()
1317 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1318   assert(x->number_of_arguments() == 1, "wrong type");
1319 
1320   LIRItem rcvr(x->argument_at(0), this);
1321   rcvr.load_item();
1322   LIR_Opr temp = new_register(T_METADATA);
1323   LIR_Opr result = rlock_result(x);
1324 
1325   CodeEmitInfo* info = NULL;
1326   if (x->needs_null_check()) {
1327     info = state_for(x);
1328   }
1329 
1330   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1331   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1332   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1333 }
1334 
1335 
1336 // Example: Thread.currentThread()
1337 void LIRGenerator::do_currentThread(Intrinsic* x) {
1338   assert(x->number_of_arguments() == 0, "wrong type");
1339   LIR_Opr reg = rlock_result(x);
1340   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1341 }
1342 
1343 
1344 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1345   assert(x->number_of_arguments() == 1, "wrong type");
1346   LIRItem receiver(x->argument_at(0), this);
1347 
1348   receiver.load_item();
1349   BasicTypeList signature;
1350   signature.append(T_OBJECT); // receiver
1351   LIR_OprList* args = new LIR_OprList();
1352   args->append(receiver.result());
1353   CodeEmitInfo* info = state_for(x, x->state());
1354   call_runtime(&signature, args,
1355                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1356                voidType, info);
1357 
1358   set_no_result(x);
1359 }
1360 
1361 
1362 //------------------------local access--------------------------------------
1363 
1364 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1365   if (x->operand()->is_illegal()) {
1366     Constant* c = x->as_Constant();
1367     if (c != NULL) {
1368       x->set_operand(LIR_OprFact::value_type(c->type()));
1369     } else {
1370       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1371       // allocate a virtual register for this local or phi
1372       x->set_operand(rlock(x));
1373       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1374     }
1375   }
1376   return x->operand();
1377 }
1378 
1379 
1380 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1381   if (opr->is_virtual()) {
1382     return instruction_for_vreg(opr->vreg_number());
1383   }
1384   return NULL;
1385 }
1386 
1387 
1388 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1389   if (reg_num < _instruction_for_operand.length()) {
1390     return _instruction_for_operand.at(reg_num);
1391   }
1392   return NULL;
1393 }
1394 
1395 
1396 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1397   if (_vreg_flags.size_in_bits() == 0) {
1398     BitMap2D temp(100, num_vreg_flags);
1399     _vreg_flags = temp;
1400   }
1401   _vreg_flags.at_put_grow(vreg_num, f, true);
1402 }
1403 
1404 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1405   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1406     return false;
1407   }
1408   return _vreg_flags.at(vreg_num, f);
1409 }
1410 
1411 
1412 // Block local constant handling.  This code is useful for keeping
1413 // unpinned constants and constants which aren't exposed in the IR in
1414 // registers.  Unpinned Constant instructions have their operands
1415 // cleared when the block is finished so that other blocks can't end
1416 // up referring to their registers.
1417 
1418 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1419   assert(!x->is_pinned(), "only for unpinned constants");
1420   _unpinned_constants.append(x);
1421   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1422 }
1423 
1424 
1425 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1426   BasicType t = c->type();
1427   for (int i = 0; i < _constants.length(); i++) {
1428     LIR_Const* other = _constants.at(i);
1429     if (t == other->type()) {
1430       switch (t) {
1431       case T_INT:
1432       case T_FLOAT:
1433         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1434         break;
1435       case T_LONG:
1436       case T_DOUBLE:
1437         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1438         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1439         break;
1440       case T_OBJECT:
1441         if (c->as_jobject() != other->as_jobject()) continue;
1442         break;
1443       default:
1444         break;
1445       }
1446       return _reg_for_constants.at(i);
1447     }
1448   }
1449 
1450   LIR_Opr result = new_register(t);
1451   __ move((LIR_Opr)c, result);
1452   _constants.append(c);
1453   _reg_for_constants.append(result);
1454   return result;
1455 }
1456 
1457 // Various barriers
1458 
1459 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1460                                bool do_load, bool patch, CodeEmitInfo* info) {
1461   // Do the pre-write barrier, if any.
1462   switch (_bs->kind()) {
1463 #if INCLUDE_ALL_GCS
1464     case BarrierSet::G1BarrierSet:
1465       G1BarrierSet_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1466       break;
1467     case BarrierSet::Epsilon:
1468       // No barriers
1469       break;
1470 #endif // INCLUDE_ALL_GCS
1471     case BarrierSet::CardTableBarrierSet:
1472       // No pre barriers
1473       break;
1474     default      :
1475       ShouldNotReachHere();
1476 
1477   }
1478 }
1479 
1480 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1481   switch (_bs->kind()) {
1482 #if INCLUDE_ALL_GCS
1483     case BarrierSet::G1BarrierSet:
1484       G1BarrierSet_post_barrier(addr,  new_val);
1485       break;
1486     case BarrierSet::Epsilon:
1487       // No barriers
1488       break;
1489 #endif // INCLUDE_ALL_GCS
1490     case BarrierSet::CardTableBarrierSet:
1491       CardTableBarrierSet_post_barrier(addr,  new_val);
1492       break;
1493     default      :
1494       ShouldNotReachHere();
1495     }
1496 }
1497 
1498 ////////////////////////////////////////////////////////////////////////
1499 #if INCLUDE_ALL_GCS
1500 
1501 void LIRGenerator::G1BarrierSet_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1502                                             bool do_load, bool patch, CodeEmitInfo* info) {
1503   // First we test whether marking is in progress.
1504   BasicType flag_type;
1505   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1506     flag_type = T_INT;
1507   } else {
1508     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1509               "Assumption");
1510     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1511     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1512     flag_type = T_BOOLEAN;
1513   }
1514   LIR_Opr thrd = getThreadPointer();
1515   LIR_Address* mark_active_flag_addr =
1516     new LIR_Address(thrd, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), flag_type);
1517   // Read the marking-in-progress flag.
1518   LIR_Opr flag_val = new_register(T_INT);
1519   __ load(mark_active_flag_addr, flag_val);
1520   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1521 
1522   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1523 
1524   CodeStub* slow;
1525 
1526   if (do_load) {
1527     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1528     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1529 
1530     if (patch)
1531       pre_val_patch_code = lir_patch_normal;
1532 
1533     pre_val = new_register(T_OBJECT);
1534 
1535     if (!addr_opr->is_address()) {
1536       assert(addr_opr->is_register(), "must be");
1537       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1538     }
1539     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1540   } else {
1541     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1542     assert(pre_val->is_register(), "must be");
1543     assert(pre_val->type() == T_OBJECT, "must be an object");
1544     assert(info == NULL, "sanity");
1545 
1546     slow = new G1PreBarrierStub(pre_val);
1547   }
1548 
1549   __ branch(lir_cond_notEqual, T_INT, slow);
1550   __ branch_destination(slow->continuation());
1551 }
1552 
1553 void LIRGenerator::G1BarrierSet_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1554   // If the "new_val" is a constant NULL, no barrier is necessary.
1555   if (new_val->is_constant() &&
1556       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1557 
1558   if (!new_val->is_register()) {
1559     LIR_Opr new_val_reg = new_register(T_OBJECT);
1560     if (new_val->is_constant()) {
1561       __ move(new_val, new_val_reg);
1562     } else {
1563       __ leal(new_val, new_val_reg);
1564     }
1565     new_val = new_val_reg;
1566   }
1567   assert(new_val->is_register(), "must be a register at this point");
1568 
1569   if (addr->is_address()) {
1570     LIR_Address* address = addr->as_address_ptr();
1571     LIR_Opr ptr = new_pointer_register();
1572     if (!address->index()->is_valid() && address->disp() == 0) {
1573       __ move(address->base(), ptr);
1574     } else {
1575       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1576       __ leal(addr, ptr);
1577     }
1578     addr = ptr;
1579   }
1580   assert(addr->is_register(), "must be a register at this point");
1581 
1582   LIR_Opr xor_res = new_pointer_register();
1583   LIR_Opr xor_shift_res = new_pointer_register();
1584   if (TwoOperandLIRForm ) {
1585     __ move(addr, xor_res);
1586     __ logical_xor(xor_res, new_val, xor_res);
1587     __ move(xor_res, xor_shift_res);
1588     __ unsigned_shift_right(xor_shift_res,
1589                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1590                             xor_shift_res,
1591                             LIR_OprDesc::illegalOpr());
1592   } else {
1593     __ logical_xor(addr, new_val, xor_res);
1594     __ unsigned_shift_right(xor_res,
1595                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1596                             xor_shift_res,
1597                             LIR_OprDesc::illegalOpr());
1598   }
1599 
1600   if (!new_val->is_register()) {
1601     LIR_Opr new_val_reg = new_register(T_OBJECT);
1602     __ leal(new_val, new_val_reg);
1603     new_val = new_val_reg;
1604   }
1605   assert(new_val->is_register(), "must be a register at this point");
1606 
1607   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1608 
1609   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1610   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1611   __ branch_destination(slow->continuation());
1612 }
1613 
1614 #endif // INCLUDE_ALL_GCS
1615 ////////////////////////////////////////////////////////////////////////
1616 
1617 void LIRGenerator::CardTableBarrierSet_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1618   LIR_Const* card_table_base = new LIR_Const(ci_card_table_address());
1619   if (addr->is_address()) {
1620     LIR_Address* address = addr->as_address_ptr();
1621     // ptr cannot be an object because we use this barrier for array card marks
1622     // and addr can point in the middle of an array.
1623     LIR_Opr ptr = new_pointer_register();
1624     if (!address->index()->is_valid() && address->disp() == 0) {
1625       __ move(address->base(), ptr);
1626     } else {
1627       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1628       __ leal(addr, ptr);
1629     }
1630     addr = ptr;
1631   }
1632   assert(addr->is_register(), "must be a register at this point");
1633 
1634 #ifdef CARDTABLEBARRIERSET_POST_BARRIER_HELPER
1635   CardTableBarrierSet_post_barrier_helper(addr, card_table_base);
1636 #else
1637   LIR_Opr tmp = new_pointer_register();
1638   if (TwoOperandLIRForm) {
1639     __ move(addr, tmp);
1640     __ unsigned_shift_right(tmp, CardTable::card_shift, tmp);
1641   } else {
1642     __ unsigned_shift_right(addr, CardTable::card_shift, tmp);
1643   }
1644 
1645   LIR_Address* card_addr;
1646   if (can_inline_as_constant(card_table_base)) {
1647     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1648   } else {
1649     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1650   }
1651 
1652   LIR_Opr dirty = LIR_OprFact::intConst(CardTable::dirty_card_val());
1653   if (UseCondCardMark) {
1654     LIR_Opr cur_value = new_register(T_INT);
1655     if (UseConcMarkSweepGC) {
1656       __ membar_storeload();
1657     }
1658     __ move(card_addr, cur_value);
1659 
1660     LabelObj* L_already_dirty = new LabelObj();
1661     __ cmp(lir_cond_equal, cur_value, dirty);
1662     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1663     __ move(dirty, card_addr);
1664     __ branch_destination(L_already_dirty->label());
1665   } else {
1666 #if INCLUDE_ALL_GCS
1667     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1668       __ membar_storestore();
1669     }
1670 #endif
1671     __ move(dirty, card_addr);
1672   }
1673 #endif
1674 }
1675 
1676 
1677 //------------------------field access--------------------------------------
1678 
1679 // Comment copied form templateTable_i486.cpp
1680 // ----------------------------------------------------------------------------
1681 // Volatile variables demand their effects be made known to all CPU's in
1682 // order.  Store buffers on most chips allow reads & writes to reorder; the
1683 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1684 // memory barrier (i.e., it's not sufficient that the interpreter does not
1685 // reorder volatile references, the hardware also must not reorder them).
1686 //
1687 // According to the new Java Memory Model (JMM):
1688 // (1) All volatiles are serialized wrt to each other.
1689 // ALSO reads & writes act as aquire & release, so:
1690 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1691 // the read float up to before the read.  It's OK for non-volatile memory refs
1692 // that happen before the volatile read to float down below it.
1693 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1694 // that happen BEFORE the write float down to after the write.  It's OK for
1695 // non-volatile memory refs that happen after the volatile write to float up
1696 // before it.
1697 //
1698 // We only put in barriers around volatile refs (they are expensive), not
1699 // _between_ memory refs (that would require us to track the flavor of the
1700 // previous memory refs).  Requirements (2) and (3) require some barriers
1701 // before volatile stores and after volatile loads.  These nearly cover
1702 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1703 // case is placed after volatile-stores although it could just as well go
1704 // before volatile-loads.
1705 
1706 
1707 void LIRGenerator::do_StoreField(StoreField* x) {
1708   bool needs_patching = x->needs_patching();
1709   bool is_volatile = x->field()->is_volatile();
1710   BasicType field_type = x->field_type();
1711   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1712 
1713   CodeEmitInfo* info = NULL;
1714   if (needs_patching) {
1715     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1716     info = state_for(x, x->state_before());
1717   } else if (x->needs_null_check()) {
1718     NullCheck* nc = x->explicit_null_check();
1719     if (nc == NULL) {
1720       info = state_for(x);
1721     } else {
1722       info = state_for(nc);
1723     }
1724   }
1725 
1726 
1727   LIRItem object(x->obj(), this);
1728   LIRItem value(x->value(),  this);
1729 
1730   object.load_item();
1731 
1732   if (is_volatile || needs_patching) {
1733     // load item if field is volatile (fewer special cases for volatiles)
1734     // load item if field not initialized
1735     // load item if field not constant
1736     // because of code patching we cannot inline constants
1737     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1738       value.load_byte_item();
1739     } else  {
1740       value.load_item();
1741     }
1742   } else {
1743     value.load_for_store(field_type);
1744   }
1745 
1746   set_no_result(x);
1747 
1748 #ifndef PRODUCT
1749   if (PrintNotLoaded && needs_patching) {
1750     tty->print_cr("   ###class not loaded at store_%s bci %d",
1751                   x->is_static() ?  "static" : "field", x->printable_bci());
1752   }
1753 #endif
1754 
1755   if (x->needs_null_check() &&
1756       (needs_patching ||
1757        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1758     // Emit an explicit null check because the offset is too large.
1759     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1760     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1761     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1762   }
1763 
1764   LIR_Address* address;
1765   if (needs_patching) {
1766     // we need to patch the offset in the instruction so don't allow
1767     // generate_address to try to be smart about emitting the -1.
1768     // Otherwise the patching code won't know how to find the
1769     // instruction to patch.
1770     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1771   } else {
1772     address = generate_address(object.result(), x->offset(), field_type);
1773   }
1774 
1775   if (is_volatile && os::is_MP()) {
1776     __ membar_release();
1777   }
1778 
1779   if (is_oop) {
1780     // Do the pre-write barrier, if any.
1781     pre_barrier(LIR_OprFact::address(address),
1782                 LIR_OprFact::illegalOpr /* pre_val */,
1783                 true /* do_load*/,
1784                 needs_patching,
1785                 (info ? new CodeEmitInfo(info) : NULL));
1786   }
1787 
1788   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1789   if (needs_atomic_access && !needs_patching) {
1790     volatile_field_store(value.result(), address, info);
1791   } else {
1792     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1793     __ store(value.result(), address, info, patch_code);
1794   }
1795 
1796   if (is_oop) {
1797     // Store to object so mark the card of the header
1798     post_barrier(object.result(), value.result());
1799   }
1800 
1801   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1802     __ membar();
1803   }
1804 }
1805 
1806 
1807 void LIRGenerator::do_LoadField(LoadField* x) {
1808   bool needs_patching = x->needs_patching();
1809   bool is_volatile = x->field()->is_volatile();
1810   BasicType field_type = x->field_type();
1811 
1812   CodeEmitInfo* info = NULL;
1813   if (needs_patching) {
1814     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1815     info = state_for(x, x->state_before());
1816   } else if (x->needs_null_check()) {
1817     NullCheck* nc = x->explicit_null_check();
1818     if (nc == NULL) {
1819       info = state_for(x);
1820     } else {
1821       info = state_for(nc);
1822     }
1823   }
1824 
1825   LIRItem object(x->obj(), this);
1826 
1827   object.load_item();
1828 
1829 #ifndef PRODUCT
1830   if (PrintNotLoaded && needs_patching) {
1831     tty->print_cr("   ###class not loaded at load_%s bci %d",
1832                   x->is_static() ?  "static" : "field", x->printable_bci());
1833   }
1834 #endif
1835 
1836   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1837   if (x->needs_null_check() &&
1838       (needs_patching ||
1839        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1840        stress_deopt)) {
1841     LIR_Opr obj = object.result();
1842     if (stress_deopt) {
1843       obj = new_register(T_OBJECT);
1844       __ move(LIR_OprFact::oopConst(NULL), obj);
1845     }
1846     // Emit an explicit null check because the offset is too large.
1847     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1848     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1849     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1850   }
1851 
1852   LIR_Opr reg = rlock_result(x, field_type);
1853   LIR_Address* address;
1854   if (needs_patching) {
1855     // we need to patch the offset in the instruction so don't allow
1856     // generate_address to try to be smart about emitting the -1.
1857     // Otherwise the patching code won't know how to find the
1858     // instruction to patch.
1859     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1860   } else {
1861     address = generate_address(object.result(), x->offset(), field_type);
1862   }
1863 
1864   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1865     __ membar();
1866   }
1867 
1868   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1869   if (needs_atomic_access && !needs_patching) {
1870     volatile_field_load(address, reg, info);
1871   } else {
1872     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1873     __ load(address, reg, info, patch_code);
1874   }
1875 
1876   if (is_volatile && os::is_MP()) {
1877     __ membar_acquire();
1878   }
1879 }
1880 
1881 
1882 //------------------------java.nio.Buffer.checkIndex------------------------
1883 
1884 // int java.nio.Buffer.checkIndex(int)
1885 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1886   // NOTE: by the time we are in checkIndex() we are guaranteed that
1887   // the buffer is non-null (because checkIndex is package-private and
1888   // only called from within other methods in the buffer).
1889   assert(x->number_of_arguments() == 2, "wrong type");
1890   LIRItem buf  (x->argument_at(0), this);
1891   LIRItem index(x->argument_at(1), this);
1892   buf.load_item();
1893   index.load_item();
1894 
1895   LIR_Opr result = rlock_result(x);
1896   if (GenerateRangeChecks) {
1897     CodeEmitInfo* info = state_for(x);
1898     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1899     if (index.result()->is_constant()) {
1900       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1901       __ branch(lir_cond_belowEqual, T_INT, stub);
1902     } else {
1903       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1904                   java_nio_Buffer::limit_offset(), T_INT, info);
1905       __ branch(lir_cond_aboveEqual, T_INT, stub);
1906     }
1907     __ move(index.result(), result);
1908   } else {
1909     // Just load the index into the result register
1910     __ move(index.result(), result);
1911   }
1912 }
1913 
1914 
1915 //------------------------array access--------------------------------------
1916 
1917 
1918 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1919   LIRItem array(x->array(), this);
1920   array.load_item();
1921   LIR_Opr reg = rlock_result(x);
1922 
1923   CodeEmitInfo* info = NULL;
1924   if (x->needs_null_check()) {
1925     NullCheck* nc = x->explicit_null_check();
1926     if (nc == NULL) {
1927       info = state_for(x);
1928     } else {
1929       info = state_for(nc);
1930     }
1931     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1932       LIR_Opr obj = new_register(T_OBJECT);
1933       __ move(LIR_OprFact::oopConst(NULL), obj);
1934       __ null_check(obj, new CodeEmitInfo(info));
1935     }
1936   }
1937   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1938 }
1939 
1940 
1941 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1942   bool use_length = x->length() != NULL;
1943   LIRItem array(x->array(), this);
1944   LIRItem index(x->index(), this);
1945   LIRItem length(this);
1946   bool needs_range_check = x->compute_needs_range_check();
1947 
1948   if (use_length && needs_range_check) {
1949     length.set_instruction(x->length());
1950     length.load_item();
1951   }
1952 
1953   array.load_item();
1954   if (index.is_constant() && can_inline_as_constant(x->index())) {
1955     // let it be a constant
1956     index.dont_load_item();
1957   } else {
1958     index.load_item();
1959   }
1960 
1961   CodeEmitInfo* range_check_info = state_for(x);
1962   CodeEmitInfo* null_check_info = NULL;
1963   if (x->needs_null_check()) {
1964     NullCheck* nc = x->explicit_null_check();
1965     if (nc != NULL) {
1966       null_check_info = state_for(nc);
1967     } else {
1968       null_check_info = range_check_info;
1969     }
1970     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1971       LIR_Opr obj = new_register(T_OBJECT);
1972       __ move(LIR_OprFact::oopConst(NULL), obj);
1973       __ null_check(obj, new CodeEmitInfo(null_check_info));
1974     }
1975   }
1976 
1977   // emit array address setup early so it schedules better
1978   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1979 
1980   if (GenerateRangeChecks && needs_range_check) {
1981     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1982       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1983     } else if (use_length) {
1984       // TODO: use a (modified) version of array_range_check that does not require a
1985       //       constant length to be loaded to a register
1986       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1987       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1988     } else {
1989       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1990       // The range check performs the null check, so clear it out for the load
1991       null_check_info = NULL;
1992     }
1993   }
1994 
1995   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1996 }
1997 
1998 
1999 void LIRGenerator::do_NullCheck(NullCheck* x) {
2000   if (x->can_trap()) {
2001     LIRItem value(x->obj(), this);
2002     value.load_item();
2003     CodeEmitInfo* info = state_for(x);
2004     __ null_check(value.result(), info);
2005   }
2006 }
2007 
2008 
2009 void LIRGenerator::do_TypeCast(TypeCast* x) {
2010   LIRItem value(x->obj(), this);
2011   value.load_item();
2012   // the result is the same as from the node we are casting
2013   set_result(x, value.result());
2014 }
2015 
2016 
2017 void LIRGenerator::do_Throw(Throw* x) {
2018   LIRItem exception(x->exception(), this);
2019   exception.load_item();
2020   set_no_result(x);
2021   LIR_Opr exception_opr = exception.result();
2022   CodeEmitInfo* info = state_for(x, x->state());
2023 
2024 #ifndef PRODUCT
2025   if (PrintC1Statistics) {
2026     increment_counter(Runtime1::throw_count_address(), T_INT);
2027   }
2028 #endif
2029 
2030   // check if the instruction has an xhandler in any of the nested scopes
2031   bool unwind = false;
2032   if (info->exception_handlers()->length() == 0) {
2033     // this throw is not inside an xhandler
2034     unwind = true;
2035   } else {
2036     // get some idea of the throw type
2037     bool type_is_exact = true;
2038     ciType* throw_type = x->exception()->exact_type();
2039     if (throw_type == NULL) {
2040       type_is_exact = false;
2041       throw_type = x->exception()->declared_type();
2042     }
2043     if (throw_type != NULL && throw_type->is_instance_klass()) {
2044       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2045       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2046     }
2047   }
2048 
2049   // do null check before moving exception oop into fixed register
2050   // to avoid a fixed interval with an oop during the null check.
2051   // Use a copy of the CodeEmitInfo because debug information is
2052   // different for null_check and throw.
2053   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2054     // if the exception object wasn't created using new then it might be null.
2055     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2056   }
2057 
2058   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2059     // we need to go through the exception lookup path to get JVMTI
2060     // notification done
2061     unwind = false;
2062   }
2063 
2064   // move exception oop into fixed register
2065   __ move(exception_opr, exceptionOopOpr());
2066 
2067   if (unwind) {
2068     __ unwind_exception(exceptionOopOpr());
2069   } else {
2070     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2071   }
2072 }
2073 
2074 
2075 void LIRGenerator::do_RoundFP(RoundFP* x) {
2076   LIRItem input(x->input(), this);
2077   input.load_item();
2078   LIR_Opr input_opr = input.result();
2079   assert(input_opr->is_register(), "why round if value is not in a register?");
2080   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2081   if (input_opr->is_single_fpu()) {
2082     set_result(x, round_item(input_opr)); // This code path not currently taken
2083   } else {
2084     LIR_Opr result = new_register(T_DOUBLE);
2085     set_vreg_flag(result, must_start_in_memory);
2086     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2087     set_result(x, result);
2088   }
2089 }
2090 
2091 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2092 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2093 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2094   LIRItem base(x->base(), this);
2095   LIRItem idx(this);
2096 
2097   base.load_item();
2098   if (x->has_index()) {
2099     idx.set_instruction(x->index());
2100     idx.load_nonconstant();
2101   }
2102 
2103   LIR_Opr reg = rlock_result(x, x->basic_type());
2104 
2105   int   log2_scale = 0;
2106   if (x->has_index()) {
2107     log2_scale = x->log2_scale();
2108   }
2109 
2110   assert(!x->has_index() || idx.value() == x->index(), "should match");
2111 
2112   LIR_Opr base_op = base.result();
2113   LIR_Opr index_op = idx.result();
2114 #ifndef _LP64
2115   if (base_op->type() == T_LONG) {
2116     base_op = new_register(T_INT);
2117     __ convert(Bytecodes::_l2i, base.result(), base_op);
2118   }
2119   if (x->has_index()) {
2120     if (index_op->type() == T_LONG) {
2121       LIR_Opr long_index_op = index_op;
2122       if (index_op->is_constant()) {
2123         long_index_op = new_register(T_LONG);
2124         __ move(index_op, long_index_op);
2125       }
2126       index_op = new_register(T_INT);
2127       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2128     } else {
2129       assert(x->index()->type()->tag() == intTag, "must be");
2130     }
2131   }
2132   // At this point base and index should be all ints.
2133   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2134   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2135 #else
2136   if (x->has_index()) {
2137     if (index_op->type() == T_INT) {
2138       if (!index_op->is_constant()) {
2139         index_op = new_register(T_LONG);
2140         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2141       }
2142     } else {
2143       assert(index_op->type() == T_LONG, "must be");
2144       if (index_op->is_constant()) {
2145         index_op = new_register(T_LONG);
2146         __ move(idx.result(), index_op);
2147       }
2148     }
2149   }
2150   // At this point base is a long non-constant
2151   // Index is a long register or a int constant.
2152   // We allow the constant to stay an int because that would allow us a more compact encoding by
2153   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2154   // move it into a register first.
2155   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2156   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2157                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2158 #endif
2159 
2160   BasicType dst_type = x->basic_type();
2161 
2162   LIR_Address* addr;
2163   if (index_op->is_constant()) {
2164     assert(log2_scale == 0, "must not have a scale");
2165     assert(index_op->type() == T_INT, "only int constants supported");
2166     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2167   } else {
2168 #ifdef X86
2169     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2170 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2171     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2172 #else
2173     if (index_op->is_illegal() || log2_scale == 0) {
2174       addr = new LIR_Address(base_op, index_op, dst_type);
2175     } else {
2176       LIR_Opr tmp = new_pointer_register();
2177       __ shift_left(index_op, log2_scale, tmp);
2178       addr = new LIR_Address(base_op, tmp, dst_type);
2179     }
2180 #endif
2181   }
2182 
2183   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2184     __ unaligned_move(addr, reg);
2185   } else {
2186     if (dst_type == T_OBJECT && x->is_wide()) {
2187       __ move_wide(addr, reg);
2188     } else {
2189       __ move(addr, reg);
2190     }
2191   }
2192 }
2193 
2194 
2195 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2196   int  log2_scale = 0;
2197   BasicType type = x->basic_type();
2198 
2199   if (x->has_index()) {
2200     log2_scale = x->log2_scale();
2201   }
2202 
2203   LIRItem base(x->base(), this);
2204   LIRItem value(x->value(), this);
2205   LIRItem idx(this);
2206 
2207   base.load_item();
2208   if (x->has_index()) {
2209     idx.set_instruction(x->index());
2210     idx.load_item();
2211   }
2212 
2213   if (type == T_BYTE || type == T_BOOLEAN) {
2214     value.load_byte_item();
2215   } else {
2216     value.load_item();
2217   }
2218 
2219   set_no_result(x);
2220 
2221   LIR_Opr base_op = base.result();
2222   LIR_Opr index_op = idx.result();
2223 
2224 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2225   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2226 #else
2227 #ifndef _LP64
2228   if (base_op->type() == T_LONG) {
2229     base_op = new_register(T_INT);
2230     __ convert(Bytecodes::_l2i, base.result(), base_op);
2231   }
2232   if (x->has_index()) {
2233     if (index_op->type() == T_LONG) {
2234       index_op = new_register(T_INT);
2235       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2236     }
2237   }
2238   // At this point base and index should be all ints and not constants
2239   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2240   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2241 #else
2242   if (x->has_index()) {
2243     if (index_op->type() == T_INT) {
2244       index_op = new_register(T_LONG);
2245       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2246     }
2247   }
2248   // At this point base and index are long and non-constant
2249   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2250   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2251 #endif
2252 
2253   if (log2_scale != 0) {
2254     // temporary fix (platform dependent code without shift on Intel would be better)
2255     // TODO: ARM also allows embedded shift in the address
2256     LIR_Opr tmp = new_pointer_register();
2257     if (TwoOperandLIRForm) {
2258       __ move(index_op, tmp);
2259       index_op = tmp;
2260     }
2261     __ shift_left(index_op, log2_scale, tmp);
2262     if (!TwoOperandLIRForm) {
2263       index_op = tmp;
2264     }
2265   }
2266 
2267   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2268 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2269   __ move(value.result(), addr);
2270 }
2271 
2272 
2273 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2274   BasicType type = x->basic_type();
2275   LIRItem src(x->object(), this);
2276   LIRItem off(x->offset(), this);
2277 
2278   off.load_item();
2279   src.load_item();
2280 
2281   LIR_Opr value = rlock_result(x, x->basic_type());
2282 
2283   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2284     __ membar();
2285   }
2286 
2287   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2288 
2289 #if INCLUDE_ALL_GCS
2290   // We might be reading the value of the referent field of a
2291   // Reference object in order to attach it back to the live
2292   // object graph. If G1 is enabled then we need to record
2293   // the value that is being returned in an SATB log buffer.
2294   //
2295   // We need to generate code similar to the following...
2296   //
2297   // if (offset == java_lang_ref_Reference::referent_offset) {
2298   //   if (src != NULL) {
2299   //     if (klass(src)->reference_type() != REF_NONE) {
2300   //       pre_barrier(..., value, ...);
2301   //     }
2302   //   }
2303   // }
2304 
2305   if (UseG1GC && type == T_OBJECT) {
2306     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2307     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2308     bool gen_source_check = true;    // Assume we need to check the src object for null.
2309     bool gen_type_check = true;      // Assume we need to check the reference_type.
2310 
2311     if (off.is_constant()) {
2312       jlong off_con = (off.type()->is_int() ?
2313                         (jlong) off.get_jint_constant() :
2314                         off.get_jlong_constant());
2315 
2316 
2317       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2318         // The constant offset is something other than referent_offset.
2319         // We can skip generating/checking the remaining guards and
2320         // skip generation of the code stub.
2321         gen_pre_barrier = false;
2322       } else {
2323         // The constant offset is the same as referent_offset -
2324         // we do not need to generate a runtime offset check.
2325         gen_offset_check = false;
2326       }
2327     }
2328 
2329     // We don't need to generate stub if the source object is an array
2330     if (gen_pre_barrier && src.type()->is_array()) {
2331       gen_pre_barrier = false;
2332     }
2333 
2334     if (gen_pre_barrier) {
2335       // We still need to continue with the checks.
2336       if (src.is_constant()) {
2337         ciObject* src_con = src.get_jobject_constant();
2338         guarantee(src_con != NULL, "no source constant");
2339 
2340         if (src_con->is_null_object()) {
2341           // The constant src object is null - We can skip
2342           // generating the code stub.
2343           gen_pre_barrier = false;
2344         } else {
2345           // Non-null constant source object. We still have to generate
2346           // the slow stub - but we don't need to generate the runtime
2347           // null object check.
2348           gen_source_check = false;
2349         }
2350       }
2351     }
2352     if (gen_pre_barrier && !PatchALot) {
2353       // Can the klass of object be statically determined to be
2354       // a sub-class of Reference?
2355       ciType* type = src.value()->declared_type();
2356       if ((type != NULL) && type->is_loaded()) {
2357         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2358           gen_type_check = false;
2359         } else if (type->is_klass() &&
2360                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2361           // Not Reference and not Object klass.
2362           gen_pre_barrier = false;
2363         }
2364       }
2365     }
2366 
2367     if (gen_pre_barrier) {
2368       LabelObj* Lcont = new LabelObj();
2369 
2370       // We can have generate one runtime check here. Let's start with
2371       // the offset check.
2372       if (gen_offset_check) {
2373         // if (offset != referent_offset) -> continue
2374         // If offset is an int then we can do the comparison with the
2375         // referent_offset constant; otherwise we need to move
2376         // referent_offset into a temporary register and generate
2377         // a reg-reg compare.
2378 
2379         LIR_Opr referent_off;
2380 
2381         if (off.type()->is_int()) {
2382           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2383         } else {
2384           assert(off.type()->is_long(), "what else?");
2385           referent_off = new_register(T_LONG);
2386           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2387         }
2388         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2389         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2390       }
2391       if (gen_source_check) {
2392         // offset is a const and equals referent offset
2393         // if (source == null) -> continue
2394         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2395         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2396       }
2397       LIR_Opr src_klass = new_register(T_OBJECT);
2398       if (gen_type_check) {
2399         // We have determined that offset == referent_offset && src != null.
2400         // if (src->_klass->_reference_type == REF_NONE) -> continue
2401         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2402         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2403         LIR_Opr reference_type = new_register(T_INT);
2404         __ move(reference_type_addr, reference_type);
2405         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2406         __ branch(lir_cond_equal, T_INT, Lcont->label());
2407       }
2408       {
2409         // We have determined that src->_klass->_reference_type != REF_NONE
2410         // so register the value in the referent field with the pre-barrier.
2411         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2412                     value  /* pre_val */,
2413                     false  /* do_load */,
2414                     false  /* patch */,
2415                     NULL   /* info */);
2416       }
2417       __ branch_destination(Lcont->label());
2418     }
2419   }
2420 #endif // INCLUDE_ALL_GCS
2421 
2422   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2423 
2424   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2425   if (type == T_BOOLEAN) {
2426     LabelObj* equalZeroLabel = new LabelObj();
2427     __ cmp(lir_cond_equal, value, 0);
2428     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2429     __ move(LIR_OprFact::intConst(1), value);
2430     __ branch_destination(equalZeroLabel->label());
2431   }
2432 }
2433 
2434 
2435 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2436   BasicType type = x->basic_type();
2437   LIRItem src(x->object(), this);
2438   LIRItem off(x->offset(), this);
2439   LIRItem data(x->value(), this);
2440 
2441   src.load_item();
2442   if (type == T_BOOLEAN || type == T_BYTE) {
2443     data.load_byte_item();
2444   } else {
2445     data.load_item();
2446   }
2447   off.load_item();
2448 
2449   set_no_result(x);
2450 
2451   if (x->is_volatile() && os::is_MP()) __ membar_release();
2452   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2453   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2454 }
2455 
2456 
2457 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2458   int lng = x->length();
2459 
2460   for (int i = 0; i < lng; i++) {
2461     SwitchRange* one_range = x->at(i);
2462     int low_key = one_range->low_key();
2463     int high_key = one_range->high_key();
2464     BlockBegin* dest = one_range->sux();
2465     if (low_key == high_key) {
2466       __ cmp(lir_cond_equal, value, low_key);
2467       __ branch(lir_cond_equal, T_INT, dest);
2468     } else if (high_key - low_key == 1) {
2469       __ cmp(lir_cond_equal, value, low_key);
2470       __ branch(lir_cond_equal, T_INT, dest);
2471       __ cmp(lir_cond_equal, value, high_key);
2472       __ branch(lir_cond_equal, T_INT, dest);
2473     } else {
2474       LabelObj* L = new LabelObj();
2475       __ cmp(lir_cond_less, value, low_key);
2476       __ branch(lir_cond_less, T_INT, L->label());
2477       __ cmp(lir_cond_lessEqual, value, high_key);
2478       __ branch(lir_cond_lessEqual, T_INT, dest);
2479       __ branch_destination(L->label());
2480     }
2481   }
2482   __ jump(default_sux);
2483 }
2484 
2485 
2486 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2487   SwitchRangeList* res = new SwitchRangeList();
2488   int len = x->length();
2489   if (len > 0) {
2490     BlockBegin* sux = x->sux_at(0);
2491     int key = x->lo_key();
2492     BlockBegin* default_sux = x->default_sux();
2493     SwitchRange* range = new SwitchRange(key, sux);
2494     for (int i = 0; i < len; i++, key++) {
2495       BlockBegin* new_sux = x->sux_at(i);
2496       if (sux == new_sux) {
2497         // still in same range
2498         range->set_high_key(key);
2499       } else {
2500         // skip tests which explicitly dispatch to the default
2501         if (sux != default_sux) {
2502           res->append(range);
2503         }
2504         range = new SwitchRange(key, new_sux);
2505       }
2506       sux = new_sux;
2507     }
2508     if (res->length() == 0 || res->last() != range)  res->append(range);
2509   }
2510   return res;
2511 }
2512 
2513 
2514 // we expect the keys to be sorted by increasing value
2515 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2516   SwitchRangeList* res = new SwitchRangeList();
2517   int len = x->length();
2518   if (len > 0) {
2519     BlockBegin* default_sux = x->default_sux();
2520     int key = x->key_at(0);
2521     BlockBegin* sux = x->sux_at(0);
2522     SwitchRange* range = new SwitchRange(key, sux);
2523     for (int i = 1; i < len; i++) {
2524       int new_key = x->key_at(i);
2525       BlockBegin* new_sux = x->sux_at(i);
2526       if (key+1 == new_key && sux == new_sux) {
2527         // still in same range
2528         range->set_high_key(new_key);
2529       } else {
2530         // skip tests which explicitly dispatch to the default
2531         if (range->sux() != default_sux) {
2532           res->append(range);
2533         }
2534         range = new SwitchRange(new_key, new_sux);
2535       }
2536       key = new_key;
2537       sux = new_sux;
2538     }
2539     if (res->length() == 0 || res->last() != range)  res->append(range);
2540   }
2541   return res;
2542 }
2543 
2544 
2545 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2546   LIRItem tag(x->tag(), this);
2547   tag.load_item();
2548   set_no_result(x);
2549 
2550   if (x->is_safepoint()) {
2551     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2552   }
2553 
2554   // move values into phi locations
2555   move_to_phi(x->state());
2556 
2557   int lo_key = x->lo_key();
2558   int hi_key = x->hi_key();
2559   int len = x->length();
2560   LIR_Opr value = tag.result();
2561 
2562   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2563     ciMethod* method = x->state()->scope()->method();
2564     ciMethodData* md = method->method_data_or_null();
2565     ciProfileData* data = md->bci_to_data(x->state()->bci());
2566     assert(data->is_MultiBranchData(), "bad profile data?");
2567     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2568     LIR_Opr md_reg = new_register(T_METADATA);
2569     __ metadata2reg(md->constant_encoding(), md_reg);
2570     LIR_Opr data_offset_reg = new_pointer_register();
2571     LIR_Opr tmp_reg = new_pointer_register();
2572 
2573     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2574     for (int i = 0; i < len; i++) {
2575       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2576       __ cmp(lir_cond_equal, value, i + lo_key);
2577       __ move(data_offset_reg, tmp_reg);
2578       __ cmove(lir_cond_equal,
2579                LIR_OprFact::intptrConst(count_offset),
2580                tmp_reg,
2581                data_offset_reg, T_INT);
2582     }
2583 
2584     LIR_Opr data_reg = new_pointer_register();
2585     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2586     __ move(data_addr, data_reg);
2587     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2588     __ move(data_reg, data_addr);
2589   }
2590 
2591   if (UseTableRanges) {
2592     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2593   } else {
2594     for (int i = 0; i < len; i++) {
2595       __ cmp(lir_cond_equal, value, i + lo_key);
2596       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2597     }
2598     __ jump(x->default_sux());
2599   }
2600 }
2601 
2602 
2603 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2604   LIRItem tag(x->tag(), this);
2605   tag.load_item();
2606   set_no_result(x);
2607 
2608   if (x->is_safepoint()) {
2609     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2610   }
2611 
2612   // move values into phi locations
2613   move_to_phi(x->state());
2614 
2615   LIR_Opr value = tag.result();
2616   int len = x->length();
2617 
2618   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2619     ciMethod* method = x->state()->scope()->method();
2620     ciMethodData* md = method->method_data_or_null();
2621     ciProfileData* data = md->bci_to_data(x->state()->bci());
2622     assert(data->is_MultiBranchData(), "bad profile data?");
2623     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2624     LIR_Opr md_reg = new_register(T_METADATA);
2625     __ metadata2reg(md->constant_encoding(), md_reg);
2626     LIR_Opr data_offset_reg = new_pointer_register();
2627     LIR_Opr tmp_reg = new_pointer_register();
2628 
2629     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2630     for (int i = 0; i < len; i++) {
2631       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2632       __ cmp(lir_cond_equal, value, x->key_at(i));
2633       __ move(data_offset_reg, tmp_reg);
2634       __ cmove(lir_cond_equal,
2635                LIR_OprFact::intptrConst(count_offset),
2636                tmp_reg,
2637                data_offset_reg, T_INT);
2638     }
2639 
2640     LIR_Opr data_reg = new_pointer_register();
2641     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2642     __ move(data_addr, data_reg);
2643     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2644     __ move(data_reg, data_addr);
2645   }
2646 
2647   if (UseTableRanges) {
2648     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2649   } else {
2650     int len = x->length();
2651     for (int i = 0; i < len; i++) {
2652       __ cmp(lir_cond_equal, value, x->key_at(i));
2653       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2654     }
2655     __ jump(x->default_sux());
2656   }
2657 }
2658 
2659 
2660 void LIRGenerator::do_Goto(Goto* x) {
2661   set_no_result(x);
2662 
2663   if (block()->next()->as_OsrEntry()) {
2664     // need to free up storage used for OSR entry point
2665     LIR_Opr osrBuffer = block()->next()->operand();
2666     BasicTypeList signature;
2667     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2668     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2669     __ move(osrBuffer, cc->args()->at(0));
2670     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2671                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2672   }
2673 
2674   if (x->is_safepoint()) {
2675     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2676 
2677     // increment backedge counter if needed
2678     CodeEmitInfo* info = state_for(x, state);
2679     increment_backedge_counter(info, x->profiled_bci());
2680     CodeEmitInfo* safepoint_info = state_for(x, state);
2681     __ safepoint(safepoint_poll_register(), safepoint_info);
2682   }
2683 
2684   // Gotos can be folded Ifs, handle this case.
2685   if (x->should_profile()) {
2686     ciMethod* method = x->profiled_method();
2687     assert(method != NULL, "method should be set if branch is profiled");
2688     ciMethodData* md = method->method_data_or_null();
2689     assert(md != NULL, "Sanity");
2690     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2691     assert(data != NULL, "must have profiling data");
2692     int offset;
2693     if (x->direction() == Goto::taken) {
2694       assert(data->is_BranchData(), "need BranchData for two-way branches");
2695       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2696     } else if (x->direction() == Goto::not_taken) {
2697       assert(data->is_BranchData(), "need BranchData for two-way branches");
2698       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2699     } else {
2700       assert(data->is_JumpData(), "need JumpData for branches");
2701       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2702     }
2703     LIR_Opr md_reg = new_register(T_METADATA);
2704     __ metadata2reg(md->constant_encoding(), md_reg);
2705 
2706     increment_counter(new LIR_Address(md_reg, offset,
2707                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2708   }
2709 
2710   // emit phi-instruction move after safepoint since this simplifies
2711   // describing the state as the safepoint.
2712   move_to_phi(x->state());
2713 
2714   __ jump(x->default_sux());
2715 }
2716 
2717 /**
2718  * Emit profiling code if needed for arguments, parameters, return value types
2719  *
2720  * @param md                    MDO the code will update at runtime
2721  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2722  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2723  * @param profiled_k            current profile
2724  * @param obj                   IR node for the object to be profiled
2725  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2726  *                              Set once we find an update to make and use for next ones.
2727  * @param not_null              true if we know obj cannot be null
2728  * @param signature_at_call_k   signature at call for obj
2729  * @param callee_signature_k    signature of callee for obj
2730  *                              at call and callee signatures differ at method handle call
2731  * @return                      the only klass we know will ever be seen at this profile point
2732  */
2733 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2734                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2735                                     ciKlass* callee_signature_k) {
2736   ciKlass* result = NULL;
2737   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2738   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2739   // known not to be null or null bit already set and already set to
2740   // unknown: nothing we can do to improve profiling
2741   if (!do_null && !do_update) {
2742     return result;
2743   }
2744 
2745   ciKlass* exact_klass = NULL;
2746   Compilation* comp = Compilation::current();
2747   if (do_update) {
2748     // try to find exact type, using CHA if possible, so that loading
2749     // the klass from the object can be avoided
2750     ciType* type = obj->exact_type();
2751     if (type == NULL) {
2752       type = obj->declared_type();
2753       type = comp->cha_exact_type(type);
2754     }
2755     assert(type == NULL || type->is_klass(), "type should be class");
2756     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2757 
2758     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2759   }
2760 
2761   if (!do_null && !do_update) {
2762     return result;
2763   }
2764 
2765   ciKlass* exact_signature_k = NULL;
2766   if (do_update) {
2767     // Is the type from the signature exact (the only one possible)?
2768     exact_signature_k = signature_at_call_k->exact_klass();
2769     if (exact_signature_k == NULL) {
2770       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2771     } else {
2772       result = exact_signature_k;
2773       // Known statically. No need to emit any code: prevent
2774       // LIR_Assembler::emit_profile_type() from emitting useless code
2775       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2776     }
2777     // exact_klass and exact_signature_k can be both non NULL but
2778     // different if exact_klass is loaded after the ciObject for
2779     // exact_signature_k is created.
2780     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2781       // sometimes the type of the signature is better than the best type
2782       // the compiler has
2783       exact_klass = exact_signature_k;
2784     }
2785     if (callee_signature_k != NULL &&
2786         callee_signature_k != signature_at_call_k) {
2787       ciKlass* improved_klass = callee_signature_k->exact_klass();
2788       if (improved_klass == NULL) {
2789         improved_klass = comp->cha_exact_type(callee_signature_k);
2790       }
2791       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2792         exact_klass = exact_signature_k;
2793       }
2794     }
2795     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2796   }
2797 
2798   if (!do_null && !do_update) {
2799     return result;
2800   }
2801 
2802   if (mdp == LIR_OprFact::illegalOpr) {
2803     mdp = new_register(T_METADATA);
2804     __ metadata2reg(md->constant_encoding(), mdp);
2805     if (md_base_offset != 0) {
2806       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2807       mdp = new_pointer_register();
2808       __ leal(LIR_OprFact::address(base_type_address), mdp);
2809     }
2810   }
2811   LIRItem value(obj, this);
2812   value.load_item();
2813   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2814                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2815   return result;
2816 }
2817 
2818 // profile parameters on entry to the root of the compilation
2819 void LIRGenerator::profile_parameters(Base* x) {
2820   if (compilation()->profile_parameters()) {
2821     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2822     ciMethodData* md = scope()->method()->method_data_or_null();
2823     assert(md != NULL, "Sanity");
2824 
2825     if (md->parameters_type_data() != NULL) {
2826       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2827       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2828       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2829       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2830         LIR_Opr src = args->at(i);
2831         assert(!src->is_illegal(), "check");
2832         BasicType t = src->type();
2833         if (t == T_OBJECT || t == T_ARRAY) {
2834           intptr_t profiled_k = parameters->type(j);
2835           Local* local = x->state()->local_at(java_index)->as_Local();
2836           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2837                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2838                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2839           // If the profile is known statically set it once for all and do not emit any code
2840           if (exact != NULL) {
2841             md->set_parameter_type(j, exact);
2842           }
2843           j++;
2844         }
2845         java_index += type2size[t];
2846       }
2847     }
2848   }
2849 }
2850 
2851 void LIRGenerator::do_Base(Base* x) {
2852   __ std_entry(LIR_OprFact::illegalOpr);
2853   // Emit moves from physical registers / stack slots to virtual registers
2854   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2855   IRScope* irScope = compilation()->hir()->top_scope();
2856   int java_index = 0;
2857   for (int i = 0; i < args->length(); i++) {
2858     LIR_Opr src = args->at(i);
2859     assert(!src->is_illegal(), "check");
2860     BasicType t = src->type();
2861 
2862     // Types which are smaller than int are passed as int, so
2863     // correct the type which passed.
2864     switch (t) {
2865     case T_BYTE:
2866     case T_BOOLEAN:
2867     case T_SHORT:
2868     case T_CHAR:
2869       t = T_INT;
2870       break;
2871     default:
2872       break;
2873     }
2874 
2875     LIR_Opr dest = new_register(t);
2876     __ move(src, dest);
2877 
2878     // Assign new location to Local instruction for this local
2879     Local* local = x->state()->local_at(java_index)->as_Local();
2880     assert(local != NULL, "Locals for incoming arguments must have been created");
2881 #ifndef __SOFTFP__
2882     // The java calling convention passes double as long and float as int.
2883     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2884 #endif // __SOFTFP__
2885     local->set_operand(dest);
2886     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2887     java_index += type2size[t];
2888   }
2889 
2890   if (compilation()->env()->dtrace_method_probes()) {
2891     BasicTypeList signature;
2892     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2893     signature.append(T_METADATA); // Method*
2894     LIR_OprList* args = new LIR_OprList();
2895     args->append(getThreadPointer());
2896     LIR_Opr meth = new_register(T_METADATA);
2897     __ metadata2reg(method()->constant_encoding(), meth);
2898     args->append(meth);
2899     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2900   }
2901 
2902   if (method()->is_synchronized()) {
2903     LIR_Opr obj;
2904     if (method()->is_static()) {
2905       obj = new_register(T_OBJECT);
2906       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2907     } else {
2908       Local* receiver = x->state()->local_at(0)->as_Local();
2909       assert(receiver != NULL, "must already exist");
2910       obj = receiver->operand();
2911     }
2912     assert(obj->is_valid(), "must be valid");
2913 
2914     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2915       LIR_Opr lock = syncLockOpr();
2916       __ load_stack_address_monitor(0, lock);
2917 
2918       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2919       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2920 
2921       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2922       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2923     }
2924   }
2925   if (compilation()->age_code()) {
2926     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2927     decrement_age(info);
2928   }
2929   // increment invocation counters if needed
2930   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2931     profile_parameters(x);
2932     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2933     increment_invocation_counter(info);
2934   }
2935 
2936   // all blocks with a successor must end with an unconditional jump
2937   // to the successor even if they are consecutive
2938   __ jump(x->default_sux());
2939 }
2940 
2941 
2942 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2943   // construct our frame and model the production of incoming pointer
2944   // to the OSR buffer.
2945   __ osr_entry(LIR_Assembler::osrBufferPointer());
2946   LIR_Opr result = rlock_result(x);
2947   __ move(LIR_Assembler::osrBufferPointer(), result);
2948 }
2949 
2950 
2951 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2952   assert(args->length() == arg_list->length(),
2953          "args=%d, arg_list=%d", args->length(), arg_list->length());
2954   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2955     LIRItem* param = args->at(i);
2956     LIR_Opr loc = arg_list->at(i);
2957     if (loc->is_register()) {
2958       param->load_item_force(loc);
2959     } else {
2960       LIR_Address* addr = loc->as_address_ptr();
2961       param->load_for_store(addr->type());
2962       if (addr->type() == T_OBJECT) {
2963         __ move_wide(param->result(), addr);
2964       } else
2965         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2966           __ unaligned_move(param->result(), addr);
2967         } else {
2968           __ move(param->result(), addr);
2969         }
2970     }
2971   }
2972 
2973   if (x->has_receiver()) {
2974     LIRItem* receiver = args->at(0);
2975     LIR_Opr loc = arg_list->at(0);
2976     if (loc->is_register()) {
2977       receiver->load_item_force(loc);
2978     } else {
2979       assert(loc->is_address(), "just checking");
2980       receiver->load_for_store(T_OBJECT);
2981       __ move_wide(receiver->result(), loc->as_address_ptr());
2982     }
2983   }
2984 }
2985 
2986 
2987 // Visits all arguments, returns appropriate items without loading them
2988 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2989   LIRItemList* argument_items = new LIRItemList();
2990   if (x->has_receiver()) {
2991     LIRItem* receiver = new LIRItem(x->receiver(), this);
2992     argument_items->append(receiver);
2993   }
2994   for (int i = 0; i < x->number_of_arguments(); i++) {
2995     LIRItem* param = new LIRItem(x->argument_at(i), this);
2996     argument_items->append(param);
2997   }
2998   return argument_items;
2999 }
3000 
3001 
3002 // The invoke with receiver has following phases:
3003 //   a) traverse and load/lock receiver;
3004 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3005 //   c) push receiver on stack
3006 //   d) load each of the items and push on stack
3007 //   e) unlock receiver
3008 //   f) move receiver into receiver-register %o0
3009 //   g) lock result registers and emit call operation
3010 //
3011 // Before issuing a call, we must spill-save all values on stack
3012 // that are in caller-save register. "spill-save" moves those registers
3013 // either in a free callee-save register or spills them if no free
3014 // callee save register is available.
3015 //
3016 // The problem is where to invoke spill-save.
3017 // - if invoked between e) and f), we may lock callee save
3018 //   register in "spill-save" that destroys the receiver register
3019 //   before f) is executed
3020 // - if we rearrange f) to be earlier (by loading %o0) it
3021 //   may destroy a value on the stack that is currently in %o0
3022 //   and is waiting to be spilled
3023 // - if we keep the receiver locked while doing spill-save,
3024 //   we cannot spill it as it is spill-locked
3025 //
3026 void LIRGenerator::do_Invoke(Invoke* x) {
3027   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3028 
3029   LIR_OprList* arg_list = cc->args();
3030   LIRItemList* args = invoke_visit_arguments(x);
3031   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3032 
3033   // setup result register
3034   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3035   if (x->type() != voidType) {
3036     result_register = result_register_for(x->type());
3037   }
3038 
3039   CodeEmitInfo* info = state_for(x, x->state());
3040 
3041   invoke_load_arguments(x, args, arg_list);
3042 
3043   if (x->has_receiver()) {
3044     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3045     receiver = args->at(0)->result();
3046   }
3047 
3048   // emit invoke code
3049   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3050 
3051   // JSR 292
3052   // Preserve the SP over MethodHandle call sites, if needed.
3053   ciMethod* target = x->target();
3054   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3055                                   target->is_method_handle_intrinsic() ||
3056                                   target->is_compiled_lambda_form());
3057   if (is_method_handle_invoke) {
3058     info->set_is_method_handle_invoke(true);
3059     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3060         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3061     }
3062   }
3063 
3064   switch (x->code()) {
3065     case Bytecodes::_invokestatic:
3066       __ call_static(target, result_register,
3067                      SharedRuntime::get_resolve_static_call_stub(),
3068                      arg_list, info);
3069       break;
3070     case Bytecodes::_invokespecial:
3071     case Bytecodes::_invokevirtual:
3072     case Bytecodes::_invokeinterface:
3073       // for loaded and final (method or class) target we still produce an inline cache,
3074       // in order to be able to call mixed mode
3075       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3076         __ call_opt_virtual(target, receiver, result_register,
3077                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3078                             arg_list, info);
3079       } else if (x->vtable_index() < 0) {
3080         __ call_icvirtual(target, receiver, result_register,
3081                           SharedRuntime::get_resolve_virtual_call_stub(),
3082                           arg_list, info);
3083       } else {
3084         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3085         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3086         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3087       }
3088       break;
3089     case Bytecodes::_invokedynamic: {
3090       __ call_dynamic(target, receiver, result_register,
3091                       SharedRuntime::get_resolve_static_call_stub(),
3092                       arg_list, info);
3093       break;
3094     }
3095     default:
3096       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3097       break;
3098   }
3099 
3100   // JSR 292
3101   // Restore the SP after MethodHandle call sites, if needed.
3102   if (is_method_handle_invoke
3103       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3104     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3105   }
3106 
3107   if (x->type()->is_float() || x->type()->is_double()) {
3108     // Force rounding of results from non-strictfp when in strictfp
3109     // scope (or when we don't know the strictness of the callee, to
3110     // be safe.)
3111     if (method()->is_strict()) {
3112       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3113         result_register = round_item(result_register);
3114       }
3115     }
3116   }
3117 
3118   if (result_register->is_valid()) {
3119     LIR_Opr result = rlock_result(x);
3120     __ move(result_register, result);
3121   }
3122 }
3123 
3124 
3125 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3126   assert(x->number_of_arguments() == 1, "wrong type");
3127   LIRItem value       (x->argument_at(0), this);
3128   LIR_Opr reg = rlock_result(x);
3129   value.load_item();
3130   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3131   __ move(tmp, reg);
3132 }
3133 
3134 
3135 
3136 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3137 void LIRGenerator::do_IfOp(IfOp* x) {
3138 #ifdef ASSERT
3139   {
3140     ValueTag xtag = x->x()->type()->tag();
3141     ValueTag ttag = x->tval()->type()->tag();
3142     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3143     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3144     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3145   }
3146 #endif
3147 
3148   LIRItem left(x->x(), this);
3149   LIRItem right(x->y(), this);
3150   left.load_item();
3151   if (can_inline_as_constant(right.value())) {
3152     right.dont_load_item();
3153   } else {
3154     right.load_item();
3155   }
3156 
3157   LIRItem t_val(x->tval(), this);
3158   LIRItem f_val(x->fval(), this);
3159   t_val.dont_load_item();
3160   f_val.dont_load_item();
3161   LIR_Opr reg = rlock_result(x);
3162 
3163   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3164   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3165 }
3166 
3167 #ifdef TRACE_HAVE_INTRINSICS
3168 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3169   CodeEmitInfo* info = state_for(x);
3170   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3171 
3172   assert(info != NULL, "must have info");
3173   LIRItem arg(x->argument_at(0), this);
3174 
3175   arg.load_item();
3176   LIR_Opr klass = new_register(T_METADATA);
3177   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3178   LIR_Opr id = new_register(T_LONG);
3179   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3180   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3181 
3182   __ move(trace_id_addr, id);
3183   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3184   __ store(id, trace_id_addr);
3185 
3186 #ifdef TRACE_ID_META_BITS
3187   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3188 #endif
3189 #ifdef TRACE_ID_CLASS_SHIFT
3190   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3191 #endif
3192 
3193   __ move(id, rlock_result(x));
3194 }
3195 
3196 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3197   LabelObj* L_end = new LabelObj();
3198 
3199   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3200                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3201                                            T_OBJECT);
3202   LIR_Opr result = rlock_result(x);
3203   __ move_wide(jobj_addr, result);
3204   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3205   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3206   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3207 
3208   __ branch_destination(L_end->label());
3209 }
3210 
3211 #endif
3212 
3213 
3214 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3215   assert(x->number_of_arguments() == 0, "wrong type");
3216   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3217   BasicTypeList signature;
3218   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3219   LIR_Opr reg = result_register_for(x->type());
3220   __ call_runtime_leaf(routine, getThreadTemp(),
3221                        reg, new LIR_OprList());
3222   LIR_Opr result = rlock_result(x);
3223   __ move(reg, result);
3224 }
3225 
3226 
3227 
3228 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3229   switch (x->id()) {
3230   case vmIntrinsics::_intBitsToFloat      :
3231   case vmIntrinsics::_doubleToRawLongBits :
3232   case vmIntrinsics::_longBitsToDouble    :
3233   case vmIntrinsics::_floatToRawIntBits   : {
3234     do_FPIntrinsics(x);
3235     break;
3236   }
3237 
3238 #ifdef TRACE_HAVE_INTRINSICS
3239   case vmIntrinsics::_getClassId:
3240     do_ClassIDIntrinsic(x);
3241     break;
3242   case vmIntrinsics::_getBufferWriter:
3243     do_getBufferWriter(x);
3244     break;
3245   case vmIntrinsics::_counterTime:
3246     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3247     break;
3248 #endif
3249 
3250   case vmIntrinsics::_currentTimeMillis:
3251     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3252     break;
3253 
3254   case vmIntrinsics::_nanoTime:
3255     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3256     break;
3257 
3258   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3259   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3260   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3261   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3262   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3263 
3264   case vmIntrinsics::_dlog:           // fall through
3265   case vmIntrinsics::_dlog10:         // fall through
3266   case vmIntrinsics::_dabs:           // fall through
3267   case vmIntrinsics::_dsqrt:          // fall through
3268   case vmIntrinsics::_dtan:           // fall through
3269   case vmIntrinsics::_dsin :          // fall through
3270   case vmIntrinsics::_dcos :          // fall through
3271   case vmIntrinsics::_dexp :          // fall through
3272   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3273   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3274 
3275   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3276   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3277 
3278   // java.nio.Buffer.checkIndex
3279   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3280 
3281   case vmIntrinsics::_compareAndSetObject:
3282     do_CompareAndSwap(x, objectType);
3283     break;
3284   case vmIntrinsics::_compareAndSetInt:
3285     do_CompareAndSwap(x, intType);
3286     break;
3287   case vmIntrinsics::_compareAndSetLong:
3288     do_CompareAndSwap(x, longType);
3289     break;
3290 
3291   case vmIntrinsics::_loadFence :
3292     if (os::is_MP()) __ membar_acquire();
3293     break;
3294   case vmIntrinsics::_storeFence:
3295     if (os::is_MP()) __ membar_release();
3296     break;
3297   case vmIntrinsics::_fullFence :
3298     if (os::is_MP()) __ membar();
3299     break;
3300   case vmIntrinsics::_onSpinWait:
3301     __ on_spin_wait();
3302     break;
3303   case vmIntrinsics::_Reference_get:
3304     do_Reference_get(x);
3305     break;
3306 
3307   case vmIntrinsics::_updateCRC32:
3308   case vmIntrinsics::_updateBytesCRC32:
3309   case vmIntrinsics::_updateByteBufferCRC32:
3310     do_update_CRC32(x);
3311     break;
3312 
3313   case vmIntrinsics::_updateBytesCRC32C:
3314   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3315     do_update_CRC32C(x);
3316     break;
3317 
3318   case vmIntrinsics::_vectorizedMismatch:
3319     do_vectorizedMismatch(x);
3320     break;
3321 
3322   default: ShouldNotReachHere(); break;
3323   }
3324 }
3325 
3326 void LIRGenerator::profile_arguments(ProfileCall* x) {
3327   if (compilation()->profile_arguments()) {
3328     int bci = x->bci_of_invoke();
3329     ciMethodData* md = x->method()->method_data_or_null();
3330     ciProfileData* data = md->bci_to_data(bci);
3331     if (data != NULL) {
3332       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3333           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3334         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3335         int base_offset = md->byte_offset_of_slot(data, extra);
3336         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3337         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3338 
3339         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3340         int start = 0;
3341         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3342         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3343           // first argument is not profiled at call (method handle invoke)
3344           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3345           start = 1;
3346         }
3347         ciSignature* callee_signature = x->callee()->signature();
3348         // method handle call to virtual method
3349         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3350         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3351 
3352         bool ignored_will_link;
3353         ciSignature* signature_at_call = NULL;
3354         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3355         ciSignatureStream signature_at_call_stream(signature_at_call);
3356 
3357         // if called through method handle invoke, some arguments may have been popped
3358         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3359           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3360           ciKlass* exact = profile_type(md, base_offset, off,
3361               args->type(i), x->profiled_arg_at(i+start), mdp,
3362               !x->arg_needs_null_check(i+start),
3363               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3364           if (exact != NULL) {
3365             md->set_argument_type(bci, i, exact);
3366           }
3367         }
3368       } else {
3369 #ifdef ASSERT
3370         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3371         int n = x->nb_profiled_args();
3372         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3373             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3374             "only at JSR292 bytecodes");
3375 #endif
3376       }
3377     }
3378   }
3379 }
3380 
3381 // profile parameters on entry to an inlined method
3382 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3383   if (compilation()->profile_parameters() && x->inlined()) {
3384     ciMethodData* md = x->callee()->method_data_or_null();
3385     if (md != NULL) {
3386       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3387       if (parameters_type_data != NULL) {
3388         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3389         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3390         bool has_receiver = !x->callee()->is_static();
3391         ciSignature* sig = x->callee()->signature();
3392         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3393         int i = 0; // to iterate on the Instructions
3394         Value arg = x->recv();
3395         bool not_null = false;
3396         int bci = x->bci_of_invoke();
3397         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3398         // The first parameter is the receiver so that's what we start
3399         // with if it exists. One exception is method handle call to
3400         // virtual method: the receiver is in the args list
3401         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3402           i = 1;
3403           arg = x->profiled_arg_at(0);
3404           not_null = !x->arg_needs_null_check(0);
3405         }
3406         int k = 0; // to iterate on the profile data
3407         for (;;) {
3408           intptr_t profiled_k = parameters->type(k);
3409           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3410                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3411                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3412           // If the profile is known statically set it once for all and do not emit any code
3413           if (exact != NULL) {
3414             md->set_parameter_type(k, exact);
3415           }
3416           k++;
3417           if (k >= parameters_type_data->number_of_parameters()) {
3418 #ifdef ASSERT
3419             int extra = 0;
3420             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3421                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3422                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3423               extra += 1;
3424             }
3425             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3426 #endif
3427             break;
3428           }
3429           arg = x->profiled_arg_at(i);
3430           not_null = !x->arg_needs_null_check(i);
3431           i++;
3432         }
3433       }
3434     }
3435   }
3436 }
3437 
3438 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3439   // Need recv in a temporary register so it interferes with the other temporaries
3440   LIR_Opr recv = LIR_OprFact::illegalOpr;
3441   LIR_Opr mdo = new_register(T_OBJECT);
3442   // tmp is used to hold the counters on SPARC
3443   LIR_Opr tmp = new_pointer_register();
3444 
3445   if (x->nb_profiled_args() > 0) {
3446     profile_arguments(x);
3447   }
3448 
3449   // profile parameters on inlined method entry including receiver
3450   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3451     profile_parameters_at_call(x);
3452   }
3453 
3454   if (x->recv() != NULL) {
3455     LIRItem value(x->recv(), this);
3456     value.load_item();
3457     recv = new_register(T_OBJECT);
3458     __ move(value.result(), recv);
3459   }
3460   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3461 }
3462 
3463 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3464   int bci = x->bci_of_invoke();
3465   ciMethodData* md = x->method()->method_data_or_null();
3466   ciProfileData* data = md->bci_to_data(bci);
3467   if (data != NULL) {
3468     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3469     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3470     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3471 
3472     bool ignored_will_link;
3473     ciSignature* signature_at_call = NULL;
3474     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3475 
3476     // The offset within the MDO of the entry to update may be too large
3477     // to be used in load/store instructions on some platforms. So have
3478     // profile_type() compute the address of the profile in a register.
3479     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3480         ret->type(), x->ret(), mdp,
3481         !x->needs_null_check(),
3482         signature_at_call->return_type()->as_klass(),
3483         x->callee()->signature()->return_type()->as_klass());
3484     if (exact != NULL) {
3485       md->set_return_type(bci, exact);
3486     }
3487   }
3488 }
3489 
3490 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3491   // We can safely ignore accessors here, since c2 will inline them anyway,
3492   // accessors are also always mature.
3493   if (!x->inlinee()->is_accessor()) {
3494     CodeEmitInfo* info = state_for(x, x->state(), true);
3495     // Notify the runtime very infrequently only to take care of counter overflows
3496     int freq_log = Tier23InlineeNotifyFreqLog;
3497     double scale;
3498     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3499       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3500     }
3501     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3502   }
3503 }
3504 
3505 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3506   int freq_log = 0;
3507   int level = compilation()->env()->comp_level();
3508   if (level == CompLevel_limited_profile) {
3509     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3510   } else if (level == CompLevel_full_profile) {
3511     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3512   } else {
3513     ShouldNotReachHere();
3514   }
3515   // Increment the appropriate invocation/backedge counter and notify the runtime.
3516   double scale;
3517   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3518     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3519   }
3520   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3521 }
3522 
3523 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3524   ciMethod* method = info->scope()->method();
3525   MethodCounters* mc_adr = method->ensure_method_counters();
3526   if (mc_adr != NULL) {
3527     LIR_Opr mc = new_pointer_register();
3528     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3529     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3530     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3531     LIR_Opr result = new_register(T_INT);
3532     __ load(counter, result);
3533     __ sub(result, LIR_OprFact::intConst(1), result);
3534     __ store(result, counter);
3535     // DeoptimizeStub will reexecute from the current state in code info.
3536     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3537                                          Deoptimization::Action_make_not_entrant);
3538     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3539     __ branch(lir_cond_lessEqual, T_INT, deopt);
3540   }
3541 }
3542 
3543 
3544 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3545                                                 ciMethod *method, int frequency,
3546                                                 int bci, bool backedge, bool notify) {
3547   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3548   int level = _compilation->env()->comp_level();
3549   assert(level > CompLevel_simple, "Shouldn't be here");
3550 
3551   int offset = -1;
3552   LIR_Opr counter_holder = NULL;
3553   if (level == CompLevel_limited_profile) {
3554     MethodCounters* counters_adr = method->ensure_method_counters();
3555     if (counters_adr == NULL) {
3556       bailout("method counters allocation failed");
3557       return;
3558     }
3559     counter_holder = new_pointer_register();
3560     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3561     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3562                                  MethodCounters::invocation_counter_offset());
3563   } else if (level == CompLevel_full_profile) {
3564     counter_holder = new_register(T_METADATA);
3565     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3566                                  MethodData::invocation_counter_offset());
3567     ciMethodData* md = method->method_data_or_null();
3568     assert(md != NULL, "Sanity");
3569     __ metadata2reg(md->constant_encoding(), counter_holder);
3570   } else {
3571     ShouldNotReachHere();
3572   }
3573   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3574   LIR_Opr result = new_register(T_INT);
3575   __ load(counter, result);
3576   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3577   __ store(result, counter);
3578   if (notify && (!backedge || UseOnStackReplacement)) {
3579     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3580     // The bci for info can point to cmp for if's we want the if bci
3581     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3582     int freq = frequency << InvocationCounter::count_shift;
3583     if (freq == 0) {
3584       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3585     } else {
3586       LIR_Opr mask = load_immediate(freq, T_INT);
3587       __ logical_and(result, mask, result);
3588       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3589       __ branch(lir_cond_equal, T_INT, overflow);
3590     }
3591     __ branch_destination(overflow->continuation());
3592   }
3593 }
3594 
3595 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3596   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3597   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3598 
3599   if (x->pass_thread()) {
3600     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3601     args->append(getThreadPointer());
3602   }
3603 
3604   for (int i = 0; i < x->number_of_arguments(); i++) {
3605     Value a = x->argument_at(i);
3606     LIRItem* item = new LIRItem(a, this);
3607     item->load_item();
3608     args->append(item->result());
3609     signature->append(as_BasicType(a->type()));
3610   }
3611 
3612   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3613   if (x->type() == voidType) {
3614     set_no_result(x);
3615   } else {
3616     __ move(result, rlock_result(x));
3617   }
3618 }
3619 
3620 #ifdef ASSERT
3621 void LIRGenerator::do_Assert(Assert *x) {
3622   ValueTag tag = x->x()->type()->tag();
3623   If::Condition cond = x->cond();
3624 
3625   LIRItem xitem(x->x(), this);
3626   LIRItem yitem(x->y(), this);
3627   LIRItem* xin = &xitem;
3628   LIRItem* yin = &yitem;
3629 
3630   assert(tag == intTag, "Only integer assertions are valid!");
3631 
3632   xin->load_item();
3633   yin->dont_load_item();
3634 
3635   set_no_result(x);
3636 
3637   LIR_Opr left = xin->result();
3638   LIR_Opr right = yin->result();
3639 
3640   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3641 }
3642 #endif
3643 
3644 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3645 
3646 
3647   Instruction *a = x->x();
3648   Instruction *b = x->y();
3649   if (!a || StressRangeCheckElimination) {
3650     assert(!b || StressRangeCheckElimination, "B must also be null");
3651 
3652     CodeEmitInfo *info = state_for(x, x->state());
3653     CodeStub* stub = new PredicateFailedStub(info);
3654 
3655     __ jump(stub);
3656   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3657     int a_int = a->type()->as_IntConstant()->value();
3658     int b_int = b->type()->as_IntConstant()->value();
3659 
3660     bool ok = false;
3661 
3662     switch(x->cond()) {
3663       case Instruction::eql: ok = (a_int == b_int); break;
3664       case Instruction::neq: ok = (a_int != b_int); break;
3665       case Instruction::lss: ok = (a_int < b_int); break;
3666       case Instruction::leq: ok = (a_int <= b_int); break;
3667       case Instruction::gtr: ok = (a_int > b_int); break;
3668       case Instruction::geq: ok = (a_int >= b_int); break;
3669       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3670       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3671       default: ShouldNotReachHere();
3672     }
3673 
3674     if (ok) {
3675 
3676       CodeEmitInfo *info = state_for(x, x->state());
3677       CodeStub* stub = new PredicateFailedStub(info);
3678 
3679       __ jump(stub);
3680     }
3681   } else {
3682 
3683     ValueTag tag = x->x()->type()->tag();
3684     If::Condition cond = x->cond();
3685     LIRItem xitem(x->x(), this);
3686     LIRItem yitem(x->y(), this);
3687     LIRItem* xin = &xitem;
3688     LIRItem* yin = &yitem;
3689 
3690     assert(tag == intTag, "Only integer deoptimizations are valid!");
3691 
3692     xin->load_item();
3693     yin->dont_load_item();
3694     set_no_result(x);
3695 
3696     LIR_Opr left = xin->result();
3697     LIR_Opr right = yin->result();
3698 
3699     CodeEmitInfo *info = state_for(x, x->state());
3700     CodeStub* stub = new PredicateFailedStub(info);
3701 
3702     __ cmp(lir_cond(cond), left, right);
3703     __ branch(lir_cond(cond), right->type(), stub);
3704   }
3705 }
3706 
3707 
3708 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3709   LIRItemList args(1);
3710   LIRItem value(arg1, this);
3711   args.append(&value);
3712   BasicTypeList signature;
3713   signature.append(as_BasicType(arg1->type()));
3714 
3715   return call_runtime(&signature, &args, entry, result_type, info);
3716 }
3717 
3718 
3719 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3720   LIRItemList args(2);
3721   LIRItem value1(arg1, this);
3722   LIRItem value2(arg2, this);
3723   args.append(&value1);
3724   args.append(&value2);
3725   BasicTypeList signature;
3726   signature.append(as_BasicType(arg1->type()));
3727   signature.append(as_BasicType(arg2->type()));
3728 
3729   return call_runtime(&signature, &args, entry, result_type, info);
3730 }
3731 
3732 
3733 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3734                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3735   // get a result register
3736   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3737   LIR_Opr result = LIR_OprFact::illegalOpr;
3738   if (result_type->tag() != voidTag) {
3739     result = new_register(result_type);
3740     phys_reg = result_register_for(result_type);
3741   }
3742 
3743   // move the arguments into the correct location
3744   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3745   assert(cc->length() == args->length(), "argument mismatch");
3746   for (int i = 0; i < args->length(); i++) {
3747     LIR_Opr arg = args->at(i);
3748     LIR_Opr loc = cc->at(i);
3749     if (loc->is_register()) {
3750       __ move(arg, loc);
3751     } else {
3752       LIR_Address* addr = loc->as_address_ptr();
3753 //           if (!can_store_as_constant(arg)) {
3754 //             LIR_Opr tmp = new_register(arg->type());
3755 //             __ move(arg, tmp);
3756 //             arg = tmp;
3757 //           }
3758       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3759         __ unaligned_move(arg, addr);
3760       } else {
3761         __ move(arg, addr);
3762       }
3763     }
3764   }
3765 
3766   if (info) {
3767     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3768   } else {
3769     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3770   }
3771   if (result->is_valid()) {
3772     __ move(phys_reg, result);
3773   }
3774   return result;
3775 }
3776 
3777 
3778 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3779                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3780   // get a result register
3781   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3782   LIR_Opr result = LIR_OprFact::illegalOpr;
3783   if (result_type->tag() != voidTag) {
3784     result = new_register(result_type);
3785     phys_reg = result_register_for(result_type);
3786   }
3787 
3788   // move the arguments into the correct location
3789   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3790 
3791   assert(cc->length() == args->length(), "argument mismatch");
3792   for (int i = 0; i < args->length(); i++) {
3793     LIRItem* arg = args->at(i);
3794     LIR_Opr loc = cc->at(i);
3795     if (loc->is_register()) {
3796       arg->load_item_force(loc);
3797     } else {
3798       LIR_Address* addr = loc->as_address_ptr();
3799       arg->load_for_store(addr->type());
3800       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3801         __ unaligned_move(arg->result(), addr);
3802       } else {
3803         __ move(arg->result(), addr);
3804       }
3805     }
3806   }
3807 
3808   if (info) {
3809     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3810   } else {
3811     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3812   }
3813   if (result->is_valid()) {
3814     __ move(phys_reg, result);
3815   }
3816   return result;
3817 }
3818 
3819 void LIRGenerator::do_MemBar(MemBar* x) {
3820   if (os::is_MP()) {
3821     LIR_Code code = x->code();
3822     switch(code) {
3823       case lir_membar_acquire   : __ membar_acquire(); break;
3824       case lir_membar_release   : __ membar_release(); break;
3825       case lir_membar           : __ membar(); break;
3826       case lir_membar_loadload  : __ membar_loadload(); break;
3827       case lir_membar_storestore: __ membar_storestore(); break;
3828       case lir_membar_loadstore : __ membar_loadstore(); break;
3829       case lir_membar_storeload : __ membar_storeload(); break;
3830       default                   : ShouldNotReachHere(); break;
3831     }
3832   }
3833 }
3834 
3835 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3836   if (x->check_boolean()) {
3837     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3838     if (TwoOperandLIRForm) {
3839       __ move(value, value_fixed);
3840       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3841     } else {
3842       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3843     }
3844     LIR_Opr klass = new_register(T_METADATA);
3845     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3846     null_check_info = NULL;
3847     LIR_Opr layout = new_register(T_INT);
3848     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3849     int diffbit = Klass::layout_helper_boolean_diffbit();
3850     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3851     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3852     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3853     value = value_fixed;
3854   }
3855   return value;
3856 }