1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 #include "utilities/growableArray.hpp"
  38 
  39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  40 // is an abstract class: there may be many different kinds of heaps.  This
  41 // class defines the functions that a heap must implement, and contains
  42 // infrastructure common to all heaps.
  43 
  44 class AdaptiveSizePolicy;
  45 class BarrierSet;
  46 class CollectorPolicy;
  47 class GCHeapSummary;
  48 class GCTimer;
  49 class GCTracer;
  50 class GCMemoryManager;
  51 class MemoryPool;
  52 class MetaspaceSummary;
  53 class SoftRefPolicy;
  54 class Thread;
  55 class ThreadClosure;
  56 class VirtualSpaceSummary;
  57 class WorkGang;
  58 class nmethod;
  59 
  60 class GCMessage : public FormatBuffer<1024> {
  61  public:
  62   bool is_before;
  63 
  64  public:
  65   GCMessage() {}
  66 };
  67 
  68 class CollectedHeap;
  69 
  70 class GCHeapLog : public EventLogBase<GCMessage> {
  71  private:
  72   void log_heap(CollectedHeap* heap, bool before);
  73 
  74  public:
  75   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  76 
  77   void log_heap_before(CollectedHeap* heap) {
  78     log_heap(heap, true);
  79   }
  80   void log_heap_after(CollectedHeap* heap) {
  81     log_heap(heap, false);
  82   }
  83 };
  84 
  85 //
  86 // CollectedHeap
  87 //   GenCollectedHeap
  88 //     SerialHeap
  89 //     CMSHeap
  90 //   G1CollectedHeap
  91 //   ParallelScavengeHeap
  92 //
  93 class CollectedHeap : public CHeapObj<mtInternal> {
  94   friend class VMStructs;
  95   friend class JVMCIVMStructs;
  96   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  97 
  98  private:
  99 #ifdef ASSERT
 100   static int       _fire_out_of_memory_count;
 101 #endif
 102 
 103   GCHeapLog* _gc_heap_log;
 104 
 105   MemRegion _reserved;
 106 
 107  protected:
 108   bool _is_gc_active;
 109 
 110   // Used for filler objects (static, but initialized in ctor).
 111   static size_t _filler_array_max_size;
 112 
 113   unsigned int _total_collections;          // ... started
 114   unsigned int _total_full_collections;     // ... started
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 117 
 118   // Reason for current garbage collection.  Should be set to
 119   // a value reflecting no collection between collections.
 120   GCCause::Cause _gc_cause;
 121   GCCause::Cause _gc_lastcause;
 122   PerfStringVariable* _perf_gc_cause;
 123   PerfStringVariable* _perf_gc_lastcause;
 124 
 125   // Constructor
 126   CollectedHeap();
 127 
 128   // Create a new tlab. All TLAB allocations must go through this.
 129   // To allow more flexible TLAB allocations min_size specifies
 130   // the minimum size needed, while requested_size is the requested
 131   // size based on ergonomics. The actually allocated size will be
 132   // returned in actual_size.
 133   virtual HeapWord* allocate_new_tlab(size_t min_size,
 134                                       size_t requested_size,
 135                                       size_t* actual_size);
 136 
 137   // Accumulate statistics on all tlabs.
 138   virtual void accumulate_statistics_all_tlabs();
 139 
 140   // Reinitialize tlabs before resuming mutators.
 141   virtual void resize_all_tlabs();
 142 
 143   // Allocate from the current thread's TLAB, with broken-out slow path.
 144   inline static HeapWord* allocate_from_tlab(Klass* klass, size_t size, TRAPS);
 145   static HeapWord* allocate_from_tlab_slow(Klass* klass, size_t size, TRAPS);
 146 
 147   // Raw memory allocation facilities
 148   // The obj and array allocate methods are covers for these methods.
 149   // mem_allocate() should never be
 150   // called to allocate TLABs, only individual objects.
 151   virtual HeapWord* mem_allocate(size_t size,
 152                                  bool* gc_overhead_limit_was_exceeded) = 0;
 153 
 154   // Allocate an uninitialized block of the given size, or returns NULL if
 155   // this is impossible.
 156   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 157 
 158   // Like allocate_init, but the block returned by a successful allocation
 159   // is guaranteed initialized to zeros.
 160   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 161 
 162   // Helper functions for (VM) allocation.
 163   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 164   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 165                                                             HeapWord* objPtr);
 166 
 167   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 168 
 169   inline static void post_allocation_setup_array(Klass* klass,
 170                                                  HeapWord* obj, int length);
 171 
 172   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 173 
 174   // Clears an allocated object.
 175   inline static void init_obj(HeapWord* obj, size_t size);
 176 
 177   // Filler object utilities.
 178   static inline size_t filler_array_hdr_size();
 179   static inline size_t filler_array_min_size();
 180 
 181   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 182   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 183 
 184   // Fill with a single array; caller must ensure filler_array_min_size() <=
 185   // words <= filler_array_max_size().
 186   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 187 
 188   // Fill with a single object (either an int array or a java.lang.Object).
 189   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 190 
 191   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 192 
 193   // Verification functions
 194   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 195     PRODUCT_RETURN;
 196   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 197     PRODUCT_RETURN;
 198   debug_only(static void check_for_valid_allocation_state();)
 199 
 200  public:
 201   enum Name {
 202     None,
 203     Serial,
 204     Parallel,
 205     CMS,
 206     G1,
 207     Epsilon,
 208   };
 209 
 210   static inline size_t filler_array_max_size() {
 211     return _filler_array_max_size;
 212   }
 213 
 214   virtual Name kind() const = 0;
 215 
 216   virtual const char* name() const = 0;
 217 
 218   /**
 219    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 220    * and JNI_OK on success.
 221    */
 222   virtual jint initialize() = 0;
 223 
 224   // In many heaps, there will be a need to perform some initialization activities
 225   // after the Universe is fully formed, but before general heap allocation is allowed.
 226   // This is the correct place to place such initialization methods.
 227   virtual void post_initialize();
 228 
 229   // Stop any onging concurrent work and prepare for exit.
 230   virtual void stop() {}
 231 
 232   // Stop and resume concurrent GC threads interfering with safepoint operations
 233   virtual void safepoint_synchronize_begin() {}
 234   virtual void safepoint_synchronize_end() {}
 235 
 236   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 237   MemRegion reserved_region() const { return _reserved; }
 238   address base() const { return (address)reserved_region().start(); }
 239 
 240   virtual size_t capacity() const = 0;
 241   virtual size_t used() const = 0;
 242 
 243   // Return "true" if the part of the heap that allocates Java
 244   // objects has reached the maximal committed limit that it can
 245   // reach, without a garbage collection.
 246   virtual bool is_maximal_no_gc() const = 0;
 247 
 248   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 249   // memory that the vm could make available for storing 'normal' java objects.
 250   // This is based on the reserved address space, but should not include space
 251   // that the vm uses internally for bookkeeping or temporary storage
 252   // (e.g., in the case of the young gen, one of the survivor
 253   // spaces).
 254   virtual size_t max_capacity() const = 0;
 255 
 256   // Returns "TRUE" if "p" points into the reserved area of the heap.
 257   bool is_in_reserved(const void* p) const {
 258     return _reserved.contains(p);
 259   }
 260 
 261   bool is_in_reserved_or_null(const void* p) const {
 262     return p == NULL || is_in_reserved(p);
 263   }
 264 
 265   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 266   // This method can be expensive so avoid using it in performance critical
 267   // code.
 268   virtual bool is_in(const void* p) const = 0;
 269 
 270   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 271 
 272   // Let's define some terms: a "closed" subset of a heap is one that
 273   //
 274   // 1) contains all currently-allocated objects, and
 275   //
 276   // 2) is closed under reference: no object in the closed subset
 277   //    references one outside the closed subset.
 278   //
 279   // Membership in a heap's closed subset is useful for assertions.
 280   // Clearly, the entire heap is a closed subset, so the default
 281   // implementation is to use "is_in_reserved".  But this may not be too
 282   // liberal to perform useful checking.  Also, the "is_in" predicate
 283   // defines a closed subset, but may be too expensive, since "is_in"
 284   // verifies that its argument points to an object head.  The
 285   // "closed_subset" method allows a heap to define an intermediate
 286   // predicate, allowing more precise checking than "is_in_reserved" at
 287   // lower cost than "is_in."
 288 
 289   // One important case is a heap composed of disjoint contiguous spaces,
 290   // such as the Garbage-First collector.  Such heaps have a convenient
 291   // closed subset consisting of the allocated portions of those
 292   // contiguous spaces.
 293 
 294   // Return "TRUE" iff the given pointer points into the heap's defined
 295   // closed subset (which defaults to the entire heap).
 296   virtual bool is_in_closed_subset(const void* p) const {
 297     return is_in_reserved(p);
 298   }
 299 
 300   bool is_in_closed_subset_or_null(const void* p) const {
 301     return p == NULL || is_in_closed_subset(p);
 302   }
 303 
 304   void set_gc_cause(GCCause::Cause v) {
 305      if (UsePerfData) {
 306        _gc_lastcause = _gc_cause;
 307        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 308        _perf_gc_cause->set_value(GCCause::to_string(v));
 309      }
 310     _gc_cause = v;
 311   }
 312   GCCause::Cause gc_cause() { return _gc_cause; }
 313 
 314   // General obj/array allocation facilities.
 315   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 316   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 317   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 318   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 319 
 320   // Raw memory allocation. This may or may not use TLAB allocations to satisfy the
 321   // allocation. A GC implementation may override this function to satisfy the allocation
 322   // in any way. But the default is to try a TLAB allocation, and otherwise perform
 323   // mem_allocate.
 324   virtual HeapWord* obj_allocate_raw(Klass* klass, size_t size,
 325                                      bool* gc_overhead_limit_was_exceeded, TRAPS);
 326 
 327   // Utilities for turning raw memory into filler objects.
 328   //
 329   // min_fill_size() is the smallest region that can be filled.
 330   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 331   // multiple objects.  fill_with_object() is for regions known to be smaller
 332   // than the largest array of integers; it uses a single object to fill the
 333   // region and has slightly less overhead.
 334   static size_t min_fill_size() {
 335     return size_t(align_object_size(oopDesc::header_size()));
 336   }
 337 
 338   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 339 
 340   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 341   static void fill_with_object(MemRegion region, bool zap = true) {
 342     fill_with_object(region.start(), region.word_size(), zap);
 343   }
 344   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 345     fill_with_object(start, pointer_delta(end, start), zap);
 346   }
 347 
 348   // Return the address "addr" aligned by "alignment_in_bytes" if such
 349   // an address is below "end".  Return NULL otherwise.
 350   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 351                                                    HeapWord* end,
 352                                                    unsigned short alignment_in_bytes);
 353 
 354   // Some heaps may offer a contiguous region for shared non-blocking
 355   // allocation, via inlined code (by exporting the address of the top and
 356   // end fields defining the extent of the contiguous allocation region.)
 357 
 358   // This function returns "true" iff the heap supports this kind of
 359   // allocation.  (Default is "no".)
 360   virtual bool supports_inline_contig_alloc() const {
 361     return false;
 362   }
 363   // These functions return the addresses of the fields that define the
 364   // boundaries of the contiguous allocation area.  (These fields should be
 365   // physically near to one another.)
 366   virtual HeapWord* volatile* top_addr() const {
 367     guarantee(false, "inline contiguous allocation not supported");
 368     return NULL;
 369   }
 370   virtual HeapWord** end_addr() const {
 371     guarantee(false, "inline contiguous allocation not supported");
 372     return NULL;
 373   }
 374 
 375   // Some heaps may be in an unparseable state at certain times between
 376   // collections. This may be necessary for efficient implementation of
 377   // certain allocation-related activities. Calling this function before
 378   // attempting to parse a heap ensures that the heap is in a parsable
 379   // state (provided other concurrent activity does not introduce
 380   // unparsability). It is normally expected, therefore, that this
 381   // method is invoked with the world stopped.
 382   // NOTE: if you override this method, make sure you call
 383   // super::ensure_parsability so that the non-generational
 384   // part of the work gets done. See implementation of
 385   // CollectedHeap::ensure_parsability and, for instance,
 386   // that of GenCollectedHeap::ensure_parsability().
 387   // The argument "retire_tlabs" controls whether existing TLABs
 388   // are merely filled or also retired, thus preventing further
 389   // allocation from them and necessitating allocation of new TLABs.
 390   virtual void ensure_parsability(bool retire_tlabs);
 391 
 392   // Section on thread-local allocation buffers (TLABs)
 393   // If the heap supports thread-local allocation buffers, it should override
 394   // the following methods:
 395   // Returns "true" iff the heap supports thread-local allocation buffers.
 396   // The default is "no".
 397   virtual bool supports_tlab_allocation() const = 0;
 398 
 399   // The amount of space available for thread-local allocation buffers.
 400   virtual size_t tlab_capacity(Thread *thr) const = 0;
 401 
 402   // The amount of used space for thread-local allocation buffers for the given thread.
 403   virtual size_t tlab_used(Thread *thr) const = 0;
 404 
 405   virtual size_t max_tlab_size() const;
 406 
 407   // An estimate of the maximum allocation that could be performed
 408   // for thread-local allocation buffers without triggering any
 409   // collection or expansion activity.
 410   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 411     guarantee(false, "thread-local allocation buffers not supported");
 412     return 0;
 413   }
 414 
 415   // Perform a collection of the heap; intended for use in implementing
 416   // "System.gc".  This probably implies as full a collection as the
 417   // "CollectedHeap" supports.
 418   virtual void collect(GCCause::Cause cause) = 0;
 419 
 420   // Perform a full collection
 421   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 422 
 423   // This interface assumes that it's being called by the
 424   // vm thread. It collects the heap assuming that the
 425   // heap lock is already held and that we are executing in
 426   // the context of the vm thread.
 427   virtual void collect_as_vm_thread(GCCause::Cause cause);
 428 
 429   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 430                                                        size_t size,
 431                                                        Metaspace::MetadataType mdtype);
 432 
 433   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 434   // that it should answer "false" for the concurrent part of a concurrent
 435   // collector -- dld).
 436   bool is_gc_active() const { return _is_gc_active; }
 437 
 438   // Total number of GC collections (started)
 439   unsigned int total_collections() const { return _total_collections; }
 440   unsigned int total_full_collections() const { return _total_full_collections;}
 441 
 442   // Increment total number of GC collections (started)
 443   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 444   void increment_total_collections(bool full = false) {
 445     _total_collections++;
 446     if (full) {
 447       increment_total_full_collections();
 448     }
 449   }
 450 
 451   void increment_total_full_collections() { _total_full_collections++; }
 452 
 453   // Return the CollectorPolicy for the heap
 454   virtual CollectorPolicy* collector_policy() const = 0;
 455 
 456   // Return the SoftRefPolicy for the heap;
 457   virtual SoftRefPolicy* soft_ref_policy() = 0;
 458 
 459   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 460   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 461 
 462   // Iterate over all objects, calling "cl.do_object" on each.
 463   virtual void object_iterate(ObjectClosure* cl) = 0;
 464 
 465   // Similar to object_iterate() except iterates only
 466   // over live objects.
 467   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 468 
 469   // NOTE! There is no requirement that a collector implement these
 470   // functions.
 471   //
 472   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 473   // each address in the (reserved) heap is a member of exactly
 474   // one block.  The defining characteristic of a block is that it is
 475   // possible to find its size, and thus to progress forward to the next
 476   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 477   // represent Java objects, or they might be free blocks in a
 478   // free-list-based heap (or subheap), as long as the two kinds are
 479   // distinguishable and the size of each is determinable.
 480 
 481   // Returns the address of the start of the "block" that contains the
 482   // address "addr".  We say "blocks" instead of "object" since some heaps
 483   // may not pack objects densely; a chunk may either be an object or a
 484   // non-object.
 485   virtual HeapWord* block_start(const void* addr) const = 0;
 486 
 487   // Requires "addr" to be the start of a chunk, and returns its size.
 488   // "addr + size" is required to be the start of a new chunk, or the end
 489   // of the active area of the heap.
 490   virtual size_t block_size(const HeapWord* addr) const = 0;
 491 
 492   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 493   // the block is an object.
 494   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 495 
 496   // Returns the longest time (in ms) that has elapsed since the last
 497   // time that any part of the heap was examined by a garbage collection.
 498   virtual jlong millis_since_last_gc() = 0;
 499 
 500   // Perform any cleanup actions necessary before allowing a verification.
 501   virtual void prepare_for_verify() = 0;
 502 
 503   // Generate any dumps preceding or following a full gc
 504  private:
 505   void full_gc_dump(GCTimer* timer, bool before);
 506 
 507   virtual void initialize_serviceability() = 0;
 508 
 509  public:
 510   void pre_full_gc_dump(GCTimer* timer);
 511   void post_full_gc_dump(GCTimer* timer);
 512 
 513   virtual VirtualSpaceSummary create_heap_space_summary();
 514   GCHeapSummary create_heap_summary();
 515 
 516   MetaspaceSummary create_metaspace_summary();
 517 
 518   // Print heap information on the given outputStream.
 519   virtual void print_on(outputStream* st) const = 0;
 520   // The default behavior is to call print_on() on tty.
 521   virtual void print() const {
 522     print_on(tty);
 523   }
 524   // Print more detailed heap information on the given
 525   // outputStream. The default behavior is to call print_on(). It is
 526   // up to each subclass to override it and add any additional output
 527   // it needs.
 528   virtual void print_extended_on(outputStream* st) const {
 529     print_on(st);
 530   }
 531 
 532   virtual void print_on_error(outputStream* st) const;
 533 
 534   // Print all GC threads (other than the VM thread)
 535   // used by this heap.
 536   virtual void print_gc_threads_on(outputStream* st) const = 0;
 537   // The default behavior is to call print_gc_threads_on() on tty.
 538   void print_gc_threads() {
 539     print_gc_threads_on(tty);
 540   }
 541   // Iterator for all GC threads (other than VM thread)
 542   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 543 
 544   // Print any relevant tracing info that flags imply.
 545   // Default implementation does nothing.
 546   virtual void print_tracing_info() const = 0;
 547 
 548   void print_heap_before_gc();
 549   void print_heap_after_gc();
 550 
 551   // An object is scavengable if its location may move during a scavenge.
 552   // (A scavenge is a GC which is not a full GC.)
 553   virtual bool is_scavengable(oop obj) = 0;
 554   // Registering and unregistering an nmethod (compiled code) with the heap.
 555   // Override with specific mechanism for each specialized heap type.
 556   virtual void register_nmethod(nmethod* nm) {}
 557   virtual void unregister_nmethod(nmethod* nm) {}
 558   virtual void verify_nmethod(nmethod* nmethod) {}
 559 
 560   void trace_heap_before_gc(const GCTracer* gc_tracer);
 561   void trace_heap_after_gc(const GCTracer* gc_tracer);
 562 
 563   // Heap verification
 564   virtual void verify(VerifyOption option) = 0;
 565 
 566   // Return true if concurrent phase control (via
 567   // request_concurrent_phase_control) is supported by this collector.
 568   // The default implementation returns false.
 569   virtual bool supports_concurrent_phase_control() const;
 570 
 571   // Return a NULL terminated array of concurrent phase names provided
 572   // by this collector.  Supports Whitebox testing.  These are the
 573   // names recognized by request_concurrent_phase(). The default
 574   // implementation returns an array of one NULL element.
 575   virtual const char* const* concurrent_phases() const;
 576 
 577   // Request the collector enter the indicated concurrent phase, and
 578   // wait until it does so.  Supports WhiteBox testing.  Only one
 579   // request may be active at a time.  Phases are designated by name;
 580   // the set of names and their meaning is GC-specific.  Once the
 581   // requested phase has been reached, the collector will attempt to
 582   // avoid transitioning to a new phase until a new request is made.
 583   // [Note: A collector might not be able to remain in a given phase.
 584   // For example, a full collection might cancel an in-progress
 585   // concurrent collection.]
 586   //
 587   // Returns true when the phase is reached.  Returns false for an
 588   // unknown phase.  The default implementation returns false.
 589   virtual bool request_concurrent_phase(const char* phase);
 590 
 591   // Provides a thread pool to SafepointSynchronize to use
 592   // for parallel safepoint cleanup.
 593   // GCs that use a GC worker thread pool may want to share
 594   // it for use during safepoint cleanup. This is only possible
 595   // if the GC can pause and resume concurrent work (e.g. G1
 596   // concurrent marking) for an intermittent non-GC safepoint.
 597   // If this method returns NULL, SafepointSynchronize will
 598   // perform cleanup tasks serially in the VMThread.
 599   virtual WorkGang* get_safepoint_workers() { return NULL; }
 600 
 601   // Support for object pinning. This is used by JNI Get*Critical()
 602   // and Release*Critical() family of functions. If supported, the GC
 603   // must guarantee that pinned objects never move.
 604   virtual bool supports_object_pinning() const;
 605   virtual oop pin_object(JavaThread* thread, oop obj);
 606   virtual void unpin_object(JavaThread* thread, oop obj);
 607 
 608   // Deduplicate the string, iff the GC supports string deduplication.
 609   virtual void deduplicate_string(oop str);
 610 
 611   virtual bool is_oop(oop object) const;
 612 
 613   // Non product verification and debugging.
 614 #ifndef PRODUCT
 615   // Support for PromotionFailureALot.  Return true if it's time to cause a
 616   // promotion failure.  The no-argument version uses
 617   // this->_promotion_failure_alot_count as the counter.
 618   bool promotion_should_fail(volatile size_t* count);
 619   bool promotion_should_fail();
 620 
 621   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 622   // GC in which promotion failure occurred.
 623   void reset_promotion_should_fail(volatile size_t* count);
 624   void reset_promotion_should_fail();
 625 #endif  // #ifndef PRODUCT
 626 
 627 #ifdef ASSERT
 628   static int fired_fake_oom() {
 629     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 630   }
 631 #endif
 632 };
 633 
 634 // Class to set and reset the GC cause for a CollectedHeap.
 635 
 636 class GCCauseSetter : StackObj {
 637   CollectedHeap* _heap;
 638   GCCause::Cause _previous_cause;
 639  public:
 640   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 641     _heap = heap;
 642     _previous_cause = _heap->gc_cause();
 643     _heap->set_gc_cause(cause);
 644   }
 645 
 646   ~GCCauseSetter() {
 647     _heap->set_gc_cause(_previous_cause);
 648   }
 649 };
 650 
 651 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP