1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciUtilities.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CardTable.hpp"
  30 #include "gc/g1/heapRegion.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/cardTable.hpp"
  33 #include "gc/shared/cardTableBarrierSet.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #if INCLUDE_ALL_GCS
  52 #include "gc/g1/g1ThreadLocalData.hpp"
  53 #endif // INCLUDE_ALL_GCS
  54 
  55 //----------------------------GraphKit-----------------------------------------
  56 // Main utility constructor.
  57 GraphKit::GraphKit(JVMState* jvms)
  58   : Phase(Phase::Parser),
  59     _env(C->env()),
  60     _gvn(*C->initial_gvn())
  61 {
  62   _exceptions = jvms->map()->next_exception();
  63   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  64   set_jvms(jvms);
  65 }
  66 
  67 // Private constructor for parser.
  68 GraphKit::GraphKit()
  69   : Phase(Phase::Parser),
  70     _env(C->env()),
  71     _gvn(*C->initial_gvn())
  72 {
  73   _exceptions = NULL;
  74   set_map(NULL);
  75   debug_only(_sp = -99);
  76   debug_only(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.
  84 void GraphKit::clean_stack(int from_sp) {
  85   SafePointNode* map      = this->map();
  86   JVMState*      jvms     = this->jvms();
  87   int            stk_size = jvms->stk_size();
  88   int            stkoff   = jvms->stkoff();
  89   Node*          top      = this->top();
  90   for (int i = from_sp; i < stk_size; i++) {
  91     if (map->in(stkoff + i) != top) {
  92       map->set_req(stkoff + i, top);
  93     }
  94   }
  95 }
  96 
  97 
  98 //--------------------------------sync_jvms-----------------------------------
  99 // Make sure our current jvms agrees with our parse state.
 100 JVMState* GraphKit::sync_jvms() const {
 101   JVMState* jvms = this->jvms();
 102   jvms->set_bci(bci());       // Record the new bci in the JVMState
 103   jvms->set_sp(sp());         // Record the new sp in the JVMState
 104   assert(jvms_in_sync(), "jvms is now in sync");
 105   return jvms;
 106 }
 107 
 108 //--------------------------------sync_jvms_for_reexecute---------------------
 109 // Make sure our current jvms agrees with our parse state.  This version
 110 // uses the reexecute_sp for reexecuting bytecodes.
 111 JVMState* GraphKit::sync_jvms_for_reexecute() {
 112   JVMState* jvms = this->jvms();
 113   jvms->set_bci(bci());          // Record the new bci in the JVMState
 114   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 115   return jvms;
 116 }
 117 
 118 #ifdef ASSERT
 119 bool GraphKit::jvms_in_sync() const {
 120   Parse* parse = is_Parse();
 121   if (parse == NULL) {
 122     if (bci() !=      jvms()->bci())          return false;
 123     if (sp()  != (int)jvms()->sp())           return false;
 124     return true;
 125   }
 126   if (jvms()->method() != parse->method())    return false;
 127   if (jvms()->bci()    != parse->bci())       return false;
 128   int jvms_sp = jvms()->sp();
 129   if (jvms_sp          != parse->sp())        return false;
 130   int jvms_depth = jvms()->depth();
 131   if (jvms_depth       != parse->depth())     return false;
 132   return true;
 133 }
 134 
 135 // Local helper checks for special internal merge points
 136 // used to accumulate and merge exception states.
 137 // They are marked by the region's in(0) edge being the map itself.
 138 // Such merge points must never "escape" into the parser at large,
 139 // until they have been handed to gvn.transform.
 140 static bool is_hidden_merge(Node* reg) {
 141   if (reg == NULL)  return false;
 142   if (reg->is_Phi()) {
 143     reg = reg->in(0);
 144     if (reg == NULL)  return false;
 145   }
 146   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 147 }
 148 
 149 void GraphKit::verify_map() const {
 150   if (map() == NULL)  return;  // null map is OK
 151   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 152   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 153   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 154 }
 155 
 156 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 157   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 158   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 159 }
 160 #endif
 161 
 162 //---------------------------stop_and_kill_map---------------------------------
 163 // Set _map to NULL, signalling a stop to further bytecode execution.
 164 // First smash the current map's control to a constant, to mark it dead.
 165 void GraphKit::stop_and_kill_map() {
 166   SafePointNode* dead_map = stop();
 167   if (dead_map != NULL) {
 168     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 169     assert(dead_map->is_killed(), "must be so marked");
 170   }
 171 }
 172 
 173 
 174 //--------------------------------stopped--------------------------------------
 175 // Tell if _map is NULL, or control is top.
 176 bool GraphKit::stopped() {
 177   if (map() == NULL)           return true;
 178   else if (control() == top()) return true;
 179   else                         return false;
 180 }
 181 
 182 
 183 //-----------------------------has_ex_handler----------------------------------
 184 // Tell if this method or any caller method has exception handlers.
 185 bool GraphKit::has_ex_handler() {
 186   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 187     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 188       return true;
 189     }
 190   }
 191   return false;
 192 }
 193 
 194 //------------------------------save_ex_oop------------------------------------
 195 // Save an exception without blowing stack contents or other JVM state.
 196 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 197   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 198   ex_map->add_req(ex_oop);
 199   debug_only(verify_exception_state(ex_map));
 200 }
 201 
 202 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 203   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 204   Node* ex_oop = ex_map->in(ex_map->req()-1);
 205   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 206   return ex_oop;
 207 }
 208 
 209 //-----------------------------saved_ex_oop------------------------------------
 210 // Recover a saved exception from its map.
 211 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 212   return common_saved_ex_oop(ex_map, false);
 213 }
 214 
 215 //--------------------------clear_saved_ex_oop---------------------------------
 216 // Erase a previously saved exception from its map.
 217 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 218   return common_saved_ex_oop(ex_map, true);
 219 }
 220 
 221 #ifdef ASSERT
 222 //---------------------------has_saved_ex_oop----------------------------------
 223 // Erase a previously saved exception from its map.
 224 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 225   return ex_map->req() == ex_map->jvms()->endoff()+1;
 226 }
 227 #endif
 228 
 229 //-------------------------make_exception_state--------------------------------
 230 // Turn the current JVM state into an exception state, appending the ex_oop.
 231 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 232   sync_jvms();
 233   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 234   set_saved_ex_oop(ex_map, ex_oop);
 235   return ex_map;
 236 }
 237 
 238 
 239 //--------------------------add_exception_state--------------------------------
 240 // Add an exception to my list of exceptions.
 241 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 242   if (ex_map == NULL || ex_map->control() == top()) {
 243     return;
 244   }
 245 #ifdef ASSERT
 246   verify_exception_state(ex_map);
 247   if (has_exceptions()) {
 248     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 249   }
 250 #endif
 251 
 252   // If there is already an exception of exactly this type, merge with it.
 253   // In particular, null-checks and other low-level exceptions common up here.
 254   Node*       ex_oop  = saved_ex_oop(ex_map);
 255   const Type* ex_type = _gvn.type(ex_oop);
 256   if (ex_oop == top()) {
 257     // No action needed.
 258     return;
 259   }
 260   assert(ex_type->isa_instptr(), "exception must be an instance");
 261   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 262     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 263     // We check sp also because call bytecodes can generate exceptions
 264     // both before and after arguments are popped!
 265     if (ex_type2 == ex_type
 266         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 267       combine_exception_states(ex_map, e2);
 268       return;
 269     }
 270   }
 271 
 272   // No pre-existing exception of the same type.  Chain it on the list.
 273   push_exception_state(ex_map);
 274 }
 275 
 276 //-----------------------add_exception_states_from-----------------------------
 277 void GraphKit::add_exception_states_from(JVMState* jvms) {
 278   SafePointNode* ex_map = jvms->map()->next_exception();
 279   if (ex_map != NULL) {
 280     jvms->map()->set_next_exception(NULL);
 281     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 282       next_map = ex_map->next_exception();
 283       ex_map->set_next_exception(NULL);
 284       add_exception_state(ex_map);
 285     }
 286   }
 287 }
 288 
 289 //-----------------------transfer_exceptions_into_jvms-------------------------
 290 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 291   if (map() == NULL) {
 292     // We need a JVMS to carry the exceptions, but the map has gone away.
 293     // Create a scratch JVMS, cloned from any of the exception states...
 294     if (has_exceptions()) {
 295       _map = _exceptions;
 296       _map = clone_map();
 297       _map->set_next_exception(NULL);
 298       clear_saved_ex_oop(_map);
 299       debug_only(verify_map());
 300     } else {
 301       // ...or created from scratch
 302       JVMState* jvms = new (C) JVMState(_method, NULL);
 303       jvms->set_bci(_bci);
 304       jvms->set_sp(_sp);
 305       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 306       set_jvms(jvms);
 307       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 308       set_all_memory(top());
 309       while (map()->req() < jvms->endoff())  map()->add_req(top());
 310     }
 311     // (This is a kludge, in case you didn't notice.)
 312     set_control(top());
 313   }
 314   JVMState* jvms = sync_jvms();
 315   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 316   jvms->map()->set_next_exception(_exceptions);
 317   _exceptions = NULL;   // done with this set of exceptions
 318   return jvms;
 319 }
 320 
 321 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 322   assert(is_hidden_merge(dstphi), "must be a special merge node");
 323   assert(is_hidden_merge(srcphi), "must be a special merge node");
 324   uint limit = srcphi->req();
 325   for (uint i = PhiNode::Input; i < limit; i++) {
 326     dstphi->add_req(srcphi->in(i));
 327   }
 328 }
 329 static inline void add_one_req(Node* dstphi, Node* src) {
 330   assert(is_hidden_merge(dstphi), "must be a special merge node");
 331   assert(!is_hidden_merge(src), "must not be a special merge node");
 332   dstphi->add_req(src);
 333 }
 334 
 335 //-----------------------combine_exception_states------------------------------
 336 // This helper function combines exception states by building phis on a
 337 // specially marked state-merging region.  These regions and phis are
 338 // untransformed, and can build up gradually.  The region is marked by
 339 // having a control input of its exception map, rather than NULL.  Such
 340 // regions do not appear except in this function, and in use_exception_state.
 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 342   if (failing())  return;  // dying anyway...
 343   JVMState* ex_jvms = ex_map->_jvms;
 344   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 345   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 346   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 347   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 348   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 349   assert(ex_map->req() == phi_map->req(), "matching maps");
 350   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 351   Node*         hidden_merge_mark = root();
 352   Node*         region  = phi_map->control();
 353   MergeMemNode* phi_mem = phi_map->merged_memory();
 354   MergeMemNode* ex_mem  = ex_map->merged_memory();
 355   if (region->in(0) != hidden_merge_mark) {
 356     // The control input is not (yet) a specially-marked region in phi_map.
 357     // Make it so, and build some phis.
 358     region = new RegionNode(2);
 359     _gvn.set_type(region, Type::CONTROL);
 360     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 361     region->init_req(1, phi_map->control());
 362     phi_map->set_control(region);
 363     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 364     record_for_igvn(io_phi);
 365     _gvn.set_type(io_phi, Type::ABIO);
 366     phi_map->set_i_o(io_phi);
 367     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 368       Node* m = mms.memory();
 369       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 370       record_for_igvn(m_phi);
 371       _gvn.set_type(m_phi, Type::MEMORY);
 372       mms.set_memory(m_phi);
 373     }
 374   }
 375 
 376   // Either or both of phi_map and ex_map might already be converted into phis.
 377   Node* ex_control = ex_map->control();
 378   // if there is special marking on ex_map also, we add multiple edges from src
 379   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 380   // how wide was the destination phi_map, originally?
 381   uint orig_width = region->req();
 382 
 383   if (add_multiple) {
 384     add_n_reqs(region, ex_control);
 385     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 386   } else {
 387     // ex_map has no merges, so we just add single edges everywhere
 388     add_one_req(region, ex_control);
 389     add_one_req(phi_map->i_o(), ex_map->i_o());
 390   }
 391   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 392     if (mms.is_empty()) {
 393       // get a copy of the base memory, and patch some inputs into it
 394       const TypePtr* adr_type = mms.adr_type(C);
 395       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 396       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 397       mms.set_memory(phi);
 398       // Prepare to append interesting stuff onto the newly sliced phi:
 399       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 400     }
 401     // Append stuff from ex_map:
 402     if (add_multiple) {
 403       add_n_reqs(mms.memory(), mms.memory2());
 404     } else {
 405       add_one_req(mms.memory(), mms.memory2());
 406     }
 407   }
 408   uint limit = ex_map->req();
 409   for (uint i = TypeFunc::Parms; i < limit; i++) {
 410     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 411     if (i == tos)  i = ex_jvms->monoff();
 412     Node* src = ex_map->in(i);
 413     Node* dst = phi_map->in(i);
 414     if (src != dst) {
 415       PhiNode* phi;
 416       if (dst->in(0) != region) {
 417         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 418         record_for_igvn(phi);
 419         _gvn.set_type(phi, phi->type());
 420         phi_map->set_req(i, dst);
 421         // Prepare to append interesting stuff onto the new phi:
 422         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 423       } else {
 424         assert(dst->is_Phi(), "nobody else uses a hidden region");
 425         phi = dst->as_Phi();
 426       }
 427       if (add_multiple && src->in(0) == ex_control) {
 428         // Both are phis.
 429         add_n_reqs(dst, src);
 430       } else {
 431         while (dst->req() < region->req())  add_one_req(dst, src);
 432       }
 433       const Type* srctype = _gvn.type(src);
 434       if (phi->type() != srctype) {
 435         const Type* dsttype = phi->type()->meet_speculative(srctype);
 436         if (phi->type() != dsttype) {
 437           phi->set_type(dsttype);
 438           _gvn.set_type(phi, dsttype);
 439         }
 440       }
 441     }
 442   }
 443   phi_map->merge_replaced_nodes_with(ex_map);
 444 }
 445 
 446 //--------------------------use_exception_state--------------------------------
 447 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 448   if (failing()) { stop(); return top(); }
 449   Node* region = phi_map->control();
 450   Node* hidden_merge_mark = root();
 451   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 452   Node* ex_oop = clear_saved_ex_oop(phi_map);
 453   if (region->in(0) == hidden_merge_mark) {
 454     // Special marking for internal ex-states.  Process the phis now.
 455     region->set_req(0, region);  // now it's an ordinary region
 456     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 457     // Note: Setting the jvms also sets the bci and sp.
 458     set_control(_gvn.transform(region));
 459     uint tos = jvms()->stkoff() + sp();
 460     for (uint i = 1; i < tos; i++) {
 461       Node* x = phi_map->in(i);
 462       if (x->in(0) == region) {
 463         assert(x->is_Phi(), "expected a special phi");
 464         phi_map->set_req(i, _gvn.transform(x));
 465       }
 466     }
 467     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 468       Node* x = mms.memory();
 469       if (x->in(0) == region) {
 470         assert(x->is_Phi(), "nobody else uses a hidden region");
 471         mms.set_memory(_gvn.transform(x));
 472       }
 473     }
 474     if (ex_oop->in(0) == region) {
 475       assert(ex_oop->is_Phi(), "expected a special phi");
 476       ex_oop = _gvn.transform(ex_oop);
 477     }
 478   } else {
 479     set_jvms(phi_map->jvms());
 480   }
 481 
 482   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 483   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 484   return ex_oop;
 485 }
 486 
 487 //---------------------------------java_bc-------------------------------------
 488 Bytecodes::Code GraphKit::java_bc() const {
 489   ciMethod* method = this->method();
 490   int       bci    = this->bci();
 491   if (method != NULL && bci != InvocationEntryBci)
 492     return method->java_code_at_bci(bci);
 493   else
 494     return Bytecodes::_illegal;
 495 }
 496 
 497 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 498                                                           bool must_throw) {
 499     // if the exception capability is set, then we will generate code
 500     // to check the JavaThread.should_post_on_exceptions flag to see
 501     // if we actually need to report exception events (for this
 502     // thread).  If we don't need to report exception events, we will
 503     // take the normal fast path provided by add_exception_events.  If
 504     // exception event reporting is enabled for this thread, we will
 505     // take the uncommon_trap in the BuildCutout below.
 506 
 507     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 508     Node* jthread = _gvn.transform(new ThreadLocalNode());
 509     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 510     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 511 
 512     // Test the should_post_on_exceptions_flag vs. 0
 513     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 514     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 515 
 516     // Branch to slow_path if should_post_on_exceptions_flag was true
 517     { BuildCutout unless(this, tst, PROB_MAX);
 518       // Do not try anything fancy if we're notifying the VM on every throw.
 519       // Cf. case Bytecodes::_athrow in parse2.cpp.
 520       uncommon_trap(reason, Deoptimization::Action_none,
 521                     (ciKlass*)NULL, (char*)NULL, must_throw);
 522     }
 523 
 524 }
 525 
 526 //------------------------------builtin_throw----------------------------------
 527 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 528   bool must_throw = true;
 529 
 530   if (env()->jvmti_can_post_on_exceptions()) {
 531     // check if we must post exception events, take uncommon trap if so
 532     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 533     // here if should_post_on_exceptions is false
 534     // continue on with the normal codegen
 535   }
 536 
 537   // If this particular condition has not yet happened at this
 538   // bytecode, then use the uncommon trap mechanism, and allow for
 539   // a future recompilation if several traps occur here.
 540   // If the throw is hot, try to use a more complicated inline mechanism
 541   // which keeps execution inside the compiled code.
 542   bool treat_throw_as_hot = false;
 543   ciMethodData* md = method()->method_data();
 544 
 545   if (ProfileTraps) {
 546     if (too_many_traps(reason)) {
 547       treat_throw_as_hot = true;
 548     }
 549     // (If there is no MDO at all, assume it is early in
 550     // execution, and that any deopts are part of the
 551     // startup transient, and don't need to be remembered.)
 552 
 553     // Also, if there is a local exception handler, treat all throws
 554     // as hot if there has been at least one in this method.
 555     if (C->trap_count(reason) != 0
 556         && method()->method_data()->trap_count(reason) != 0
 557         && has_ex_handler()) {
 558         treat_throw_as_hot = true;
 559     }
 560   }
 561 
 562   // If this throw happens frequently, an uncommon trap might cause
 563   // a performance pothole.  If there is a local exception handler,
 564   // and if this particular bytecode appears to be deoptimizing often,
 565   // let us handle the throw inline, with a preconstructed instance.
 566   // Note:   If the deopt count has blown up, the uncommon trap
 567   // runtime is going to flush this nmethod, not matter what.
 568   if (treat_throw_as_hot
 569       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 570     // If the throw is local, we use a pre-existing instance and
 571     // punt on the backtrace.  This would lead to a missing backtrace
 572     // (a repeat of 4292742) if the backtrace object is ever asked
 573     // for its backtrace.
 574     // Fixing this remaining case of 4292742 requires some flavor of
 575     // escape analysis.  Leave that for the future.
 576     ciInstance* ex_obj = NULL;
 577     switch (reason) {
 578     case Deoptimization::Reason_null_check:
 579       ex_obj = env()->NullPointerException_instance();
 580       break;
 581     case Deoptimization::Reason_div0_check:
 582       ex_obj = env()->ArithmeticException_instance();
 583       break;
 584     case Deoptimization::Reason_range_check:
 585       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 586       break;
 587     case Deoptimization::Reason_class_check:
 588       if (java_bc() == Bytecodes::_aastore) {
 589         ex_obj = env()->ArrayStoreException_instance();
 590       } else {
 591         ex_obj = env()->ClassCastException_instance();
 592       }
 593       break;
 594     default:
 595       break;
 596     }
 597     if (failing()) { stop(); return; }  // exception allocation might fail
 598     if (ex_obj != NULL) {
 599       // Cheat with a preallocated exception object.
 600       if (C->log() != NULL)
 601         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 602                        Deoptimization::trap_reason_name(reason));
 603       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 604       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 605 
 606       // Clear the detail message of the preallocated exception object.
 607       // Weblogic sometimes mutates the detail message of exceptions
 608       // using reflection.
 609       int offset = java_lang_Throwable::get_detailMessage_offset();
 610       const TypePtr* adr_typ = ex_con->add_offset(offset);
 611 
 612       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 613       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 614       // Conservatively release stores of object references.
 615       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 616 
 617       add_exception_state(make_exception_state(ex_node));
 618       return;
 619     }
 620   }
 621 
 622   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 623   // It won't be much cheaper than bailing to the interp., since we'll
 624   // have to pass up all the debug-info, and the runtime will have to
 625   // create the stack trace.
 626 
 627   // Usual case:  Bail to interpreter.
 628   // Reserve the right to recompile if we haven't seen anything yet.
 629 
 630   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 631   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 632   if (treat_throw_as_hot
 633       && (method()->method_data()->trap_recompiled_at(bci(), m)
 634           || C->too_many_traps(reason))) {
 635     // We cannot afford to take more traps here.  Suffer in the interpreter.
 636     if (C->log() != NULL)
 637       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 638                      Deoptimization::trap_reason_name(reason),
 639                      C->trap_count(reason));
 640     action = Deoptimization::Action_none;
 641   }
 642 
 643   // "must_throw" prunes the JVM state to include only the stack, if there
 644   // are no local exception handlers.  This should cut down on register
 645   // allocation time and code size, by drastically reducing the number
 646   // of in-edges on the call to the uncommon trap.
 647 
 648   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 649 }
 650 
 651 
 652 //----------------------------PreserveJVMState---------------------------------
 653 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 654   debug_only(kit->verify_map());
 655   _kit    = kit;
 656   _map    = kit->map();   // preserve the map
 657   _sp     = kit->sp();
 658   kit->set_map(clone_map ? kit->clone_map() : NULL);
 659 #ifdef ASSERT
 660   _bci    = kit->bci();
 661   Parse* parser = kit->is_Parse();
 662   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 663   _block  = block;
 664 #endif
 665 }
 666 PreserveJVMState::~PreserveJVMState() {
 667   GraphKit* kit = _kit;
 668 #ifdef ASSERT
 669   assert(kit->bci() == _bci, "bci must not shift");
 670   Parse* parser = kit->is_Parse();
 671   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 672   assert(block == _block,    "block must not shift");
 673 #endif
 674   kit->set_map(_map);
 675   kit->set_sp(_sp);
 676 }
 677 
 678 
 679 //-----------------------------BuildCutout-------------------------------------
 680 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 681   : PreserveJVMState(kit)
 682 {
 683   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 684   SafePointNode* outer_map = _map;   // preserved map is caller's
 685   SafePointNode* inner_map = kit->map();
 686   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 687   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 688   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 689 }
 690 BuildCutout::~BuildCutout() {
 691   GraphKit* kit = _kit;
 692   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 693 }
 694 
 695 //---------------------------PreserveReexecuteState----------------------------
 696 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 697   assert(!kit->stopped(), "must call stopped() before");
 698   _kit    =    kit;
 699   _sp     =    kit->sp();
 700   _reexecute = kit->jvms()->_reexecute;
 701 }
 702 PreserveReexecuteState::~PreserveReexecuteState() {
 703   if (_kit->stopped()) return;
 704   _kit->jvms()->_reexecute = _reexecute;
 705   _kit->set_sp(_sp);
 706 }
 707 
 708 //------------------------------clone_map--------------------------------------
 709 // Implementation of PreserveJVMState
 710 //
 711 // Only clone_map(...) here. If this function is only used in the
 712 // PreserveJVMState class we may want to get rid of this extra
 713 // function eventually and do it all there.
 714 
 715 SafePointNode* GraphKit::clone_map() {
 716   if (map() == NULL)  return NULL;
 717 
 718   // Clone the memory edge first
 719   Node* mem = MergeMemNode::make(map()->memory());
 720   gvn().set_type_bottom(mem);
 721 
 722   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 723   JVMState* jvms = this->jvms();
 724   JVMState* clonejvms = jvms->clone_shallow(C);
 725   clonemap->set_memory(mem);
 726   clonemap->set_jvms(clonejvms);
 727   clonejvms->set_map(clonemap);
 728   record_for_igvn(clonemap);
 729   gvn().set_type_bottom(clonemap);
 730   return clonemap;
 731 }
 732 
 733 
 734 //-----------------------------set_map_clone-----------------------------------
 735 void GraphKit::set_map_clone(SafePointNode* m) {
 736   _map = m;
 737   _map = clone_map();
 738   _map->set_next_exception(NULL);
 739   debug_only(verify_map());
 740 }
 741 
 742 
 743 //----------------------------kill_dead_locals---------------------------------
 744 // Detect any locals which are known to be dead, and force them to top.
 745 void GraphKit::kill_dead_locals() {
 746   // Consult the liveness information for the locals.  If any
 747   // of them are unused, then they can be replaced by top().  This
 748   // should help register allocation time and cut down on the size
 749   // of the deoptimization information.
 750 
 751   // This call is made from many of the bytecode handling
 752   // subroutines called from the Big Switch in do_one_bytecode.
 753   // Every bytecode which might include a slow path is responsible
 754   // for killing its dead locals.  The more consistent we
 755   // are about killing deads, the fewer useless phis will be
 756   // constructed for them at various merge points.
 757 
 758   // bci can be -1 (InvocationEntryBci).  We return the entry
 759   // liveness for the method.
 760 
 761   if (method() == NULL || method()->code_size() == 0) {
 762     // We are building a graph for a call to a native method.
 763     // All locals are live.
 764     return;
 765   }
 766 
 767   ResourceMark rm;
 768 
 769   // Consult the liveness information for the locals.  If any
 770   // of them are unused, then they can be replaced by top().  This
 771   // should help register allocation time and cut down on the size
 772   // of the deoptimization information.
 773   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 774 
 775   int len = (int)live_locals.size();
 776   assert(len <= jvms()->loc_size(), "too many live locals");
 777   for (int local = 0; local < len; local++) {
 778     if (!live_locals.at(local)) {
 779       set_local(local, top());
 780     }
 781   }
 782 }
 783 
 784 #ifdef ASSERT
 785 //-------------------------dead_locals_are_killed------------------------------
 786 // Return true if all dead locals are set to top in the map.
 787 // Used to assert "clean" debug info at various points.
 788 bool GraphKit::dead_locals_are_killed() {
 789   if (method() == NULL || method()->code_size() == 0) {
 790     // No locals need to be dead, so all is as it should be.
 791     return true;
 792   }
 793 
 794   // Make sure somebody called kill_dead_locals upstream.
 795   ResourceMark rm;
 796   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 797     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 798     SafePointNode* map = jvms->map();
 799     ciMethod* method = jvms->method();
 800     int       bci    = jvms->bci();
 801     if (jvms == this->jvms()) {
 802       bci = this->bci();  // it might not yet be synched
 803     }
 804     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 805     int len = (int)live_locals.size();
 806     if (!live_locals.is_valid() || len == 0)
 807       // This method is trivial, or is poisoned by a breakpoint.
 808       return true;
 809     assert(len == jvms->loc_size(), "live map consistent with locals map");
 810     for (int local = 0; local < len; local++) {
 811       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 812         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 813           tty->print_cr("Zombie local %d: ", local);
 814           jvms->dump();
 815         }
 816         return false;
 817       }
 818     }
 819   }
 820   return true;
 821 }
 822 
 823 #endif //ASSERT
 824 
 825 // Helper function for enforcing certain bytecodes to reexecute if
 826 // deoptimization happens
 827 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 828   ciMethod* cur_method = jvms->method();
 829   int       cur_bci   = jvms->bci();
 830   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 831     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 832     return Interpreter::bytecode_should_reexecute(code) ||
 833            (is_anewarray && code == Bytecodes::_multianewarray);
 834     // Reexecute _multianewarray bytecode which was replaced with
 835     // sequence of [a]newarray. See Parse::do_multianewarray().
 836     //
 837     // Note: interpreter should not have it set since this optimization
 838     // is limited by dimensions and guarded by flag so in some cases
 839     // multianewarray() runtime calls will be generated and
 840     // the bytecode should not be reexecutes (stack will not be reset).
 841   } else
 842     return false;
 843 }
 844 
 845 // Helper function for adding JVMState and debug information to node
 846 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 847   // Add the safepoint edges to the call (or other safepoint).
 848 
 849   // Make sure dead locals are set to top.  This
 850   // should help register allocation time and cut down on the size
 851   // of the deoptimization information.
 852   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 853 
 854   // Walk the inline list to fill in the correct set of JVMState's
 855   // Also fill in the associated edges for each JVMState.
 856 
 857   // If the bytecode needs to be reexecuted we need to put
 858   // the arguments back on the stack.
 859   const bool should_reexecute = jvms()->should_reexecute();
 860   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 861 
 862   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 863   // undefined if the bci is different.  This is normal for Parse but it
 864   // should not happen for LibraryCallKit because only one bci is processed.
 865   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 866          "in LibraryCallKit the reexecute bit should not change");
 867 
 868   // If we are guaranteed to throw, we can prune everything but the
 869   // input to the current bytecode.
 870   bool can_prune_locals = false;
 871   uint stack_slots_not_pruned = 0;
 872   int inputs = 0, depth = 0;
 873   if (must_throw) {
 874     assert(method() == youngest_jvms->method(), "sanity");
 875     if (compute_stack_effects(inputs, depth)) {
 876       can_prune_locals = true;
 877       stack_slots_not_pruned = inputs;
 878     }
 879   }
 880 
 881   if (env()->should_retain_local_variables()) {
 882     // At any safepoint, this method can get breakpointed, which would
 883     // then require an immediate deoptimization.
 884     can_prune_locals = false;  // do not prune locals
 885     stack_slots_not_pruned = 0;
 886   }
 887 
 888   // do not scribble on the input jvms
 889   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 890   call->set_jvms(out_jvms); // Start jvms list for call node
 891 
 892   // For a known set of bytecodes, the interpreter should reexecute them if
 893   // deoptimization happens. We set the reexecute state for them here
 894   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 895       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 896     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 897   }
 898 
 899   // Presize the call:
 900   DEBUG_ONLY(uint non_debug_edges = call->req());
 901   call->add_req_batch(top(), youngest_jvms->debug_depth());
 902   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 903 
 904   // Set up edges so that the call looks like this:
 905   //  Call [state:] ctl io mem fptr retadr
 906   //       [parms:] parm0 ... parmN
 907   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 908   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 909   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 910   // Note that caller debug info precedes callee debug info.
 911 
 912   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 913   uint debug_ptr = call->req();
 914 
 915   // Loop over the map input edges associated with jvms, add them
 916   // to the call node, & reset all offsets to match call node array.
 917   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 918     uint debug_end   = debug_ptr;
 919     uint debug_start = debug_ptr - in_jvms->debug_size();
 920     debug_ptr = debug_start;  // back up the ptr
 921 
 922     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 923     uint j, k, l;
 924     SafePointNode* in_map = in_jvms->map();
 925     out_jvms->set_map(call);
 926 
 927     if (can_prune_locals) {
 928       assert(in_jvms->method() == out_jvms->method(), "sanity");
 929       // If the current throw can reach an exception handler in this JVMS,
 930       // then we must keep everything live that can reach that handler.
 931       // As a quick and dirty approximation, we look for any handlers at all.
 932       if (in_jvms->method()->has_exception_handlers()) {
 933         can_prune_locals = false;
 934       }
 935     }
 936 
 937     // Add the Locals
 938     k = in_jvms->locoff();
 939     l = in_jvms->loc_size();
 940     out_jvms->set_locoff(p);
 941     if (!can_prune_locals) {
 942       for (j = 0; j < l; j++)
 943         call->set_req(p++, in_map->in(k+j));
 944     } else {
 945       p += l;  // already set to top above by add_req_batch
 946     }
 947 
 948     // Add the Expression Stack
 949     k = in_jvms->stkoff();
 950     l = in_jvms->sp();
 951     out_jvms->set_stkoff(p);
 952     if (!can_prune_locals) {
 953       for (j = 0; j < l; j++)
 954         call->set_req(p++, in_map->in(k+j));
 955     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 956       // Divide stack into {S0,...,S1}, where S0 is set to top.
 957       uint s1 = stack_slots_not_pruned;
 958       stack_slots_not_pruned = 0;  // for next iteration
 959       if (s1 > l)  s1 = l;
 960       uint s0 = l - s1;
 961       p += s0;  // skip the tops preinstalled by add_req_batch
 962       for (j = s0; j < l; j++)
 963         call->set_req(p++, in_map->in(k+j));
 964     } else {
 965       p += l;  // already set to top above by add_req_batch
 966     }
 967 
 968     // Add the Monitors
 969     k = in_jvms->monoff();
 970     l = in_jvms->mon_size();
 971     out_jvms->set_monoff(p);
 972     for (j = 0; j < l; j++)
 973       call->set_req(p++, in_map->in(k+j));
 974 
 975     // Copy any scalar object fields.
 976     k = in_jvms->scloff();
 977     l = in_jvms->scl_size();
 978     out_jvms->set_scloff(p);
 979     for (j = 0; j < l; j++)
 980       call->set_req(p++, in_map->in(k+j));
 981 
 982     // Finish the new jvms.
 983     out_jvms->set_endoff(p);
 984 
 985     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 986     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 987     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 988     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 989     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 990     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 991 
 992     // Update the two tail pointers in parallel.
 993     out_jvms = out_jvms->caller();
 994     in_jvms  = in_jvms->caller();
 995   }
 996 
 997   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 998 
 999   // Test the correctness of JVMState::debug_xxx accessors:
1000   assert(call->jvms()->debug_start() == non_debug_edges, "");
1001   assert(call->jvms()->debug_end()   == call->req(), "");
1002   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1003 }
1004 
1005 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1006   Bytecodes::Code code = java_bc();
1007   if (code == Bytecodes::_wide) {
1008     code = method()->java_code_at_bci(bci() + 1);
1009   }
1010 
1011   BasicType rtype = T_ILLEGAL;
1012   int       rsize = 0;
1013 
1014   if (code != Bytecodes::_illegal) {
1015     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1016     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1017     if (rtype < T_CONFLICT)
1018       rsize = type2size[rtype];
1019   }
1020 
1021   switch (code) {
1022   case Bytecodes::_illegal:
1023     return false;
1024 
1025   case Bytecodes::_ldc:
1026   case Bytecodes::_ldc_w:
1027   case Bytecodes::_ldc2_w:
1028     inputs = 0;
1029     break;
1030 
1031   case Bytecodes::_dup:         inputs = 1;  break;
1032   case Bytecodes::_dup_x1:      inputs = 2;  break;
1033   case Bytecodes::_dup_x2:      inputs = 3;  break;
1034   case Bytecodes::_dup2:        inputs = 2;  break;
1035   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1036   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1037   case Bytecodes::_swap:        inputs = 2;  break;
1038   case Bytecodes::_arraylength: inputs = 1;  break;
1039 
1040   case Bytecodes::_getstatic:
1041   case Bytecodes::_putstatic:
1042   case Bytecodes::_getfield:
1043   case Bytecodes::_putfield:
1044     {
1045       bool ignored_will_link;
1046       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1047       int      size  = field->type()->size();
1048       bool is_get = (depth >= 0), is_static = (depth & 1);
1049       inputs = (is_static ? 0 : 1);
1050       if (is_get) {
1051         depth = size - inputs;
1052       } else {
1053         inputs += size;        // putxxx pops the value from the stack
1054         depth = - inputs;
1055       }
1056     }
1057     break;
1058 
1059   case Bytecodes::_invokevirtual:
1060   case Bytecodes::_invokespecial:
1061   case Bytecodes::_invokestatic:
1062   case Bytecodes::_invokedynamic:
1063   case Bytecodes::_invokeinterface:
1064     {
1065       bool ignored_will_link;
1066       ciSignature* declared_signature = NULL;
1067       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1068       assert(declared_signature != NULL, "cannot be null");
1069       inputs   = declared_signature->arg_size_for_bc(code);
1070       int size = declared_signature->return_type()->size();
1071       depth = size - inputs;
1072     }
1073     break;
1074 
1075   case Bytecodes::_multianewarray:
1076     {
1077       ciBytecodeStream iter(method());
1078       iter.reset_to_bci(bci());
1079       iter.next();
1080       inputs = iter.get_dimensions();
1081       assert(rsize == 1, "");
1082       depth = rsize - inputs;
1083     }
1084     break;
1085 
1086   case Bytecodes::_ireturn:
1087   case Bytecodes::_lreturn:
1088   case Bytecodes::_freturn:
1089   case Bytecodes::_dreturn:
1090   case Bytecodes::_areturn:
1091     assert(rsize == -depth, "");
1092     inputs = rsize;
1093     break;
1094 
1095   case Bytecodes::_jsr:
1096   case Bytecodes::_jsr_w:
1097     inputs = 0;
1098     depth  = 1;                  // S.B. depth=1, not zero
1099     break;
1100 
1101   default:
1102     // bytecode produces a typed result
1103     inputs = rsize - depth;
1104     assert(inputs >= 0, "");
1105     break;
1106   }
1107 
1108 #ifdef ASSERT
1109   // spot check
1110   int outputs = depth + inputs;
1111   assert(outputs >= 0, "sanity");
1112   switch (code) {
1113   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1114   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1115   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1116   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1117   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1118   default:                    break;
1119   }
1120 #endif //ASSERT
1121 
1122   return true;
1123 }
1124 
1125 
1126 
1127 //------------------------------basic_plus_adr---------------------------------
1128 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1129   // short-circuit a common case
1130   if (offset == intcon(0))  return ptr;
1131   return _gvn.transform( new AddPNode(base, ptr, offset) );
1132 }
1133 
1134 Node* GraphKit::ConvI2L(Node* offset) {
1135   // short-circuit a common case
1136   jint offset_con = find_int_con(offset, Type::OffsetBot);
1137   if (offset_con != Type::OffsetBot) {
1138     return longcon((jlong) offset_con);
1139   }
1140   return _gvn.transform( new ConvI2LNode(offset));
1141 }
1142 
1143 Node* GraphKit::ConvI2UL(Node* offset) {
1144   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1145   if (offset_con != (juint) Type::OffsetBot) {
1146     return longcon((julong) offset_con);
1147   }
1148   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1149   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1150   return _gvn.transform( new AndLNode(conv, mask) );
1151 }
1152 
1153 Node* GraphKit::ConvL2I(Node* offset) {
1154   // short-circuit a common case
1155   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1156   if (offset_con != (jlong)Type::OffsetBot) {
1157     return intcon((int) offset_con);
1158   }
1159   return _gvn.transform( new ConvL2INode(offset));
1160 }
1161 
1162 //-------------------------load_object_klass-----------------------------------
1163 Node* GraphKit::load_object_klass(Node* obj) {
1164   // Special-case a fresh allocation to avoid building nodes:
1165   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1166   if (akls != NULL)  return akls;
1167   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1168   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1169 }
1170 
1171 //-------------------------load_array_length-----------------------------------
1172 Node* GraphKit::load_array_length(Node* array) {
1173   // Special-case a fresh allocation to avoid building nodes:
1174   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1175   Node *alen;
1176   if (alloc == NULL) {
1177     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1178     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1179   } else {
1180     alen = alloc->Ideal_length();
1181     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1182     if (ccast != alen) {
1183       alen = _gvn.transform(ccast);
1184     }
1185   }
1186   return alen;
1187 }
1188 
1189 //------------------------------do_null_check----------------------------------
1190 // Helper function to do a NULL pointer check.  Returned value is
1191 // the incoming address with NULL casted away.  You are allowed to use the
1192 // not-null value only if you are control dependent on the test.
1193 #ifndef PRODUCT
1194 extern int explicit_null_checks_inserted,
1195            explicit_null_checks_elided;
1196 #endif
1197 Node* GraphKit::null_check_common(Node* value, BasicType type,
1198                                   // optional arguments for variations:
1199                                   bool assert_null,
1200                                   Node* *null_control,
1201                                   bool speculative) {
1202   assert(!assert_null || null_control == NULL, "not both at once");
1203   if (stopped())  return top();
1204   NOT_PRODUCT(explicit_null_checks_inserted++);
1205 
1206   // Construct NULL check
1207   Node *chk = NULL;
1208   switch(type) {
1209     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1210     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1211     case T_ARRAY  : // fall through
1212       type = T_OBJECT;  // simplify further tests
1213     case T_OBJECT : {
1214       const Type *t = _gvn.type( value );
1215 
1216       const TypeOopPtr* tp = t->isa_oopptr();
1217       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1218           // Only for do_null_check, not any of its siblings:
1219           && !assert_null && null_control == NULL) {
1220         // Usually, any field access or invocation on an unloaded oop type
1221         // will simply fail to link, since the statically linked class is
1222         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1223         // the static class is loaded but the sharper oop type is not.
1224         // Rather than checking for this obscure case in lots of places,
1225         // we simply observe that a null check on an unloaded class
1226         // will always be followed by a nonsense operation, so we
1227         // can just issue the uncommon trap here.
1228         // Our access to the unloaded class will only be correct
1229         // after it has been loaded and initialized, which requires
1230         // a trip through the interpreter.
1231 #ifndef PRODUCT
1232         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1233 #endif
1234         uncommon_trap(Deoptimization::Reason_unloaded,
1235                       Deoptimization::Action_reinterpret,
1236                       tp->klass(), "!loaded");
1237         return top();
1238       }
1239 
1240       if (assert_null) {
1241         // See if the type is contained in NULL_PTR.
1242         // If so, then the value is already null.
1243         if (t->higher_equal(TypePtr::NULL_PTR)) {
1244           NOT_PRODUCT(explicit_null_checks_elided++);
1245           return value;           // Elided null assert quickly!
1246         }
1247       } else {
1248         // See if mixing in the NULL pointer changes type.
1249         // If so, then the NULL pointer was not allowed in the original
1250         // type.  In other words, "value" was not-null.
1251         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1252           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1253           NOT_PRODUCT(explicit_null_checks_elided++);
1254           return value;           // Elided null check quickly!
1255         }
1256       }
1257       chk = new CmpPNode( value, null() );
1258       break;
1259     }
1260 
1261     default:
1262       fatal("unexpected type: %s", type2name(type));
1263   }
1264   assert(chk != NULL, "sanity check");
1265   chk = _gvn.transform(chk);
1266 
1267   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1268   BoolNode *btst = new BoolNode( chk, btest);
1269   Node   *tst = _gvn.transform( btst );
1270 
1271   //-----------
1272   // if peephole optimizations occurred, a prior test existed.
1273   // If a prior test existed, maybe it dominates as we can avoid this test.
1274   if (tst != btst && type == T_OBJECT) {
1275     // At this point we want to scan up the CFG to see if we can
1276     // find an identical test (and so avoid this test altogether).
1277     Node *cfg = control();
1278     int depth = 0;
1279     while( depth < 16 ) {       // Limit search depth for speed
1280       if( cfg->Opcode() == Op_IfTrue &&
1281           cfg->in(0)->in(1) == tst ) {
1282         // Found prior test.  Use "cast_not_null" to construct an identical
1283         // CastPP (and hence hash to) as already exists for the prior test.
1284         // Return that casted value.
1285         if (assert_null) {
1286           replace_in_map(value, null());
1287           return null();  // do not issue the redundant test
1288         }
1289         Node *oldcontrol = control();
1290         set_control(cfg);
1291         Node *res = cast_not_null(value);
1292         set_control(oldcontrol);
1293         NOT_PRODUCT(explicit_null_checks_elided++);
1294         return res;
1295       }
1296       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1297       if (cfg == NULL)  break;  // Quit at region nodes
1298       depth++;
1299     }
1300   }
1301 
1302   //-----------
1303   // Branch to failure if null
1304   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1305   Deoptimization::DeoptReason reason;
1306   if (assert_null) {
1307     reason = Deoptimization::reason_null_assert(speculative);
1308   } else if (type == T_OBJECT) {
1309     reason = Deoptimization::reason_null_check(speculative);
1310   } else {
1311     reason = Deoptimization::Reason_div0_check;
1312   }
1313   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1314   // ciMethodData::has_trap_at will return a conservative -1 if any
1315   // must-be-null assertion has failed.  This could cause performance
1316   // problems for a method after its first do_null_assert failure.
1317   // Consider using 'Reason_class_check' instead?
1318 
1319   // To cause an implicit null check, we set the not-null probability
1320   // to the maximum (PROB_MAX).  For an explicit check the probability
1321   // is set to a smaller value.
1322   if (null_control != NULL || too_many_traps(reason)) {
1323     // probability is less likely
1324     ok_prob =  PROB_LIKELY_MAG(3);
1325   } else if (!assert_null &&
1326              (ImplicitNullCheckThreshold > 0) &&
1327              method() != NULL &&
1328              (method()->method_data()->trap_count(reason)
1329               >= (uint)ImplicitNullCheckThreshold)) {
1330     ok_prob =  PROB_LIKELY_MAG(3);
1331   }
1332 
1333   if (null_control != NULL) {
1334     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1335     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1336     set_control(      _gvn.transform( new IfTrueNode(iff)));
1337 #ifndef PRODUCT
1338     if (null_true == top()) {
1339       explicit_null_checks_elided++;
1340     }
1341 #endif
1342     (*null_control) = null_true;
1343   } else {
1344     BuildCutout unless(this, tst, ok_prob);
1345     // Check for optimizer eliding test at parse time
1346     if (stopped()) {
1347       // Failure not possible; do not bother making uncommon trap.
1348       NOT_PRODUCT(explicit_null_checks_elided++);
1349     } else if (assert_null) {
1350       uncommon_trap(reason,
1351                     Deoptimization::Action_make_not_entrant,
1352                     NULL, "assert_null");
1353     } else {
1354       replace_in_map(value, zerocon(type));
1355       builtin_throw(reason);
1356     }
1357   }
1358 
1359   // Must throw exception, fall-thru not possible?
1360   if (stopped()) {
1361     return top();               // No result
1362   }
1363 
1364   if (assert_null) {
1365     // Cast obj to null on this path.
1366     replace_in_map(value, zerocon(type));
1367     return zerocon(type);
1368   }
1369 
1370   // Cast obj to not-null on this path, if there is no null_control.
1371   // (If there is a null_control, a non-null value may come back to haunt us.)
1372   if (type == T_OBJECT) {
1373     Node* cast = cast_not_null(value, false);
1374     if (null_control == NULL || (*null_control) == top())
1375       replace_in_map(value, cast);
1376     value = cast;
1377   }
1378 
1379   return value;
1380 }
1381 
1382 
1383 //------------------------------cast_not_null----------------------------------
1384 // Cast obj to not-null on this path
1385 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1386   const Type *t = _gvn.type(obj);
1387   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1388   // Object is already not-null?
1389   if( t == t_not_null ) return obj;
1390 
1391   Node *cast = new CastPPNode(obj,t_not_null);
1392   cast->init_req(0, control());
1393   cast = _gvn.transform( cast );
1394 
1395   // Scan for instances of 'obj' in the current JVM mapping.
1396   // These instances are known to be not-null after the test.
1397   if (do_replace_in_map)
1398     replace_in_map(obj, cast);
1399 
1400   return cast;                  // Return casted value
1401 }
1402 
1403 // Sometimes in intrinsics, we implicitly know an object is not null
1404 // (there's no actual null check) so we can cast it to not null. In
1405 // the course of optimizations, the input to the cast can become null.
1406 // In that case that data path will die and we need the control path
1407 // to become dead as well to keep the graph consistent. So we have to
1408 // add a check for null for which one branch can't be taken. It uses
1409 // an Opaque4 node that will cause the check to be removed after loop
1410 // opts so the test goes away and the compiled code doesn't execute a
1411 // useless check.
1412 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1413   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1414   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1415   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1416   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1417   _gvn.set_type(iff, iff->Value(&_gvn));
1418   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1419   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1420   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1421   C->root()->add_req(halt);
1422   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1423   set_control(if_t);
1424   return cast_not_null(value, do_replace_in_map);
1425 }
1426 
1427 
1428 //--------------------------replace_in_map-------------------------------------
1429 void GraphKit::replace_in_map(Node* old, Node* neww) {
1430   if (old == neww) {
1431     return;
1432   }
1433 
1434   map()->replace_edge(old, neww);
1435 
1436   // Note: This operation potentially replaces any edge
1437   // on the map.  This includes locals, stack, and monitors
1438   // of the current (innermost) JVM state.
1439 
1440   // don't let inconsistent types from profiling escape this
1441   // method
1442 
1443   const Type* told = _gvn.type(old);
1444   const Type* tnew = _gvn.type(neww);
1445 
1446   if (!tnew->higher_equal(told)) {
1447     return;
1448   }
1449 
1450   map()->record_replaced_node(old, neww);
1451 }
1452 
1453 
1454 //=============================================================================
1455 //--------------------------------memory---------------------------------------
1456 Node* GraphKit::memory(uint alias_idx) {
1457   MergeMemNode* mem = merged_memory();
1458   Node* p = mem->memory_at(alias_idx);
1459   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1460   return p;
1461 }
1462 
1463 //-----------------------------reset_memory------------------------------------
1464 Node* GraphKit::reset_memory() {
1465   Node* mem = map()->memory();
1466   // do not use this node for any more parsing!
1467   debug_only( map()->set_memory((Node*)NULL) );
1468   return _gvn.transform( mem );
1469 }
1470 
1471 //------------------------------set_all_memory---------------------------------
1472 void GraphKit::set_all_memory(Node* newmem) {
1473   Node* mergemem = MergeMemNode::make(newmem);
1474   gvn().set_type_bottom(mergemem);
1475   map()->set_memory(mergemem);
1476 }
1477 
1478 //------------------------------set_all_memory_call----------------------------
1479 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1480   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1481   set_all_memory(newmem);
1482 }
1483 
1484 //=============================================================================
1485 //
1486 // parser factory methods for MemNodes
1487 //
1488 // These are layered on top of the factory methods in LoadNode and StoreNode,
1489 // and integrate with the parser's memory state and _gvn engine.
1490 //
1491 
1492 // factory methods in "int adr_idx"
1493 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1494                           int adr_idx,
1495                           MemNode::MemOrd mo,
1496                           LoadNode::ControlDependency control_dependency,
1497                           bool require_atomic_access,
1498                           bool unaligned,
1499                           bool mismatched) {
1500   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1501   const TypePtr* adr_type = NULL; // debug-mode-only argument
1502   debug_only(adr_type = C->get_adr_type(adr_idx));
1503   Node* mem = memory(adr_idx);
1504   Node* ld;
1505   if (require_atomic_access && bt == T_LONG) {
1506     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1507   } else if (require_atomic_access && bt == T_DOUBLE) {
1508     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1509   } else {
1510     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1511   }
1512   ld = _gvn.transform(ld);
1513   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1514     // Improve graph before escape analysis and boxing elimination.
1515     record_for_igvn(ld);
1516   }
1517   return ld;
1518 }
1519 
1520 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1521                                 int adr_idx,
1522                                 MemNode::MemOrd mo,
1523                                 bool require_atomic_access,
1524                                 bool unaligned,
1525                                 bool mismatched) {
1526   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1527   const TypePtr* adr_type = NULL;
1528   debug_only(adr_type = C->get_adr_type(adr_idx));
1529   Node *mem = memory(adr_idx);
1530   Node* st;
1531   if (require_atomic_access && bt == T_LONG) {
1532     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1533   } else if (require_atomic_access && bt == T_DOUBLE) {
1534     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1535   } else {
1536     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1537   }
1538   if (unaligned) {
1539     st->as_Store()->set_unaligned_access();
1540   }
1541   if (mismatched) {
1542     st->as_Store()->set_mismatched_access();
1543   }
1544   st = _gvn.transform(st);
1545   set_memory(st, adr_idx);
1546   // Back-to-back stores can only remove intermediate store with DU info
1547   // so push on worklist for optimizer.
1548   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1549     record_for_igvn(st);
1550 
1551   return st;
1552 }
1553 
1554 
1555 void GraphKit::pre_barrier(bool do_load,
1556                            Node* ctl,
1557                            Node* obj,
1558                            Node* adr,
1559                            uint  adr_idx,
1560                            Node* val,
1561                            const TypeOopPtr* val_type,
1562                            Node* pre_val,
1563                            BasicType bt) {
1564 
1565   BarrierSet* bs = BarrierSet::barrier_set();
1566   set_control(ctl);
1567   switch (bs->kind()) {
1568     case BarrierSet::G1BarrierSet:
1569       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1570       break;
1571 
1572     case BarrierSet::CardTableBarrierSet:
1573     case BarrierSet::Epsilon:
1574       break;
1575 
1576     default      :
1577       ShouldNotReachHere();
1578 
1579   }
1580 }
1581 
1582 bool GraphKit::can_move_pre_barrier() const {
1583   BarrierSet* bs = BarrierSet::barrier_set();
1584   switch (bs->kind()) {
1585     case BarrierSet::G1BarrierSet:
1586       return true; // Can move it if no safepoint
1587 
1588     case BarrierSet::CardTableBarrierSet:
1589     case BarrierSet::Epsilon:
1590       return true; // There is no pre-barrier
1591 
1592     default      :
1593       ShouldNotReachHere();
1594   }
1595   return false;
1596 }
1597 
1598 void GraphKit::post_barrier(Node* ctl,
1599                             Node* store,
1600                             Node* obj,
1601                             Node* adr,
1602                             uint  adr_idx,
1603                             Node* val,
1604                             BasicType bt,
1605                             bool use_precise) {
1606   BarrierSet* bs = BarrierSet::barrier_set();
1607   set_control(ctl);
1608   switch (bs->kind()) {
1609     case BarrierSet::G1BarrierSet:
1610       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1611       break;
1612 
1613     case BarrierSet::CardTableBarrierSet:
1614       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1615       break;
1616 
1617     case BarrierSet::Epsilon:
1618       break;
1619 
1620     default      :
1621       ShouldNotReachHere();
1622 
1623   }
1624 }
1625 
1626 Node* GraphKit::store_oop(Node* ctl,
1627                           Node* obj,
1628                           Node* adr,
1629                           const TypePtr* adr_type,
1630                           Node* val,
1631                           const TypeOopPtr* val_type,
1632                           BasicType bt,
1633                           bool use_precise,
1634                           MemNode::MemOrd mo,
1635                           bool mismatched) {
1636   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1637   // could be delayed during Parse (for example, in adjust_map_after_if()).
1638   // Execute transformation here to avoid barrier generation in such case.
1639   if (_gvn.type(val) == TypePtr::NULL_PTR)
1640     val = _gvn.makecon(TypePtr::NULL_PTR);
1641 
1642   set_control(ctl);
1643   if (stopped()) return top(); // Dead path ?
1644 
1645   assert(bt == T_OBJECT, "sanity");
1646   assert(val != NULL, "not dead path");
1647   uint adr_idx = C->get_alias_index(adr_type);
1648   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1649 
1650   pre_barrier(true /* do_load */,
1651               control(), obj, adr, adr_idx, val, val_type,
1652               NULL /* pre_val */,
1653               bt);
1654 
1655   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1656   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1657   return store;
1658 }
1659 
1660 // Could be an array or object we don't know at compile time (unsafe ref.)
1661 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1662                              Node* obj,   // containing obj
1663                              Node* adr,  // actual adress to store val at
1664                              const TypePtr* adr_type,
1665                              Node* val,
1666                              BasicType bt,
1667                              MemNode::MemOrd mo,
1668                              bool mismatched) {
1669   Compile::AliasType* at = C->alias_type(adr_type);
1670   const TypeOopPtr* val_type = NULL;
1671   if (adr_type->isa_instptr()) {
1672     if (at->field() != NULL) {
1673       // known field.  This code is a copy of the do_put_xxx logic.
1674       ciField* field = at->field();
1675       if (!field->type()->is_loaded()) {
1676         val_type = TypeInstPtr::BOTTOM;
1677       } else {
1678         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1679       }
1680     }
1681   } else if (adr_type->isa_aryptr()) {
1682     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1683   }
1684   if (val_type == NULL) {
1685     val_type = TypeInstPtr::BOTTOM;
1686   }
1687   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1688 }
1689 
1690 
1691 //-------------------------array_element_address-------------------------
1692 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1693                                       const TypeInt* sizetype, Node* ctrl) {
1694   uint shift  = exact_log2(type2aelembytes(elembt));
1695   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1696 
1697   // short-circuit a common case (saves lots of confusing waste motion)
1698   jint idx_con = find_int_con(idx, -1);
1699   if (idx_con >= 0) {
1700     intptr_t offset = header + ((intptr_t)idx_con << shift);
1701     return basic_plus_adr(ary, offset);
1702   }
1703 
1704   // must be correct type for alignment purposes
1705   Node* base  = basic_plus_adr(ary, header);
1706   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1707   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1708   return basic_plus_adr(ary, base, scale);
1709 }
1710 
1711 //-------------------------load_array_element-------------------------
1712 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1713   const Type* elemtype = arytype->elem();
1714   BasicType elembt = elemtype->array_element_basic_type();
1715   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1716   if (elembt == T_NARROWOOP) {
1717     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1718   }
1719   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1720   return ld;
1721 }
1722 
1723 //-------------------------set_arguments_for_java_call-------------------------
1724 // Arguments (pre-popped from the stack) are taken from the JVMS.
1725 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1726   // Add the call arguments:
1727   uint nargs = call->method()->arg_size();
1728   for (uint i = 0; i < nargs; i++) {
1729     Node* arg = argument(i);
1730     call->init_req(i + TypeFunc::Parms, arg);
1731   }
1732 }
1733 
1734 //---------------------------set_edges_for_java_call---------------------------
1735 // Connect a newly created call into the current JVMS.
1736 // A return value node (if any) is returned from set_edges_for_java_call.
1737 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1738 
1739   // Add the predefined inputs:
1740   call->init_req( TypeFunc::Control, control() );
1741   call->init_req( TypeFunc::I_O    , i_o() );
1742   call->init_req( TypeFunc::Memory , reset_memory() );
1743   call->init_req( TypeFunc::FramePtr, frameptr() );
1744   call->init_req( TypeFunc::ReturnAdr, top() );
1745 
1746   add_safepoint_edges(call, must_throw);
1747 
1748   Node* xcall = _gvn.transform(call);
1749 
1750   if (xcall == top()) {
1751     set_control(top());
1752     return;
1753   }
1754   assert(xcall == call, "call identity is stable");
1755 
1756   // Re-use the current map to produce the result.
1757 
1758   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1759   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1760   set_all_memory_call(xcall, separate_io_proj);
1761 
1762   //return xcall;   // no need, caller already has it
1763 }
1764 
1765 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1766   if (stopped())  return top();  // maybe the call folded up?
1767 
1768   // Capture the return value, if any.
1769   Node* ret;
1770   if (call->method() == NULL ||
1771       call->method()->return_type()->basic_type() == T_VOID)
1772         ret = top();
1773   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1774 
1775   // Note:  Since any out-of-line call can produce an exception,
1776   // we always insert an I_O projection from the call into the result.
1777 
1778   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1779 
1780   if (separate_io_proj) {
1781     // The caller requested separate projections be used by the fall
1782     // through and exceptional paths, so replace the projections for
1783     // the fall through path.
1784     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1785     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1786   }
1787   return ret;
1788 }
1789 
1790 //--------------------set_predefined_input_for_runtime_call--------------------
1791 // Reading and setting the memory state is way conservative here.
1792 // The real problem is that I am not doing real Type analysis on memory,
1793 // so I cannot distinguish card mark stores from other stores.  Across a GC
1794 // point the Store Barrier and the card mark memory has to agree.  I cannot
1795 // have a card mark store and its barrier split across the GC point from
1796 // either above or below.  Here I get that to happen by reading ALL of memory.
1797 // A better answer would be to separate out card marks from other memory.
1798 // For now, return the input memory state, so that it can be reused
1799 // after the call, if this call has restricted memory effects.
1800 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1801   // Set fixed predefined input arguments
1802   Node* memory = reset_memory();
1803   call->init_req( TypeFunc::Control,   control()  );
1804   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1805   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1806   call->init_req( TypeFunc::FramePtr,  frameptr() );
1807   call->init_req( TypeFunc::ReturnAdr, top()      );
1808   return memory;
1809 }
1810 
1811 //-------------------set_predefined_output_for_runtime_call--------------------
1812 // Set control and memory (not i_o) from the call.
1813 // If keep_mem is not NULL, use it for the output state,
1814 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1815 // If hook_mem is NULL, this call produces no memory effects at all.
1816 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1817 // then only that memory slice is taken from the call.
1818 // In the last case, we must put an appropriate memory barrier before
1819 // the call, so as to create the correct anti-dependencies on loads
1820 // preceding the call.
1821 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1822                                                       Node* keep_mem,
1823                                                       const TypePtr* hook_mem) {
1824   // no i/o
1825   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1826   if (keep_mem) {
1827     // First clone the existing memory state
1828     set_all_memory(keep_mem);
1829     if (hook_mem != NULL) {
1830       // Make memory for the call
1831       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1832       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1833       // We also use hook_mem to extract specific effects from arraycopy stubs.
1834       set_memory(mem, hook_mem);
1835     }
1836     // ...else the call has NO memory effects.
1837 
1838     // Make sure the call advertises its memory effects precisely.
1839     // This lets us build accurate anti-dependences in gcm.cpp.
1840     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1841            "call node must be constructed correctly");
1842   } else {
1843     assert(hook_mem == NULL, "");
1844     // This is not a "slow path" call; all memory comes from the call.
1845     set_all_memory_call(call);
1846   }
1847 }
1848 
1849 
1850 // Replace the call with the current state of the kit.
1851 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1852   JVMState* ejvms = NULL;
1853   if (has_exceptions()) {
1854     ejvms = transfer_exceptions_into_jvms();
1855   }
1856 
1857   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1858   ReplacedNodes replaced_nodes_exception;
1859   Node* ex_ctl = top();
1860 
1861   SafePointNode* final_state = stop();
1862 
1863   // Find all the needed outputs of this call
1864   CallProjections callprojs;
1865   call->extract_projections(&callprojs, true);
1866 
1867   Node* init_mem = call->in(TypeFunc::Memory);
1868   Node* final_mem = final_state->in(TypeFunc::Memory);
1869   Node* final_ctl = final_state->in(TypeFunc::Control);
1870   Node* final_io = final_state->in(TypeFunc::I_O);
1871 
1872   // Replace all the old call edges with the edges from the inlining result
1873   if (callprojs.fallthrough_catchproj != NULL) {
1874     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1875   }
1876   if (callprojs.fallthrough_memproj != NULL) {
1877     if (final_mem->is_MergeMem()) {
1878       // Parser's exits MergeMem was not transformed but may be optimized
1879       final_mem = _gvn.transform(final_mem);
1880     }
1881     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1882   }
1883   if (callprojs.fallthrough_ioproj != NULL) {
1884     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1885   }
1886 
1887   // Replace the result with the new result if it exists and is used
1888   if (callprojs.resproj != NULL && result != NULL) {
1889     C->gvn_replace_by(callprojs.resproj, result);
1890   }
1891 
1892   if (ejvms == NULL) {
1893     // No exception edges to simply kill off those paths
1894     if (callprojs.catchall_catchproj != NULL) {
1895       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1896     }
1897     if (callprojs.catchall_memproj != NULL) {
1898       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1899     }
1900     if (callprojs.catchall_ioproj != NULL) {
1901       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1902     }
1903     // Replace the old exception object with top
1904     if (callprojs.exobj != NULL) {
1905       C->gvn_replace_by(callprojs.exobj, C->top());
1906     }
1907   } else {
1908     GraphKit ekit(ejvms);
1909 
1910     // Load my combined exception state into the kit, with all phis transformed:
1911     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1912     replaced_nodes_exception = ex_map->replaced_nodes();
1913 
1914     Node* ex_oop = ekit.use_exception_state(ex_map);
1915 
1916     if (callprojs.catchall_catchproj != NULL) {
1917       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1918       ex_ctl = ekit.control();
1919     }
1920     if (callprojs.catchall_memproj != NULL) {
1921       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1922     }
1923     if (callprojs.catchall_ioproj != NULL) {
1924       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1925     }
1926 
1927     // Replace the old exception object with the newly created one
1928     if (callprojs.exobj != NULL) {
1929       C->gvn_replace_by(callprojs.exobj, ex_oop);
1930     }
1931   }
1932 
1933   // Disconnect the call from the graph
1934   call->disconnect_inputs(NULL, C);
1935   C->gvn_replace_by(call, C->top());
1936 
1937   // Clean up any MergeMems that feed other MergeMems since the
1938   // optimizer doesn't like that.
1939   if (final_mem->is_MergeMem()) {
1940     Node_List wl;
1941     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1942       Node* m = i.get();
1943       if (m->is_MergeMem() && !wl.contains(m)) {
1944         wl.push(m);
1945       }
1946     }
1947     while (wl.size()  > 0) {
1948       _gvn.transform(wl.pop());
1949     }
1950   }
1951 
1952   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1953     replaced_nodes.apply(C, final_ctl);
1954   }
1955   if (!ex_ctl->is_top() && do_replaced_nodes) {
1956     replaced_nodes_exception.apply(C, ex_ctl);
1957   }
1958 }
1959 
1960 
1961 //------------------------------increment_counter------------------------------
1962 // for statistics: increment a VM counter by 1
1963 
1964 void GraphKit::increment_counter(address counter_addr) {
1965   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1966   increment_counter(adr1);
1967 }
1968 
1969 void GraphKit::increment_counter(Node* counter_addr) {
1970   int adr_type = Compile::AliasIdxRaw;
1971   Node* ctrl = control();
1972   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1973   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1974   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1975 }
1976 
1977 
1978 //------------------------------uncommon_trap----------------------------------
1979 // Bail out to the interpreter in mid-method.  Implemented by calling the
1980 // uncommon_trap blob.  This helper function inserts a runtime call with the
1981 // right debug info.
1982 void GraphKit::uncommon_trap(int trap_request,
1983                              ciKlass* klass, const char* comment,
1984                              bool must_throw,
1985                              bool keep_exact_action) {
1986   if (failing())  stop();
1987   if (stopped())  return; // trap reachable?
1988 
1989   // Note:  If ProfileTraps is true, and if a deopt. actually
1990   // occurs here, the runtime will make sure an MDO exists.  There is
1991   // no need to call method()->ensure_method_data() at this point.
1992 
1993   // Set the stack pointer to the right value for reexecution:
1994   set_sp(reexecute_sp());
1995 
1996 #ifdef ASSERT
1997   if (!must_throw) {
1998     // Make sure the stack has at least enough depth to execute
1999     // the current bytecode.
2000     int inputs, ignored_depth;
2001     if (compute_stack_effects(inputs, ignored_depth)) {
2002       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2003              Bytecodes::name(java_bc()), sp(), inputs);
2004     }
2005   }
2006 #endif
2007 
2008   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2009   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2010 
2011   switch (action) {
2012   case Deoptimization::Action_maybe_recompile:
2013   case Deoptimization::Action_reinterpret:
2014     // Temporary fix for 6529811 to allow virtual calls to be sure they
2015     // get the chance to go from mono->bi->mega
2016     if (!keep_exact_action &&
2017         Deoptimization::trap_request_index(trap_request) < 0 &&
2018         too_many_recompiles(reason)) {
2019       // This BCI is causing too many recompilations.
2020       if (C->log() != NULL) {
2021         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2022                 Deoptimization::trap_reason_name(reason),
2023                 Deoptimization::trap_action_name(action));
2024       }
2025       action = Deoptimization::Action_none;
2026       trap_request = Deoptimization::make_trap_request(reason, action);
2027     } else {
2028       C->set_trap_can_recompile(true);
2029     }
2030     break;
2031   case Deoptimization::Action_make_not_entrant:
2032     C->set_trap_can_recompile(true);
2033     break;
2034   case Deoptimization::Action_none:
2035   case Deoptimization::Action_make_not_compilable:
2036     break;
2037   default:
2038 #ifdef ASSERT
2039     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2040 #endif
2041     break;
2042   }
2043 
2044   if (TraceOptoParse) {
2045     char buf[100];
2046     tty->print_cr("Uncommon trap %s at bci:%d",
2047                   Deoptimization::format_trap_request(buf, sizeof(buf),
2048                                                       trap_request), bci());
2049   }
2050 
2051   CompileLog* log = C->log();
2052   if (log != NULL) {
2053     int kid = (klass == NULL)? -1: log->identify(klass);
2054     log->begin_elem("uncommon_trap bci='%d'", bci());
2055     char buf[100];
2056     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2057                                                           trap_request));
2058     if (kid >= 0)         log->print(" klass='%d'", kid);
2059     if (comment != NULL)  log->print(" comment='%s'", comment);
2060     log->end_elem();
2061   }
2062 
2063   // Make sure any guarding test views this path as very unlikely
2064   Node *i0 = control()->in(0);
2065   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2066     IfNode *iff = i0->as_If();
2067     float f = iff->_prob;   // Get prob
2068     if (control()->Opcode() == Op_IfTrue) {
2069       if (f > PROB_UNLIKELY_MAG(4))
2070         iff->_prob = PROB_MIN;
2071     } else {
2072       if (f < PROB_LIKELY_MAG(4))
2073         iff->_prob = PROB_MAX;
2074     }
2075   }
2076 
2077   // Clear out dead values from the debug info.
2078   kill_dead_locals();
2079 
2080   // Now insert the uncommon trap subroutine call
2081   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2082   const TypePtr* no_memory_effects = NULL;
2083   // Pass the index of the class to be loaded
2084   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2085                                  (must_throw ? RC_MUST_THROW : 0),
2086                                  OptoRuntime::uncommon_trap_Type(),
2087                                  call_addr, "uncommon_trap", no_memory_effects,
2088                                  intcon(trap_request));
2089   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2090          "must extract request correctly from the graph");
2091   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2092 
2093   call->set_req(TypeFunc::ReturnAdr, returnadr());
2094   // The debug info is the only real input to this call.
2095 
2096   // Halt-and-catch fire here.  The above call should never return!
2097   HaltNode* halt = new HaltNode(control(), frameptr());
2098   _gvn.set_type_bottom(halt);
2099   root()->add_req(halt);
2100 
2101   stop_and_kill_map();
2102 }
2103 
2104 
2105 //--------------------------just_allocated_object------------------------------
2106 // Report the object that was just allocated.
2107 // It must be the case that there are no intervening safepoints.
2108 // We use this to determine if an object is so "fresh" that
2109 // it does not require card marks.
2110 Node* GraphKit::just_allocated_object(Node* current_control) {
2111   if (C->recent_alloc_ctl() == current_control)
2112     return C->recent_alloc_obj();
2113   return NULL;
2114 }
2115 
2116 
2117 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2118   // (Note:  TypeFunc::make has a cache that makes this fast.)
2119   const TypeFunc* tf    = TypeFunc::make(dest_method);
2120   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2121   for (int j = 0; j < nargs; j++) {
2122     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2123     if( targ->basic_type() == T_DOUBLE ) {
2124       // If any parameters are doubles, they must be rounded before
2125       // the call, dstore_rounding does gvn.transform
2126       Node *arg = argument(j);
2127       arg = dstore_rounding(arg);
2128       set_argument(j, arg);
2129     }
2130   }
2131 }
2132 
2133 /**
2134  * Record profiling data exact_kls for Node n with the type system so
2135  * that it can propagate it (speculation)
2136  *
2137  * @param n          node that the type applies to
2138  * @param exact_kls  type from profiling
2139  * @param maybe_null did profiling see null?
2140  *
2141  * @return           node with improved type
2142  */
2143 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2144   const Type* current_type = _gvn.type(n);
2145   assert(UseTypeSpeculation, "type speculation must be on");
2146 
2147   const TypePtr* speculative = current_type->speculative();
2148 
2149   // Should the klass from the profile be recorded in the speculative type?
2150   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2151     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2152     const TypeOopPtr* xtype = tklass->as_instance_type();
2153     assert(xtype->klass_is_exact(), "Should be exact");
2154     // Any reason to believe n is not null (from this profiling or a previous one)?
2155     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2156     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2157     // record the new speculative type's depth
2158     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2159     speculative = speculative->with_inline_depth(jvms()->depth());
2160   } else if (current_type->would_improve_ptr(ptr_kind)) {
2161     // Profiling report that null was never seen so we can change the
2162     // speculative type to non null ptr.
2163     if (ptr_kind == ProfileAlwaysNull) {
2164       speculative = TypePtr::NULL_PTR;
2165     } else {
2166       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2167       const TypePtr* ptr = TypePtr::NOTNULL;
2168       if (speculative != NULL) {
2169         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2170       } else {
2171         speculative = ptr;
2172       }
2173     }
2174   }
2175 
2176   if (speculative != current_type->speculative()) {
2177     // Build a type with a speculative type (what we think we know
2178     // about the type but will need a guard when we use it)
2179     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2180     // We're changing the type, we need a new CheckCast node to carry
2181     // the new type. The new type depends on the control: what
2182     // profiling tells us is only valid from here as far as we can
2183     // tell.
2184     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2185     cast = _gvn.transform(cast);
2186     replace_in_map(n, cast);
2187     n = cast;
2188   }
2189 
2190   return n;
2191 }
2192 
2193 /**
2194  * Record profiling data from receiver profiling at an invoke with the
2195  * type system so that it can propagate it (speculation)
2196  *
2197  * @param n  receiver node
2198  *
2199  * @return   node with improved type
2200  */
2201 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2202   if (!UseTypeSpeculation) {
2203     return n;
2204   }
2205   ciKlass* exact_kls = profile_has_unique_klass();
2206   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2207   if ((java_bc() == Bytecodes::_checkcast ||
2208        java_bc() == Bytecodes::_instanceof ||
2209        java_bc() == Bytecodes::_aastore) &&
2210       method()->method_data()->is_mature()) {
2211     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2212     if (data != NULL) {
2213       if (!data->as_BitData()->null_seen()) {
2214         ptr_kind = ProfileNeverNull;
2215       } else {
2216         assert(data->is_ReceiverTypeData(), "bad profile data type");
2217         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2218         uint i = 0;
2219         for (; i < call->row_limit(); i++) {
2220           ciKlass* receiver = call->receiver(i);
2221           if (receiver != NULL) {
2222             break;
2223           }
2224         }
2225         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2226       }
2227     }
2228   }
2229   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2230 }
2231 
2232 /**
2233  * Record profiling data from argument profiling at an invoke with the
2234  * type system so that it can propagate it (speculation)
2235  *
2236  * @param dest_method  target method for the call
2237  * @param bc           what invoke bytecode is this?
2238  */
2239 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2240   if (!UseTypeSpeculation) {
2241     return;
2242   }
2243   const TypeFunc* tf    = TypeFunc::make(dest_method);
2244   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2245   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2246   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2247     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2248     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2249       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2250       ciKlass* better_type = NULL;
2251       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2252         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2253       }
2254       i++;
2255     }
2256   }
2257 }
2258 
2259 /**
2260  * Record profiling data from parameter profiling at an invoke with
2261  * the type system so that it can propagate it (speculation)
2262  */
2263 void GraphKit::record_profiled_parameters_for_speculation() {
2264   if (!UseTypeSpeculation) {
2265     return;
2266   }
2267   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2268     if (_gvn.type(local(i))->isa_oopptr()) {
2269       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2270       ciKlass* better_type = NULL;
2271       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2272         record_profile_for_speculation(local(i), better_type, ptr_kind);
2273       }
2274       j++;
2275     }
2276   }
2277 }
2278 
2279 /**
2280  * Record profiling data from return value profiling at an invoke with
2281  * the type system so that it can propagate it (speculation)
2282  */
2283 void GraphKit::record_profiled_return_for_speculation() {
2284   if (!UseTypeSpeculation) {
2285     return;
2286   }
2287   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2288   ciKlass* better_type = NULL;
2289   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2290     // If profiling reports a single type for the return value,
2291     // feed it to the type system so it can propagate it as a
2292     // speculative type
2293     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2294   }
2295 }
2296 
2297 void GraphKit::round_double_result(ciMethod* dest_method) {
2298   // A non-strict method may return a double value which has an extended
2299   // exponent, but this must not be visible in a caller which is 'strict'
2300   // If a strict caller invokes a non-strict callee, round a double result
2301 
2302   BasicType result_type = dest_method->return_type()->basic_type();
2303   assert( method() != NULL, "must have caller context");
2304   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2305     // Destination method's return value is on top of stack
2306     // dstore_rounding() does gvn.transform
2307     Node *result = pop_pair();
2308     result = dstore_rounding(result);
2309     push_pair(result);
2310   }
2311 }
2312 
2313 // rounding for strict float precision conformance
2314 Node* GraphKit::precision_rounding(Node* n) {
2315   return UseStrictFP && _method->flags().is_strict()
2316     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2317     ? _gvn.transform( new RoundFloatNode(0, n) )
2318     : n;
2319 }
2320 
2321 // rounding for strict double precision conformance
2322 Node* GraphKit::dprecision_rounding(Node *n) {
2323   return UseStrictFP && _method->flags().is_strict()
2324     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2325     ? _gvn.transform( new RoundDoubleNode(0, n) )
2326     : n;
2327 }
2328 
2329 // rounding for non-strict double stores
2330 Node* GraphKit::dstore_rounding(Node* n) {
2331   return Matcher::strict_fp_requires_explicit_rounding
2332     && UseSSE <= 1
2333     ? _gvn.transform( new RoundDoubleNode(0, n) )
2334     : n;
2335 }
2336 
2337 //=============================================================================
2338 // Generate a fast path/slow path idiom.  Graph looks like:
2339 // [foo] indicates that 'foo' is a parameter
2340 //
2341 //              [in]     NULL
2342 //                 \    /
2343 //                  CmpP
2344 //                  Bool ne
2345 //                   If
2346 //                  /  \
2347 //              True    False-<2>
2348 //              / |
2349 //             /  cast_not_null
2350 //           Load  |    |   ^
2351 //        [fast_test]   |   |
2352 // gvn to   opt_test    |   |
2353 //          /    \      |  <1>
2354 //      True     False  |
2355 //        |         \\  |
2356 //   [slow_call]     \[fast_result]
2357 //    Ctl   Val       \      \
2358 //     |               \      \
2359 //    Catch       <1>   \      \
2360 //   /    \        ^     \      \
2361 //  Ex    No_Ex    |      \      \
2362 //  |       \   \  |       \ <2>  \
2363 //  ...      \  [slow_res] |  |    \   [null_result]
2364 //            \         \--+--+---  |  |
2365 //             \           | /    \ | /
2366 //              --------Region     Phi
2367 //
2368 //=============================================================================
2369 // Code is structured as a series of driver functions all called 'do_XXX' that
2370 // call a set of helper functions.  Helper functions first, then drivers.
2371 
2372 //------------------------------null_check_oop---------------------------------
2373 // Null check oop.  Set null-path control into Region in slot 3.
2374 // Make a cast-not-nullness use the other not-null control.  Return cast.
2375 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2376                                bool never_see_null,
2377                                bool safe_for_replace,
2378                                bool speculative) {
2379   // Initial NULL check taken path
2380   (*null_control) = top();
2381   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2382 
2383   // Generate uncommon_trap:
2384   if (never_see_null && (*null_control) != top()) {
2385     // If we see an unexpected null at a check-cast we record it and force a
2386     // recompile; the offending check-cast will be compiled to handle NULLs.
2387     // If we see more than one offending BCI, then all checkcasts in the
2388     // method will be compiled to handle NULLs.
2389     PreserveJVMState pjvms(this);
2390     set_control(*null_control);
2391     replace_in_map(value, null());
2392     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2393     uncommon_trap(reason,
2394                   Deoptimization::Action_make_not_entrant);
2395     (*null_control) = top();    // NULL path is dead
2396   }
2397   if ((*null_control) == top() && safe_for_replace) {
2398     replace_in_map(value, cast);
2399   }
2400 
2401   // Cast away null-ness on the result
2402   return cast;
2403 }
2404 
2405 //------------------------------opt_iff----------------------------------------
2406 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2407 // Return slow-path control.
2408 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2409   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2410 
2411   // Fast path taken; set region slot 2
2412   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2413   region->init_req(2,fast_taken); // Capture fast-control
2414 
2415   // Fast path not-taken, i.e. slow path
2416   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2417   return slow_taken;
2418 }
2419 
2420 //-----------------------------make_runtime_call-------------------------------
2421 Node* GraphKit::make_runtime_call(int flags,
2422                                   const TypeFunc* call_type, address call_addr,
2423                                   const char* call_name,
2424                                   const TypePtr* adr_type,
2425                                   // The following parms are all optional.
2426                                   // The first NULL ends the list.
2427                                   Node* parm0, Node* parm1,
2428                                   Node* parm2, Node* parm3,
2429                                   Node* parm4, Node* parm5,
2430                                   Node* parm6, Node* parm7) {
2431   // Slow-path call
2432   bool is_leaf = !(flags & RC_NO_LEAF);
2433   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2434   if (call_name == NULL) {
2435     assert(!is_leaf, "must supply name for leaf");
2436     call_name = OptoRuntime::stub_name(call_addr);
2437   }
2438   CallNode* call;
2439   if (!is_leaf) {
2440     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2441                                            bci(), adr_type);
2442   } else if (flags & RC_NO_FP) {
2443     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2444   } else {
2445     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2446   }
2447 
2448   // The following is similar to set_edges_for_java_call,
2449   // except that the memory effects of the call are restricted to AliasIdxRaw.
2450 
2451   // Slow path call has no side-effects, uses few values
2452   bool wide_in  = !(flags & RC_NARROW_MEM);
2453   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2454 
2455   Node* prev_mem = NULL;
2456   if (wide_in) {
2457     prev_mem = set_predefined_input_for_runtime_call(call);
2458   } else {
2459     assert(!wide_out, "narrow in => narrow out");
2460     Node* narrow_mem = memory(adr_type);
2461     prev_mem = reset_memory();
2462     map()->set_memory(narrow_mem);
2463     set_predefined_input_for_runtime_call(call);
2464   }
2465 
2466   // Hook each parm in order.  Stop looking at the first NULL.
2467   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2468   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2469   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2470   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2471   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2472   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2473   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2474   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2475     /* close each nested if ===> */  } } } } } } } }
2476   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2477 
2478   if (!is_leaf) {
2479     // Non-leaves can block and take safepoints:
2480     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2481   }
2482   // Non-leaves can throw exceptions:
2483   if (has_io) {
2484     call->set_req(TypeFunc::I_O, i_o());
2485   }
2486 
2487   if (flags & RC_UNCOMMON) {
2488     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2489     // (An "if" probability corresponds roughly to an unconditional count.
2490     // Sort of.)
2491     call->set_cnt(PROB_UNLIKELY_MAG(4));
2492   }
2493 
2494   Node* c = _gvn.transform(call);
2495   assert(c == call, "cannot disappear");
2496 
2497   if (wide_out) {
2498     // Slow path call has full side-effects.
2499     set_predefined_output_for_runtime_call(call);
2500   } else {
2501     // Slow path call has few side-effects, and/or sets few values.
2502     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2503   }
2504 
2505   if (has_io) {
2506     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2507   }
2508   return call;
2509 
2510 }
2511 
2512 //------------------------------merge_memory-----------------------------------
2513 // Merge memory from one path into the current memory state.
2514 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2515   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2516     Node* old_slice = mms.force_memory();
2517     Node* new_slice = mms.memory2();
2518     if (old_slice != new_slice) {
2519       PhiNode* phi;
2520       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2521         if (mms.is_empty()) {
2522           // clone base memory Phi's inputs for this memory slice
2523           assert(old_slice == mms.base_memory(), "sanity");
2524           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2525           _gvn.set_type(phi, Type::MEMORY);
2526           for (uint i = 1; i < phi->req(); i++) {
2527             phi->init_req(i, old_slice->in(i));
2528           }
2529         } else {
2530           phi = old_slice->as_Phi(); // Phi was generated already
2531         }
2532       } else {
2533         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2534         _gvn.set_type(phi, Type::MEMORY);
2535       }
2536       phi->set_req(new_path, new_slice);
2537       mms.set_memory(phi);
2538     }
2539   }
2540 }
2541 
2542 //------------------------------make_slow_call_ex------------------------------
2543 // Make the exception handler hookups for the slow call
2544 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2545   if (stopped())  return;
2546 
2547   // Make a catch node with just two handlers:  fall-through and catch-all
2548   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2549   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2550   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2551   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2552 
2553   { PreserveJVMState pjvms(this);
2554     set_control(excp);
2555     set_i_o(i_o);
2556 
2557     if (excp != top()) {
2558       if (deoptimize) {
2559         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2560         uncommon_trap(Deoptimization::Reason_unhandled,
2561                       Deoptimization::Action_none);
2562       } else {
2563         // Create an exception state also.
2564         // Use an exact type if the caller has specified a specific exception.
2565         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2566         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2567         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2568       }
2569     }
2570   }
2571 
2572   // Get the no-exception control from the CatchNode.
2573   set_control(norm);
2574 }
2575 
2576 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2577   Node* cmp = NULL;
2578   switch(bt) {
2579   case T_INT: cmp = new CmpINode(in1, in2); break;
2580   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2581   default: fatal("unexpected comparison type %s", type2name(bt));
2582   }
2583   gvn->transform(cmp);
2584   Node* bol = gvn->transform(new BoolNode(cmp, test));
2585   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2586   gvn->transform(iff);
2587   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2588   return iff;
2589 }
2590 
2591 
2592 //-------------------------------gen_subtype_check-----------------------------
2593 // Generate a subtyping check.  Takes as input the subtype and supertype.
2594 // Returns 2 values: sets the default control() to the true path and returns
2595 // the false path.  Only reads invariant memory; sets no (visible) memory.
2596 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2597 // but that's not exposed to the optimizer.  This call also doesn't take in an
2598 // Object; if you wish to check an Object you need to load the Object's class
2599 // prior to coming here.
2600 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2601   Compile* C = gvn->C;
2602 
2603   if ((*ctrl)->is_top()) {
2604     return C->top();
2605   }
2606 
2607   // Fast check for identical types, perhaps identical constants.
2608   // The types can even be identical non-constants, in cases
2609   // involving Array.newInstance, Object.clone, etc.
2610   if (subklass == superklass)
2611     return C->top();             // false path is dead; no test needed.
2612 
2613   if (gvn->type(superklass)->singleton()) {
2614     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2615     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2616 
2617     // In the common case of an exact superklass, try to fold up the
2618     // test before generating code.  You may ask, why not just generate
2619     // the code and then let it fold up?  The answer is that the generated
2620     // code will necessarily include null checks, which do not always
2621     // completely fold away.  If they are also needless, then they turn
2622     // into a performance loss.  Example:
2623     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2624     // Here, the type of 'fa' is often exact, so the store check
2625     // of fa[1]=x will fold up, without testing the nullness of x.
2626     switch (C->static_subtype_check(superk, subk)) {
2627     case Compile::SSC_always_false:
2628       {
2629         Node* always_fail = *ctrl;
2630         *ctrl = gvn->C->top();
2631         return always_fail;
2632       }
2633     case Compile::SSC_always_true:
2634       return C->top();
2635     case Compile::SSC_easy_test:
2636       {
2637         // Just do a direct pointer compare and be done.
2638         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2639         *ctrl = gvn->transform(new IfTrueNode(iff));
2640         return gvn->transform(new IfFalseNode(iff));
2641       }
2642     case Compile::SSC_full_test:
2643       break;
2644     default:
2645       ShouldNotReachHere();
2646     }
2647   }
2648 
2649   // %%% Possible further optimization:  Even if the superklass is not exact,
2650   // if the subklass is the unique subtype of the superklass, the check
2651   // will always succeed.  We could leave a dependency behind to ensure this.
2652 
2653   // First load the super-klass's check-offset
2654   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2655   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2656   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2657   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2658   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2659 
2660   // Load from the sub-klass's super-class display list, or a 1-word cache of
2661   // the secondary superclass list, or a failing value with a sentinel offset
2662   // if the super-klass is an interface or exceptionally deep in the Java
2663   // hierarchy and we have to scan the secondary superclass list the hard way.
2664   // Worst-case type is a little odd: NULL is allowed as a result (usually
2665   // klass loads can never produce a NULL).
2666   Node *chk_off_X = chk_off;
2667 #ifdef _LP64
2668   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2669 #endif
2670   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2671   // For some types like interfaces the following loadKlass is from a 1-word
2672   // cache which is mutable so can't use immutable memory.  Other
2673   // types load from the super-class display table which is immutable.
2674   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2675   Node *kmem = might_be_cache ? m : C->immutable_memory();
2676   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2677 
2678   // Compile speed common case: ARE a subtype and we canNOT fail
2679   if( superklass == nkls )
2680     return C->top();             // false path is dead; no test needed.
2681 
2682   // See if we get an immediate positive hit.  Happens roughly 83% of the
2683   // time.  Test to see if the value loaded just previously from the subklass
2684   // is exactly the superklass.
2685   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2686   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2687   *ctrl = gvn->transform(new IfFalseNode(iff1));
2688 
2689   // Compile speed common case: Check for being deterministic right now.  If
2690   // chk_off is a constant and not equal to cacheoff then we are NOT a
2691   // subklass.  In this case we need exactly the 1 test above and we can
2692   // return those results immediately.
2693   if (!might_be_cache) {
2694     Node* not_subtype_ctrl = *ctrl;
2695     *ctrl = iftrue1; // We need exactly the 1 test above
2696     return not_subtype_ctrl;
2697   }
2698 
2699   // Gather the various success & failures here
2700   RegionNode *r_ok_subtype = new RegionNode(4);
2701   gvn->record_for_igvn(r_ok_subtype);
2702   RegionNode *r_not_subtype = new RegionNode(3);
2703   gvn->record_for_igvn(r_not_subtype);
2704 
2705   r_ok_subtype->init_req(1, iftrue1);
2706 
2707   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2708   // is roughly 63% of the remaining cases).  Test to see if the loaded
2709   // check-offset points into the subklass display list or the 1-element
2710   // cache.  If it points to the display (and NOT the cache) and the display
2711   // missed then it's not a subtype.
2712   Node *cacheoff = gvn->intcon(cacheoff_con);
2713   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2714   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2715   *ctrl = gvn->transform(new IfFalseNode(iff2));
2716 
2717   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2718   // No performance impact (too rare) but allows sharing of secondary arrays
2719   // which has some footprint reduction.
2720   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2721   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2722   *ctrl = gvn->transform(new IfFalseNode(iff3));
2723 
2724   // -- Roads not taken here: --
2725   // We could also have chosen to perform the self-check at the beginning
2726   // of this code sequence, as the assembler does.  This would not pay off
2727   // the same way, since the optimizer, unlike the assembler, can perform
2728   // static type analysis to fold away many successful self-checks.
2729   // Non-foldable self checks work better here in second position, because
2730   // the initial primary superclass check subsumes a self-check for most
2731   // types.  An exception would be a secondary type like array-of-interface,
2732   // which does not appear in its own primary supertype display.
2733   // Finally, we could have chosen to move the self-check into the
2734   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2735   // dependent manner.  But it is worthwhile to have the check here,
2736   // where it can be perhaps be optimized.  The cost in code space is
2737   // small (register compare, branch).
2738 
2739   // Now do a linear scan of the secondary super-klass array.  Again, no real
2740   // performance impact (too rare) but it's gotta be done.
2741   // Since the code is rarely used, there is no penalty for moving it
2742   // out of line, and it can only improve I-cache density.
2743   // The decision to inline or out-of-line this final check is platform
2744   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2745   Node* psc = gvn->transform(
2746     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2747 
2748   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2749   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2750   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2751 
2752   // Return false path; set default control to true path.
2753   *ctrl = gvn->transform(r_ok_subtype);
2754   return gvn->transform(r_not_subtype);
2755 }
2756 
2757 // Profile-driven exact type check:
2758 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2759                                     float prob,
2760                                     Node* *casted_receiver) {
2761   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2762   Node* recv_klass = load_object_klass(receiver);
2763   Node* want_klass = makecon(tklass);
2764   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2765   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2766   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2767   set_control( _gvn.transform( new IfTrueNode (iff) ));
2768   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2769 
2770   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2771   assert(recv_xtype->klass_is_exact(), "");
2772 
2773   // Subsume downstream occurrences of receiver with a cast to
2774   // recv_xtype, since now we know what the type will be.
2775   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2776   (*casted_receiver) = _gvn.transform(cast);
2777   // (User must make the replace_in_map call.)
2778 
2779   return fail;
2780 }
2781 
2782 
2783 //------------------------------seems_never_null-------------------------------
2784 // Use null_seen information if it is available from the profile.
2785 // If we see an unexpected null at a type check we record it and force a
2786 // recompile; the offending check will be recompiled to handle NULLs.
2787 // If we see several offending BCIs, then all checks in the
2788 // method will be recompiled.
2789 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2790   speculating = !_gvn.type(obj)->speculative_maybe_null();
2791   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2792   if (UncommonNullCast               // Cutout for this technique
2793       && obj != null()               // And not the -Xcomp stupid case?
2794       && !too_many_traps(reason)
2795       ) {
2796     if (speculating) {
2797       return true;
2798     }
2799     if (data == NULL)
2800       // Edge case:  no mature data.  Be optimistic here.
2801       return true;
2802     // If the profile has not seen a null, assume it won't happen.
2803     assert(java_bc() == Bytecodes::_checkcast ||
2804            java_bc() == Bytecodes::_instanceof ||
2805            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2806     return !data->as_BitData()->null_seen();
2807   }
2808   speculating = false;
2809   return false;
2810 }
2811 
2812 //------------------------maybe_cast_profiled_receiver-------------------------
2813 // If the profile has seen exactly one type, narrow to exactly that type.
2814 // Subsequent type checks will always fold up.
2815 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2816                                              ciKlass* require_klass,
2817                                              ciKlass* spec_klass,
2818                                              bool safe_for_replace) {
2819   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2820 
2821   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2822 
2823   // Make sure we haven't already deoptimized from this tactic.
2824   if (too_many_traps(reason) || too_many_recompiles(reason))
2825     return NULL;
2826 
2827   // (No, this isn't a call, but it's enough like a virtual call
2828   // to use the same ciMethod accessor to get the profile info...)
2829   // If we have a speculative type use it instead of profiling (which
2830   // may not help us)
2831   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2832   if (exact_kls != NULL) {// no cast failures here
2833     if (require_klass == NULL ||
2834         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2835       // If we narrow the type to match what the type profile sees or
2836       // the speculative type, we can then remove the rest of the
2837       // cast.
2838       // This is a win, even if the exact_kls is very specific,
2839       // because downstream operations, such as method calls,
2840       // will often benefit from the sharper type.
2841       Node* exact_obj = not_null_obj; // will get updated in place...
2842       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2843                                             &exact_obj);
2844       { PreserveJVMState pjvms(this);
2845         set_control(slow_ctl);
2846         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2847       }
2848       if (safe_for_replace) {
2849         replace_in_map(not_null_obj, exact_obj);
2850       }
2851       return exact_obj;
2852     }
2853     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2854   }
2855 
2856   return NULL;
2857 }
2858 
2859 /**
2860  * Cast obj to type and emit guard unless we had too many traps here
2861  * already
2862  *
2863  * @param obj       node being casted
2864  * @param type      type to cast the node to
2865  * @param not_null  true if we know node cannot be null
2866  */
2867 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2868                                         ciKlass* type,
2869                                         bool not_null) {
2870   if (stopped()) {
2871     return obj;
2872   }
2873 
2874   // type == NULL if profiling tells us this object is always null
2875   if (type != NULL) {
2876     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2877     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2878 
2879     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2880         !too_many_traps(class_reason) &&
2881         !too_many_recompiles(class_reason)) {
2882       Node* not_null_obj = NULL;
2883       // not_null is true if we know the object is not null and
2884       // there's no need for a null check
2885       if (!not_null) {
2886         Node* null_ctl = top();
2887         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2888         assert(null_ctl->is_top(), "no null control here");
2889       } else {
2890         not_null_obj = obj;
2891       }
2892 
2893       Node* exact_obj = not_null_obj;
2894       ciKlass* exact_kls = type;
2895       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2896                                             &exact_obj);
2897       {
2898         PreserveJVMState pjvms(this);
2899         set_control(slow_ctl);
2900         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2901       }
2902       replace_in_map(not_null_obj, exact_obj);
2903       obj = exact_obj;
2904     }
2905   } else {
2906     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2907         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2908       Node* exact_obj = null_assert(obj);
2909       replace_in_map(obj, exact_obj);
2910       obj = exact_obj;
2911     }
2912   }
2913   return obj;
2914 }
2915 
2916 //-------------------------------gen_instanceof--------------------------------
2917 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2918 // and the reflective instance-of call.
2919 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2920   kill_dead_locals();           // Benefit all the uncommon traps
2921   assert( !stopped(), "dead parse path should be checked in callers" );
2922   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2923          "must check for not-null not-dead klass in callers");
2924 
2925   // Make the merge point
2926   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2927   RegionNode* region = new RegionNode(PATH_LIMIT);
2928   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2929   C->set_has_split_ifs(true); // Has chance for split-if optimization
2930 
2931   ciProfileData* data = NULL;
2932   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2933     data = method()->method_data()->bci_to_data(bci());
2934   }
2935   bool speculative_not_null = false;
2936   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2937                          && seems_never_null(obj, data, speculative_not_null));
2938 
2939   // Null check; get casted pointer; set region slot 3
2940   Node* null_ctl = top();
2941   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2942 
2943   // If not_null_obj is dead, only null-path is taken
2944   if (stopped()) {              // Doing instance-of on a NULL?
2945     set_control(null_ctl);
2946     return intcon(0);
2947   }
2948   region->init_req(_null_path, null_ctl);
2949   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2950   if (null_ctl == top()) {
2951     // Do this eagerly, so that pattern matches like is_diamond_phi
2952     // will work even during parsing.
2953     assert(_null_path == PATH_LIMIT-1, "delete last");
2954     region->del_req(_null_path);
2955     phi   ->del_req(_null_path);
2956   }
2957 
2958   // Do we know the type check always succeed?
2959   bool known_statically = false;
2960   if (_gvn.type(superklass)->singleton()) {
2961     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2962     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2963     if (subk != NULL && subk->is_loaded()) {
2964       int static_res = C->static_subtype_check(superk, subk);
2965       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2966     }
2967   }
2968 
2969   if (!known_statically) {
2970     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2971     // We may not have profiling here or it may not help us. If we
2972     // have a speculative type use it to perform an exact cast.
2973     ciKlass* spec_obj_type = obj_type->speculative_type();
2974     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2975       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2976       if (stopped()) {            // Profile disagrees with this path.
2977         set_control(null_ctl);    // Null is the only remaining possibility.
2978         return intcon(0);
2979       }
2980       if (cast_obj != NULL) {
2981         not_null_obj = cast_obj;
2982       }
2983     }
2984   }
2985 
2986   // Load the object's klass
2987   Node* obj_klass = load_object_klass(not_null_obj);
2988 
2989   // Generate the subtype check
2990   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2991 
2992   // Plug in the success path to the general merge in slot 1.
2993   region->init_req(_obj_path, control());
2994   phi   ->init_req(_obj_path, intcon(1));
2995 
2996   // Plug in the failing path to the general merge in slot 2.
2997   region->init_req(_fail_path, not_subtype_ctrl);
2998   phi   ->init_req(_fail_path, intcon(0));
2999 
3000   // Return final merged results
3001   set_control( _gvn.transform(region) );
3002   record_for_igvn(region);
3003 
3004   // If we know the type check always succeeds then we don't use the
3005   // profiling data at this bytecode. Don't lose it, feed it to the
3006   // type system as a speculative type.
3007   if (safe_for_replace) {
3008     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3009     replace_in_map(obj, casted_obj);
3010   }
3011 
3012   return _gvn.transform(phi);
3013 }
3014 
3015 //-------------------------------gen_checkcast---------------------------------
3016 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3017 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3018 // uncommon-trap paths work.  Adjust stack after this call.
3019 // If failure_control is supplied and not null, it is filled in with
3020 // the control edge for the cast failure.  Otherwise, an appropriate
3021 // uncommon trap or exception is thrown.
3022 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3023                               Node* *failure_control) {
3024   kill_dead_locals();           // Benefit all the uncommon traps
3025   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3026   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3027 
3028   // Fast cutout:  Check the case that the cast is vacuously true.
3029   // This detects the common cases where the test will short-circuit
3030   // away completely.  We do this before we perform the null check,
3031   // because if the test is going to turn into zero code, we don't
3032   // want a residual null check left around.  (Causes a slowdown,
3033   // for example, in some objArray manipulations, such as a[i]=a[j].)
3034   if (tk->singleton()) {
3035     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3036     if (objtp != NULL && objtp->klass() != NULL) {
3037       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3038       case Compile::SSC_always_true:
3039         // If we know the type check always succeed then we don't use
3040         // the profiling data at this bytecode. Don't lose it, feed it
3041         // to the type system as a speculative type.
3042         return record_profiled_receiver_for_speculation(obj);
3043       case Compile::SSC_always_false:
3044         // It needs a null check because a null will *pass* the cast check.
3045         // A non-null value will always produce an exception.
3046         return null_assert(obj);
3047       }
3048     }
3049   }
3050 
3051   ciProfileData* data = NULL;
3052   bool safe_for_replace = false;
3053   if (failure_control == NULL) {        // use MDO in regular case only
3054     assert(java_bc() == Bytecodes::_aastore ||
3055            java_bc() == Bytecodes::_checkcast,
3056            "interpreter profiles type checks only for these BCs");
3057     data = method()->method_data()->bci_to_data(bci());
3058     safe_for_replace = true;
3059   }
3060 
3061   // Make the merge point
3062   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3063   RegionNode* region = new RegionNode(PATH_LIMIT);
3064   Node*       phi    = new PhiNode(region, toop);
3065   C->set_has_split_ifs(true); // Has chance for split-if optimization
3066 
3067   // Use null-cast information if it is available
3068   bool speculative_not_null = false;
3069   bool never_see_null = ((failure_control == NULL)  // regular case only
3070                          && seems_never_null(obj, data, speculative_not_null));
3071 
3072   // Null check; get casted pointer; set region slot 3
3073   Node* null_ctl = top();
3074   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3075 
3076   // If not_null_obj is dead, only null-path is taken
3077   if (stopped()) {              // Doing instance-of on a NULL?
3078     set_control(null_ctl);
3079     return null();
3080   }
3081   region->init_req(_null_path, null_ctl);
3082   phi   ->init_req(_null_path, null());  // Set null path value
3083   if (null_ctl == top()) {
3084     // Do this eagerly, so that pattern matches like is_diamond_phi
3085     // will work even during parsing.
3086     assert(_null_path == PATH_LIMIT-1, "delete last");
3087     region->del_req(_null_path);
3088     phi   ->del_req(_null_path);
3089   }
3090 
3091   Node* cast_obj = NULL;
3092   if (tk->klass_is_exact()) {
3093     // The following optimization tries to statically cast the speculative type of the object
3094     // (for example obtained during profiling) to the type of the superklass and then do a
3095     // dynamic check that the type of the object is what we expect. To work correctly
3096     // for checkcast and aastore the type of superklass should be exact.
3097     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3098     // We may not have profiling here or it may not help us. If we have
3099     // a speculative type use it to perform an exact cast.
3100     ciKlass* spec_obj_type = obj_type->speculative_type();
3101     if (spec_obj_type != NULL || data != NULL) {
3102       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3103       if (cast_obj != NULL) {
3104         if (failure_control != NULL) // failure is now impossible
3105           (*failure_control) = top();
3106         // adjust the type of the phi to the exact klass:
3107         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3108       }
3109     }
3110   }
3111 
3112   if (cast_obj == NULL) {
3113     // Load the object's klass
3114     Node* obj_klass = load_object_klass(not_null_obj);
3115 
3116     // Generate the subtype check
3117     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3118 
3119     // Plug in success path into the merge
3120     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3121     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3122     if (failure_control == NULL) {
3123       if (not_subtype_ctrl != top()) { // If failure is possible
3124         PreserveJVMState pjvms(this);
3125         set_control(not_subtype_ctrl);
3126         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3127       }
3128     } else {
3129       (*failure_control) = not_subtype_ctrl;
3130     }
3131   }
3132 
3133   region->init_req(_obj_path, control());
3134   phi   ->init_req(_obj_path, cast_obj);
3135 
3136   // A merge of NULL or Casted-NotNull obj
3137   Node* res = _gvn.transform(phi);
3138 
3139   // Note I do NOT always 'replace_in_map(obj,result)' here.
3140   //  if( tk->klass()->can_be_primary_super()  )
3141     // This means that if I successfully store an Object into an array-of-String
3142     // I 'forget' that the Object is really now known to be a String.  I have to
3143     // do this because we don't have true union types for interfaces - if I store
3144     // a Baz into an array-of-Interface and then tell the optimizer it's an
3145     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3146     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3147   //  replace_in_map( obj, res );
3148 
3149   // Return final merged results
3150   set_control( _gvn.transform(region) );
3151   record_for_igvn(region);
3152 
3153   return record_profiled_receiver_for_speculation(res);
3154 }
3155 
3156 //------------------------------next_monitor-----------------------------------
3157 // What number should be given to the next monitor?
3158 int GraphKit::next_monitor() {
3159   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3160   int next = current + C->sync_stack_slots();
3161   // Keep the toplevel high water mark current:
3162   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3163   return current;
3164 }
3165 
3166 //------------------------------insert_mem_bar---------------------------------
3167 // Memory barrier to avoid floating things around
3168 // The membar serves as a pinch point between both control and all memory slices.
3169 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3170   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3171   mb->init_req(TypeFunc::Control, control());
3172   mb->init_req(TypeFunc::Memory,  reset_memory());
3173   Node* membar = _gvn.transform(mb);
3174   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3175   set_all_memory_call(membar);
3176   return membar;
3177 }
3178 
3179 //-------------------------insert_mem_bar_volatile----------------------------
3180 // Memory barrier to avoid floating things around
3181 // The membar serves as a pinch point between both control and memory(alias_idx).
3182 // If you want to make a pinch point on all memory slices, do not use this
3183 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3184 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3185   // When Parse::do_put_xxx updates a volatile field, it appends a series
3186   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3187   // The first membar is on the same memory slice as the field store opcode.
3188   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3189   // All the other membars (for other volatile slices, including AliasIdxBot,
3190   // which stands for all unknown volatile slices) are control-dependent
3191   // on the first membar.  This prevents later volatile loads or stores
3192   // from sliding up past the just-emitted store.
3193 
3194   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3195   mb->set_req(TypeFunc::Control,control());
3196   if (alias_idx == Compile::AliasIdxBot) {
3197     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3198   } else {
3199     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3200     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3201   }
3202   Node* membar = _gvn.transform(mb);
3203   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3204   if (alias_idx == Compile::AliasIdxBot) {
3205     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3206   } else {
3207     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3208   }
3209   return membar;
3210 }
3211 
3212 //------------------------------shared_lock------------------------------------
3213 // Emit locking code.
3214 FastLockNode* GraphKit::shared_lock(Node* obj) {
3215   // bci is either a monitorenter bc or InvocationEntryBci
3216   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3217   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3218 
3219   if( !GenerateSynchronizationCode )
3220     return NULL;                // Not locking things?
3221   if (stopped())                // Dead monitor?
3222     return NULL;
3223 
3224   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3225 
3226   // Box the stack location
3227   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3228   Node* mem = reset_memory();
3229 
3230   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3231   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3232     // Create the counters for this fast lock.
3233     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3234   }
3235 
3236   // Create the rtm counters for this fast lock if needed.
3237   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3238 
3239   // Add monitor to debug info for the slow path.  If we block inside the
3240   // slow path and de-opt, we need the monitor hanging around
3241   map()->push_monitor( flock );
3242 
3243   const TypeFunc *tf = LockNode::lock_type();
3244   LockNode *lock = new LockNode(C, tf);
3245 
3246   lock->init_req( TypeFunc::Control, control() );
3247   lock->init_req( TypeFunc::Memory , mem );
3248   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3249   lock->init_req( TypeFunc::FramePtr, frameptr() );
3250   lock->init_req( TypeFunc::ReturnAdr, top() );
3251 
3252   lock->init_req(TypeFunc::Parms + 0, obj);
3253   lock->init_req(TypeFunc::Parms + 1, box);
3254   lock->init_req(TypeFunc::Parms + 2, flock);
3255   add_safepoint_edges(lock);
3256 
3257   lock = _gvn.transform( lock )->as_Lock();
3258 
3259   // lock has no side-effects, sets few values
3260   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3261 
3262   insert_mem_bar(Op_MemBarAcquireLock);
3263 
3264   // Add this to the worklist so that the lock can be eliminated
3265   record_for_igvn(lock);
3266 
3267 #ifndef PRODUCT
3268   if (PrintLockStatistics) {
3269     // Update the counter for this lock.  Don't bother using an atomic
3270     // operation since we don't require absolute accuracy.
3271     lock->create_lock_counter(map()->jvms());
3272     increment_counter(lock->counter()->addr());
3273   }
3274 #endif
3275 
3276   return flock;
3277 }
3278 
3279 
3280 //------------------------------shared_unlock----------------------------------
3281 // Emit unlocking code.
3282 void GraphKit::shared_unlock(Node* box, Node* obj) {
3283   // bci is either a monitorenter bc or InvocationEntryBci
3284   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3285   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3286 
3287   if( !GenerateSynchronizationCode )
3288     return;
3289   if (stopped()) {               // Dead monitor?
3290     map()->pop_monitor();        // Kill monitor from debug info
3291     return;
3292   }
3293 
3294   // Memory barrier to avoid floating things down past the locked region
3295   insert_mem_bar(Op_MemBarReleaseLock);
3296 
3297   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3298   UnlockNode *unlock = new UnlockNode(C, tf);
3299 #ifdef ASSERT
3300   unlock->set_dbg_jvms(sync_jvms());
3301 #endif
3302   uint raw_idx = Compile::AliasIdxRaw;
3303   unlock->init_req( TypeFunc::Control, control() );
3304   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3305   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3306   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3307   unlock->init_req( TypeFunc::ReturnAdr, top() );
3308 
3309   unlock->init_req(TypeFunc::Parms + 0, obj);
3310   unlock->init_req(TypeFunc::Parms + 1, box);
3311   unlock = _gvn.transform(unlock)->as_Unlock();
3312 
3313   Node* mem = reset_memory();
3314 
3315   // unlock has no side-effects, sets few values
3316   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3317 
3318   // Kill monitor from debug info
3319   map()->pop_monitor( );
3320 }
3321 
3322 //-------------------------------get_layout_helper-----------------------------
3323 // If the given klass is a constant or known to be an array,
3324 // fetch the constant layout helper value into constant_value
3325 // and return (Node*)NULL.  Otherwise, load the non-constant
3326 // layout helper value, and return the node which represents it.
3327 // This two-faced routine is useful because allocation sites
3328 // almost always feature constant types.
3329 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3330   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3331   if (!StressReflectiveCode && inst_klass != NULL) {
3332     ciKlass* klass = inst_klass->klass();
3333     bool    xklass = inst_klass->klass_is_exact();
3334     if (xklass || klass->is_array_klass()) {
3335       jint lhelper = klass->layout_helper();
3336       if (lhelper != Klass::_lh_neutral_value) {
3337         constant_value = lhelper;
3338         return (Node*) NULL;
3339       }
3340     }
3341   }
3342   constant_value = Klass::_lh_neutral_value;  // put in a known value
3343   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3344   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3345 }
3346 
3347 // We just put in an allocate/initialize with a big raw-memory effect.
3348 // Hook selected additional alias categories on the initialization.
3349 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3350                                 MergeMemNode* init_in_merge,
3351                                 Node* init_out_raw) {
3352   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3353   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3354 
3355   Node* prevmem = kit.memory(alias_idx);
3356   init_in_merge->set_memory_at(alias_idx, prevmem);
3357   kit.set_memory(init_out_raw, alias_idx);
3358 }
3359 
3360 //---------------------------set_output_for_allocation-------------------------
3361 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3362                                           const TypeOopPtr* oop_type,
3363                                           bool deoptimize_on_exception) {
3364   int rawidx = Compile::AliasIdxRaw;
3365   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3366   add_safepoint_edges(alloc);
3367   Node* allocx = _gvn.transform(alloc);
3368   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3369   // create memory projection for i_o
3370   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3371   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3372 
3373   // create a memory projection as for the normal control path
3374   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3375   set_memory(malloc, rawidx);
3376 
3377   // a normal slow-call doesn't change i_o, but an allocation does
3378   // we create a separate i_o projection for the normal control path
3379   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3380   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3381 
3382   // put in an initialization barrier
3383   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3384                                                  rawoop)->as_Initialize();
3385   assert(alloc->initialization() == init,  "2-way macro link must work");
3386   assert(init ->allocation()     == alloc, "2-way macro link must work");
3387   {
3388     // Extract memory strands which may participate in the new object's
3389     // initialization, and source them from the new InitializeNode.
3390     // This will allow us to observe initializations when they occur,
3391     // and link them properly (as a group) to the InitializeNode.
3392     assert(init->in(InitializeNode::Memory) == malloc, "");
3393     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3394     init->set_req(InitializeNode::Memory, minit_in);
3395     record_for_igvn(minit_in); // fold it up later, if possible
3396     Node* minit_out = memory(rawidx);
3397     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3398     if (oop_type->isa_aryptr()) {
3399       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3400       int            elemidx  = C->get_alias_index(telemref);
3401       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3402     } else if (oop_type->isa_instptr()) {
3403       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3404       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3405         ciField* field = ik->nonstatic_field_at(i);
3406         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3407           continue;  // do not bother to track really large numbers of fields
3408         // Find (or create) the alias category for this field:
3409         int fieldidx = C->alias_type(field)->index();
3410         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3411       }
3412     }
3413   }
3414 
3415   // Cast raw oop to the real thing...
3416   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3417   javaoop = _gvn.transform(javaoop);
3418   C->set_recent_alloc(control(), javaoop);
3419   assert(just_allocated_object(control()) == javaoop, "just allocated");
3420 
3421 #ifdef ASSERT
3422   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3423     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3424            "Ideal_allocation works");
3425     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3426            "Ideal_allocation works");
3427     if (alloc->is_AllocateArray()) {
3428       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3429              "Ideal_allocation works");
3430       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3431              "Ideal_allocation works");
3432     } else {
3433       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3434     }
3435   }
3436 #endif //ASSERT
3437 
3438   return javaoop;
3439 }
3440 
3441 //---------------------------new_instance--------------------------------------
3442 // This routine takes a klass_node which may be constant (for a static type)
3443 // or may be non-constant (for reflective code).  It will work equally well
3444 // for either, and the graph will fold nicely if the optimizer later reduces
3445 // the type to a constant.
3446 // The optional arguments are for specialized use by intrinsics:
3447 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3448 //  - If 'return_size_val', report the the total object size to the caller.
3449 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3450 Node* GraphKit::new_instance(Node* klass_node,
3451                              Node* extra_slow_test,
3452                              Node* *return_size_val,
3453                              bool deoptimize_on_exception) {
3454   // Compute size in doublewords
3455   // The size is always an integral number of doublewords, represented
3456   // as a positive bytewise size stored in the klass's layout_helper.
3457   // The layout_helper also encodes (in a low bit) the need for a slow path.
3458   jint  layout_con = Klass::_lh_neutral_value;
3459   Node* layout_val = get_layout_helper(klass_node, layout_con);
3460   int   layout_is_con = (layout_val == NULL);
3461 
3462   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3463   // Generate the initial go-slow test.  It's either ALWAYS (return a
3464   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3465   // case) a computed value derived from the layout_helper.
3466   Node* initial_slow_test = NULL;
3467   if (layout_is_con) {
3468     assert(!StressReflectiveCode, "stress mode does not use these paths");
3469     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3470     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3471   } else {   // reflective case
3472     // This reflective path is used by Unsafe.allocateInstance.
3473     // (It may be stress-tested by specifying StressReflectiveCode.)
3474     // Basically, we want to get into the VM is there's an illegal argument.
3475     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3476     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3477     if (extra_slow_test != intcon(0)) {
3478       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3479     }
3480     // (Macro-expander will further convert this to a Bool, if necessary.)
3481   }
3482 
3483   // Find the size in bytes.  This is easy; it's the layout_helper.
3484   // The size value must be valid even if the slow path is taken.
3485   Node* size = NULL;
3486   if (layout_is_con) {
3487     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3488   } else {   // reflective case
3489     // This reflective path is used by clone and Unsafe.allocateInstance.
3490     size = ConvI2X(layout_val);
3491 
3492     // Clear the low bits to extract layout_helper_size_in_bytes:
3493     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3494     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3495     size = _gvn.transform( new AndXNode(size, mask) );
3496   }
3497   if (return_size_val != NULL) {
3498     (*return_size_val) = size;
3499   }
3500 
3501   // This is a precise notnull oop of the klass.
3502   // (Actually, it need not be precise if this is a reflective allocation.)
3503   // It's what we cast the result to.
3504   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3505   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3506   const TypeOopPtr* oop_type = tklass->as_instance_type();
3507 
3508   // Now generate allocation code
3509 
3510   // The entire memory state is needed for slow path of the allocation
3511   // since GC and deoptimization can happened.
3512   Node *mem = reset_memory();
3513   set_all_memory(mem); // Create new memory state
3514 
3515   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3516                                          control(), mem, i_o(),
3517                                          size, klass_node,
3518                                          initial_slow_test);
3519 
3520   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3521 }
3522 
3523 //-------------------------------new_array-------------------------------------
3524 // helper for both newarray and anewarray
3525 // The 'length' parameter is (obviously) the length of the array.
3526 // See comments on new_instance for the meaning of the other arguments.
3527 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3528                           Node* length,         // number of array elements
3529                           int   nargs,          // number of arguments to push back for uncommon trap
3530                           Node* *return_size_val,
3531                           bool deoptimize_on_exception) {
3532   jint  layout_con = Klass::_lh_neutral_value;
3533   Node* layout_val = get_layout_helper(klass_node, layout_con);
3534   int   layout_is_con = (layout_val == NULL);
3535 
3536   if (!layout_is_con && !StressReflectiveCode &&
3537       !too_many_traps(Deoptimization::Reason_class_check)) {
3538     // This is a reflective array creation site.
3539     // Optimistically assume that it is a subtype of Object[],
3540     // so that we can fold up all the address arithmetic.
3541     layout_con = Klass::array_layout_helper(T_OBJECT);
3542     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3543     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3544     { BuildCutout unless(this, bol_lh, PROB_MAX);
3545       inc_sp(nargs);
3546       uncommon_trap(Deoptimization::Reason_class_check,
3547                     Deoptimization::Action_maybe_recompile);
3548     }
3549     layout_val = NULL;
3550     layout_is_con = true;
3551   }
3552 
3553   // Generate the initial go-slow test.  Make sure we do not overflow
3554   // if length is huge (near 2Gig) or negative!  We do not need
3555   // exact double-words here, just a close approximation of needed
3556   // double-words.  We can't add any offset or rounding bits, lest we
3557   // take a size -1 of bytes and make it positive.  Use an unsigned
3558   // compare, so negative sizes look hugely positive.
3559   int fast_size_limit = FastAllocateSizeLimit;
3560   if (layout_is_con) {
3561     assert(!StressReflectiveCode, "stress mode does not use these paths");
3562     // Increase the size limit if we have exact knowledge of array type.
3563     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3564     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3565   }
3566 
3567   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3568   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3569 
3570   // --- Size Computation ---
3571   // array_size = round_to_heap(array_header + (length << elem_shift));
3572   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3573   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3574   // The rounding mask is strength-reduced, if possible.
3575   int round_mask = MinObjAlignmentInBytes - 1;
3576   Node* header_size = NULL;
3577   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3578   // (T_BYTE has the weakest alignment and size restrictions...)
3579   if (layout_is_con) {
3580     int       hsize  = Klass::layout_helper_header_size(layout_con);
3581     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3582     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3583     if ((round_mask & ~right_n_bits(eshift)) == 0)
3584       round_mask = 0;  // strength-reduce it if it goes away completely
3585     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3586     assert(header_size_min <= hsize, "generic minimum is smallest");
3587     header_size_min = hsize;
3588     header_size = intcon(hsize + round_mask);
3589   } else {
3590     Node* hss   = intcon(Klass::_lh_header_size_shift);
3591     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3592     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3593     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3594     Node* mask  = intcon(round_mask);
3595     header_size = _gvn.transform( new AddINode(hsize, mask) );
3596   }
3597 
3598   Node* elem_shift = NULL;
3599   if (layout_is_con) {
3600     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3601     if (eshift != 0)
3602       elem_shift = intcon(eshift);
3603   } else {
3604     // There is no need to mask or shift this value.
3605     // The semantics of LShiftINode include an implicit mask to 0x1F.
3606     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3607     elem_shift = layout_val;
3608   }
3609 
3610   // Transition to native address size for all offset calculations:
3611   Node* lengthx = ConvI2X(length);
3612   Node* headerx = ConvI2X(header_size);
3613 #ifdef _LP64
3614   { const TypeInt* tilen = _gvn.find_int_type(length);
3615     if (tilen != NULL && tilen->_lo < 0) {
3616       // Add a manual constraint to a positive range.  Cf. array_element_address.
3617       jint size_max = fast_size_limit;
3618       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3619       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3620 
3621       // Only do a narrow I2L conversion if the range check passed.
3622       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3623       _gvn.transform(iff);
3624       RegionNode* region = new RegionNode(3);
3625       _gvn.set_type(region, Type::CONTROL);
3626       lengthx = new PhiNode(region, TypeLong::LONG);
3627       _gvn.set_type(lengthx, TypeLong::LONG);
3628 
3629       // Range check passed. Use ConvI2L node with narrow type.
3630       Node* passed = IfFalse(iff);
3631       region->init_req(1, passed);
3632       // Make I2L conversion control dependent to prevent it from
3633       // floating above the range check during loop optimizations.
3634       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3635 
3636       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3637       region->init_req(2, IfTrue(iff));
3638       lengthx->init_req(2, ConvI2X(length));
3639 
3640       set_control(region);
3641       record_for_igvn(region);
3642       record_for_igvn(lengthx);
3643     }
3644   }
3645 #endif
3646 
3647   // Combine header size (plus rounding) and body size.  Then round down.
3648   // This computation cannot overflow, because it is used only in two
3649   // places, one where the length is sharply limited, and the other
3650   // after a successful allocation.
3651   Node* abody = lengthx;
3652   if (elem_shift != NULL)
3653     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3654   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3655   if (round_mask != 0) {
3656     Node* mask = MakeConX(~round_mask);
3657     size       = _gvn.transform( new AndXNode(size, mask) );
3658   }
3659   // else if round_mask == 0, the size computation is self-rounding
3660 
3661   if (return_size_val != NULL) {
3662     // This is the size
3663     (*return_size_val) = size;
3664   }
3665 
3666   // Now generate allocation code
3667 
3668   // The entire memory state is needed for slow path of the allocation
3669   // since GC and deoptimization can happened.
3670   Node *mem = reset_memory();
3671   set_all_memory(mem); // Create new memory state
3672 
3673   if (initial_slow_test->is_Bool()) {
3674     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3675     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3676   }
3677 
3678   // Create the AllocateArrayNode and its result projections
3679   AllocateArrayNode* alloc
3680     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3681                             control(), mem, i_o(),
3682                             size, klass_node,
3683                             initial_slow_test,
3684                             length);
3685 
3686   // Cast to correct type.  Note that the klass_node may be constant or not,
3687   // and in the latter case the actual array type will be inexact also.
3688   // (This happens via a non-constant argument to inline_native_newArray.)
3689   // In any case, the value of klass_node provides the desired array type.
3690   const TypeInt* length_type = _gvn.find_int_type(length);
3691   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3692   if (ary_type->isa_aryptr() && length_type != NULL) {
3693     // Try to get a better type than POS for the size
3694     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3695   }
3696 
3697   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3698 
3699   // Cast length on remaining path to be as narrow as possible
3700   if (map()->find_edge(length) >= 0) {
3701     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3702     if (ccast != length) {
3703       _gvn.set_type_bottom(ccast);
3704       record_for_igvn(ccast);
3705       replace_in_map(length, ccast);
3706     }
3707   }
3708 
3709   return javaoop;
3710 }
3711 
3712 // The following "Ideal_foo" functions are placed here because they recognize
3713 // the graph shapes created by the functions immediately above.
3714 
3715 //---------------------------Ideal_allocation----------------------------------
3716 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3717 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3718   if (ptr == NULL) {     // reduce dumb test in callers
3719     return NULL;
3720   }
3721   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3722     ptr = ptr->in(1);
3723     if (ptr == NULL) return NULL;
3724   }
3725   // Return NULL for allocations with several casts:
3726   //   j.l.reflect.Array.newInstance(jobject, jint)
3727   //   Object.clone()
3728   // to keep more precise type from last cast.
3729   if (ptr->is_Proj()) {
3730     Node* allo = ptr->in(0);
3731     if (allo != NULL && allo->is_Allocate()) {
3732       return allo->as_Allocate();
3733     }
3734   }
3735   // Report failure to match.
3736   return NULL;
3737 }
3738 
3739 // Fancy version which also strips off an offset (and reports it to caller).
3740 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3741                                              intptr_t& offset) {
3742   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3743   if (base == NULL)  return NULL;
3744   return Ideal_allocation(base, phase);
3745 }
3746 
3747 // Trace Initialize <- Proj[Parm] <- Allocate
3748 AllocateNode* InitializeNode::allocation() {
3749   Node* rawoop = in(InitializeNode::RawAddress);
3750   if (rawoop->is_Proj()) {
3751     Node* alloc = rawoop->in(0);
3752     if (alloc->is_Allocate()) {
3753       return alloc->as_Allocate();
3754     }
3755   }
3756   return NULL;
3757 }
3758 
3759 // Trace Allocate -> Proj[Parm] -> Initialize
3760 InitializeNode* AllocateNode::initialization() {
3761   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
3762   if (rawoop == NULL)  return NULL;
3763   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3764     Node* init = rawoop->fast_out(i);
3765     if (init->is_Initialize()) {
3766       assert(init->as_Initialize()->allocation() == this, "2-way link");
3767       return init->as_Initialize();
3768     }
3769   }
3770   return NULL;
3771 }
3772 
3773 //----------------------------- loop predicates ---------------------------
3774 
3775 //------------------------------add_predicate_impl----------------------------
3776 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3777   // Too many traps seen?
3778   if (too_many_traps(reason)) {
3779 #ifdef ASSERT
3780     if (TraceLoopPredicate) {
3781       int tc = C->trap_count(reason);
3782       tty->print("too many traps=%s tcount=%d in ",
3783                     Deoptimization::trap_reason_name(reason), tc);
3784       method()->print(); // which method has too many predicate traps
3785       tty->cr();
3786     }
3787 #endif
3788     // We cannot afford to take more traps here,
3789     // do not generate predicate.
3790     return;
3791   }
3792 
3793   Node *cont    = _gvn.intcon(1);
3794   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3795   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3796   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3797   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3798   C->add_predicate_opaq(opq);
3799   {
3800     PreserveJVMState pjvms(this);
3801     set_control(iffalse);
3802     inc_sp(nargs);
3803     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3804   }
3805   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3806   set_control(iftrue);
3807 }
3808 
3809 //------------------------------add_predicate---------------------------------
3810 void GraphKit::add_predicate(int nargs) {
3811   if (UseLoopPredicate) {
3812     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3813   }
3814   // loop's limit check predicate should be near the loop.
3815   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3816 }
3817 
3818 //----------------------------- store barriers ----------------------------
3819 #define __ ideal.
3820 
3821 bool GraphKit::use_ReduceInitialCardMarks() {
3822   BarrierSet *bs = BarrierSet::barrier_set();
3823   return bs->is_a(BarrierSet::CardTableBarrierSet)
3824          && barrier_set_cast<CardTableBarrierSet>(bs)->can_elide_tlab_store_barriers()
3825          && ReduceInitialCardMarks;
3826 }
3827 
3828 void GraphKit::sync_kit(IdealKit& ideal) {
3829   set_all_memory(__ merged_memory());
3830   set_i_o(__ i_o());
3831   set_control(__ ctrl());
3832 }
3833 
3834 void GraphKit::final_sync(IdealKit& ideal) {
3835   // Final sync IdealKit and graphKit.
3836   sync_kit(ideal);
3837 }
3838 
3839 Node* GraphKit::byte_map_base_node() {
3840   // Get base of card map
3841   jbyte* card_table_base = ci_card_table_address();
3842   if (card_table_base != NULL) {
3843     return makecon(TypeRawPtr::make((address)card_table_base));
3844   } else {
3845     return null();
3846   }
3847 }
3848 
3849 // vanilla/CMS post barrier
3850 // Insert a write-barrier store.  This is to let generational GC work; we have
3851 // to flag all oop-stores before the next GC point.
3852 void GraphKit::write_barrier_post(Node* oop_store,
3853                                   Node* obj,
3854                                   Node* adr,
3855                                   uint  adr_idx,
3856                                   Node* val,
3857                                   bool use_precise) {
3858   // No store check needed if we're storing a NULL or an old object
3859   // (latter case is probably a string constant). The concurrent
3860   // mark sweep garbage collector, however, needs to have all nonNull
3861   // oop updates flagged via card-marks.
3862   if (val != NULL && val->is_Con()) {
3863     // must be either an oop or NULL
3864     const Type* t = val->bottom_type();
3865     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3866       // stores of null never (?) need barriers
3867       return;
3868   }
3869 
3870   if (use_ReduceInitialCardMarks()
3871       && obj == just_allocated_object(control())) {
3872     // We can skip marks on a freshly-allocated object in Eden.
3873     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
3874     // That routine informs GC to take appropriate compensating steps,
3875     // upon a slow-path allocation, so as to make this card-mark
3876     // elision safe.
3877     return;
3878   }
3879 
3880   if (!use_precise) {
3881     // All card marks for a (non-array) instance are in one place:
3882     adr = obj;
3883   }
3884   // (Else it's an array (or unknown), and we want more precise card marks.)
3885   assert(adr != NULL, "");
3886 
3887   IdealKit ideal(this, true);
3888 
3889   // Convert the pointer to an int prior to doing math on it
3890   Node* cast = __ CastPX(__ ctrl(), adr);
3891 
3892   // Divide by card size
3893   assert(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet),
3894          "Only one we handle so far.");
3895   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
3896 
3897   // Combine card table base and card offset
3898   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3899 
3900   // Get the alias_index for raw card-mark memory
3901   int adr_type = Compile::AliasIdxRaw;
3902   Node*   zero = __ ConI(0); // Dirty card value
3903   BasicType bt = T_BYTE;
3904 
3905   if (UseConcMarkSweepGC && UseCondCardMark) {
3906     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3907     __ sync_kit(this);
3908   }
3909 
3910   if (UseCondCardMark) {
3911     // The classic GC reference write barrier is typically implemented
3912     // as a store into the global card mark table.  Unfortunately
3913     // unconditional stores can result in false sharing and excessive
3914     // coherence traffic as well as false transactional aborts.
3915     // UseCondCardMark enables MP "polite" conditional card mark
3916     // stores.  In theory we could relax the load from ctrl() to
3917     // no_ctrl, but that doesn't buy much latitude.
3918     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3919     __ if_then(card_val, BoolTest::ne, zero);
3920   }
3921 
3922   // Smash zero into card
3923   if( !UseConcMarkSweepGC ) {
3924     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3925   } else {
3926     // Specialized path for CM store barrier
3927     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3928   }
3929 
3930   if (UseCondCardMark) {
3931     __ end_if();
3932   }
3933 
3934   // Final sync IdealKit and GraphKit.
3935   final_sync(ideal);
3936 }
3937 /*
3938  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3939  * required by SATB to make sure all objects live at the start of the
3940  * marking are kept alive, all reference updates need to any previous
3941  * reference stored before writing.
3942  *
3943  * If the previous value is NULL there is no need to save the old value.
3944  * References that are NULL are filtered during runtime by the barrier
3945  * code to avoid unnecessary queuing.
3946  *
3947  * However in the case of newly allocated objects it might be possible to
3948  * prove that the reference about to be overwritten is NULL during compile
3949  * time and avoid adding the barrier code completely.
3950  *
3951  * The compiler needs to determine that the object in which a field is about
3952  * to be written is newly allocated, and that no prior store to the same field
3953  * has happened since the allocation.
3954  *
3955  * Returns true if the pre-barrier can be removed
3956  */
3957 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3958                                          BasicType bt, uint adr_idx) {
3959   intptr_t offset = 0;
3960   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3961   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3962 
3963   if (offset == Type::OffsetBot) {
3964     return false; // cannot unalias unless there are precise offsets
3965   }
3966 
3967   if (alloc == NULL) {
3968     return false; // No allocation found
3969   }
3970 
3971   intptr_t size_in_bytes = type2aelembytes(bt);
3972 
3973   Node* mem = memory(adr_idx); // start searching here...
3974 
3975   for (int cnt = 0; cnt < 50; cnt++) {
3976 
3977     if (mem->is_Store()) {
3978 
3979       Node* st_adr = mem->in(MemNode::Address);
3980       intptr_t st_offset = 0;
3981       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3982 
3983       if (st_base == NULL) {
3984         break; // inscrutable pointer
3985       }
3986 
3987       // Break we have found a store with same base and offset as ours so break
3988       if (st_base == base && st_offset == offset) {
3989         break;
3990       }
3991 
3992       if (st_offset != offset && st_offset != Type::OffsetBot) {
3993         const int MAX_STORE = BytesPerLong;
3994         if (st_offset >= offset + size_in_bytes ||
3995             st_offset <= offset - MAX_STORE ||
3996             st_offset <= offset - mem->as_Store()->memory_size()) {
3997           // Success:  The offsets are provably independent.
3998           // (You may ask, why not just test st_offset != offset and be done?
3999           // The answer is that stores of different sizes can co-exist
4000           // in the same sequence of RawMem effects.  We sometimes initialize
4001           // a whole 'tile' of array elements with a single jint or jlong.)
4002           mem = mem->in(MemNode::Memory);
4003           continue; // advance through independent store memory
4004         }
4005       }
4006 
4007       if (st_base != base
4008           && MemNode::detect_ptr_independence(base, alloc, st_base,
4009                                               AllocateNode::Ideal_allocation(st_base, phase),
4010                                               phase)) {
4011         // Success:  The bases are provably independent.
4012         mem = mem->in(MemNode::Memory);
4013         continue; // advance through independent store memory
4014       }
4015     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4016 
4017       InitializeNode* st_init = mem->in(0)->as_Initialize();
4018       AllocateNode* st_alloc = st_init->allocation();
4019 
4020       // Make sure that we are looking at the same allocation site.
4021       // The alloc variable is guaranteed to not be null here from earlier check.
4022       if (alloc == st_alloc) {
4023         // Check that the initialization is storing NULL so that no previous store
4024         // has been moved up and directly write a reference
4025         Node* captured_store = st_init->find_captured_store(offset,
4026                                                             type2aelembytes(T_OBJECT),
4027                                                             phase);
4028         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
4029           return true;
4030         }
4031       }
4032     }
4033 
4034     // Unless there is an explicit 'continue', we must bail out here,
4035     // because 'mem' is an inscrutable memory state (e.g., a call).
4036     break;
4037   }
4038 
4039   return false;
4040 }
4041 
4042 // G1 pre/post barriers
4043 void GraphKit::g1_write_barrier_pre(bool do_load,
4044                                     Node* obj,
4045                                     Node* adr,
4046                                     uint alias_idx,
4047                                     Node* val,
4048                                     const TypeOopPtr* val_type,
4049                                     Node* pre_val,
4050                                     BasicType bt) {
4051 
4052   // Some sanity checks
4053   // Note: val is unused in this routine.
4054 
4055   if (do_load) {
4056     // We need to generate the load of the previous value
4057     assert(obj != NULL, "must have a base");
4058     assert(adr != NULL, "where are loading from?");
4059     assert(pre_val == NULL, "loaded already?");
4060     assert(val_type != NULL, "need a type");
4061 
4062     if (use_ReduceInitialCardMarks()
4063         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4064       return;
4065     }
4066 
4067   } else {
4068     // In this case both val_type and alias_idx are unused.
4069     assert(pre_val != NULL, "must be loaded already");
4070     // Nothing to be done if pre_val is null.
4071     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4072     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4073   }
4074   assert(bt == T_OBJECT, "or we shouldn't be here");
4075 
4076   IdealKit ideal(this, true);
4077 
4078   Node* tls = __ thread(); // ThreadLocalStorage
4079 
4080   Node* no_ctrl = NULL;
4081   Node* no_base = __ top();
4082   Node* zero  = __ ConI(0);
4083   Node* zeroX = __ ConX(0);
4084 
4085   float likely  = PROB_LIKELY(0.999);
4086   float unlikely  = PROB_UNLIKELY(0.999);
4087 
4088   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4089   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4090 
4091   // Offsets into the thread
4092   const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
4093   const int index_offset   = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
4094   const int buffer_offset  = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
4095 
4096   // Now the actual pointers into the thread
4097   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4098   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4099   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4100 
4101   // Now some of the values
4102   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4103 
4104   // if (!marking)
4105   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4106     BasicType index_bt = TypeX_X->basic_type();
4107     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4108     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4109 
4110     if (do_load) {
4111       // load original value
4112       // alias_idx correct??
4113       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4114     }
4115 
4116     // if (pre_val != NULL)
4117     __ if_then(pre_val, BoolTest::ne, null()); {
4118       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4119 
4120       // is the queue for this thread full?
4121       __ if_then(index, BoolTest::ne, zeroX, likely); {
4122 
4123         // decrement the index
4124         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4125 
4126         // Now get the buffer location we will log the previous value into and store it
4127         Node *log_addr = __ AddP(no_base, buffer, next_index);
4128         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4129         // update the index
4130         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4131 
4132       } __ else_(); {
4133 
4134         // logging buffer is full, call the runtime
4135         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4136         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4137       } __ end_if();  // (!index)
4138     } __ end_if();  // (pre_val != NULL)
4139   } __ end_if();  // (!marking)
4140 
4141   // Final sync IdealKit and GraphKit.
4142   final_sync(ideal);
4143 }
4144 
4145 /*
4146  * G1 similar to any GC with a Young Generation requires a way to keep track of
4147  * references from Old Generation to Young Generation to make sure all live
4148  * objects are found. G1 also requires to keep track of object references
4149  * between different regions to enable evacuation of old regions, which is done
4150  * as part of mixed collections. References are tracked in remembered sets and
4151  * is continuously updated as reference are written to with the help of the
4152  * post-barrier.
4153  *
4154  * To reduce the number of updates to the remembered set the post-barrier
4155  * filters updates to fields in objects located in the Young Generation,
4156  * the same region as the reference, when the NULL is being written or
4157  * if the card is already marked as dirty by an earlier write.
4158  *
4159  * Under certain circumstances it is possible to avoid generating the
4160  * post-barrier completely if it is possible during compile time to prove
4161  * the object is newly allocated and that no safepoint exists between the
4162  * allocation and the store.
4163  *
4164  * In the case of slow allocation the allocation code must handle the barrier
4165  * as part of the allocation in the case the allocated object is not located
4166  * in the nursery, this would happen for humongous objects. This is similar to
4167  * how CMS is required to handle this case, see the comments for the method
4168  * CardTableBarrierSet::on_allocation_slowpath_exit and OptoRuntime::new_deferred_store_barrier.
4169  * A deferred card mark is required for these objects and handled in the above
4170  * mentioned methods.
4171  *
4172  * Returns true if the post barrier can be removed
4173  */
4174 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4175                                           Node* adr) {
4176   intptr_t      offset = 0;
4177   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4178   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4179 
4180   if (offset == Type::OffsetBot) {
4181     return false; // cannot unalias unless there are precise offsets
4182   }
4183 
4184   if (alloc == NULL) {
4185      return false; // No allocation found
4186   }
4187 
4188   // Start search from Store node
4189   Node* mem = store->in(MemNode::Control);
4190   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4191 
4192     InitializeNode* st_init = mem->in(0)->as_Initialize();
4193     AllocateNode*  st_alloc = st_init->allocation();
4194 
4195     // Make sure we are looking at the same allocation
4196     if (alloc == st_alloc) {
4197       return true;
4198     }
4199   }
4200 
4201   return false;
4202 }
4203 
4204 //
4205 // Update the card table and add card address to the queue
4206 //
4207 void GraphKit::g1_mark_card(IdealKit& ideal,
4208                             Node* card_adr,
4209                             Node* oop_store,
4210                             uint oop_alias_idx,
4211                             Node* index,
4212                             Node* index_adr,
4213                             Node* buffer,
4214                             const TypeFunc* tf) {
4215 
4216   Node* zero  = __ ConI(0);
4217   Node* zeroX = __ ConX(0);
4218   Node* no_base = __ top();
4219   BasicType card_bt = T_BYTE;
4220   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4221   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4222 
4223   //  Now do the queue work
4224   __ if_then(index, BoolTest::ne, zeroX); {
4225 
4226     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4227     Node* log_addr = __ AddP(no_base, buffer, next_index);
4228 
4229     // Order, see storeCM.
4230     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4231     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4232 
4233   } __ else_(); {
4234     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4235   } __ end_if();
4236 
4237 }
4238 
4239 void GraphKit::g1_write_barrier_post(Node* oop_store,
4240                                      Node* obj,
4241                                      Node* adr,
4242                                      uint alias_idx,
4243                                      Node* val,
4244                                      BasicType bt,
4245                                      bool use_precise) {
4246   // If we are writing a NULL then we need no post barrier
4247 
4248   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4249     // Must be NULL
4250     const Type* t = val->bottom_type();
4251     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4252     // No post barrier if writing NULLx
4253     return;
4254   }
4255 
4256   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4257     // We can skip marks on a freshly-allocated object in Eden.
4258     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
4259     // That routine informs GC to take appropriate compensating steps,
4260     // upon a slow-path allocation, so as to make this card-mark
4261     // elision safe.
4262     return;
4263   }
4264 
4265   if (use_ReduceInitialCardMarks()
4266       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4267     return;
4268   }
4269 
4270   if (!use_precise) {
4271     // All card marks for a (non-array) instance are in one place:
4272     adr = obj;
4273   }
4274   // (Else it's an array (or unknown), and we want more precise card marks.)
4275   assert(adr != NULL, "");
4276 
4277   IdealKit ideal(this, true);
4278 
4279   Node* tls = __ thread(); // ThreadLocalStorage
4280 
4281   Node* no_base = __ top();
4282   float likely  = PROB_LIKELY(0.999);
4283   float unlikely  = PROB_UNLIKELY(0.999);
4284   Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
4285   Node* dirty_card = __ ConI((jint)CardTable::dirty_card_val());
4286   Node* zeroX = __ ConX(0);
4287 
4288   // Get the alias_index for raw card-mark memory
4289   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4290 
4291   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4292 
4293   // Offsets into the thread
4294   const int index_offset  = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
4295   const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
4296 
4297   // Pointers into the thread
4298 
4299   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4300   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4301 
4302   // Now some values
4303   // Use ctrl to avoid hoisting these values past a safepoint, which could
4304   // potentially reset these fields in the JavaThread.
4305   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4306   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4307 
4308   // Convert the store obj pointer to an int prior to doing math on it
4309   // Must use ctrl to prevent "integerized oop" existing across safepoint
4310   Node* cast =  __ CastPX(__ ctrl(), adr);
4311 
4312   // Divide pointer by card size
4313   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
4314 
4315   // Combine card table base and card offset
4316   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4317 
4318   // If we know the value being stored does it cross regions?
4319 
4320   if (val != NULL) {
4321     // Does the store cause us to cross regions?
4322 
4323     // Should be able to do an unsigned compare of region_size instead of
4324     // and extra shift. Do we have an unsigned compare??
4325     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4326     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4327 
4328     // if (xor_res == 0) same region so skip
4329     __ if_then(xor_res, BoolTest::ne, zeroX); {
4330 
4331       // No barrier if we are storing a NULL
4332       __ if_then(val, BoolTest::ne, null(), unlikely); {
4333 
4334         // Ok must mark the card if not already dirty
4335 
4336         // load the original value of the card
4337         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4338 
4339         __ if_then(card_val, BoolTest::ne, young_card); {
4340           sync_kit(ideal);
4341           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4342           insert_mem_bar(Op_MemBarVolatile, oop_store);
4343           __ sync_kit(this);
4344 
4345           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4346           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4347             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4348           } __ end_if();
4349         } __ end_if();
4350       } __ end_if();
4351     } __ end_if();
4352   } else {
4353     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
4354     // We don't need a barrier here if the destination is a newly allocated object
4355     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
4356     // are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
4357     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
4358     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4359     __ if_then(card_val, BoolTest::ne, young_card); {
4360       g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4361     } __ end_if();
4362   }
4363 
4364   // Final sync IdealKit and GraphKit.
4365   final_sync(ideal);
4366 }
4367 #undef __
4368 
4369 
4370 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4371   Node* len = load_array_length(load_String_value(ctrl, str));
4372   Node* coder = load_String_coder(ctrl, str);
4373   // Divide length by 2 if coder is UTF16
4374   return _gvn.transform(new RShiftINode(len, coder));
4375 }
4376 
4377 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4378   int value_offset = java_lang_String::value_offset_in_bytes();
4379   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4380                                                      false, NULL, 0);
4381   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4382   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4383                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4384                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4385   int value_field_idx = C->get_alias_index(value_field_type);
4386   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4387                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4388   // String.value field is known to be @Stable.
4389   if (UseImplicitStableValues) {
4390     load = cast_array_to_stable(load, value_type);
4391   }
4392   return load;
4393 }
4394 
4395 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4396   if (!CompactStrings) {
4397     return intcon(java_lang_String::CODER_UTF16);
4398   }
4399   int coder_offset = java_lang_String::coder_offset_in_bytes();
4400   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4401                                                      false, NULL, 0);
4402   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4403   int coder_field_idx = C->get_alias_index(coder_field_type);
4404   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4405                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4406 }
4407 
4408 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4409   int value_offset = java_lang_String::value_offset_in_bytes();
4410   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4411                                                      false, NULL, 0);
4412   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4413   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4414       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4415 }
4416 
4417 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4418   int coder_offset = java_lang_String::coder_offset_in_bytes();
4419   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4420                                                      false, NULL, 0);
4421   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4422   int coder_field_idx = C->get_alias_index(coder_field_type);
4423   store_to_memory(ctrl, basic_plus_adr(str, coder_offset),
4424                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4425 }
4426 
4427 // Capture src and dst memory state with a MergeMemNode
4428 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4429   if (src_type == dst_type) {
4430     // Types are equal, we don't need a MergeMemNode
4431     return memory(src_type);
4432   }
4433   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4434   record_for_igvn(merge); // fold it up later, if possible
4435   int src_idx = C->get_alias_index(src_type);
4436   int dst_idx = C->get_alias_index(dst_type);
4437   merge->set_memory_at(src_idx, memory(src_idx));
4438   merge->set_memory_at(dst_idx, memory(dst_idx));
4439   return merge;
4440 }
4441 
4442 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4443   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4444   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4445   // If input and output memory types differ, capture both states to preserve
4446   // the dependency between preceding and subsequent loads/stores.
4447   // For example, the following program:
4448   //  StoreB
4449   //  compress_string
4450   //  LoadB
4451   // has this memory graph (use->def):
4452   //  LoadB -> compress_string -> CharMem
4453   //             ... -> StoreB -> ByteMem
4454   // The intrinsic hides the dependency between LoadB and StoreB, causing
4455   // the load to read from memory not containing the result of the StoreB.
4456   // The correct memory graph should look like this:
4457   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4458   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4459   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4460   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4461   set_memory(res_mem, TypeAryPtr::BYTES);
4462   return str;
4463 }
4464 
4465 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4466   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4467   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4468   // Capture src and dst memory (see comment in 'compress_string').
4469   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4470   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4471   set_memory(_gvn.transform(str), dst_type);
4472 }
4473 
4474 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4475   /**
4476    * int i_char = start;
4477    * for (int i_byte = 0; i_byte < count; i_byte++) {
4478    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4479    * }
4480    */
4481   add_predicate();
4482   RegionNode* head = new RegionNode(3);
4483   head->init_req(1, control());
4484   gvn().set_type(head, Type::CONTROL);
4485   record_for_igvn(head);
4486 
4487   Node* i_byte = new PhiNode(head, TypeInt::INT);
4488   i_byte->init_req(1, intcon(0));
4489   gvn().set_type(i_byte, TypeInt::INT);
4490   record_for_igvn(i_byte);
4491 
4492   Node* i_char = new PhiNode(head, TypeInt::INT);
4493   i_char->init_req(1, start);
4494   gvn().set_type(i_char, TypeInt::INT);
4495   record_for_igvn(i_char);
4496 
4497   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4498   gvn().set_type(mem, Type::MEMORY);
4499   record_for_igvn(mem);
4500   set_control(head);
4501   set_memory(mem, TypeAryPtr::BYTES);
4502   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4503   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4504                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4505                              false, false, true /* mismatched */);
4506 
4507   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4508   head->init_req(2, IfTrue(iff));
4509   mem->init_req(2, st);
4510   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4511   i_char->init_req(2, AddI(i_char, intcon(2)));
4512 
4513   set_control(IfFalse(iff));
4514   set_memory(st, TypeAryPtr::BYTES);
4515 }
4516 
4517 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4518   if (!field->is_constant()) {
4519     return NULL; // Field not marked as constant.
4520   }
4521   ciInstance* holder = NULL;
4522   if (!field->is_static()) {
4523     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4524     if (const_oop != NULL && const_oop->is_instance()) {
4525       holder = const_oop->as_instance();
4526     }
4527   }
4528   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4529                                                         /*is_unsigned_load=*/false);
4530   if (con_type != NULL) {
4531     return makecon(con_type);
4532   }
4533   return NULL;
4534 }
4535 
4536 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4537   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4538   // assumption of CCP analysis.
4539   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4540 }