1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 #include "utilities/growableArray.hpp"
  38 
  39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  40 // is an abstract class: there may be many different kinds of heaps.  This
  41 // class defines the functions that a heap must implement, and contains
  42 // infrastructure common to all heaps.
  43 
  44 class AdaptiveSizePolicy;
  45 class BarrierSet;
  46 class CollectorPolicy;
  47 class GCHeapSummary;
  48 class GCTimer;
  49 class GCTracer;
  50 class GCMemoryManager;
  51 class MemoryPool;
  52 class MetaspaceSummary;
  53 class SoftRefPolicy;
  54 class Thread;
  55 class ThreadClosure;
  56 class VirtualSpaceSummary;
  57 class WorkGang;
  58 class nmethod;
  59 
  60 class GCMessage : public FormatBuffer<1024> {
  61  public:
  62   bool is_before;
  63 
  64  public:
  65   GCMessage() {}
  66 };
  67 
  68 class CollectedHeap;
  69 
  70 class GCHeapLog : public EventLogBase<GCMessage> {
  71  private:
  72   void log_heap(CollectedHeap* heap, bool before);
  73 
  74  public:
  75   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  76 
  77   void log_heap_before(CollectedHeap* heap) {
  78     log_heap(heap, true);
  79   }
  80   void log_heap_after(CollectedHeap* heap) {
  81     log_heap(heap, false);
  82   }
  83 };
  84 
  85 //
  86 // CollectedHeap
  87 //   GenCollectedHeap
  88 //     SerialHeap
  89 //     CMSHeap
  90 //   G1CollectedHeap
  91 //   ParallelScavengeHeap
  92 //
  93 class CollectedHeap : public CHeapObj<mtInternal> {
  94   friend class VMStructs;
  95   friend class JVMCIVMStructs;
  96   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  97 
  98  private:
  99 #ifdef ASSERT
 100   static int       _fire_out_of_memory_count;
 101 #endif
 102 
 103   GCHeapLog* _gc_heap_log;
 104 
 105   MemRegion _reserved;
 106 
 107  protected:
 108   bool _is_gc_active;
 109 
 110   // Used for filler objects (static, but initialized in ctor).
 111   static size_t _filler_array_max_size;
 112 
 113   unsigned int _total_collections;          // ... started
 114   unsigned int _total_full_collections;     // ... started
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 117 
 118   // Reason for current garbage collection.  Should be set to
 119   // a value reflecting no collection between collections.
 120   GCCause::Cause _gc_cause;
 121   GCCause::Cause _gc_lastcause;
 122   PerfStringVariable* _perf_gc_cause;
 123   PerfStringVariable* _perf_gc_lastcause;
 124 
 125   // Constructor
 126   CollectedHeap();
 127 
 128   // Create a new tlab. All TLAB allocations must go through this.
 129   virtual HeapWord* allocate_new_tlab(size_t size);
 130 
 131   // Accumulate statistics on all tlabs.
 132   virtual void accumulate_statistics_all_tlabs();
 133 
 134   // Reinitialize tlabs before resuming mutators.
 135   virtual void resize_all_tlabs();
 136 
 137   // Allocate from the current thread's TLAB, with broken-out slow path.
 138   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 139   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 140 
 141   // Allocate an uninitialized block of the given size, or returns NULL if
 142   // this is impossible.
 143   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 144 
 145   // Like allocate_init, but the block returned by a successful allocation
 146   // is guaranteed initialized to zeros.
 147   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 148 
 149   // Helper functions for (VM) allocation.
 150   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 151   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 152                                                             HeapWord* objPtr);
 153 
 154   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 155 
 156   inline static void post_allocation_setup_array(Klass* klass,
 157                                                  HeapWord* obj, int length);
 158 
 159   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 160 
 161   // Clears an allocated object.
 162   inline static void init_obj(HeapWord* obj, size_t size);
 163 
 164   // Filler object utilities.
 165   static inline size_t filler_array_hdr_size();
 166   static inline size_t filler_array_min_size();
 167 
 168   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 169   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 170 
 171   // Fill with a single array; caller must ensure filler_array_min_size() <=
 172   // words <= filler_array_max_size().
 173   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 174 
 175   // Fill with a single object (either an int array or a java.lang.Object).
 176   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 177 
 178   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 179 
 180   // Verification functions
 181   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 182     PRODUCT_RETURN;
 183   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 184     PRODUCT_RETURN;
 185   debug_only(static void check_for_valid_allocation_state();)
 186 
 187  public:
 188   enum Name {
 189     None,
 190     Serial,
 191     Parallel,
 192     CMS,
 193     G1
 194   };
 195 
 196   static inline size_t filler_array_max_size() {
 197     return _filler_array_max_size;
 198   }
 199 
 200   virtual Name kind() const = 0;
 201 
 202   virtual const char* name() const = 0;
 203 
 204   /**
 205    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 206    * and JNI_OK on success.
 207    */
 208   virtual jint initialize() = 0;
 209 
 210   // In many heaps, there will be a need to perform some initialization activities
 211   // after the Universe is fully formed, but before general heap allocation is allowed.
 212   // This is the correct place to place such initialization methods.
 213   virtual void post_initialize();
 214 
 215   // Stop any onging concurrent work and prepare for exit.
 216   virtual void stop() {}
 217 
 218   // Stop and resume concurrent GC threads interfering with safepoint operations
 219   virtual void safepoint_synchronize_begin() {}
 220   virtual void safepoint_synchronize_end() {}
 221 
 222   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 223   MemRegion reserved_region() const { return _reserved; }
 224   address base() const { return (address)reserved_region().start(); }
 225 
 226   virtual size_t capacity() const = 0;
 227   virtual size_t used() const = 0;
 228 
 229   // Return "true" if the part of the heap that allocates Java
 230   // objects has reached the maximal committed limit that it can
 231   // reach, without a garbage collection.
 232   virtual bool is_maximal_no_gc() const = 0;
 233 
 234   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 235   // memory that the vm could make available for storing 'normal' java objects.
 236   // This is based on the reserved address space, but should not include space
 237   // that the vm uses internally for bookkeeping or temporary storage
 238   // (e.g., in the case of the young gen, one of the survivor
 239   // spaces).
 240   virtual size_t max_capacity() const = 0;
 241 
 242   // Returns "TRUE" if "p" points into the reserved area of the heap.
 243   bool is_in_reserved(const void* p) const {
 244     return _reserved.contains(p);
 245   }
 246 
 247   bool is_in_reserved_or_null(const void* p) const {
 248     return p == NULL || is_in_reserved(p);
 249   }
 250 
 251   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 252   // This method can be expensive so avoid using it in performance critical
 253   // code.
 254   virtual bool is_in(const void* p) const = 0;
 255 
 256   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 257 
 258   // Let's define some terms: a "closed" subset of a heap is one that
 259   //
 260   // 1) contains all currently-allocated objects, and
 261   //
 262   // 2) is closed under reference: no object in the closed subset
 263   //    references one outside the closed subset.
 264   //
 265   // Membership in a heap's closed subset is useful for assertions.
 266   // Clearly, the entire heap is a closed subset, so the default
 267   // implementation is to use "is_in_reserved".  But this may not be too
 268   // liberal to perform useful checking.  Also, the "is_in" predicate
 269   // defines a closed subset, but may be too expensive, since "is_in"
 270   // verifies that its argument points to an object head.  The
 271   // "closed_subset" method allows a heap to define an intermediate
 272   // predicate, allowing more precise checking than "is_in_reserved" at
 273   // lower cost than "is_in."
 274 
 275   // One important case is a heap composed of disjoint contiguous spaces,
 276   // such as the Garbage-First collector.  Such heaps have a convenient
 277   // closed subset consisting of the allocated portions of those
 278   // contiguous spaces.
 279 
 280   // Return "TRUE" iff the given pointer points into the heap's defined
 281   // closed subset (which defaults to the entire heap).
 282   virtual bool is_in_closed_subset(const void* p) const {
 283     return is_in_reserved(p);
 284   }
 285 
 286   bool is_in_closed_subset_or_null(const void* p) const {
 287     return p == NULL || is_in_closed_subset(p);
 288   }
 289 
 290   void set_gc_cause(GCCause::Cause v) {
 291      if (UsePerfData) {
 292        _gc_lastcause = _gc_cause;
 293        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 294        _perf_gc_cause->set_value(GCCause::to_string(v));
 295      }
 296     _gc_cause = v;
 297   }
 298   GCCause::Cause gc_cause() { return _gc_cause; }
 299 
 300   // General obj/array allocation facilities.
 301   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 302   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 303   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 304   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 305 
 306   // Raw memory allocation facilities
 307   // The obj and array allocate methods are covers for these methods.
 308   // mem_allocate() should never be
 309   // called to allocate TLABs, only individual objects.
 310   virtual HeapWord* mem_allocate(size_t size,
 311                                  bool* gc_overhead_limit_was_exceeded) = 0;
 312 
 313   // Utilities for turning raw memory into filler objects.
 314   //
 315   // min_fill_size() is the smallest region that can be filled.
 316   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 317   // multiple objects.  fill_with_object() is for regions known to be smaller
 318   // than the largest array of integers; it uses a single object to fill the
 319   // region and has slightly less overhead.
 320   static size_t min_fill_size() {
 321     return size_t(align_object_size(oopDesc::header_size()));
 322   }
 323 
 324   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 325 
 326   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 327   static void fill_with_object(MemRegion region, bool zap = true) {
 328     fill_with_object(region.start(), region.word_size(), zap);
 329   }
 330   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 331     fill_with_object(start, pointer_delta(end, start), zap);
 332   }
 333 
 334   // Return the address "addr" aligned by "alignment_in_bytes" if such
 335   // an address is below "end".  Return NULL otherwise.
 336   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 337                                                    HeapWord* end,
 338                                                    unsigned short alignment_in_bytes);
 339 
 340   // Some heaps may offer a contiguous region for shared non-blocking
 341   // allocation, via inlined code (by exporting the address of the top and
 342   // end fields defining the extent of the contiguous allocation region.)
 343 
 344   // This function returns "true" iff the heap supports this kind of
 345   // allocation.  (Default is "no".)
 346   virtual bool supports_inline_contig_alloc() const {
 347     return false;
 348   }
 349   // These functions return the addresses of the fields that define the
 350   // boundaries of the contiguous allocation area.  (These fields should be
 351   // physically near to one another.)
 352   virtual HeapWord* volatile* top_addr() const {
 353     guarantee(false, "inline contiguous allocation not supported");
 354     return NULL;
 355   }
 356   virtual HeapWord** end_addr() const {
 357     guarantee(false, "inline contiguous allocation not supported");
 358     return NULL;
 359   }
 360 
 361   // Some heaps may be in an unparseable state at certain times between
 362   // collections. This may be necessary for efficient implementation of
 363   // certain allocation-related activities. Calling this function before
 364   // attempting to parse a heap ensures that the heap is in a parsable
 365   // state (provided other concurrent activity does not introduce
 366   // unparsability). It is normally expected, therefore, that this
 367   // method is invoked with the world stopped.
 368   // NOTE: if you override this method, make sure you call
 369   // super::ensure_parsability so that the non-generational
 370   // part of the work gets done. See implementation of
 371   // CollectedHeap::ensure_parsability and, for instance,
 372   // that of GenCollectedHeap::ensure_parsability().
 373   // The argument "retire_tlabs" controls whether existing TLABs
 374   // are merely filled or also retired, thus preventing further
 375   // allocation from them and necessitating allocation of new TLABs.
 376   virtual void ensure_parsability(bool retire_tlabs);
 377 
 378   // Section on thread-local allocation buffers (TLABs)
 379   // If the heap supports thread-local allocation buffers, it should override
 380   // the following methods:
 381   // Returns "true" iff the heap supports thread-local allocation buffers.
 382   // The default is "no".
 383   virtual bool supports_tlab_allocation() const = 0;
 384 
 385   // The amount of space available for thread-local allocation buffers.
 386   virtual size_t tlab_capacity(Thread *thr) const = 0;
 387 
 388   // The amount of used space for thread-local allocation buffers for the given thread.
 389   virtual size_t tlab_used(Thread *thr) const = 0;
 390 
 391   virtual size_t max_tlab_size() const;
 392 
 393   // An estimate of the maximum allocation that could be performed
 394   // for thread-local allocation buffers without triggering any
 395   // collection or expansion activity.
 396   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 397     guarantee(false, "thread-local allocation buffers not supported");
 398     return 0;
 399   }
 400 
 401   // Perform a collection of the heap; intended for use in implementing
 402   // "System.gc".  This probably implies as full a collection as the
 403   // "CollectedHeap" supports.
 404   virtual void collect(GCCause::Cause cause) = 0;
 405 
 406   // Perform a full collection
 407   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 408 
 409   // This interface assumes that it's being called by the
 410   // vm thread. It collects the heap assuming that the
 411   // heap lock is already held and that we are executing in
 412   // the context of the vm thread.
 413   virtual void collect_as_vm_thread(GCCause::Cause cause);
 414 
 415   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 416                                                        size_t size,
 417                                                        Metaspace::MetadataType mdtype);
 418 
 419   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 420   // that it should answer "false" for the concurrent part of a concurrent
 421   // collector -- dld).
 422   bool is_gc_active() const { return _is_gc_active; }
 423 
 424   // Total number of GC collections (started)
 425   unsigned int total_collections() const { return _total_collections; }
 426   unsigned int total_full_collections() const { return _total_full_collections;}
 427 
 428   // Increment total number of GC collections (started)
 429   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 430   void increment_total_collections(bool full = false) {
 431     _total_collections++;
 432     if (full) {
 433       increment_total_full_collections();
 434     }
 435   }
 436 
 437   void increment_total_full_collections() { _total_full_collections++; }
 438 
 439   // Return the CollectorPolicy for the heap
 440   virtual CollectorPolicy* collector_policy() const = 0;
 441 
 442   // Return the SoftRefPolicy for the heap;
 443   virtual SoftRefPolicy* soft_ref_policy() = 0;
 444 
 445   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 446   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 447 
 448   // Iterate over all objects, calling "cl.do_object" on each.
 449   virtual void object_iterate(ObjectClosure* cl) = 0;
 450 
 451   // Similar to object_iterate() except iterates only
 452   // over live objects.
 453   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 454 
 455   // NOTE! There is no requirement that a collector implement these
 456   // functions.
 457   //
 458   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 459   // each address in the (reserved) heap is a member of exactly
 460   // one block.  The defining characteristic of a block is that it is
 461   // possible to find its size, and thus to progress forward to the next
 462   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 463   // represent Java objects, or they might be free blocks in a
 464   // free-list-based heap (or subheap), as long as the two kinds are
 465   // distinguishable and the size of each is determinable.
 466 
 467   // Returns the address of the start of the "block" that contains the
 468   // address "addr".  We say "blocks" instead of "object" since some heaps
 469   // may not pack objects densely; a chunk may either be an object or a
 470   // non-object.
 471   virtual HeapWord* block_start(const void* addr) const = 0;
 472 
 473   // Requires "addr" to be the start of a chunk, and returns its size.
 474   // "addr + size" is required to be the start of a new chunk, or the end
 475   // of the active area of the heap.
 476   virtual size_t block_size(const HeapWord* addr) const = 0;
 477 
 478   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 479   // the block is an object.
 480   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 481 
 482   // Returns the longest time (in ms) that has elapsed since the last
 483   // time that any part of the heap was examined by a garbage collection.
 484   virtual jlong millis_since_last_gc() = 0;
 485 
 486   // Perform any cleanup actions necessary before allowing a verification.
 487   virtual void prepare_for_verify() = 0;
 488 
 489   // Generate any dumps preceding or following a full gc
 490  private:
 491   void full_gc_dump(GCTimer* timer, bool before);
 492 
 493   virtual void initialize_serviceability() = 0;
 494 
 495  public:
 496   void pre_full_gc_dump(GCTimer* timer);
 497   void post_full_gc_dump(GCTimer* timer);
 498 
 499   virtual VirtualSpaceSummary create_heap_space_summary();
 500   GCHeapSummary create_heap_summary();
 501 
 502   MetaspaceSummary create_metaspace_summary();
 503 
 504   // Print heap information on the given outputStream.
 505   virtual void print_on(outputStream* st) const = 0;
 506   // The default behavior is to call print_on() on tty.
 507   virtual void print() const {
 508     print_on(tty);
 509   }
 510   // Print more detailed heap information on the given
 511   // outputStream. The default behavior is to call print_on(). It is
 512   // up to each subclass to override it and add any additional output
 513   // it needs.
 514   virtual void print_extended_on(outputStream* st) const {
 515     print_on(st);
 516   }
 517 
 518   virtual void print_on_error(outputStream* st) const;
 519 
 520   // Print all GC threads (other than the VM thread)
 521   // used by this heap.
 522   virtual void print_gc_threads_on(outputStream* st) const = 0;
 523   // The default behavior is to call print_gc_threads_on() on tty.
 524   void print_gc_threads() {
 525     print_gc_threads_on(tty);
 526   }
 527   // Iterator for all GC threads (other than VM thread)
 528   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 529 
 530   // Print any relevant tracing info that flags imply.
 531   // Default implementation does nothing.
 532   virtual void print_tracing_info() const = 0;
 533 
 534   void print_heap_before_gc();
 535   void print_heap_after_gc();
 536 
 537   // An object is scavengable if its location may move during a scavenge.
 538   // (A scavenge is a GC which is not a full GC.)
 539   virtual bool is_scavengable(oop obj) = 0;
 540   // Registering and unregistering an nmethod (compiled code) with the heap.
 541   // Override with specific mechanism for each specialized heap type.
 542   virtual void register_nmethod(nmethod* nm) {}
 543   virtual void unregister_nmethod(nmethod* nm) {}
 544   virtual void verify_nmethod(nmethod* nmethod) {}
 545 
 546   void trace_heap_before_gc(const GCTracer* gc_tracer);
 547   void trace_heap_after_gc(const GCTracer* gc_tracer);
 548 
 549   // Heap verification
 550   virtual void verify(VerifyOption option) = 0;
 551 
 552   // Return true if concurrent phase control (via
 553   // request_concurrent_phase_control) is supported by this collector.
 554   // The default implementation returns false.
 555   virtual bool supports_concurrent_phase_control() const;
 556 
 557   // Return a NULL terminated array of concurrent phase names provided
 558   // by this collector.  Supports Whitebox testing.  These are the
 559   // names recognized by request_concurrent_phase(). The default
 560   // implementation returns an array of one NULL element.
 561   virtual const char* const* concurrent_phases() const;
 562 
 563   // Request the collector enter the indicated concurrent phase, and
 564   // wait until it does so.  Supports WhiteBox testing.  Only one
 565   // request may be active at a time.  Phases are designated by name;
 566   // the set of names and their meaning is GC-specific.  Once the
 567   // requested phase has been reached, the collector will attempt to
 568   // avoid transitioning to a new phase until a new request is made.
 569   // [Note: A collector might not be able to remain in a given phase.
 570   // For example, a full collection might cancel an in-progress
 571   // concurrent collection.]
 572   //
 573   // Returns true when the phase is reached.  Returns false for an
 574   // unknown phase.  The default implementation returns false.
 575   virtual bool request_concurrent_phase(const char* phase);
 576 
 577   // Provides a thread pool to SafepointSynchronize to use
 578   // for parallel safepoint cleanup.
 579   // GCs that use a GC worker thread pool may want to share
 580   // it for use during safepoint cleanup. This is only possible
 581   // if the GC can pause and resume concurrent work (e.g. G1
 582   // concurrent marking) for an intermittent non-GC safepoint.
 583   // If this method returns NULL, SafepointSynchronize will
 584   // perform cleanup tasks serially in the VMThread.
 585   virtual WorkGang* get_safepoint_workers() { return NULL; }
 586 
 587   // Support for object pinning. This is used by JNI Get*Critical()
 588   // and Release*Critical() family of functions. If supported, the GC
 589   // must guarantee that pinned objects never move.
 590   virtual bool supports_object_pinning() const;
 591   virtual oop pin_object(JavaThread* thread, oop obj);
 592   virtual void unpin_object(JavaThread* thread, oop obj);
 593 
 594   virtual bool is_oop(oop object) const;
 595 
 596   // Non product verification and debugging.
 597 #ifndef PRODUCT
 598   // Support for PromotionFailureALot.  Return true if it's time to cause a
 599   // promotion failure.  The no-argument version uses
 600   // this->_promotion_failure_alot_count as the counter.
 601   bool promotion_should_fail(volatile size_t* count);
 602   bool promotion_should_fail();
 603 
 604   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 605   // GC in which promotion failure occurred.
 606   void reset_promotion_should_fail(volatile size_t* count);
 607   void reset_promotion_should_fail();
 608 #endif  // #ifndef PRODUCT
 609 
 610 #ifdef ASSERT
 611   static int fired_fake_oom() {
 612     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 613   }
 614 #endif
 615 };
 616 
 617 // Class to set and reset the GC cause for a CollectedHeap.
 618 
 619 class GCCauseSetter : StackObj {
 620   CollectedHeap* _heap;
 621   GCCause::Cause _previous_cause;
 622  public:
 623   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 624     _heap = heap;
 625     _previous_cause = _heap->gc_cause();
 626     _heap->set_gc_cause(cause);
 627   }
 628 
 629   ~GCCauseSetter() {
 630     _heap->set_gc_cause(_previous_cause);
 631   }
 632 };
 633 
 634 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP