1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodData.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 #ifndef CC_INTERP
  40 #define __ _masm->
  41 
  42 // Misc helpers
  43 
  44 // Do an oop store like *(base + index + offset) = val
  45 // index can be noreg,
  46 static void do_oop_store(InterpreterMacroAssembler* _masm,
  47                          Register base,
  48                          Register index,
  49                          int offset,
  50                          Register val,
  51                          Register tmp,
  52                          BarrierSet::Name barrier,
  53                          bool precise) {
  54   assert(tmp != val && tmp != base && tmp != index, "register collision");
  55   assert(index == noreg || offset == 0, "only one offset");
  56   switch (barrier) {
  57 #if INCLUDE_ALL_GCS
  58     case BarrierSet::G1SATBCT:
  59     case BarrierSet::G1SATBCTLogging:
  60       {
  61         // Load and record the previous value.
  62         __ g1_write_barrier_pre(base, index, offset,
  63                                 noreg /* pre_val */,
  64                                 tmp, true /*preserve_o_regs*/);
  65 
  66         // G1 barrier needs uncompressed oop for region cross check.
  67         Register new_val = val;
  68         if (UseCompressedOops && val != G0) {
  69           new_val = tmp;
  70           __ mov(val, new_val);
  71         }
  72 
  73         if (index == noreg ) {
  74           assert(Assembler::is_simm13(offset), "fix this code");
  75           __ store_heap_oop(val, base, offset);
  76         } else {
  77           __ store_heap_oop(val, base, index);
  78         }
  79 
  80         // No need for post barrier if storing NULL
  81         if (val != G0) {
  82           if (precise) {
  83             if (index == noreg) {
  84               __ add(base, offset, base);
  85             } else {
  86               __ add(base, index, base);
  87             }
  88           }
  89           __ g1_write_barrier_post(base, new_val, tmp);
  90         }
  91       }
  92       break;
  93 #endif // INCLUDE_ALL_GCS
  94     case BarrierSet::CardTableModRef:
  95     case BarrierSet::CardTableExtension:
  96       {
  97         if (index == noreg ) {
  98           assert(Assembler::is_simm13(offset), "fix this code");
  99           __ store_heap_oop(val, base, offset);
 100         } else {
 101           __ store_heap_oop(val, base, index);
 102         }
 103         // No need for post barrier if storing NULL
 104         if (val != G0) {
 105           if (precise) {
 106             if (index == noreg) {
 107               __ add(base, offset, base);
 108             } else {
 109               __ add(base, index, base);
 110             }
 111           }
 112           __ card_write_barrier_post(base, val, tmp);
 113         }
 114       }
 115       break;
 116     case BarrierSet::ModRef:
 117     case BarrierSet::Other:
 118       ShouldNotReachHere();
 119       break;
 120     default      :
 121       ShouldNotReachHere();
 122 
 123   }
 124 }
 125 
 126 
 127 //----------------------------------------------------------------------------------------------------
 128 // Platform-dependent initialization
 129 
 130 void TemplateTable::pd_initialize() {
 131   // (none)
 132 }
 133 
 134 
 135 //----------------------------------------------------------------------------------------------------
 136 // Condition conversion
 137 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 138   switch (cc) {
 139     case TemplateTable::equal        : return Assembler::notEqual;
 140     case TemplateTable::not_equal    : return Assembler::equal;
 141     case TemplateTable::less         : return Assembler::greaterEqual;
 142     case TemplateTable::less_equal   : return Assembler::greater;
 143     case TemplateTable::greater      : return Assembler::lessEqual;
 144     case TemplateTable::greater_equal: return Assembler::less;
 145   }
 146   ShouldNotReachHere();
 147   return Assembler::zero;
 148 }
 149 
 150 //----------------------------------------------------------------------------------------------------
 151 // Miscelaneous helper routines
 152 
 153 
 154 Address TemplateTable::at_bcp(int offset) {
 155   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 156   return Address(Lbcp, offset);
 157 }
 158 
 159 
 160 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 161                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 162                                    int byte_no) {
 163   // With sharing on, may need to test Method* flag.
 164   if (!RewriteBytecodes)  return;
 165   Label L_patch_done;
 166 
 167   switch (bc) {
 168   case Bytecodes::_fast_aputfield:
 169   case Bytecodes::_fast_bputfield:
 170   case Bytecodes::_fast_zputfield:
 171   case Bytecodes::_fast_cputfield:
 172   case Bytecodes::_fast_dputfield:
 173   case Bytecodes::_fast_fputfield:
 174   case Bytecodes::_fast_iputfield:
 175   case Bytecodes::_fast_lputfield:
 176   case Bytecodes::_fast_sputfield:
 177     {
 178       // We skip bytecode quickening for putfield instructions when
 179       // the put_code written to the constant pool cache is zero.
 180       // This is required so that every execution of this instruction
 181       // calls out to InterpreterRuntime::resolve_get_put to do
 182       // additional, required work.
 183       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 184       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 185       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 186       __ set(bc, bc_reg);
 187       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 188     }
 189     break;
 190   default:
 191     assert(byte_no == -1, "sanity");
 192     if (load_bc_into_bc_reg) {
 193       __ set(bc, bc_reg);
 194     }
 195   }
 196 
 197   if (JvmtiExport::can_post_breakpoint()) {
 198     Label L_fast_patch;
 199     __ ldub(at_bcp(0), temp_reg);
 200     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 201     // perform the quickening, slowly, in the bowels of the breakpoint table
 202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 203     __ ba_short(L_patch_done);
 204     __ bind(L_fast_patch);
 205   }
 206 
 207 #ifdef ASSERT
 208   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 209   Label L_okay;
 210   __ ldub(at_bcp(0), temp_reg);
 211   __ cmp(temp_reg, orig_bytecode);
 212   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 213   __ delayed()->cmp(temp_reg, bc_reg);
 214   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 215   __ delayed()->nop();
 216   __ stop("patching the wrong bytecode");
 217   __ bind(L_okay);
 218 #endif
 219 
 220   // patch bytecode
 221   __ stb(bc_reg, at_bcp(0));
 222   __ bind(L_patch_done);
 223 }
 224 
 225 //----------------------------------------------------------------------------------------------------
 226 // Individual instructions
 227 
 228 void TemplateTable::nop() {
 229   transition(vtos, vtos);
 230   // nothing to do
 231 }
 232 
 233 void TemplateTable::shouldnotreachhere() {
 234   transition(vtos, vtos);
 235   __ stop("shouldnotreachhere bytecode");
 236 }
 237 
 238 void TemplateTable::aconst_null() {
 239   transition(vtos, atos);
 240   __ clr(Otos_i);
 241 }
 242 
 243 
 244 void TemplateTable::iconst(int value) {
 245   transition(vtos, itos);
 246   __ set(value, Otos_i);
 247 }
 248 
 249 
 250 void TemplateTable::lconst(int value) {
 251   transition(vtos, ltos);
 252   assert(value >= 0, "check this code");
 253 #ifdef _LP64
 254   __ set(value, Otos_l);
 255 #else
 256   __ set(value, Otos_l2);
 257   __ clr( Otos_l1);
 258 #endif
 259 }
 260 
 261 
 262 void TemplateTable::fconst(int value) {
 263   transition(vtos, ftos);
 264   static float zero = 0.0, one = 1.0, two = 2.0;
 265   float* p;
 266   switch( value ) {
 267    default: ShouldNotReachHere();
 268    case 0:  p = &zero;  break;
 269    case 1:  p = &one;   break;
 270    case 2:  p = &two;   break;
 271   }
 272   AddressLiteral a(p);
 273   __ sethi(a, G3_scratch);
 274   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 275 }
 276 
 277 
 278 void TemplateTable::dconst(int value) {
 279   transition(vtos, dtos);
 280   static double zero = 0.0, one = 1.0;
 281   double* p;
 282   switch( value ) {
 283    default: ShouldNotReachHere();
 284    case 0:  p = &zero;  break;
 285    case 1:  p = &one;   break;
 286   }
 287   AddressLiteral a(p);
 288   __ sethi(a, G3_scratch);
 289   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 290 }
 291 
 292 
 293 // %%%%% Should factore most snippet templates across platforms
 294 
 295 void TemplateTable::bipush() {
 296   transition(vtos, itos);
 297   __ ldsb( at_bcp(1), Otos_i );
 298 }
 299 
 300 void TemplateTable::sipush() {
 301   transition(vtos, itos);
 302   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 303 }
 304 
 305 void TemplateTable::ldc(bool wide) {
 306   transition(vtos, vtos);
 307   Label call_ldc, notInt, isString, notString, notClass, exit;
 308 
 309   if (wide) {
 310     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 311   } else {
 312     __ ldub(Lbcp, 1, O1);
 313   }
 314   __ get_cpool_and_tags(O0, O2);
 315 
 316   const int base_offset = ConstantPool::header_size() * wordSize;
 317   const int tags_offset = Array<u1>::base_offset_in_bytes();
 318 
 319   // get type from tags
 320   __ add(O2, tags_offset, O2);
 321   __ ldub(O2, O1, O2);
 322 
 323   // unresolved class? If so, must resolve
 324   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 325 
 326   // unresolved class in error state
 327   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 328 
 329   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 330   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 331   __ delayed()->add(O0, base_offset, O0);
 332 
 333   __ bind(call_ldc);
 334   __ set(wide, O1);
 335   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 336   __ push(atos);
 337   __ ba_short(exit);
 338 
 339   __ bind(notClass);
 340  // __ add(O0, base_offset, O0);
 341   __ sll(O1, LogBytesPerWord, O1);
 342   __ cmp(O2, JVM_CONSTANT_Integer);
 343   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 344   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 345   __ ld(O0, O1, Otos_i);
 346   __ push(itos);
 347   __ ba_short(exit);
 348 
 349   __ bind(notInt);
 350  // __ cmp(O2, JVM_CONSTANT_String);
 351   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 352   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 353   __ bind(isString);
 354   __ stop("string should be rewritten to fast_aldc");
 355   __ ba_short(exit);
 356 
 357   __ bind(notString);
 358  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 359   __ push(ftos);
 360 
 361   __ bind(exit);
 362 }
 363 
 364 // Fast path for caching oop constants.
 365 // %%% We should use this to handle Class and String constants also.
 366 // %%% It will simplify the ldc/primitive path considerably.
 367 void TemplateTable::fast_aldc(bool wide) {
 368   transition(vtos, atos);
 369 
 370   int index_size = wide ? sizeof(u2) : sizeof(u1);
 371   Label resolved;
 372 
 373   // We are resolved if the resolved reference cache entry contains a
 374   // non-null object (CallSite, etc.)
 375   assert_different_registers(Otos_i, G3_scratch);
 376   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 377   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 378   __ tst(Otos_i);
 379   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 380   __ delayed()->set((int)bytecode(), O1);
 381 
 382   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 383 
 384   // first time invocation - must resolve first
 385   __ call_VM(Otos_i, entry, O1);
 386   __ bind(resolved);
 387   __ verify_oop(Otos_i);
 388 }
 389 
 390 
 391 void TemplateTable::ldc2_w() {
 392   transition(vtos, vtos);
 393   Label Long, exit;
 394 
 395   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 396   __ get_cpool_and_tags(O0, O2);
 397 
 398   const int base_offset = ConstantPool::header_size() * wordSize;
 399   const int tags_offset = Array<u1>::base_offset_in_bytes();
 400   // get type from tags
 401   __ add(O2, tags_offset, O2);
 402   __ ldub(O2, O1, O2);
 403 
 404   __ sll(O1, LogBytesPerWord, O1);
 405   __ add(O0, O1, G3_scratch);
 406 
 407   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 408   // A double can be placed at word-aligned locations in the constant pool.
 409   // Check out Conversions.java for an example.
 410   // Also ConstantPool::header_size() is 20, which makes it very difficult
 411   // to double-align double on the constant pool.  SG, 11/7/97
 412 #ifdef _LP64
 413   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 414 #else
 415   FloatRegister f = Ftos_d;
 416   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 417   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 418          f->successor());
 419 #endif
 420   __ push(dtos);
 421   __ ba_short(exit);
 422 
 423   __ bind(Long);
 424 #ifdef _LP64
 425   __ ldx(G3_scratch, base_offset, Otos_l);
 426 #else
 427   __ ld(G3_scratch, base_offset, Otos_l);
 428   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 429 #endif
 430   __ push(ltos);
 431 
 432   __ bind(exit);
 433 }
 434 
 435 
 436 void TemplateTable::locals_index(Register reg, int offset) {
 437   __ ldub( at_bcp(offset), reg );
 438 }
 439 
 440 
 441 void TemplateTable::locals_index_wide(Register reg) {
 442   // offset is 2, not 1, because Lbcp points to wide prefix code
 443   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 444 }
 445 
 446 void TemplateTable::iload() {
 447   transition(vtos, itos);
 448   // Rewrite iload,iload  pair into fast_iload2
 449   //         iload,caload pair into fast_icaload
 450   if (RewriteFrequentPairs) {
 451     Label rewrite, done;
 452 
 453     // get next byte
 454     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 455 
 456     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 457     // last two iloads in a pair.  Comparing against fast_iload means that
 458     // the next bytecode is neither an iload or a caload, and therefore
 459     // an iload pair.
 460     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 461 
 462     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 463     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 464     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 465 
 466     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 467     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 468     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 469 
 470     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 471     // rewrite
 472     // G4_scratch: fast bytecode
 473     __ bind(rewrite);
 474     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 475     __ bind(done);
 476   }
 477 
 478   // Get the local value into tos
 479   locals_index(G3_scratch);
 480   __ access_local_int( G3_scratch, Otos_i );
 481 }
 482 
 483 void TemplateTable::fast_iload2() {
 484   transition(vtos, itos);
 485   locals_index(G3_scratch);
 486   __ access_local_int( G3_scratch, Otos_i );
 487   __ push_i();
 488   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 489   __ access_local_int( G3_scratch, Otos_i );
 490 }
 491 
 492 void TemplateTable::fast_iload() {
 493   transition(vtos, itos);
 494   locals_index(G3_scratch);
 495   __ access_local_int( G3_scratch, Otos_i );
 496 }
 497 
 498 void TemplateTable::lload() {
 499   transition(vtos, ltos);
 500   locals_index(G3_scratch);
 501   __ access_local_long( G3_scratch, Otos_l );
 502 }
 503 
 504 
 505 void TemplateTable::fload() {
 506   transition(vtos, ftos);
 507   locals_index(G3_scratch);
 508   __ access_local_float( G3_scratch, Ftos_f );
 509 }
 510 
 511 
 512 void TemplateTable::dload() {
 513   transition(vtos, dtos);
 514   locals_index(G3_scratch);
 515   __ access_local_double( G3_scratch, Ftos_d );
 516 }
 517 
 518 
 519 void TemplateTable::aload() {
 520   transition(vtos, atos);
 521   locals_index(G3_scratch);
 522   __ access_local_ptr( G3_scratch, Otos_i);
 523 }
 524 
 525 
 526 void TemplateTable::wide_iload() {
 527   transition(vtos, itos);
 528   locals_index_wide(G3_scratch);
 529   __ access_local_int( G3_scratch, Otos_i );
 530 }
 531 
 532 
 533 void TemplateTable::wide_lload() {
 534   transition(vtos, ltos);
 535   locals_index_wide(G3_scratch);
 536   __ access_local_long( G3_scratch, Otos_l );
 537 }
 538 
 539 
 540 void TemplateTable::wide_fload() {
 541   transition(vtos, ftos);
 542   locals_index_wide(G3_scratch);
 543   __ access_local_float( G3_scratch, Ftos_f );
 544 }
 545 
 546 
 547 void TemplateTable::wide_dload() {
 548   transition(vtos, dtos);
 549   locals_index_wide(G3_scratch);
 550   __ access_local_double( G3_scratch, Ftos_d );
 551 }
 552 
 553 
 554 void TemplateTable::wide_aload() {
 555   transition(vtos, atos);
 556   locals_index_wide(G3_scratch);
 557   __ access_local_ptr( G3_scratch, Otos_i );
 558   __ verify_oop(Otos_i);
 559 }
 560 
 561 
 562 void TemplateTable::iaload() {
 563   transition(itos, itos);
 564   // Otos_i: index
 565   // tos: array
 566   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 567   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 568 }
 569 
 570 
 571 void TemplateTable::laload() {
 572   transition(itos, ltos);
 573   // Otos_i: index
 574   // O2: array
 575   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 576   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 577 }
 578 
 579 
 580 void TemplateTable::faload() {
 581   transition(itos, ftos);
 582   // Otos_i: index
 583   // O2: array
 584   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 585   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 586 }
 587 
 588 
 589 void TemplateTable::daload() {
 590   transition(itos, dtos);
 591   // Otos_i: index
 592   // O2: array
 593   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 594   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 595 }
 596 
 597 
 598 void TemplateTable::aaload() {
 599   transition(itos, atos);
 600   // Otos_i: index
 601   // tos: array
 602   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 603   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 604   __ verify_oop(Otos_i);
 605 }
 606 
 607 
 608 void TemplateTable::baload() {
 609   transition(itos, itos);
 610   // Otos_i: index
 611   // tos: array
 612   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 613   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 614 }
 615 
 616 
 617 void TemplateTable::caload() {
 618   transition(itos, itos);
 619   // Otos_i: index
 620   // tos: array
 621   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 622   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 623 }
 624 
 625 void TemplateTable::fast_icaload() {
 626   transition(vtos, itos);
 627   // Otos_i: index
 628   // tos: array
 629   locals_index(G3_scratch);
 630   __ access_local_int( G3_scratch, Otos_i );
 631   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 632   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 633 }
 634 
 635 
 636 void TemplateTable::saload() {
 637   transition(itos, itos);
 638   // Otos_i: index
 639   // tos: array
 640   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 641   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 642 }
 643 
 644 
 645 void TemplateTable::iload(int n) {
 646   transition(vtos, itos);
 647   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 648 }
 649 
 650 
 651 void TemplateTable::lload(int n) {
 652   transition(vtos, ltos);
 653   assert(n+1 < Argument::n_register_parameters, "would need more code");
 654   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 655 }
 656 
 657 
 658 void TemplateTable::fload(int n) {
 659   transition(vtos, ftos);
 660   assert(n < Argument::n_register_parameters, "would need more code");
 661   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 662 }
 663 
 664 
 665 void TemplateTable::dload(int n) {
 666   transition(vtos, dtos);
 667   FloatRegister dst = Ftos_d;
 668   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 669 }
 670 
 671 
 672 void TemplateTable::aload(int n) {
 673   transition(vtos, atos);
 674   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 675 }
 676 
 677 
 678 void TemplateTable::aload_0() {
 679   transition(vtos, atos);
 680 
 681   // According to bytecode histograms, the pairs:
 682   //
 683   // _aload_0, _fast_igetfield (itos)
 684   // _aload_0, _fast_agetfield (atos)
 685   // _aload_0, _fast_fgetfield (ftos)
 686   //
 687   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 688   // bytecode checks the next bytecode and then rewrites the current
 689   // bytecode into a pair bytecode; otherwise it rewrites the current
 690   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 691   //
 692   if (RewriteFrequentPairs) {
 693     Label rewrite, done;
 694 
 695     // get next byte
 696     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 697 
 698     // do actual aload_0
 699     aload(0);
 700 
 701     // if _getfield then wait with rewrite
 702     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 703 
 704     // if _igetfield then rewrite to _fast_iaccess_0
 705     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 706     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 707     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 708     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 709 
 710     // if _agetfield then rewrite to _fast_aaccess_0
 711     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 712     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 713     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 714     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 715 
 716     // if _fgetfield then rewrite to _fast_faccess_0
 717     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 718     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 719     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 720     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 721 
 722     // else rewrite to _fast_aload0
 723     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 724     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 725 
 726     // rewrite
 727     // G4_scratch: fast bytecode
 728     __ bind(rewrite);
 729     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 730     __ bind(done);
 731   } else {
 732     aload(0);
 733   }
 734 }
 735 
 736 
 737 void TemplateTable::istore() {
 738   transition(itos, vtos);
 739   locals_index(G3_scratch);
 740   __ store_local_int( G3_scratch, Otos_i );
 741 }
 742 
 743 
 744 void TemplateTable::lstore() {
 745   transition(ltos, vtos);
 746   locals_index(G3_scratch);
 747   __ store_local_long( G3_scratch, Otos_l );
 748 }
 749 
 750 
 751 void TemplateTable::fstore() {
 752   transition(ftos, vtos);
 753   locals_index(G3_scratch);
 754   __ store_local_float( G3_scratch, Ftos_f );
 755 }
 756 
 757 
 758 void TemplateTable::dstore() {
 759   transition(dtos, vtos);
 760   locals_index(G3_scratch);
 761   __ store_local_double( G3_scratch, Ftos_d );
 762 }
 763 
 764 
 765 void TemplateTable::astore() {
 766   transition(vtos, vtos);
 767   __ load_ptr(0, Otos_i);
 768   __ inc(Lesp, Interpreter::stackElementSize);
 769   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 770   locals_index(G3_scratch);
 771   __ store_local_ptr(G3_scratch, Otos_i);
 772 }
 773 
 774 
 775 void TemplateTable::wide_istore() {
 776   transition(vtos, vtos);
 777   __ pop_i();
 778   locals_index_wide(G3_scratch);
 779   __ store_local_int( G3_scratch, Otos_i );
 780 }
 781 
 782 
 783 void TemplateTable::wide_lstore() {
 784   transition(vtos, vtos);
 785   __ pop_l();
 786   locals_index_wide(G3_scratch);
 787   __ store_local_long( G3_scratch, Otos_l );
 788 }
 789 
 790 
 791 void TemplateTable::wide_fstore() {
 792   transition(vtos, vtos);
 793   __ pop_f();
 794   locals_index_wide(G3_scratch);
 795   __ store_local_float( G3_scratch, Ftos_f );
 796 }
 797 
 798 
 799 void TemplateTable::wide_dstore() {
 800   transition(vtos, vtos);
 801   __ pop_d();
 802   locals_index_wide(G3_scratch);
 803   __ store_local_double( G3_scratch, Ftos_d );
 804 }
 805 
 806 
 807 void TemplateTable::wide_astore() {
 808   transition(vtos, vtos);
 809   __ load_ptr(0, Otos_i);
 810   __ inc(Lesp, Interpreter::stackElementSize);
 811   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 812   locals_index_wide(G3_scratch);
 813   __ store_local_ptr(G3_scratch, Otos_i);
 814 }
 815 
 816 
 817 void TemplateTable::iastore() {
 818   transition(itos, vtos);
 819   __ pop_i(O2); // index
 820   // Otos_i: val
 821   // O3: array
 822   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 823   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 824 }
 825 
 826 
 827 void TemplateTable::lastore() {
 828   transition(ltos, vtos);
 829   __ pop_i(O2); // index
 830   // Otos_l: val
 831   // O3: array
 832   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 833   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 834 }
 835 
 836 
 837 void TemplateTable::fastore() {
 838   transition(ftos, vtos);
 839   __ pop_i(O2); // index
 840   // Ftos_f: val
 841   // O3: array
 842   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 843   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 844 }
 845 
 846 
 847 void TemplateTable::dastore() {
 848   transition(dtos, vtos);
 849   __ pop_i(O2); // index
 850   // Fos_d: val
 851   // O3: array
 852   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 853   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 854 }
 855 
 856 
 857 void TemplateTable::aastore() {
 858   Label store_ok, is_null, done;
 859   transition(vtos, vtos);
 860   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 861   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 862   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 863   // Otos_i: val
 864   // O2: index
 865   // O3: array
 866   __ verify_oop(Otos_i);
 867   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 868 
 869   // do array store check - check for NULL value first
 870   __ br_null_short( Otos_i, Assembler::pn, is_null );
 871 
 872   __ load_klass(O3, O4); // get array klass
 873   __ load_klass(Otos_i, O5); // get value klass
 874 
 875   // do fast instanceof cache test
 876 
 877   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 878 
 879   assert(Otos_i == O0, "just checking");
 880 
 881   // Otos_i:    value
 882   // O1:        addr - offset
 883   // O2:        index
 884   // O3:        array
 885   // O4:        array element klass
 886   // O5:        value klass
 887 
 888   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 889 
 890   // Generate a fast subtype check.  Branch to store_ok if no
 891   // failure.  Throw if failure.
 892   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 893 
 894   // Not a subtype; so must throw exception
 895   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 896 
 897   // Store is OK.
 898   __ bind(store_ok);
 899   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 900 
 901   __ ba(done);
 902   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 903 
 904   __ bind(is_null);
 905   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 906 
 907   __ profile_null_seen(G3_scratch);
 908   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 909   __ bind(done);
 910 }
 911 
 912 
 913 void TemplateTable::bastore() {
 914   transition(itos, vtos);
 915   __ pop_i(O2); // index
 916   // Otos_i: val
 917   // O2: index
 918   // O3: array
 919   __ index_check(O3, O2, 0, G3_scratch, O2);
 920   // Need to check whether array is boolean or byte
 921   // since both types share the bastore bytecode.
 922   __ load_klass(O3, G4_scratch);
 923   __ ld(G4_scratch, in_bytes(Klass::layout_helper_offset()), G4_scratch);
 924   __ set(Klass::layout_helper_boolean_diffbit(), G3_scratch);
 925   __ andcc(G3_scratch, G4_scratch, G0);
 926   Label L_skip;
 927   __ br(Assembler::zero, false, Assembler::pn, L_skip);
 928   __ delayed()->nop();
 929   __ and3(Otos_i, 1, Otos_i);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
 930   __ bind(L_skip);
 931   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 932 }
 933 
 934 
 935 void TemplateTable::castore() {
 936   transition(itos, vtos);
 937   __ pop_i(O2); // index
 938   // Otos_i: val
 939   // O3: array
 940   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 941   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 942 }
 943 
 944 
 945 void TemplateTable::sastore() {
 946   // %%%%% Factor across platform
 947   castore();
 948 }
 949 
 950 
 951 void TemplateTable::istore(int n) {
 952   transition(itos, vtos);
 953   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 954 }
 955 
 956 
 957 void TemplateTable::lstore(int n) {
 958   transition(ltos, vtos);
 959   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 960   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 961 
 962 }
 963 
 964 
 965 void TemplateTable::fstore(int n) {
 966   transition(ftos, vtos);
 967   assert(n < Argument::n_register_parameters, "only handle register cases");
 968   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 969 }
 970 
 971 
 972 void TemplateTable::dstore(int n) {
 973   transition(dtos, vtos);
 974   FloatRegister src = Ftos_d;
 975   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 976 }
 977 
 978 
 979 void TemplateTable::astore(int n) {
 980   transition(vtos, vtos);
 981   __ load_ptr(0, Otos_i);
 982   __ inc(Lesp, Interpreter::stackElementSize);
 983   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 984   __ store_local_ptr(n, Otos_i);
 985 }
 986 
 987 
 988 void TemplateTable::pop() {
 989   transition(vtos, vtos);
 990   __ inc(Lesp, Interpreter::stackElementSize);
 991 }
 992 
 993 
 994 void TemplateTable::pop2() {
 995   transition(vtos, vtos);
 996   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 997 }
 998 
 999 
1000 void TemplateTable::dup() {
1001   transition(vtos, vtos);
1002   // stack: ..., a
1003   // load a and tag
1004   __ load_ptr(0, Otos_i);
1005   __ push_ptr(Otos_i);
1006   // stack: ..., a, a
1007 }
1008 
1009 
1010 void TemplateTable::dup_x1() {
1011   transition(vtos, vtos);
1012   // stack: ..., a, b
1013   __ load_ptr( 1, G3_scratch);  // get a
1014   __ load_ptr( 0, Otos_l1);     // get b
1015   __ store_ptr(1, Otos_l1);     // put b
1016   __ store_ptr(0, G3_scratch);  // put a - like swap
1017   __ push_ptr(Otos_l1);         // push b
1018   // stack: ..., b, a, b
1019 }
1020 
1021 
1022 void TemplateTable::dup_x2() {
1023   transition(vtos, vtos);
1024   // stack: ..., a, b, c
1025   // get c and push on stack, reuse registers
1026   __ load_ptr( 0, G3_scratch);  // get c
1027   __ push_ptr(G3_scratch);      // push c with tag
1028   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1029   // (stack offsets n+1 now)
1030   __ load_ptr( 3, Otos_l1);     // get a
1031   __ store_ptr(3, G3_scratch);  // put c at 3
1032   // stack: ..., c, b, c, c  (a in reg)
1033   __ load_ptr( 2, G3_scratch);  // get b
1034   __ store_ptr(2, Otos_l1);     // put a at 2
1035   // stack: ..., c, a, c, c  (b in reg)
1036   __ store_ptr(1, G3_scratch);  // put b at 1
1037   // stack: ..., c, a, b, c
1038 }
1039 
1040 
1041 void TemplateTable::dup2() {
1042   transition(vtos, vtos);
1043   __ load_ptr(1, G3_scratch);  // get a
1044   __ load_ptr(0, Otos_l1);     // get b
1045   __ push_ptr(G3_scratch);     // push a
1046   __ push_ptr(Otos_l1);        // push b
1047   // stack: ..., a, b, a, b
1048 }
1049 
1050 
1051 void TemplateTable::dup2_x1() {
1052   transition(vtos, vtos);
1053   // stack: ..., a, b, c
1054   __ load_ptr( 1, Lscratch);    // get b
1055   __ load_ptr( 2, Otos_l1);     // get a
1056   __ store_ptr(2, Lscratch);    // put b at a
1057   // stack: ..., b, b, c
1058   __ load_ptr( 0, G3_scratch);  // get c
1059   __ store_ptr(1, G3_scratch);  // put c at b
1060   // stack: ..., b, c, c
1061   __ store_ptr(0, Otos_l1);     // put a at c
1062   // stack: ..., b, c, a
1063   __ push_ptr(Lscratch);        // push b
1064   __ push_ptr(G3_scratch);      // push c
1065   // stack: ..., b, c, a, b, c
1066 }
1067 
1068 
1069 // The spec says that these types can be a mixture of category 1 (1 word)
1070 // types and/or category 2 types (long and doubles)
1071 void TemplateTable::dup2_x2() {
1072   transition(vtos, vtos);
1073   // stack: ..., a, b, c, d
1074   __ load_ptr( 1, Lscratch);    // get c
1075   __ load_ptr( 3, Otos_l1);     // get a
1076   __ store_ptr(3, Lscratch);    // put c at 3
1077   __ store_ptr(1, Otos_l1);     // put a at 1
1078   // stack: ..., c, b, a, d
1079   __ load_ptr( 2, G3_scratch);  // get b
1080   __ load_ptr( 0, Otos_l1);     // get d
1081   __ store_ptr(0, G3_scratch);  // put b at 0
1082   __ store_ptr(2, Otos_l1);     // put d at 2
1083   // stack: ..., c, d, a, b
1084   __ push_ptr(Lscratch);        // push c
1085   __ push_ptr(Otos_l1);         // push d
1086   // stack: ..., c, d, a, b, c, d
1087 }
1088 
1089 
1090 void TemplateTable::swap() {
1091   transition(vtos, vtos);
1092   // stack: ..., a, b
1093   __ load_ptr( 1, G3_scratch);  // get a
1094   __ load_ptr( 0, Otos_l1);     // get b
1095   __ store_ptr(0, G3_scratch);  // put b
1096   __ store_ptr(1, Otos_l1);     // put a
1097   // stack: ..., b, a
1098 }
1099 
1100 
1101 void TemplateTable::iop2(Operation op) {
1102   transition(itos, itos);
1103   __ pop_i(O1);
1104   switch (op) {
1105    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1106    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1107      // %%%%% Mul may not exist: better to call .mul?
1108    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1109    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1110    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1111    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1112    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1113    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1114    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1115    default: ShouldNotReachHere();
1116   }
1117 }
1118 
1119 
1120 void TemplateTable::lop2(Operation op) {
1121   transition(ltos, ltos);
1122   __ pop_l(O2);
1123   switch (op) {
1124 #ifdef _LP64
1125    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1126    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1127    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1128    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1129    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1130 #else
1131    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1132    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1133    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1134    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1135    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1136 #endif
1137    default: ShouldNotReachHere();
1138   }
1139 }
1140 
1141 
1142 void TemplateTable::idiv() {
1143   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1144   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1145 
1146   transition(itos, itos);
1147   __ pop_i(O1); // get 1st op
1148 
1149   // Y contains upper 32 bits of result, set it to 0 or all ones
1150   __ wry(G0);
1151   __ mov(~0, G3_scratch);
1152 
1153   __ tst(O1);
1154      Label neg;
1155   __ br(Assembler::negative, true, Assembler::pn, neg);
1156   __ delayed()->wry(G3_scratch);
1157   __ bind(neg);
1158 
1159      Label ok;
1160   __ tst(Otos_i);
1161   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1162 
1163   const int min_int = 0x80000000;
1164   Label regular;
1165   __ cmp(Otos_i, -1);
1166   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1167 #ifdef _LP64
1168   // Don't put set in delay slot
1169   // Set will turn into multiple instructions in 64 bit mode
1170   __ delayed()->nop();
1171   __ set(min_int, G4_scratch);
1172 #else
1173   __ delayed()->set(min_int, G4_scratch);
1174 #endif
1175   Label done;
1176   __ cmp(O1, G4_scratch);
1177   __ br(Assembler::equal, true, Assembler::pt, done);
1178   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1179 
1180   __ bind(regular);
1181   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1182   __ bind(done);
1183 }
1184 
1185 
1186 void TemplateTable::irem() {
1187   transition(itos, itos);
1188   __ mov(Otos_i, O2); // save divisor
1189   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1190   __ smul(Otos_i, O2, Otos_i);
1191   __ sub(O1, Otos_i, Otos_i);
1192 }
1193 
1194 
1195 void TemplateTable::lmul() {
1196   transition(ltos, ltos);
1197   __ pop_l(O2);
1198 #ifdef _LP64
1199   __ mulx(Otos_l, O2, Otos_l);
1200 #else
1201   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1202 #endif
1203 
1204 }
1205 
1206 
1207 void TemplateTable::ldiv() {
1208   transition(ltos, ltos);
1209 
1210   // check for zero
1211   __ pop_l(O2);
1212 #ifdef _LP64
1213   __ tst(Otos_l);
1214   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1215   __ sdivx(O2, Otos_l, Otos_l);
1216 #else
1217   __ orcc(Otos_l1, Otos_l2, G0);
1218   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1219   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1220 #endif
1221 }
1222 
1223 
1224 void TemplateTable::lrem() {
1225   transition(ltos, ltos);
1226 
1227   // check for zero
1228   __ pop_l(O2);
1229 #ifdef _LP64
1230   __ tst(Otos_l);
1231   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1232   __ sdivx(O2, Otos_l, Otos_l2);
1233   __ mulx (Otos_l2, Otos_l, Otos_l2);
1234   __ sub  (O2, Otos_l2, Otos_l);
1235 #else
1236   __ orcc(Otos_l1, Otos_l2, G0);
1237   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1238   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1239 #endif
1240 }
1241 
1242 
1243 void TemplateTable::lshl() {
1244   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1245 
1246   __ pop_l(O2);                          // shift value in O2, O3
1247 #ifdef _LP64
1248   __ sllx(O2, Otos_i, Otos_l);
1249 #else
1250   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1251 #endif
1252 }
1253 
1254 
1255 void TemplateTable::lshr() {
1256   transition(itos, ltos); // %%%% see lshl comment
1257 
1258   __ pop_l(O2);                          // shift value in O2, O3
1259 #ifdef _LP64
1260   __ srax(O2, Otos_i, Otos_l);
1261 #else
1262   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1263 #endif
1264 }
1265 
1266 
1267 
1268 void TemplateTable::lushr() {
1269   transition(itos, ltos); // %%%% see lshl comment
1270 
1271   __ pop_l(O2);                          // shift value in O2, O3
1272 #ifdef _LP64
1273   __ srlx(O2, Otos_i, Otos_l);
1274 #else
1275   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1276 #endif
1277 }
1278 
1279 
1280 void TemplateTable::fop2(Operation op) {
1281   transition(ftos, ftos);
1282   switch (op) {
1283    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1284    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1285    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1286    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1287    case  rem:
1288      assert(Ftos_f == F0, "just checking");
1289 #ifdef _LP64
1290      // LP64 calling conventions use F1, F3 for passing 2 floats
1291      __ pop_f(F1);
1292      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1293 #else
1294      __ pop_i(O0);
1295      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1296      __ ld( __ d_tmp, O1 );
1297 #endif
1298      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1299      assert( Ftos_f == F0, "fix this code" );
1300      break;
1301 
1302    default: ShouldNotReachHere();
1303   }
1304 }
1305 
1306 
1307 void TemplateTable::dop2(Operation op) {
1308   transition(dtos, dtos);
1309   switch (op) {
1310    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1311    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1312    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1313    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1314    case  rem:
1315 #ifdef _LP64
1316      // Pass arguments in D0, D2
1317      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1318      __ pop_d( F0 );
1319 #else
1320      // Pass arguments in O0O1, O2O3
1321      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1322      __ ldd( __ d_tmp, O2 );
1323      __ pop_d(Ftos_f);
1324      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1325      __ ldd( __ d_tmp, O0 );
1326 #endif
1327      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1328      assert( Ftos_d == F0, "fix this code" );
1329      break;
1330 
1331    default: ShouldNotReachHere();
1332   }
1333 }
1334 
1335 
1336 void TemplateTable::ineg() {
1337   transition(itos, itos);
1338   __ neg(Otos_i);
1339 }
1340 
1341 
1342 void TemplateTable::lneg() {
1343   transition(ltos, ltos);
1344 #ifdef _LP64
1345   __ sub(G0, Otos_l, Otos_l);
1346 #else
1347   __ lneg(Otos_l1, Otos_l2);
1348 #endif
1349 }
1350 
1351 
1352 void TemplateTable::fneg() {
1353   transition(ftos, ftos);
1354   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1355 }
1356 
1357 
1358 void TemplateTable::dneg() {
1359   transition(dtos, dtos);
1360   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1361 }
1362 
1363 
1364 void TemplateTable::iinc() {
1365   transition(vtos, vtos);
1366   locals_index(G3_scratch);
1367   __ ldsb(Lbcp, 2, O2);  // load constant
1368   __ access_local_int(G3_scratch, Otos_i);
1369   __ add(Otos_i, O2, Otos_i);
1370   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1371 }
1372 
1373 
1374 void TemplateTable::wide_iinc() {
1375   transition(vtos, vtos);
1376   locals_index_wide(G3_scratch);
1377   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1378   __ access_local_int(G3_scratch, Otos_i);
1379   __ add(Otos_i, O3, Otos_i);
1380   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1381 }
1382 
1383 
1384 void TemplateTable::convert() {
1385 // %%%%% Factor this first part accross platforms
1386   #ifdef ASSERT
1387     TosState tos_in  = ilgl;
1388     TosState tos_out = ilgl;
1389     switch (bytecode()) {
1390       case Bytecodes::_i2l: // fall through
1391       case Bytecodes::_i2f: // fall through
1392       case Bytecodes::_i2d: // fall through
1393       case Bytecodes::_i2b: // fall through
1394       case Bytecodes::_i2c: // fall through
1395       case Bytecodes::_i2s: tos_in = itos; break;
1396       case Bytecodes::_l2i: // fall through
1397       case Bytecodes::_l2f: // fall through
1398       case Bytecodes::_l2d: tos_in = ltos; break;
1399       case Bytecodes::_f2i: // fall through
1400       case Bytecodes::_f2l: // fall through
1401       case Bytecodes::_f2d: tos_in = ftos; break;
1402       case Bytecodes::_d2i: // fall through
1403       case Bytecodes::_d2l: // fall through
1404       case Bytecodes::_d2f: tos_in = dtos; break;
1405       default             : ShouldNotReachHere();
1406     }
1407     switch (bytecode()) {
1408       case Bytecodes::_l2i: // fall through
1409       case Bytecodes::_f2i: // fall through
1410       case Bytecodes::_d2i: // fall through
1411       case Bytecodes::_i2b: // fall through
1412       case Bytecodes::_i2c: // fall through
1413       case Bytecodes::_i2s: tos_out = itos; break;
1414       case Bytecodes::_i2l: // fall through
1415       case Bytecodes::_f2l: // fall through
1416       case Bytecodes::_d2l: tos_out = ltos; break;
1417       case Bytecodes::_i2f: // fall through
1418       case Bytecodes::_l2f: // fall through
1419       case Bytecodes::_d2f: tos_out = ftos; break;
1420       case Bytecodes::_i2d: // fall through
1421       case Bytecodes::_l2d: // fall through
1422       case Bytecodes::_f2d: tos_out = dtos; break;
1423       default             : ShouldNotReachHere();
1424     }
1425     transition(tos_in, tos_out);
1426   #endif
1427 
1428 
1429   // Conversion
1430   Label done;
1431   switch (bytecode()) {
1432    case Bytecodes::_i2l:
1433 #ifdef _LP64
1434     // Sign extend the 32 bits
1435     __ sra ( Otos_i, 0, Otos_l );
1436 #else
1437     __ addcc(Otos_i, 0, Otos_l2);
1438     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1439     __ delayed()->clr(Otos_l1);
1440     __ set(~0, Otos_l1);
1441 #endif
1442     break;
1443 
1444    case Bytecodes::_i2f:
1445     __ st(Otos_i, __ d_tmp );
1446     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1447     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1448     break;
1449 
1450    case Bytecodes::_i2d:
1451     __ st(Otos_i, __ d_tmp);
1452     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1453     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1454     break;
1455 
1456    case Bytecodes::_i2b:
1457     __ sll(Otos_i, 24, Otos_i);
1458     __ sra(Otos_i, 24, Otos_i);
1459     break;
1460 
1461    case Bytecodes::_i2c:
1462     __ sll(Otos_i, 16, Otos_i);
1463     __ srl(Otos_i, 16, Otos_i);
1464     break;
1465 
1466    case Bytecodes::_i2s:
1467     __ sll(Otos_i, 16, Otos_i);
1468     __ sra(Otos_i, 16, Otos_i);
1469     break;
1470 
1471    case Bytecodes::_l2i:
1472 #ifndef _LP64
1473     __ mov(Otos_l2, Otos_i);
1474 #else
1475     // Sign-extend into the high 32 bits
1476     __ sra(Otos_l, 0, Otos_i);
1477 #endif
1478     break;
1479 
1480    case Bytecodes::_l2f:
1481    case Bytecodes::_l2d:
1482     __ st_long(Otos_l, __ d_tmp);
1483     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1484 
1485     if (bytecode() == Bytecodes::_l2f) {
1486       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1487     } else {
1488       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1489     }
1490     break;
1491 
1492   case Bytecodes::_f2i:  {
1493       Label isNaN;
1494       // result must be 0 if value is NaN; test by comparing value to itself
1495       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1496       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1497       __ delayed()->clr(Otos_i);                                     // NaN
1498       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1499       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1500       __ ld(__ d_tmp, Otos_i);
1501       __ bind(isNaN);
1502     }
1503     break;
1504 
1505    case Bytecodes::_f2l:
1506     // must uncache tos
1507     __ push_f();
1508 #ifdef _LP64
1509     __ pop_f(F1);
1510 #else
1511     __ pop_i(O0);
1512 #endif
1513     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1514     break;
1515 
1516    case Bytecodes::_f2d:
1517     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1518     break;
1519 
1520    case Bytecodes::_d2i:
1521    case Bytecodes::_d2l:
1522     // must uncache tos
1523     __ push_d();
1524 #ifdef _LP64
1525     // LP64 calling conventions pass first double arg in D0
1526     __ pop_d( Ftos_d );
1527 #else
1528     __ pop_i( O0 );
1529     __ pop_i( O1 );
1530 #endif
1531     __ call_VM_leaf(Lscratch,
1532         bytecode() == Bytecodes::_d2i
1533           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1534           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1535     break;
1536 
1537     case Bytecodes::_d2f:
1538       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1539     break;
1540 
1541     default: ShouldNotReachHere();
1542   }
1543   __ bind(done);
1544 }
1545 
1546 
1547 void TemplateTable::lcmp() {
1548   transition(ltos, itos);
1549 
1550 #ifdef _LP64
1551   __ pop_l(O1); // pop off value 1, value 2 is in O0
1552   __ lcmp( O1, Otos_l, Otos_i );
1553 #else
1554   __ pop_l(O2); // cmp O2,3 to O0,1
1555   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1556 #endif
1557 }
1558 
1559 
1560 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1561 
1562   if (is_float) __ pop_f(F2);
1563   else          __ pop_d(F2);
1564 
1565   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1566 
1567   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1568 }
1569 
1570 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1571   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1572   __ verify_thread();
1573 
1574   const Register O2_bumped_count = O2;
1575   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1576 
1577   // get (wide) offset to O1_disp
1578   const Register O1_disp = O1;
1579   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1580   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1581 
1582   // Handle all the JSR stuff here, then exit.
1583   // It's much shorter and cleaner than intermingling with the
1584   // non-JSR normal-branch stuff occurring below.
1585   if( is_jsr ) {
1586     // compute return address as bci in Otos_i
1587     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1588     __ sub(Lbcp, G3_scratch, G3_scratch);
1589     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1590 
1591     // Bump Lbcp to target of JSR
1592     __ add(Lbcp, O1_disp, Lbcp);
1593     // Push returnAddress for "ret" on stack
1594     __ push_ptr(Otos_i);
1595     // And away we go!
1596     __ dispatch_next(vtos);
1597     return;
1598   }
1599 
1600   // Normal (non-jsr) branch handling
1601 
1602   // Save the current Lbcp
1603   const Register l_cur_bcp = Lscratch;
1604   __ mov( Lbcp, l_cur_bcp );
1605 
1606   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1607   if ( increment_invocation_counter_for_backward_branches ) {
1608     Label Lforward;
1609     // check branch direction
1610     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1611     // Bump bytecode pointer by displacement (take the branch)
1612     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1613 
1614     const Register Rcounters = G3_scratch;
1615     __ get_method_counters(Lmethod, Rcounters, Lforward);
1616 
1617     if (TieredCompilation) {
1618       Label Lno_mdo, Loverflow;
1619       int increment = InvocationCounter::count_increment;
1620       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1621       if (ProfileInterpreter) {
1622         // If no method data exists, go to profile_continue.
1623         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1624         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1625 
1626         // Increment backedge counter in the MDO
1627         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1628                                                  in_bytes(InvocationCounter::counter_offset()));
1629         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1630                                    Assembler::notZero, &Lforward);
1631         __ ba_short(Loverflow);
1632       }
1633 
1634       // If there's no MDO, increment counter in MethodCounters*
1635       __ bind(Lno_mdo);
1636       Address backedge_counter(Rcounters,
1637               in_bytes(MethodCounters::backedge_counter_offset()) +
1638               in_bytes(InvocationCounter::counter_offset()));
1639       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1640                                  Assembler::notZero, &Lforward);
1641       __ bind(Loverflow);
1642 
1643       // notify point for loop, pass branch bytecode
1644       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1645 
1646       // Was an OSR adapter generated?
1647       // O0 = osr nmethod
1648       __ br_null_short(O0, Assembler::pn, Lforward);
1649 
1650       // Has the nmethod been invalidated already?
1651       __ ld(O0, nmethod::entry_bci_offset(), O2);
1652       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
1653 
1654       // migrate the interpreter frame off of the stack
1655 
1656       __ mov(G2_thread, L7);
1657       // save nmethod
1658       __ mov(O0, L6);
1659       __ set_last_Java_frame(SP, noreg);
1660       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1661       __ reset_last_Java_frame();
1662       __ mov(L7, G2_thread);
1663 
1664       // move OSR nmethod to I1
1665       __ mov(L6, I1);
1666 
1667       // OSR buffer to I0
1668       __ mov(O0, I0);
1669 
1670       // remove the interpreter frame
1671       __ restore(I5_savedSP, 0, SP);
1672 
1673       // Jump to the osr code.
1674       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1675       __ jmp(O2, G0);
1676       __ delayed()->nop();
1677 
1678     } else {
1679       // Update Backedge branch separately from invocations
1680       const Register G4_invoke_ctr = G4;
1681       __ increment_backedge_counter(Rcounters, G4_invoke_ctr, G1_scratch);
1682       if (ProfileInterpreter) {
1683         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
1684         if (UseOnStackReplacement) {
1685           __ test_backedge_count_for_osr(O2_bumped_count, l_cur_bcp, G3_scratch);
1686         }
1687       } else {
1688         if (UseOnStackReplacement) {
1689           __ test_backedge_count_for_osr(G4_invoke_ctr, l_cur_bcp, G3_scratch);
1690         }
1691       }
1692     }
1693 
1694     __ bind(Lforward);
1695   } else
1696     // Bump bytecode pointer by displacement (take the branch)
1697     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1698 
1699   // continue with bytecode @ target
1700   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1701   // %%%%% and changing dispatch_next to dispatch_only
1702   __ dispatch_next(vtos);
1703 }
1704 
1705 
1706 // Note Condition in argument is TemplateTable::Condition
1707 // arg scope is within class scope
1708 
1709 void TemplateTable::if_0cmp(Condition cc) {
1710   // no pointers, integer only!
1711   transition(itos, vtos);
1712   // assume branch is more often taken than not (loops use backward branches)
1713   __ cmp( Otos_i, 0);
1714   __ if_cmp(ccNot(cc), false);
1715 }
1716 
1717 
1718 void TemplateTable::if_icmp(Condition cc) {
1719   transition(itos, vtos);
1720   __ pop_i(O1);
1721   __ cmp(O1, Otos_i);
1722   __ if_cmp(ccNot(cc), false);
1723 }
1724 
1725 
1726 void TemplateTable::if_nullcmp(Condition cc) {
1727   transition(atos, vtos);
1728   __ tst(Otos_i);
1729   __ if_cmp(ccNot(cc), true);
1730 }
1731 
1732 
1733 void TemplateTable::if_acmp(Condition cc) {
1734   transition(atos, vtos);
1735   __ pop_ptr(O1);
1736   __ verify_oop(O1);
1737   __ verify_oop(Otos_i);
1738   __ cmp(O1, Otos_i);
1739   __ if_cmp(ccNot(cc), true);
1740 }
1741 
1742 
1743 
1744 void TemplateTable::ret() {
1745   transition(vtos, vtos);
1746   locals_index(G3_scratch);
1747   __ access_local_returnAddress(G3_scratch, Otos_i);
1748   // Otos_i contains the bci, compute the bcp from that
1749 
1750 #ifdef _LP64
1751 #ifdef ASSERT
1752   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1753   // the result.  The return address (really a BCI) was stored with an
1754   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1755   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1756   // loaded value.
1757   { Label zzz ;
1758      __ set (65536, G3_scratch) ;
1759      __ cmp (Otos_i, G3_scratch) ;
1760      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1761      __ delayed()->nop();
1762      __ stop("BCI is in the wrong register half?");
1763      __ bind (zzz) ;
1764   }
1765 #endif
1766 #endif
1767 
1768   __ profile_ret(vtos, Otos_i, G4_scratch);
1769 
1770   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1771   __ add(G3_scratch, Otos_i, G3_scratch);
1772   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1773   __ dispatch_next(vtos);
1774 }
1775 
1776 
1777 void TemplateTable::wide_ret() {
1778   transition(vtos, vtos);
1779   locals_index_wide(G3_scratch);
1780   __ access_local_returnAddress(G3_scratch, Otos_i);
1781   // Otos_i contains the bci, compute the bcp from that
1782 
1783   __ profile_ret(vtos, Otos_i, G4_scratch);
1784 
1785   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1786   __ add(G3_scratch, Otos_i, G3_scratch);
1787   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1788   __ dispatch_next(vtos);
1789 }
1790 
1791 
1792 void TemplateTable::tableswitch() {
1793   transition(itos, vtos);
1794   Label default_case, continue_execution;
1795 
1796   // align bcp
1797   __ add(Lbcp, BytesPerInt, O1);
1798   __ and3(O1, -BytesPerInt, O1);
1799   // load lo, hi
1800   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1801   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1802 #ifdef _LP64
1803   // Sign extend the 32 bits
1804   __ sra ( Otos_i, 0, Otos_i );
1805 #endif /* _LP64 */
1806 
1807   // check against lo & hi
1808   __ cmp( Otos_i, O2);
1809   __ br( Assembler::less, false, Assembler::pn, default_case);
1810   __ delayed()->cmp( Otos_i, O3 );
1811   __ br( Assembler::greater, false, Assembler::pn, default_case);
1812   // lookup dispatch offset
1813   __ delayed()->sub(Otos_i, O2, O2);
1814   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1815   __ sll(O2, LogBytesPerInt, O2);
1816   __ add(O2, 3 * BytesPerInt, O2);
1817   __ ba(continue_execution);
1818   __ delayed()->ld(O1, O2, O2);
1819   // handle default
1820   __ bind(default_case);
1821   __ profile_switch_default(O3);
1822   __ ld(O1, 0, O2); // get default offset
1823   // continue execution
1824   __ bind(continue_execution);
1825   __ add(Lbcp, O2, Lbcp);
1826   __ dispatch_next(vtos);
1827 }
1828 
1829 
1830 void TemplateTable::lookupswitch() {
1831   transition(itos, itos);
1832   __ stop("lookupswitch bytecode should have been rewritten");
1833 }
1834 
1835 void TemplateTable::fast_linearswitch() {
1836   transition(itos, vtos);
1837     Label loop_entry, loop, found, continue_execution;
1838   // align bcp
1839   __ add(Lbcp, BytesPerInt, O1);
1840   __ and3(O1, -BytesPerInt, O1);
1841  // set counter
1842   __ ld(O1, BytesPerInt, O2);
1843   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1844   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1845   __ ba(loop_entry);
1846   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1847 
1848   // table search
1849   __ bind(loop);
1850   __ cmp(O4, Otos_i);
1851   __ br(Assembler::equal, true, Assembler::pn, found);
1852   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1853   __ inc(O3, 2 * BytesPerInt);
1854 
1855   __ bind(loop_entry);
1856   __ cmp(O2, O3);
1857   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1858   __ delayed()->ld(O3, 0, O4);
1859 
1860   // default case
1861   __ ld(O1, 0, O4); // get default offset
1862   if (ProfileInterpreter) {
1863     __ profile_switch_default(O3);
1864     __ ba_short(continue_execution);
1865   }
1866 
1867   // entry found -> get offset
1868   __ bind(found);
1869   if (ProfileInterpreter) {
1870     __ sub(O3, O1, O3);
1871     __ sub(O3, 2*BytesPerInt, O3);
1872     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1873     __ profile_switch_case(O3, O1, O2, G3_scratch);
1874 
1875     __ bind(continue_execution);
1876   }
1877   __ add(Lbcp, O4, Lbcp);
1878   __ dispatch_next(vtos);
1879 }
1880 
1881 
1882 void TemplateTable::fast_binaryswitch() {
1883   transition(itos, vtos);
1884   // Implementation using the following core algorithm: (copied from Intel)
1885   //
1886   // int binary_search(int key, LookupswitchPair* array, int n) {
1887   //   // Binary search according to "Methodik des Programmierens" by
1888   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1889   //   int i = 0;
1890   //   int j = n;
1891   //   while (i+1 < j) {
1892   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1893   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1894   //     // where a stands for the array and assuming that the (inexisting)
1895   //     // element a[n] is infinitely big.
1896   //     int h = (i + j) >> 1;
1897   //     // i < h < j
1898   //     if (key < array[h].fast_match()) {
1899   //       j = h;
1900   //     } else {
1901   //       i = h;
1902   //     }
1903   //   }
1904   //   // R: a[i] <= key < a[i+1] or Q
1905   //   // (i.e., if key is within array, i is the correct index)
1906   //   return i;
1907   // }
1908 
1909   // register allocation
1910   assert(Otos_i == O0, "alias checking");
1911   const Register Rkey     = Otos_i;                    // already set (tosca)
1912   const Register Rarray   = O1;
1913   const Register Ri       = O2;
1914   const Register Rj       = O3;
1915   const Register Rh       = O4;
1916   const Register Rscratch = O5;
1917 
1918   const int log_entry_size = 3;
1919   const int entry_size = 1 << log_entry_size;
1920 
1921   Label found;
1922   // Find Array start
1923   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1924   __ and3(Rarray, -BytesPerInt, Rarray);
1925   // initialize i & j (in delay slot)
1926   __ clr( Ri );
1927 
1928   // and start
1929   Label entry;
1930   __ ba(entry);
1931   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1932   // (Rj is already in the native byte-ordering.)
1933 
1934   // binary search loop
1935   { Label loop;
1936     __ bind( loop );
1937     // int h = (i + j) >> 1;
1938     __ sra( Rh, 1, Rh );
1939     // if (key < array[h].fast_match()) {
1940     //   j = h;
1941     // } else {
1942     //   i = h;
1943     // }
1944     __ sll( Rh, log_entry_size, Rscratch );
1945     __ ld( Rarray, Rscratch, Rscratch );
1946     // (Rscratch is already in the native byte-ordering.)
1947     __ cmp( Rkey, Rscratch );
1948     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1949     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1950 
1951     // while (i+1 < j)
1952     __ bind( entry );
1953     __ add( Ri, 1, Rscratch );
1954     __ cmp(Rscratch, Rj);
1955     __ br( Assembler::less, true, Assembler::pt, loop );
1956     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1957   }
1958 
1959   // end of binary search, result index is i (must check again!)
1960   Label default_case;
1961   Label continue_execution;
1962   if (ProfileInterpreter) {
1963     __ mov( Ri, Rh );              // Save index in i for profiling
1964   }
1965   __ sll( Ri, log_entry_size, Ri );
1966   __ ld( Rarray, Ri, Rscratch );
1967   // (Rscratch is already in the native byte-ordering.)
1968   __ cmp( Rkey, Rscratch );
1969   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1970   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1971 
1972   // entry found -> j = offset
1973   __ inc( Ri, BytesPerInt );
1974   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1975   __ ld( Rarray, Ri, Rj );
1976   // (Rj is already in the native byte-ordering.)
1977 
1978   if (ProfileInterpreter) {
1979     __ ba_short(continue_execution);
1980   }
1981 
1982   __ bind(default_case); // fall through (if not profiling)
1983   __ profile_switch_default(Ri);
1984 
1985   __ bind(continue_execution);
1986   __ add( Lbcp, Rj, Lbcp );
1987   __ dispatch_next( vtos );
1988 }
1989 
1990 
1991 void TemplateTable::_return(TosState state) {
1992   transition(state, state);
1993   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1994 
1995   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1996     assert(state == vtos, "only valid state");
1997     __ mov(G0, G3_scratch);
1998     __ access_local_ptr(G3_scratch, Otos_i);
1999     __ load_klass(Otos_i, O2);
2000     __ set(JVM_ACC_HAS_FINALIZER, G3);
2001     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
2002     __ andcc(G3, O2, G0);
2003     Label skip_register_finalizer;
2004     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
2005     __ delayed()->nop();
2006 
2007     // Call out to do finalizer registration
2008     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
2009 
2010     __ bind(skip_register_finalizer);
2011   }
2012 
2013   // Narrow result if state is itos but result type is smaller.
2014   // Need to narrow in the return bytecode rather than in generate_return_entry
2015   // since compiled code callers expect the result to already be narrowed.
2016   if (state == itos) {
2017     __ narrow(Otos_i);
2018   }
2019   __ remove_activation(state, /* throw_monitor_exception */ true);
2020 
2021   // The caller's SP was adjusted upon method entry to accomodate
2022   // the callee's non-argument locals. Undo that adjustment.
2023   __ ret();                             // return to caller
2024   __ delayed()->restore(I5_savedSP, G0, SP);
2025 }
2026 
2027 
2028 // ----------------------------------------------------------------------------
2029 // Volatile variables demand their effects be made known to all CPU's in
2030 // order.  Store buffers on most chips allow reads & writes to reorder; the
2031 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2032 // memory barrier (i.e., it's not sufficient that the interpreter does not
2033 // reorder volatile references, the hardware also must not reorder them).
2034 //
2035 // According to the new Java Memory Model (JMM):
2036 // (1) All volatiles are serialized wrt to each other.
2037 // ALSO reads & writes act as aquire & release, so:
2038 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2039 // the read float up to before the read.  It's OK for non-volatile memory refs
2040 // that happen before the volatile read to float down below it.
2041 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2042 // that happen BEFORE the write float down to after the write.  It's OK for
2043 // non-volatile memory refs that happen after the volatile write to float up
2044 // before it.
2045 //
2046 // We only put in barriers around volatile refs (they are expensive), not
2047 // _between_ memory refs (that would require us to track the flavor of the
2048 // previous memory refs).  Requirements (2) and (3) require some barriers
2049 // before volatile stores and after volatile loads.  These nearly cover
2050 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2051 // case is placed after volatile-stores although it could just as well go
2052 // before volatile-loads.
2053 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2054   // Helper function to insert a is-volatile test and memory barrier
2055   // All current sparc implementations run in TSO, needing only StoreLoad
2056   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2057   __ membar( order_constraint );
2058 }
2059 
2060 // ----------------------------------------------------------------------------
2061 void TemplateTable::resolve_cache_and_index(int byte_no,
2062                                             Register Rcache,
2063                                             Register index,
2064                                             size_t index_size) {
2065   // Depends on cpCacheOop layout!
2066   Label resolved;
2067 
2068     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2069     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2070     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
2071     __ br(Assembler::equal, false, Assembler::pt, resolved);
2072     __ delayed()->set((int)bytecode(), O1);
2073 
2074   address entry;
2075   switch (bytecode()) {
2076     case Bytecodes::_getstatic      : // fall through
2077     case Bytecodes::_putstatic      : // fall through
2078     case Bytecodes::_getfield       : // fall through
2079     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2080     case Bytecodes::_invokevirtual  : // fall through
2081     case Bytecodes::_invokespecial  : // fall through
2082     case Bytecodes::_invokestatic   : // fall through
2083     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2084     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
2085     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2086     default:
2087       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2088       break;
2089   }
2090   // first time invocation - must resolve first
2091   __ call_VM(noreg, entry, O1);
2092   // Update registers with resolved info
2093   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2094   __ bind(resolved);
2095 }
2096 
2097 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2098                                                Register method,
2099                                                Register itable_index,
2100                                                Register flags,
2101                                                bool is_invokevirtual,
2102                                                bool is_invokevfinal,
2103                                                bool is_invokedynamic) {
2104   // Uses both G3_scratch and G4_scratch
2105   Register cache = G3_scratch;
2106   Register index = G4_scratch;
2107   assert_different_registers(cache, method, itable_index);
2108 
2109   // determine constant pool cache field offsets
2110   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2111   const int method_offset = in_bytes(
2112       ConstantPoolCache::base_offset() +
2113       ((byte_no == f2_byte)
2114        ? ConstantPoolCacheEntry::f2_offset()
2115        : ConstantPoolCacheEntry::f1_offset()
2116       )
2117     );
2118   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2119                                     ConstantPoolCacheEntry::flags_offset());
2120   // access constant pool cache fields
2121   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2122                                     ConstantPoolCacheEntry::f2_offset());
2123 
2124   if (is_invokevfinal) {
2125     __ get_cache_and_index_at_bcp(cache, index, 1);
2126     __ ld_ptr(Address(cache, method_offset), method);
2127   } else {
2128     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2129     resolve_cache_and_index(byte_no, cache, index, index_size);
2130     __ ld_ptr(Address(cache, method_offset), method);
2131   }
2132 
2133   if (itable_index != noreg) {
2134     // pick up itable or appendix index from f2 also:
2135     __ ld_ptr(Address(cache, index_offset), itable_index);
2136   }
2137   __ ld_ptr(Address(cache, flags_offset), flags);
2138 }
2139 
2140 // The Rcache register must be set before call
2141 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2142                                               Register Rcache,
2143                                               Register index,
2144                                               Register Roffset,
2145                                               Register Rflags,
2146                                               bool is_static) {
2147   assert_different_registers(Rcache, Rflags, Roffset);
2148 
2149   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2150 
2151   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2152   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2153   if (is_static) {
2154     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2155     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2156     __ ld_ptr( Robj, mirror_offset, Robj);
2157   }
2158 }
2159 
2160 // The registers Rcache and index expected to be set before call.
2161 // Correct values of the Rcache and index registers are preserved.
2162 void TemplateTable::jvmti_post_field_access(Register Rcache,
2163                                             Register index,
2164                                             bool is_static,
2165                                             bool has_tos) {
2166   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2167 
2168   if (JvmtiExport::can_post_field_access()) {
2169     // Check to see if a field access watch has been set before we take
2170     // the time to call into the VM.
2171     Label Label1;
2172     assert_different_registers(Rcache, index, G1_scratch);
2173     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2174     __ load_contents(get_field_access_count_addr, G1_scratch);
2175     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2176 
2177     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2178 
2179     if (is_static) {
2180       __ clr(Otos_i);
2181     } else {
2182       if (has_tos) {
2183       // save object pointer before call_VM() clobbers it
2184         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2185       } else {
2186         // Load top of stack (do not pop the value off the stack);
2187         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2188       }
2189       __ verify_oop(Otos_i);
2190     }
2191     // Otos_i: object pointer or NULL if static
2192     // Rcache: cache entry pointer
2193     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2194                Otos_i, Rcache);
2195     if (!is_static && has_tos) {
2196       __ pop_ptr(Otos_i);  // restore object pointer
2197       __ verify_oop(Otos_i);
2198     }
2199     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2200     __ bind(Label1);
2201   }
2202 }
2203 
2204 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2205   transition(vtos, vtos);
2206 
2207   Register Rcache = G3_scratch;
2208   Register index  = G4_scratch;
2209   Register Rclass = Rcache;
2210   Register Roffset= G4_scratch;
2211   Register Rflags = G1_scratch;
2212   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2213 
2214   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2215   jvmti_post_field_access(Rcache, index, is_static, false);
2216   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2217 
2218   if (!is_static) {
2219     pop_and_check_object(Rclass);
2220   } else {
2221     __ verify_oop(Rclass);
2222   }
2223 
2224   Label exit;
2225 
2226   Assembler::Membar_mask_bits membar_bits =
2227     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2228 
2229   if (__ membar_has_effect(membar_bits)) {
2230     // Get volatile flag
2231     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2232     __ and3(Rflags, Lscratch, Lscratch);
2233   }
2234 
2235   Label checkVolatile;
2236 
2237   // compute field type
2238   Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2239   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2240   // Make sure we don't need to mask Rflags after the above shift
2241   ConstantPoolCacheEntry::verify_tos_state_shift();
2242 
2243   // Check atos before itos for getstatic, more likely (in Queens at least)
2244   __ cmp(Rflags, atos);
2245   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2246   __ delayed() ->cmp(Rflags, itos);
2247 
2248   // atos
2249   __ load_heap_oop(Rclass, Roffset, Otos_i);
2250   __ verify_oop(Otos_i);
2251   __ push(atos);
2252   if (!is_static) {
2253     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2254   }
2255   __ ba(checkVolatile);
2256   __ delayed()->tst(Lscratch);
2257 
2258   __ bind(notObj);
2259 
2260   // cmp(Rflags, itos);
2261   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2262   __ delayed() ->cmp(Rflags, ltos);
2263 
2264   // itos
2265   __ ld(Rclass, Roffset, Otos_i);
2266   __ push(itos);
2267   if (!is_static) {
2268     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2269   }
2270   __ ba(checkVolatile);
2271   __ delayed()->tst(Lscratch);
2272 
2273   __ bind(notInt);
2274 
2275   // cmp(Rflags, ltos);
2276   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2277   __ delayed() ->cmp(Rflags, btos);
2278 
2279   // ltos
2280   // load must be atomic
2281   __ ld_long(Rclass, Roffset, Otos_l);
2282   __ push(ltos);
2283   if (!is_static) {
2284     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2285   }
2286   __ ba(checkVolatile);
2287   __ delayed()->tst(Lscratch);
2288 
2289   __ bind(notLong);
2290 
2291   // cmp(Rflags, btos);
2292   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2293   __ delayed() ->cmp(Rflags, ztos);
2294 
2295   // btos
2296   __ ldsb(Rclass, Roffset, Otos_i);
2297   __ push(itos);
2298   if (!is_static) {
2299     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2300   }
2301   __ ba(checkVolatile);
2302   __ delayed()->tst(Lscratch);
2303 
2304   __ bind(notByte);
2305 
2306   // cmp(Rflags, ztos);
2307   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2308   __ delayed() ->cmp(Rflags, ctos);
2309 
2310   // ztos
2311   __ ldsb(Rclass, Roffset, Otos_i);
2312   __ push(itos);
2313   if (!is_static) {
2314     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2315     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2316   }
2317   __ ba(checkVolatile);
2318   __ delayed()->tst(Lscratch);
2319 
2320   __ bind(notBool);
2321 
2322   // cmp(Rflags, ctos);
2323   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2324   __ delayed() ->cmp(Rflags, stos);
2325 
2326   // ctos
2327   __ lduh(Rclass, Roffset, Otos_i);
2328   __ push(itos);
2329   if (!is_static) {
2330     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2331   }
2332   __ ba(checkVolatile);
2333   __ delayed()->tst(Lscratch);
2334 
2335   __ bind(notChar);
2336 
2337   // cmp(Rflags, stos);
2338   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2339   __ delayed() ->cmp(Rflags, ftos);
2340 
2341   // stos
2342   __ ldsh(Rclass, Roffset, Otos_i);
2343   __ push(itos);
2344   if (!is_static) {
2345     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2346   }
2347   __ ba(checkVolatile);
2348   __ delayed()->tst(Lscratch);
2349 
2350   __ bind(notShort);
2351 
2352 
2353   // cmp(Rflags, ftos);
2354   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2355   __ delayed() ->tst(Lscratch);
2356 
2357   // ftos
2358   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2359   __ push(ftos);
2360   if (!is_static) {
2361     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2362   }
2363   __ ba(checkVolatile);
2364   __ delayed()->tst(Lscratch);
2365 
2366   __ bind(notFloat);
2367 
2368 
2369   // dtos
2370   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2371   __ push(dtos);
2372   if (!is_static) {
2373     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2374   }
2375 
2376   __ bind(checkVolatile);
2377   if (__ membar_has_effect(membar_bits)) {
2378     // __ tst(Lscratch); executed in delay slot
2379     __ br(Assembler::zero, false, Assembler::pt, exit);
2380     __ delayed()->nop();
2381     volatile_barrier(membar_bits);
2382   }
2383 
2384   __ bind(exit);
2385 }
2386 
2387 
2388 void TemplateTable::getfield(int byte_no) {
2389   getfield_or_static(byte_no, false);
2390 }
2391 
2392 void TemplateTable::getstatic(int byte_no) {
2393   getfield_or_static(byte_no, true);
2394 }
2395 
2396 
2397 void TemplateTable::fast_accessfield(TosState state) {
2398   transition(atos, state);
2399   Register Rcache  = G3_scratch;
2400   Register index   = G4_scratch;
2401   Register Roffset = G4_scratch;
2402   Register Rflags  = Rcache;
2403   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2404 
2405   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2406   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2407 
2408   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2409 
2410   __ null_check(Otos_i);
2411   __ verify_oop(Otos_i);
2412 
2413   Label exit;
2414 
2415   Assembler::Membar_mask_bits membar_bits =
2416     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2417   if (__ membar_has_effect(membar_bits)) {
2418     // Get volatile flag
2419     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2420     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2421   }
2422 
2423   switch (bytecode()) {
2424     case Bytecodes::_fast_bgetfield:
2425       __ ldsb(Otos_i, Roffset, Otos_i);
2426       break;
2427     case Bytecodes::_fast_cgetfield:
2428       __ lduh(Otos_i, Roffset, Otos_i);
2429       break;
2430     case Bytecodes::_fast_sgetfield:
2431       __ ldsh(Otos_i, Roffset, Otos_i);
2432       break;
2433     case Bytecodes::_fast_igetfield:
2434       __ ld(Otos_i, Roffset, Otos_i);
2435       break;
2436     case Bytecodes::_fast_lgetfield:
2437       __ ld_long(Otos_i, Roffset, Otos_l);
2438       break;
2439     case Bytecodes::_fast_fgetfield:
2440       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2441       break;
2442     case Bytecodes::_fast_dgetfield:
2443       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2444       break;
2445     case Bytecodes::_fast_agetfield:
2446       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2447       break;
2448     default:
2449       ShouldNotReachHere();
2450   }
2451 
2452   if (__ membar_has_effect(membar_bits)) {
2453     __ btst(Lscratch, Rflags);
2454     __ br(Assembler::zero, false, Assembler::pt, exit);
2455     __ delayed()->nop();
2456     volatile_barrier(membar_bits);
2457     __ bind(exit);
2458   }
2459 
2460   if (state == atos) {
2461     __ verify_oop(Otos_i);    // does not blow flags!
2462   }
2463 }
2464 
2465 void TemplateTable::jvmti_post_fast_field_mod() {
2466   if (JvmtiExport::can_post_field_modification()) {
2467     // Check to see if a field modification watch has been set before we take
2468     // the time to call into the VM.
2469     Label done;
2470     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2471     __ load_contents(get_field_modification_count_addr, G4_scratch);
2472     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2473     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2474     __ verify_oop(G4_scratch);
2475     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2476     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2477     // Save tos values before call_VM() clobbers them. Since we have
2478     // to do it for every data type, we use the saved values as the
2479     // jvalue object.
2480     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2481     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2482     case Bytecodes::_fast_bputfield: // fall through
2483     case Bytecodes::_fast_zputfield: // fall through
2484     case Bytecodes::_fast_sputfield: // fall through
2485     case Bytecodes::_fast_cputfield: // fall through
2486     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2487     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2488     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2489     // get words in right order for use as jvalue object
2490     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2491     }
2492     // setup pointer to jvalue object
2493     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2494     // G4_scratch:  object pointer
2495     // G1_scratch: cache entry pointer
2496     // G3_scratch: jvalue object on the stack
2497     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2498     switch (bytecode()) {             // restore tos values
2499     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2500     case Bytecodes::_fast_bputfield: // fall through
2501     case Bytecodes::_fast_zputfield: // fall through
2502     case Bytecodes::_fast_sputfield: // fall through
2503     case Bytecodes::_fast_cputfield: // fall through
2504     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2505     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2506     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2507     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2508     }
2509     __ bind(done);
2510   }
2511 }
2512 
2513 // The registers Rcache and index expected to be set before call.
2514 // The function may destroy various registers, just not the Rcache and index registers.
2515 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2516   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2517 
2518   if (JvmtiExport::can_post_field_modification()) {
2519     // Check to see if a field modification watch has been set before we take
2520     // the time to call into the VM.
2521     Label Label1;
2522     assert_different_registers(Rcache, index, G1_scratch);
2523     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2524     __ load_contents(get_field_modification_count_addr, G1_scratch);
2525     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2526 
2527     // The Rcache and index registers have been already set.
2528     // This allows to eliminate this call but the Rcache and index
2529     // registers must be correspondingly used after this line.
2530     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2531 
2532     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2533     if (is_static) {
2534       // Life is simple.  Null out the object pointer.
2535       __ clr(G4_scratch);
2536     } else {
2537       Register Rflags = G1_scratch;
2538       // Life is harder. The stack holds the value on top, followed by the
2539       // object.  We don't know the size of the value, though; it could be
2540       // one or two words depending on its type. As a result, we must find
2541       // the type to determine where the object is.
2542 
2543       Label two_word, valsizeknown;
2544       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2545       __ mov(Lesp, G4_scratch);
2546       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2547       // Make sure we don't need to mask Rflags after the above shift
2548       ConstantPoolCacheEntry::verify_tos_state_shift();
2549       __ cmp(Rflags, ltos);
2550       __ br(Assembler::equal, false, Assembler::pt, two_word);
2551       __ delayed()->cmp(Rflags, dtos);
2552       __ br(Assembler::equal, false, Assembler::pt, two_word);
2553       __ delayed()->nop();
2554       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2555       __ ba_short(valsizeknown);
2556       __ bind(two_word);
2557 
2558       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2559 
2560       __ bind(valsizeknown);
2561       // setup object pointer
2562       __ ld_ptr(G4_scratch, 0, G4_scratch);
2563       __ verify_oop(G4_scratch);
2564     }
2565     // setup pointer to jvalue object
2566     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2567     // G4_scratch:  object pointer or NULL if static
2568     // G3_scratch: cache entry pointer
2569     // G1_scratch: jvalue object on the stack
2570     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2571                G4_scratch, G3_scratch, G1_scratch);
2572     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2573     __ bind(Label1);
2574   }
2575 }
2576 
2577 void TemplateTable::pop_and_check_object(Register r) {
2578   __ pop_ptr(r);
2579   __ null_check(r);  // for field access must check obj.
2580   __ verify_oop(r);
2581 }
2582 
2583 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2584   transition(vtos, vtos);
2585   Register Rcache = G3_scratch;
2586   Register index  = G4_scratch;
2587   Register Rclass = Rcache;
2588   Register Roffset= G4_scratch;
2589   Register Rflags = G1_scratch;
2590   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2591 
2592   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2593   jvmti_post_field_mod(Rcache, index, is_static);
2594   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2595 
2596   Assembler::Membar_mask_bits read_bits =
2597     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2598   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2599 
2600   Label notVolatile, checkVolatile, exit;
2601   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2602     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2603     __ and3(Rflags, Lscratch, Lscratch);
2604 
2605     if (__ membar_has_effect(read_bits)) {
2606       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2607       volatile_barrier(read_bits);
2608       __ bind(notVolatile);
2609     }
2610   }
2611 
2612   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2613   // Make sure we don't need to mask Rflags after the above shift
2614   ConstantPoolCacheEntry::verify_tos_state_shift();
2615 
2616   // compute field type
2617   Label notInt, notShort, notChar, notObj, notByte, notBool, notLong, notFloat;
2618 
2619   if (is_static) {
2620     // putstatic with object type most likely, check that first
2621     __ cmp(Rflags, atos);
2622     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2623     __ delayed()->cmp(Rflags, itos);
2624 
2625     // atos
2626     {
2627       __ pop_ptr();
2628       __ verify_oop(Otos_i);
2629       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2630       __ ba(checkVolatile);
2631       __ delayed()->tst(Lscratch);
2632     }
2633 
2634     __ bind(notObj);
2635     // cmp(Rflags, itos);
2636     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2637     __ delayed()->cmp(Rflags, btos);
2638 
2639     // itos
2640     {
2641       __ pop_i();
2642       __ st(Otos_i, Rclass, Roffset);
2643       __ ba(checkVolatile);
2644       __ delayed()->tst(Lscratch);
2645     }
2646 
2647     __ bind(notInt);
2648   } else {
2649     // putfield with int type most likely, check that first
2650     __ cmp(Rflags, itos);
2651     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2652     __ delayed()->cmp(Rflags, atos);
2653 
2654     // itos
2655     {
2656       __ pop_i();
2657       pop_and_check_object(Rclass);
2658       __ st(Otos_i, Rclass, Roffset);
2659       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2660       __ ba(checkVolatile);
2661       __ delayed()->tst(Lscratch);
2662     }
2663 
2664     __ bind(notInt);
2665     // cmp(Rflags, atos);
2666     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2667     __ delayed()->cmp(Rflags, btos);
2668 
2669     // atos
2670     {
2671       __ pop_ptr();
2672       pop_and_check_object(Rclass);
2673       __ verify_oop(Otos_i);
2674       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2675       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2676       __ ba(checkVolatile);
2677       __ delayed()->tst(Lscratch);
2678     }
2679 
2680     __ bind(notObj);
2681   }
2682 
2683   // cmp(Rflags, btos);
2684   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2685   __ delayed()->cmp(Rflags, ztos);
2686 
2687   // btos
2688   {
2689     __ pop_i();
2690     if (!is_static) pop_and_check_object(Rclass);
2691     __ stb(Otos_i, Rclass, Roffset);
2692     if (!is_static) {
2693       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2694     }
2695     __ ba(checkVolatile);
2696     __ delayed()->tst(Lscratch);
2697   }
2698 
2699   __ bind(notByte);
2700 
2701   // cmp(Rflags, btos);
2702   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2703   __ delayed()->cmp(Rflags, ltos);
2704 
2705   // ztos
2706   {
2707     __ pop_i();
2708     if (!is_static) pop_and_check_object(Rclass);
2709     __ and3(Otos_i, 1, Otos_i);
2710     __ stb(Otos_i, Rclass, Roffset);
2711     if (!is_static) {
2712       patch_bytecode(Bytecodes::_fast_zputfield, G3_scratch, G4_scratch, true, byte_no);
2713     }
2714     __ ba(checkVolatile);
2715     __ delayed()->tst(Lscratch);
2716   }
2717 
2718   __ bind(notBool);
2719   // cmp(Rflags, ltos);
2720   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2721   __ delayed()->cmp(Rflags, ctos);
2722 
2723   // ltos
2724   {
2725     __ pop_l();
2726     if (!is_static) pop_and_check_object(Rclass);
2727     __ st_long(Otos_l, Rclass, Roffset);
2728     if (!is_static) {
2729       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2730     }
2731     __ ba(checkVolatile);
2732     __ delayed()->tst(Lscratch);
2733   }
2734 
2735   __ bind(notLong);
2736   // cmp(Rflags, ctos);
2737   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2738   __ delayed()->cmp(Rflags, stos);
2739 
2740   // ctos (char)
2741   {
2742     __ pop_i();
2743     if (!is_static) pop_and_check_object(Rclass);
2744     __ sth(Otos_i, Rclass, Roffset);
2745     if (!is_static) {
2746       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2747     }
2748     __ ba(checkVolatile);
2749     __ delayed()->tst(Lscratch);
2750   }
2751 
2752   __ bind(notChar);
2753   // cmp(Rflags, stos);
2754   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2755   __ delayed()->cmp(Rflags, ftos);
2756 
2757   // stos (short)
2758   {
2759     __ pop_i();
2760     if (!is_static) pop_and_check_object(Rclass);
2761     __ sth(Otos_i, Rclass, Roffset);
2762     if (!is_static) {
2763       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2764     }
2765     __ ba(checkVolatile);
2766     __ delayed()->tst(Lscratch);
2767   }
2768 
2769   __ bind(notShort);
2770   // cmp(Rflags, ftos);
2771   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2772   __ delayed()->nop();
2773 
2774   // ftos
2775   {
2776     __ pop_f();
2777     if (!is_static) pop_and_check_object(Rclass);
2778     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2779     if (!is_static) {
2780       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2781     }
2782     __ ba(checkVolatile);
2783     __ delayed()->tst(Lscratch);
2784   }
2785 
2786   __ bind(notFloat);
2787 
2788   // dtos
2789   {
2790     __ pop_d();
2791     if (!is_static) pop_and_check_object(Rclass);
2792     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2793     if (!is_static) {
2794       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2795     }
2796   }
2797 
2798   __ bind(checkVolatile);
2799   __ tst(Lscratch);
2800 
2801   if (__ membar_has_effect(write_bits)) {
2802     // __ tst(Lscratch); in delay slot
2803     __ br(Assembler::zero, false, Assembler::pt, exit);
2804     __ delayed()->nop();
2805     volatile_barrier(Assembler::StoreLoad);
2806     __ bind(exit);
2807   }
2808 }
2809 
2810 void TemplateTable::fast_storefield(TosState state) {
2811   transition(state, vtos);
2812   Register Rcache = G3_scratch;
2813   Register Rclass = Rcache;
2814   Register Roffset= G4_scratch;
2815   Register Rflags = G1_scratch;
2816   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2817 
2818   jvmti_post_fast_field_mod();
2819 
2820   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2821 
2822   Assembler::Membar_mask_bits read_bits =
2823     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2824   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2825 
2826   Label notVolatile, checkVolatile, exit;
2827   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2828     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2829     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2830     __ and3(Rflags, Lscratch, Lscratch);
2831     if (__ membar_has_effect(read_bits)) {
2832       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2833       volatile_barrier(read_bits);
2834       __ bind(notVolatile);
2835     }
2836   }
2837 
2838   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2839   pop_and_check_object(Rclass);
2840 
2841   switch (bytecode()) {
2842     case Bytecodes::_fast_zputfield: __ and3(Otos_i, 1, Otos_i);  // fall through to bputfield
2843     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2844     case Bytecodes::_fast_cputfield: /* fall through */
2845     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2846     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2847     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2848     case Bytecodes::_fast_fputfield:
2849       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2850       break;
2851     case Bytecodes::_fast_dputfield:
2852       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2853       break;
2854     case Bytecodes::_fast_aputfield:
2855       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2856       break;
2857     default:
2858       ShouldNotReachHere();
2859   }
2860 
2861   if (__ membar_has_effect(write_bits)) {
2862     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2863     volatile_barrier(Assembler::StoreLoad);
2864     __ bind(exit);
2865   }
2866 }
2867 
2868 
2869 void TemplateTable::putfield(int byte_no) {
2870   putfield_or_static(byte_no, false);
2871 }
2872 
2873 void TemplateTable::putstatic(int byte_no) {
2874   putfield_or_static(byte_no, true);
2875 }
2876 
2877 
2878 void TemplateTable::fast_xaccess(TosState state) {
2879   transition(vtos, state);
2880   Register Rcache = G3_scratch;
2881   Register Roffset = G4_scratch;
2882   Register Rflags  = G4_scratch;
2883   Register Rreceiver = Lscratch;
2884 
2885   __ ld_ptr(Llocals, 0, Rreceiver);
2886 
2887   // access constant pool cache  (is resolved)
2888   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2889   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2890   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2891 
2892   __ verify_oop(Rreceiver);
2893   __ null_check(Rreceiver);
2894   if (state == atos) {
2895     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2896   } else if (state == itos) {
2897     __ ld (Rreceiver, Roffset, Otos_i) ;
2898   } else if (state == ftos) {
2899     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2900   } else {
2901     ShouldNotReachHere();
2902   }
2903 
2904   Assembler::Membar_mask_bits membar_bits =
2905     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2906   if (__ membar_has_effect(membar_bits)) {
2907 
2908     // Get is_volatile value in Rflags and check if membar is needed
2909     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2910 
2911     // Test volatile
2912     Label notVolatile;
2913     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2914     __ btst(Rflags, Lscratch);
2915     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2916     __ delayed()->nop();
2917     volatile_barrier(membar_bits);
2918     __ bind(notVolatile);
2919   }
2920 
2921   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2922   __ sub(Lbcp, 1, Lbcp);
2923 }
2924 
2925 //----------------------------------------------------------------------------------------------------
2926 // Calls
2927 
2928 void TemplateTable::count_calls(Register method, Register temp) {
2929   // implemented elsewhere
2930   ShouldNotReachHere();
2931 }
2932 
2933 void TemplateTable::prepare_invoke(int byte_no,
2934                                    Register method,  // linked method (or i-klass)
2935                                    Register ra,      // return address
2936                                    Register index,   // itable index, MethodType, etc.
2937                                    Register recv,    // if caller wants to see it
2938                                    Register flags    // if caller wants to test it
2939                                    ) {
2940   // determine flags
2941   const Bytecodes::Code code = bytecode();
2942   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2943   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2944   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2945   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2946   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2947   const bool load_receiver       = (recv != noreg);
2948   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2949   assert(recv  == noreg || recv  == O0, "");
2950   assert(flags == noreg || flags == O1, "");
2951 
2952   // setup registers & access constant pool cache
2953   if (recv  == noreg)  recv  = O0;
2954   if (flags == noreg)  flags = O1;
2955   const Register temp = O2;
2956   assert_different_registers(method, ra, index, recv, flags, temp);
2957 
2958   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2959 
2960   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2961 
2962   // maybe push appendix to arguments
2963   if (is_invokedynamic || is_invokehandle) {
2964     Label L_no_push;
2965     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2966     __ btst(flags, temp);
2967     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2968     __ delayed()->nop();
2969     // Push the appendix as a trailing parameter.
2970     // This must be done before we get the receiver,
2971     // since the parameter_size includes it.
2972     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2973     __ load_resolved_reference_at_index(temp, index);
2974     __ verify_oop(temp);
2975     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2976     __ bind(L_no_push);
2977   }
2978 
2979   // load receiver if needed (after appendix is pushed so parameter size is correct)
2980   if (load_receiver) {
2981     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2982     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2983     __ verify_oop(recv);
2984   }
2985 
2986   // compute return type
2987   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2988   // Make sure we don't need to mask flags after the above shift
2989   ConstantPoolCacheEntry::verify_tos_state_shift();
2990   // load return address
2991   {
2992     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2993     AddressLiteral table(table_addr);
2994     __ set(table, temp);
2995     __ sll(ra, LogBytesPerWord, ra);
2996     __ ld_ptr(Address(temp, ra), ra);
2997   }
2998 }
2999 
3000 
3001 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
3002   Register Rcall = Rindex;
3003   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3004 
3005   // get target Method* & entry point
3006   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
3007   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3008   __ call_from_interpreter(Rcall, Gargs, Rret);
3009 }
3010 
3011 void TemplateTable::invokevirtual(int byte_no) {
3012   transition(vtos, vtos);
3013   assert(byte_no == f2_byte, "use this argument");
3014 
3015   Register Rscratch = G3_scratch;
3016   Register Rtemp    = G4_scratch;
3017   Register Rret     = Lscratch;
3018   Register O0_recv  = O0;
3019   Label notFinal;
3020 
3021   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
3022   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3023 
3024   // Check for vfinal
3025   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
3026   __ btst(Rret, G4_scratch);
3027   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3028   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
3029 
3030   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
3031 
3032   invokevfinal_helper(Rscratch, Rret);
3033 
3034   __ bind(notFinal);
3035 
3036   __ mov(G5_method, Rscratch);  // better scratch register
3037   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
3038   // receiver is in O0_recv
3039   __ verify_oop(O0_recv);
3040 
3041   // get return address
3042   AddressLiteral table(Interpreter::invoke_return_entry_table());
3043   __ set(table, Rtemp);
3044   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3045   // Make sure we don't need to mask Rret after the above shift
3046   ConstantPoolCacheEntry::verify_tos_state_shift();
3047   __ sll(Rret,  LogBytesPerWord, Rret);
3048   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3049 
3050   // get receiver klass
3051   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3052   __ load_klass(O0_recv, O0_recv);
3053   __ verify_klass_ptr(O0_recv);
3054 
3055   __ profile_virtual_call(O0_recv, O4);
3056 
3057   generate_vtable_call(O0_recv, Rscratch, Rret);
3058 }
3059 
3060 void TemplateTable::fast_invokevfinal(int byte_no) {
3061   transition(vtos, vtos);
3062   assert(byte_no == f2_byte, "use this argument");
3063 
3064   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3065                              /*is_invokevfinal*/true, false);
3066   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3067   invokevfinal_helper(G3_scratch, Lscratch);
3068 }
3069 
3070 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3071   Register Rtemp = G4_scratch;
3072 
3073   // Load receiver from stack slot
3074   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3075   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3076   __ load_receiver(G4_scratch, O0);
3077 
3078   // receiver NULL check
3079   __ null_check(O0);
3080 
3081   __ profile_final_call(O4);
3082   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3083 
3084   // get return address
3085   AddressLiteral table(Interpreter::invoke_return_entry_table());
3086   __ set(table, Rtemp);
3087   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3088   // Make sure we don't need to mask Rret after the above shift
3089   ConstantPoolCacheEntry::verify_tos_state_shift();
3090   __ sll(Rret,  LogBytesPerWord, Rret);
3091   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3092 
3093 
3094   // do the call
3095   __ call_from_interpreter(Rscratch, Gargs, Rret);
3096 }
3097 
3098 
3099 void TemplateTable::invokespecial(int byte_no) {
3100   transition(vtos, vtos);
3101   assert(byte_no == f1_byte, "use this argument");
3102 
3103   const Register Rret     = Lscratch;
3104   const Register O0_recv  = O0;
3105   const Register Rscratch = G3_scratch;
3106 
3107   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3108   __ null_check(O0_recv);
3109 
3110   // do the call
3111   __ profile_call(O4);
3112   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3113   __ call_from_interpreter(Rscratch, Gargs, Rret);
3114 }
3115 
3116 
3117 void TemplateTable::invokestatic(int byte_no) {
3118   transition(vtos, vtos);
3119   assert(byte_no == f1_byte, "use this argument");
3120 
3121   const Register Rret     = Lscratch;
3122   const Register Rscratch = G3_scratch;
3123 
3124   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3125 
3126   // do the call
3127   __ profile_call(O4);
3128   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3129   __ call_from_interpreter(Rscratch, Gargs, Rret);
3130 }
3131 
3132 void TemplateTable::invokeinterface_object_method(Register RKlass,
3133                                                   Register Rcall,
3134                                                   Register Rret,
3135                                                   Register Rflags) {
3136   Register Rscratch = G4_scratch;
3137   Register Rindex = Lscratch;
3138 
3139   assert_different_registers(Rscratch, Rindex, Rret);
3140 
3141   Label notFinal;
3142 
3143   // Check for vfinal
3144   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3145   __ btst(Rflags, Rscratch);
3146   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3147   __ delayed()->nop();
3148 
3149   __ profile_final_call(O4);
3150 
3151   // do the call - the index (f2) contains the Method*
3152   assert_different_registers(G5_method, Gargs, Rcall);
3153   __ mov(Rindex, G5_method);
3154   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3155   __ call_from_interpreter(Rcall, Gargs, Rret);
3156   __ bind(notFinal);
3157 
3158   __ profile_virtual_call(RKlass, O4);
3159   generate_vtable_call(RKlass, Rindex, Rret);
3160 }
3161 
3162 
3163 void TemplateTable::invokeinterface(int byte_no) {
3164   transition(vtos, vtos);
3165   assert(byte_no == f1_byte, "use this argument");
3166 
3167   const Register Rinterface  = G1_scratch;
3168   const Register Rret        = G3_scratch;
3169   const Register Rindex      = Lscratch;
3170   const Register O0_recv     = O0;
3171   const Register O1_flags    = O1;
3172   const Register O2_Klass    = O2;
3173   const Register Rscratch    = G4_scratch;
3174   assert_different_registers(Rscratch, G5_method);
3175 
3176   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3177 
3178   // get receiver klass
3179   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3180   __ load_klass(O0_recv, O2_Klass);
3181 
3182   // Special case of invokeinterface called for virtual method of
3183   // java.lang.Object.  See cpCacheOop.cpp for details.
3184   // This code isn't produced by javac, but could be produced by
3185   // another compliant java compiler.
3186   Label notMethod;
3187   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3188   __ btst(O1_flags, Rscratch);
3189   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3190   __ delayed()->nop();
3191 
3192   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3193 
3194   __ bind(notMethod);
3195 
3196   __ profile_virtual_call(O2_Klass, O4);
3197 
3198   //
3199   // find entry point to call
3200   //
3201 
3202   // compute start of first itableOffsetEntry (which is at end of vtable)
3203   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3204   Label search;
3205   Register Rtemp = O1_flags;
3206 
3207   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
3208   if (align_object_offset(1) > 1) {
3209     __ round_to(Rtemp, align_object_offset(1));
3210   }
3211   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3212   if (Assembler::is_simm13(base)) {
3213     __ add(Rtemp, base, Rtemp);
3214   } else {
3215     __ set(base, Rscratch);
3216     __ add(Rscratch, Rtemp, Rtemp);
3217   }
3218   __ add(O2_Klass, Rtemp, Rscratch);
3219 
3220   __ bind(search);
3221 
3222   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3223   {
3224     Label ok;
3225 
3226     // Check that entry is non-null.  Null entries are probably a bytecode
3227     // problem.  If the interface isn't implemented by the receiver class,
3228     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3229     // this too but that's only if the entry isn't already resolved, so we
3230     // need to check again.
3231     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3232     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3233     __ should_not_reach_here();
3234     __ bind(ok);
3235   }
3236 
3237   __ cmp(Rinterface, Rtemp);
3238   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3239   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3240 
3241   // entry found and Rscratch points to it
3242   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3243 
3244   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3245   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3246   __ add(Rscratch, Rindex, Rscratch);
3247   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3248 
3249   // Check for abstract method error.
3250   {
3251     Label ok;
3252     __ br_notnull_short(G5_method, Assembler::pt, ok);
3253     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3254     __ should_not_reach_here();
3255     __ bind(ok);
3256   }
3257 
3258   Register Rcall = Rinterface;
3259   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3260 
3261   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3262   __ call_from_interpreter(Rcall, Gargs, Rret);
3263 }
3264 
3265 void TemplateTable::invokehandle(int byte_no) {
3266   transition(vtos, vtos);
3267   assert(byte_no == f1_byte, "use this argument");
3268 
3269   if (!EnableInvokeDynamic) {
3270     // rewriter does not generate this bytecode
3271     __ should_not_reach_here();
3272     return;
3273   }
3274 
3275   const Register Rret       = Lscratch;
3276   const Register G4_mtype   = G4_scratch;
3277   const Register O0_recv    = O0;
3278   const Register Rscratch   = G3_scratch;
3279 
3280   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3281   __ null_check(O0_recv);
3282 
3283   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3284   // G5: MH.invokeExact_MT method (from f2)
3285 
3286   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3287 
3288   // do the call
3289   __ verify_oop(G4_mtype);
3290   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3291   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3292   __ call_from_interpreter(Rscratch, Gargs, Rret);
3293 }
3294 
3295 
3296 void TemplateTable::invokedynamic(int byte_no) {
3297   transition(vtos, vtos);
3298   assert(byte_no == f1_byte, "use this argument");
3299 
3300   if (!EnableInvokeDynamic) {
3301     // We should not encounter this bytecode if !EnableInvokeDynamic.
3302     // The verifier will stop it.  However, if we get past the verifier,
3303     // this will stop the thread in a reasonable way, without crashing the JVM.
3304     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3305                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3306     // the call_VM checks for exception, so we should never return here.
3307     __ should_not_reach_here();
3308     return;
3309   }
3310 
3311   const Register Rret        = Lscratch;
3312   const Register G4_callsite = G4_scratch;
3313   const Register Rscratch    = G3_scratch;
3314 
3315   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3316 
3317   // G4: CallSite object (from cpool->resolved_references[f1])
3318   // G5: MH.linkToCallSite method (from f2)
3319 
3320   // Note:  G4_callsite is already pushed by prepare_invoke
3321 
3322   // %%% should make a type profile for any invokedynamic that takes a ref argument
3323   // profile this call
3324   __ profile_call(O4);
3325 
3326   // do the call
3327   __ verify_oop(G4_callsite);
3328   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3329   __ call_from_interpreter(Rscratch, Gargs, Rret);
3330 }
3331 
3332 
3333 //----------------------------------------------------------------------------------------------------
3334 // Allocation
3335 
3336 void TemplateTable::_new() {
3337   transition(vtos, atos);
3338 
3339   Label slow_case;
3340   Label done;
3341   Label initialize_header;
3342   Label initialize_object;  // including clearing the fields
3343 
3344   Register RallocatedObject = Otos_i;
3345   Register RinstanceKlass = O1;
3346   Register Roffset = O3;
3347   Register Rscratch = O4;
3348 
3349   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3350   __ get_cpool_and_tags(Rscratch, G3_scratch);
3351   // make sure the class we're about to instantiate has been resolved
3352   // This is done before loading InstanceKlass to be consistent with the order
3353   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3354   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3355   __ ldub(G3_scratch, Roffset, G3_scratch);
3356   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3357   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3358   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3359   // get InstanceKlass
3360   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3361   __ add(Roffset, sizeof(ConstantPool), Roffset);
3362   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3363 
3364   // make sure klass is fully initialized:
3365   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3366   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3367   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3368   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3369 
3370   // get instance_size in InstanceKlass (already aligned)
3371   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3372 
3373   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3374   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3375   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3376   __ delayed()->nop();
3377 
3378   // allocate the instance
3379   // 1) Try to allocate in the TLAB
3380   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3381   // 3) if the above fails (or is not applicable), go to a slow case
3382   // (creates a new TLAB, etc.)
3383 
3384   const bool allow_shared_alloc =
3385     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3386 
3387   if(UseTLAB) {
3388     Register RoldTopValue = RallocatedObject;
3389     Register RtlabWasteLimitValue = G3_scratch;
3390     Register RnewTopValue = G1_scratch;
3391     Register RendValue = Rscratch;
3392     Register RfreeValue = RnewTopValue;
3393 
3394     // check if we can allocate in the TLAB
3395     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3396     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3397     __ add(RoldTopValue, Roffset, RnewTopValue);
3398 
3399     // if there is enough space, we do not CAS and do not clear
3400     __ cmp(RnewTopValue, RendValue);
3401     if(ZeroTLAB) {
3402       // the fields have already been cleared
3403       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3404     } else {
3405       // initialize both the header and fields
3406       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3407     }
3408     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3409 
3410     if (allow_shared_alloc) {
3411       // Check if tlab should be discarded (refill_waste_limit >= free)
3412       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3413       __ sub(RendValue, RoldTopValue, RfreeValue);
3414 #ifdef _LP64
3415       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3416 #else
3417       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3418 #endif
3419       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3420 
3421       // increment waste limit to prevent getting stuck on this slow path
3422       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3423       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3424     } else {
3425       // No allocation in the shared eden.
3426       __ ba_short(slow_case);
3427     }
3428   }
3429 
3430   // Allocation in the shared Eden
3431   if (allow_shared_alloc) {
3432     Register RoldTopValue = G1_scratch;
3433     Register RtopAddr = G3_scratch;
3434     Register RnewTopValue = RallocatedObject;
3435     Register RendValue = Rscratch;
3436 
3437     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3438 
3439     Label retry;
3440     __ bind(retry);
3441     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3442     __ ld_ptr(RendValue, 0, RendValue);
3443     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3444     __ add(RoldTopValue, Roffset, RnewTopValue);
3445 
3446     // RnewTopValue contains the top address after the new object
3447     // has been allocated.
3448     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3449 
3450     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3451 
3452     // if someone beat us on the allocation, try again, otherwise continue
3453     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3454 
3455     // bump total bytes allocated by this thread
3456     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3457     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3458   }
3459 
3460   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3461     // clear object fields
3462     __ bind(initialize_object);
3463     __ deccc(Roffset, sizeof(oopDesc));
3464     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3465     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3466 
3467     // initialize remaining object fields
3468     if (UseBlockZeroing) {
3469       // Use BIS for zeroing
3470       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3471     } else {
3472       Label loop;
3473       __ subcc(Roffset, wordSize, Roffset);
3474       __ bind(loop);
3475       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3476       __ st_ptr(G0, G3_scratch, Roffset);
3477       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3478       __ delayed()->subcc(Roffset, wordSize, Roffset);
3479     }
3480     __ ba_short(initialize_header);
3481   }
3482 
3483   // slow case
3484   __ bind(slow_case);
3485   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3486   __ get_constant_pool(O1);
3487 
3488   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3489 
3490   __ ba_short(done);
3491 
3492   // Initialize the header: mark, klass
3493   __ bind(initialize_header);
3494 
3495   if (UseBiasedLocking) {
3496     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3497   } else {
3498     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3499   }
3500   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3501   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3502   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3503 
3504   {
3505     SkipIfEqual skip_if(
3506       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3507     // Trigger dtrace event
3508     __ push(atos);
3509     __ call_VM_leaf(noreg,
3510        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3511     __ pop(atos);
3512   }
3513 
3514   // continue
3515   __ bind(done);
3516 }
3517 
3518 
3519 
3520 void TemplateTable::newarray() {
3521   transition(itos, atos);
3522   __ ldub(Lbcp, 1, O1);
3523      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3524 }
3525 
3526 
3527 void TemplateTable::anewarray() {
3528   transition(itos, atos);
3529   __ get_constant_pool(O1);
3530   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3531      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3532 }
3533 
3534 
3535 void TemplateTable::arraylength() {
3536   transition(atos, itos);
3537   Label ok;
3538   __ verify_oop(Otos_i);
3539   __ tst(Otos_i);
3540   __ throw_if_not_1_x( Assembler::notZero, ok );
3541   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3542   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3543 }
3544 
3545 
3546 void TemplateTable::checkcast() {
3547   transition(atos, atos);
3548   Label done, is_null, quicked, cast_ok, resolved;
3549   Register Roffset = G1_scratch;
3550   Register RobjKlass = O5;
3551   Register RspecifiedKlass = O4;
3552 
3553   // Check for casting a NULL
3554   __ br_null_short(Otos_i, Assembler::pn, is_null);
3555 
3556   // Get value klass in RobjKlass
3557   __ load_klass(Otos_i, RobjKlass); // get value klass
3558 
3559   // Get constant pool tag
3560   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3561 
3562   // See if the checkcast has been quickened
3563   __ get_cpool_and_tags(Lscratch, G3_scratch);
3564   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3565   __ ldub(G3_scratch, Roffset, G3_scratch);
3566   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3567   __ br(Assembler::equal, true, Assembler::pt, quicked);
3568   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3569 
3570   __ push_ptr(); // save receiver for result, and for GC
3571   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3572   __ get_vm_result_2(RspecifiedKlass);
3573   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3574 
3575   __ ba_short(resolved);
3576 
3577   // Extract target class from constant pool
3578   __ bind(quicked);
3579   __ add(Roffset, sizeof(ConstantPool), Roffset);
3580   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3581   __ bind(resolved);
3582   __ load_klass(Otos_i, RobjKlass); // get value klass
3583 
3584   // Generate a fast subtype check.  Branch to cast_ok if no
3585   // failure.  Throw exception if failure.
3586   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3587 
3588   // Not a subtype; so must throw exception
3589   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3590 
3591   __ bind(cast_ok);
3592 
3593   if (ProfileInterpreter) {
3594     __ ba_short(done);
3595   }
3596   __ bind(is_null);
3597   __ profile_null_seen(G3_scratch);
3598   __ bind(done);
3599 }
3600 
3601 
3602 void TemplateTable::instanceof() {
3603   Label done, is_null, quicked, resolved;
3604   transition(atos, itos);
3605   Register Roffset = G1_scratch;
3606   Register RobjKlass = O5;
3607   Register RspecifiedKlass = O4;
3608 
3609   // Check for casting a NULL
3610   __ br_null_short(Otos_i, Assembler::pt, is_null);
3611 
3612   // Get value klass in RobjKlass
3613   __ load_klass(Otos_i, RobjKlass); // get value klass
3614 
3615   // Get constant pool tag
3616   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3617 
3618   // See if the checkcast has been quickened
3619   __ get_cpool_and_tags(Lscratch, G3_scratch);
3620   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3621   __ ldub(G3_scratch, Roffset, G3_scratch);
3622   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3623   __ br(Assembler::equal, true, Assembler::pt, quicked);
3624   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3625 
3626   __ push_ptr(); // save receiver for result, and for GC
3627   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3628   __ get_vm_result_2(RspecifiedKlass);
3629   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3630 
3631   __ ba_short(resolved);
3632 
3633   // Extract target class from constant pool
3634   __ bind(quicked);
3635   __ add(Roffset, sizeof(ConstantPool), Roffset);
3636   __ get_constant_pool(Lscratch);
3637   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3638   __ bind(resolved);
3639   __ load_klass(Otos_i, RobjKlass); // get value klass
3640 
3641   // Generate a fast subtype check.  Branch to cast_ok if no
3642   // failure.  Return 0 if failure.
3643   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3644   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3645   // Not a subtype; return 0;
3646   __ clr( Otos_i );
3647 
3648   if (ProfileInterpreter) {
3649     __ ba_short(done);
3650   }
3651   __ bind(is_null);
3652   __ profile_null_seen(G3_scratch);
3653   __ bind(done);
3654 }
3655 
3656 void TemplateTable::_breakpoint() {
3657 
3658    // Note: We get here even if we are single stepping..
3659    // jbug inists on setting breakpoints at every bytecode
3660    // even if we are in single step mode.
3661 
3662    transition(vtos, vtos);
3663    // get the unpatched byte code
3664    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3665    __ mov(O0, Lbyte_code);
3666 
3667    // post the breakpoint event
3668    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3669 
3670    // complete the execution of original bytecode
3671    __ dispatch_normal(vtos);
3672 }
3673 
3674 
3675 //----------------------------------------------------------------------------------------------------
3676 // Exceptions
3677 
3678 void TemplateTable::athrow() {
3679   transition(atos, vtos);
3680 
3681   // This works because exception is cached in Otos_i which is same as O0,
3682   // which is same as what throw_exception_entry_expects
3683   assert(Otos_i == Oexception, "see explanation above");
3684 
3685   __ verify_oop(Otos_i);
3686   __ null_check(Otos_i);
3687   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3688 }
3689 
3690 
3691 //----------------------------------------------------------------------------------------------------
3692 // Synchronization
3693 
3694 
3695 // See frame_sparc.hpp for monitor block layout.
3696 // Monitor elements are dynamically allocated by growing stack as needed.
3697 
3698 void TemplateTable::monitorenter() {
3699   transition(atos, vtos);
3700   __ verify_oop(Otos_i);
3701   // Try to acquire a lock on the object
3702   // Repeat until succeeded (i.e., until
3703   // monitorenter returns true).
3704 
3705   {   Label ok;
3706     __ tst(Otos_i);
3707     __ throw_if_not_1_x( Assembler::notZero,  ok);
3708     __ delayed()->mov(Otos_i, Lscratch); // save obj
3709     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3710   }
3711 
3712   assert(O0 == Otos_i, "Be sure where the object to lock is");
3713 
3714   // find a free slot in the monitor block
3715 
3716 
3717   // initialize entry pointer
3718   __ clr(O1); // points to free slot or NULL
3719 
3720   {
3721     Label entry, loop, exit;
3722     __ add( __ top_most_monitor(), O2 ); // last one to check
3723     __ ba( entry );
3724     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3725 
3726 
3727     __ bind( loop );
3728 
3729     __ verify_oop(O4);          // verify each monitor's oop
3730     __ tst(O4); // is this entry unused?
3731     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3732 
3733     __ cmp(O4, O0); // check if current entry is for same object
3734     __ brx( Assembler::equal, false, Assembler::pn, exit );
3735     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3736 
3737     __ bind( entry );
3738 
3739     __ cmp( O3, O2 );
3740     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3741     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3742 
3743     __ bind( exit );
3744   }
3745 
3746   { Label allocated;
3747 
3748     // found free slot?
3749     __ br_notnull_short(O1, Assembler::pn, allocated);
3750 
3751     __ add_monitor_to_stack( false, O2, O3 );
3752     __ mov(Lmonitors, O1);
3753 
3754     __ bind(allocated);
3755   }
3756 
3757   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3758   // The object has already been poped from the stack, so the expression stack looks correct.
3759   __ inc(Lbcp);
3760 
3761   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3762   __ lock_object(O1, O0);
3763 
3764   // check if there's enough space on the stack for the monitors after locking
3765   __ generate_stack_overflow_check(0);
3766 
3767   // The bcp has already been incremented. Just need to dispatch to next instruction.
3768   __ dispatch_next(vtos);
3769 }
3770 
3771 
3772 void TemplateTable::monitorexit() {
3773   transition(atos, vtos);
3774   __ verify_oop(Otos_i);
3775   __ tst(Otos_i);
3776   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3777 
3778   assert(O0 == Otos_i, "just checking");
3779 
3780   { Label entry, loop, found;
3781     __ add( __ top_most_monitor(), O2 ); // last one to check
3782     __ ba(entry);
3783     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3784     // By using a local it survives the call to the C routine.
3785     __ delayed()->mov( Lmonitors, Lscratch );
3786 
3787     __ bind( loop );
3788 
3789     __ verify_oop(O4);          // verify each monitor's oop
3790     __ cmp(O4, O0); // check if current entry is for desired object
3791     __ brx( Assembler::equal, true, Assembler::pt, found );
3792     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3793 
3794     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3795 
3796     __ bind( entry );
3797 
3798     __ cmp( Lscratch, O2 );
3799     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3800     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3801 
3802     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3803     __ should_not_reach_here();
3804 
3805     __ bind(found);
3806   }
3807   __ unlock_object(O1);
3808 }
3809 
3810 
3811 //----------------------------------------------------------------------------------------------------
3812 // Wide instructions
3813 
3814 void TemplateTable::wide() {
3815   transition(vtos, vtos);
3816   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3817   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3818   AddressLiteral ep(Interpreter::_wentry_point);
3819   __ set(ep, G4_scratch);
3820   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3821   __ jmp(G3_scratch, G0);
3822   __ delayed()->nop();
3823   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3824 }
3825 
3826 
3827 //----------------------------------------------------------------------------------------------------
3828 // Multi arrays
3829 
3830 void TemplateTable::multianewarray() {
3831   transition(vtos, atos);
3832      // put ndims * wordSize into Lscratch
3833   __ ldub( Lbcp,     3,               Lscratch);
3834   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3835      // Lesp points past last_dim, so set to O1 to first_dim address
3836   __ add(  Lesp,     Lscratch,        O1);
3837      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3838   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3839 }
3840 #endif /* !CC_INTERP */