1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodData.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 #ifndef CC_INTERP
  40 #define __ _masm->
  41 
  42 // Misc helpers
  43 
  44 // Do an oop store like *(base + index + offset) = val
  45 // index can be noreg,
  46 static void do_oop_store(InterpreterMacroAssembler* _masm,
  47                          Register base,
  48                          Register index,
  49                          int offset,
  50                          Register val,
  51                          Register tmp,
  52                          BarrierSet::Name barrier,
  53                          bool precise) {
  54   assert(tmp != val && tmp != base && tmp != index, "register collision");
  55   assert(index == noreg || offset == 0, "only one offset");
  56   switch (barrier) {
  57 #if INCLUDE_ALL_GCS
  58     case BarrierSet::G1SATBCT:
  59     case BarrierSet::G1SATBCTLogging:
  60       {
  61         // Load and record the previous value.
  62         __ g1_write_barrier_pre(base, index, offset,
  63                                 noreg /* pre_val */,
  64                                 tmp, true /*preserve_o_regs*/);
  65 
  66         // G1 barrier needs uncompressed oop for region cross check.
  67         Register new_val = val;
  68         if (UseCompressedOops && val != G0) {
  69           new_val = tmp;
  70           __ mov(val, new_val);
  71         }
  72 
  73         if (index == noreg ) {
  74           assert(Assembler::is_simm13(offset), "fix this code");
  75           __ store_heap_oop(val, base, offset);
  76         } else {
  77           __ store_heap_oop(val, base, index);
  78         }
  79 
  80         // No need for post barrier if storing NULL
  81         if (val != G0) {
  82           if (precise) {
  83             if (index == noreg) {
  84               __ add(base, offset, base);
  85             } else {
  86               __ add(base, index, base);
  87             }
  88           }
  89           __ g1_write_barrier_post(base, new_val, tmp);
  90         }
  91       }
  92       break;
  93 #endif // INCLUDE_ALL_GCS
  94     case BarrierSet::CardTableModRef:
  95     case BarrierSet::CardTableExtension:
  96       {
  97         if (index == noreg ) {
  98           assert(Assembler::is_simm13(offset), "fix this code");
  99           __ store_heap_oop(val, base, offset);
 100         } else {
 101           __ store_heap_oop(val, base, index);
 102         }
 103         // No need for post barrier if storing NULL
 104         if (val != G0) {
 105           if (precise) {
 106             if (index == noreg) {
 107               __ add(base, offset, base);
 108             } else {
 109               __ add(base, index, base);
 110             }
 111           }
 112           __ card_write_barrier_post(base, val, tmp);
 113         }
 114       }
 115       break;
 116     case BarrierSet::Epsilon:
 117       if (index == noreg) {
 118         assert(Assembler::is_simm13(offset), "fix this code");
 119         __ store_heap_oop(val, base, offset);
 120       } else {
 121         __ store_heap_oop(val, base, index);
 122       }
 123       break;
 124     case BarrierSet::ModRef:
 125     case BarrierSet::Other:
 126       ShouldNotReachHere();
 127       break;
 128     default      :
 129       ShouldNotReachHere();
 130 
 131   }
 132 }
 133 
 134 
 135 //----------------------------------------------------------------------------------------------------
 136 // Platform-dependent initialization
 137 
 138 void TemplateTable::pd_initialize() {
 139   // (none)
 140 }
 141 
 142 
 143 //----------------------------------------------------------------------------------------------------
 144 // Condition conversion
 145 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 146   switch (cc) {
 147     case TemplateTable::equal        : return Assembler::notEqual;
 148     case TemplateTable::not_equal    : return Assembler::equal;
 149     case TemplateTable::less         : return Assembler::greaterEqual;
 150     case TemplateTable::less_equal   : return Assembler::greater;
 151     case TemplateTable::greater      : return Assembler::lessEqual;
 152     case TemplateTable::greater_equal: return Assembler::less;
 153   }
 154   ShouldNotReachHere();
 155   return Assembler::zero;
 156 }
 157 
 158 //----------------------------------------------------------------------------------------------------
 159 // Miscelaneous helper routines
 160 
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(Lbcp, offset);
 165 }
 166 
 167 
 168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 169                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 170                                    int byte_no) {
 171   // With sharing on, may need to test Method* flag.
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {
 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 194       __ set(bc, bc_reg);
 195       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 196     }
 197     break;
 198   default:
 199     assert(byte_no == -1, "sanity");
 200     if (load_bc_into_bc_reg) {
 201       __ set(bc, bc_reg);
 202     }
 203   }
 204 
 205   if (JvmtiExport::can_post_breakpoint()) {
 206     Label L_fast_patch;
 207     __ ldub(at_bcp(0), temp_reg);
 208     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 209     // perform the quickening, slowly, in the bowels of the breakpoint table
 210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 211     __ ba_short(L_patch_done);
 212     __ bind(L_fast_patch);
 213   }
 214 
 215 #ifdef ASSERT
 216   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 217   Label L_okay;
 218   __ ldub(at_bcp(0), temp_reg);
 219   __ cmp(temp_reg, orig_bytecode);
 220   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 221   __ delayed()->cmp(temp_reg, bc_reg);
 222   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 223   __ delayed()->nop();
 224   __ stop("patching the wrong bytecode");
 225   __ bind(L_okay);
 226 #endif
 227 
 228   // patch bytecode
 229   __ stb(bc_reg, at_bcp(0));
 230   __ bind(L_patch_done);
 231 }
 232 
 233 //----------------------------------------------------------------------------------------------------
 234 // Individual instructions
 235 
 236 void TemplateTable::nop() {
 237   transition(vtos, vtos);
 238   // nothing to do
 239 }
 240 
 241 void TemplateTable::shouldnotreachhere() {
 242   transition(vtos, vtos);
 243   __ stop("shouldnotreachhere bytecode");
 244 }
 245 
 246 void TemplateTable::aconst_null() {
 247   transition(vtos, atos);
 248   __ clr(Otos_i);
 249 }
 250 
 251 
 252 void TemplateTable::iconst(int value) {
 253   transition(vtos, itos);
 254   __ set(value, Otos_i);
 255 }
 256 
 257 
 258 void TemplateTable::lconst(int value) {
 259   transition(vtos, ltos);
 260   assert(value >= 0, "check this code");
 261 #ifdef _LP64
 262   __ set(value, Otos_l);
 263 #else
 264   __ set(value, Otos_l2);
 265   __ clr( Otos_l1);
 266 #endif
 267 }
 268 
 269 
 270 void TemplateTable::fconst(int value) {
 271   transition(vtos, ftos);
 272   static float zero = 0.0, one = 1.0, two = 2.0;
 273   float* p;
 274   switch( value ) {
 275    default: ShouldNotReachHere();
 276    case 0:  p = &zero;  break;
 277    case 1:  p = &one;   break;
 278    case 2:  p = &two;   break;
 279   }
 280   AddressLiteral a(p);
 281   __ sethi(a, G3_scratch);
 282   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 283 }
 284 
 285 
 286 void TemplateTable::dconst(int value) {
 287   transition(vtos, dtos);
 288   static double zero = 0.0, one = 1.0;
 289   double* p;
 290   switch( value ) {
 291    default: ShouldNotReachHere();
 292    case 0:  p = &zero;  break;
 293    case 1:  p = &one;   break;
 294   }
 295   AddressLiteral a(p);
 296   __ sethi(a, G3_scratch);
 297   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 298 }
 299 
 300 
 301 // %%%%% Should factore most snippet templates across platforms
 302 
 303 void TemplateTable::bipush() {
 304   transition(vtos, itos);
 305   __ ldsb( at_bcp(1), Otos_i );
 306 }
 307 
 308 void TemplateTable::sipush() {
 309   transition(vtos, itos);
 310   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 311 }
 312 
 313 void TemplateTable::ldc(bool wide) {
 314   transition(vtos, vtos);
 315   Label call_ldc, notInt, isString, notString, notClass, exit;
 316 
 317   if (wide) {
 318     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 319   } else {
 320     __ ldub(Lbcp, 1, O1);
 321   }
 322   __ get_cpool_and_tags(O0, O2);
 323 
 324   const int base_offset = ConstantPool::header_size() * wordSize;
 325   const int tags_offset = Array<u1>::base_offset_in_bytes();
 326 
 327   // get type from tags
 328   __ add(O2, tags_offset, O2);
 329   __ ldub(O2, O1, O2);
 330 
 331   // unresolved class? If so, must resolve
 332   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 333 
 334   // unresolved class in error state
 335   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 336 
 337   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 338   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 339   __ delayed()->add(O0, base_offset, O0);
 340 
 341   __ bind(call_ldc);
 342   __ set(wide, O1);
 343   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 344   __ push(atos);
 345   __ ba_short(exit);
 346 
 347   __ bind(notClass);
 348  // __ add(O0, base_offset, O0);
 349   __ sll(O1, LogBytesPerWord, O1);
 350   __ cmp(O2, JVM_CONSTANT_Integer);
 351   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 352   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 353   __ ld(O0, O1, Otos_i);
 354   __ push(itos);
 355   __ ba_short(exit);
 356 
 357   __ bind(notInt);
 358  // __ cmp(O2, JVM_CONSTANT_String);
 359   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 360   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 361   __ bind(isString);
 362   __ stop("string should be rewritten to fast_aldc");
 363   __ ba_short(exit);
 364 
 365   __ bind(notString);
 366  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 367   __ push(ftos);
 368 
 369   __ bind(exit);
 370 }
 371 
 372 // Fast path for caching oop constants.
 373 // %%% We should use this to handle Class and String constants also.
 374 // %%% It will simplify the ldc/primitive path considerably.
 375 void TemplateTable::fast_aldc(bool wide) {
 376   transition(vtos, atos);
 377 
 378   int index_size = wide ? sizeof(u2) : sizeof(u1);
 379   Label resolved;
 380 
 381   // We are resolved if the resolved reference cache entry contains a
 382   // non-null object (CallSite, etc.)
 383   assert_different_registers(Otos_i, G3_scratch);
 384   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 385   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 386   __ tst(Otos_i);
 387   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 388   __ delayed()->set((int)bytecode(), O1);
 389 
 390   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 391 
 392   // first time invocation - must resolve first
 393   __ call_VM(Otos_i, entry, O1);
 394   __ bind(resolved);
 395   __ verify_oop(Otos_i);
 396 }
 397 
 398 
 399 void TemplateTable::ldc2_w() {
 400   transition(vtos, vtos);
 401   Label Long, exit;
 402 
 403   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 404   __ get_cpool_and_tags(O0, O2);
 405 
 406   const int base_offset = ConstantPool::header_size() * wordSize;
 407   const int tags_offset = Array<u1>::base_offset_in_bytes();
 408   // get type from tags
 409   __ add(O2, tags_offset, O2);
 410   __ ldub(O2, O1, O2);
 411 
 412   __ sll(O1, LogBytesPerWord, O1);
 413   __ add(O0, O1, G3_scratch);
 414 
 415   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 416   // A double can be placed at word-aligned locations in the constant pool.
 417   // Check out Conversions.java for an example.
 418   // Also ConstantPool::header_size() is 20, which makes it very difficult
 419   // to double-align double on the constant pool.  SG, 11/7/97
 420 #ifdef _LP64
 421   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 422 #else
 423   FloatRegister f = Ftos_d;
 424   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 425   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 426          f->successor());
 427 #endif
 428   __ push(dtos);
 429   __ ba_short(exit);
 430 
 431   __ bind(Long);
 432 #ifdef _LP64
 433   __ ldx(G3_scratch, base_offset, Otos_l);
 434 #else
 435   __ ld(G3_scratch, base_offset, Otos_l);
 436   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 437 #endif
 438   __ push(ltos);
 439 
 440   __ bind(exit);
 441 }
 442 
 443 
 444 void TemplateTable::locals_index(Register reg, int offset) {
 445   __ ldub( at_bcp(offset), reg );
 446 }
 447 
 448 
 449 void TemplateTable::locals_index_wide(Register reg) {
 450   // offset is 2, not 1, because Lbcp points to wide prefix code
 451   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 452 }
 453 
 454 void TemplateTable::iload() {
 455   transition(vtos, itos);
 456   // Rewrite iload,iload  pair into fast_iload2
 457   //         iload,caload pair into fast_icaload
 458   if (RewriteFrequentPairs) {
 459     Label rewrite, done;
 460 
 461     // get next byte
 462     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 463 
 464     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 465     // last two iloads in a pair.  Comparing against fast_iload means that
 466     // the next bytecode is neither an iload or a caload, and therefore
 467     // an iload pair.
 468     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 469 
 470     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 471     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 472     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 473 
 474     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 475     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 476     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 477 
 478     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 479     // rewrite
 480     // G4_scratch: fast bytecode
 481     __ bind(rewrite);
 482     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 483     __ bind(done);
 484   }
 485 
 486   // Get the local value into tos
 487   locals_index(G3_scratch);
 488   __ access_local_int( G3_scratch, Otos_i );
 489 }
 490 
 491 void TemplateTable::fast_iload2() {
 492   transition(vtos, itos);
 493   locals_index(G3_scratch);
 494   __ access_local_int( G3_scratch, Otos_i );
 495   __ push_i();
 496   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 497   __ access_local_int( G3_scratch, Otos_i );
 498 }
 499 
 500 void TemplateTable::fast_iload() {
 501   transition(vtos, itos);
 502   locals_index(G3_scratch);
 503   __ access_local_int( G3_scratch, Otos_i );
 504 }
 505 
 506 void TemplateTable::lload() {
 507   transition(vtos, ltos);
 508   locals_index(G3_scratch);
 509   __ access_local_long( G3_scratch, Otos_l );
 510 }
 511 
 512 
 513 void TemplateTable::fload() {
 514   transition(vtos, ftos);
 515   locals_index(G3_scratch);
 516   __ access_local_float( G3_scratch, Ftos_f );
 517 }
 518 
 519 
 520 void TemplateTable::dload() {
 521   transition(vtos, dtos);
 522   locals_index(G3_scratch);
 523   __ access_local_double( G3_scratch, Ftos_d );
 524 }
 525 
 526 
 527 void TemplateTable::aload() {
 528   transition(vtos, atos);
 529   locals_index(G3_scratch);
 530   __ access_local_ptr( G3_scratch, Otos_i);
 531 }
 532 
 533 
 534 void TemplateTable::wide_iload() {
 535   transition(vtos, itos);
 536   locals_index_wide(G3_scratch);
 537   __ access_local_int( G3_scratch, Otos_i );
 538 }
 539 
 540 
 541 void TemplateTable::wide_lload() {
 542   transition(vtos, ltos);
 543   locals_index_wide(G3_scratch);
 544   __ access_local_long( G3_scratch, Otos_l );
 545 }
 546 
 547 
 548 void TemplateTable::wide_fload() {
 549   transition(vtos, ftos);
 550   locals_index_wide(G3_scratch);
 551   __ access_local_float( G3_scratch, Ftos_f );
 552 }
 553 
 554 
 555 void TemplateTable::wide_dload() {
 556   transition(vtos, dtos);
 557   locals_index_wide(G3_scratch);
 558   __ access_local_double( G3_scratch, Ftos_d );
 559 }
 560 
 561 
 562 void TemplateTable::wide_aload() {
 563   transition(vtos, atos);
 564   locals_index_wide(G3_scratch);
 565   __ access_local_ptr( G3_scratch, Otos_i );
 566   __ verify_oop(Otos_i);
 567 }
 568 
 569 
 570 void TemplateTable::iaload() {
 571   transition(itos, itos);
 572   // Otos_i: index
 573   // tos: array
 574   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 575   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 576 }
 577 
 578 
 579 void TemplateTable::laload() {
 580   transition(itos, ltos);
 581   // Otos_i: index
 582   // O2: array
 583   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 584   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 585 }
 586 
 587 
 588 void TemplateTable::faload() {
 589   transition(itos, ftos);
 590   // Otos_i: index
 591   // O2: array
 592   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 593   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 594 }
 595 
 596 
 597 void TemplateTable::daload() {
 598   transition(itos, dtos);
 599   // Otos_i: index
 600   // O2: array
 601   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 602   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 603 }
 604 
 605 
 606 void TemplateTable::aaload() {
 607   transition(itos, atos);
 608   // Otos_i: index
 609   // tos: array
 610   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 611   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 612   __ verify_oop(Otos_i);
 613 }
 614 
 615 
 616 void TemplateTable::baload() {
 617   transition(itos, itos);
 618   // Otos_i: index
 619   // tos: array
 620   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 621   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 622 }
 623 
 624 
 625 void TemplateTable::caload() {
 626   transition(itos, itos);
 627   // Otos_i: index
 628   // tos: array
 629   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 630   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 631 }
 632 
 633 void TemplateTable::fast_icaload() {
 634   transition(vtos, itos);
 635   // Otos_i: index
 636   // tos: array
 637   locals_index(G3_scratch);
 638   __ access_local_int( G3_scratch, Otos_i );
 639   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 640   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 641 }
 642 
 643 
 644 void TemplateTable::saload() {
 645   transition(itos, itos);
 646   // Otos_i: index
 647   // tos: array
 648   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 649   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 650 }
 651 
 652 
 653 void TemplateTable::iload(int n) {
 654   transition(vtos, itos);
 655   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 656 }
 657 
 658 
 659 void TemplateTable::lload(int n) {
 660   transition(vtos, ltos);
 661   assert(n+1 < Argument::n_register_parameters, "would need more code");
 662   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 663 }
 664 
 665 
 666 void TemplateTable::fload(int n) {
 667   transition(vtos, ftos);
 668   assert(n < Argument::n_register_parameters, "would need more code");
 669   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 670 }
 671 
 672 
 673 void TemplateTable::dload(int n) {
 674   transition(vtos, dtos);
 675   FloatRegister dst = Ftos_d;
 676   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 677 }
 678 
 679 
 680 void TemplateTable::aload(int n) {
 681   transition(vtos, atos);
 682   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 683 }
 684 
 685 
 686 void TemplateTable::aload_0() {
 687   transition(vtos, atos);
 688 
 689   // According to bytecode histograms, the pairs:
 690   //
 691   // _aload_0, _fast_igetfield (itos)
 692   // _aload_0, _fast_agetfield (atos)
 693   // _aload_0, _fast_fgetfield (ftos)
 694   //
 695   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 696   // bytecode checks the next bytecode and then rewrites the current
 697   // bytecode into a pair bytecode; otherwise it rewrites the current
 698   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 699   //
 700   if (RewriteFrequentPairs) {
 701     Label rewrite, done;
 702 
 703     // get next byte
 704     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 705 
 706     // do actual aload_0
 707     aload(0);
 708 
 709     // if _getfield then wait with rewrite
 710     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 711 
 712     // if _igetfield then rewrite to _fast_iaccess_0
 713     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 714     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 715     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 716     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 717 
 718     // if _agetfield then rewrite to _fast_aaccess_0
 719     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 720     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 721     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 722     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 723 
 724     // if _fgetfield then rewrite to _fast_faccess_0
 725     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 726     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 727     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 728     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 729 
 730     // else rewrite to _fast_aload0
 731     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 732     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 733 
 734     // rewrite
 735     // G4_scratch: fast bytecode
 736     __ bind(rewrite);
 737     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 738     __ bind(done);
 739   } else {
 740     aload(0);
 741   }
 742 }
 743 
 744 
 745 void TemplateTable::istore() {
 746   transition(itos, vtos);
 747   locals_index(G3_scratch);
 748   __ store_local_int( G3_scratch, Otos_i );
 749 }
 750 
 751 
 752 void TemplateTable::lstore() {
 753   transition(ltos, vtos);
 754   locals_index(G3_scratch);
 755   __ store_local_long( G3_scratch, Otos_l );
 756 }
 757 
 758 
 759 void TemplateTable::fstore() {
 760   transition(ftos, vtos);
 761   locals_index(G3_scratch);
 762   __ store_local_float( G3_scratch, Ftos_f );
 763 }
 764 
 765 
 766 void TemplateTable::dstore() {
 767   transition(dtos, vtos);
 768   locals_index(G3_scratch);
 769   __ store_local_double( G3_scratch, Ftos_d );
 770 }
 771 
 772 
 773 void TemplateTable::astore() {
 774   transition(vtos, vtos);
 775   __ load_ptr(0, Otos_i);
 776   __ inc(Lesp, Interpreter::stackElementSize);
 777   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 778   locals_index(G3_scratch);
 779   __ store_local_ptr(G3_scratch, Otos_i);
 780 }
 781 
 782 
 783 void TemplateTable::wide_istore() {
 784   transition(vtos, vtos);
 785   __ pop_i();
 786   locals_index_wide(G3_scratch);
 787   __ store_local_int( G3_scratch, Otos_i );
 788 }
 789 
 790 
 791 void TemplateTable::wide_lstore() {
 792   transition(vtos, vtos);
 793   __ pop_l();
 794   locals_index_wide(G3_scratch);
 795   __ store_local_long( G3_scratch, Otos_l );
 796 }
 797 
 798 
 799 void TemplateTable::wide_fstore() {
 800   transition(vtos, vtos);
 801   __ pop_f();
 802   locals_index_wide(G3_scratch);
 803   __ store_local_float( G3_scratch, Ftos_f );
 804 }
 805 
 806 
 807 void TemplateTable::wide_dstore() {
 808   transition(vtos, vtos);
 809   __ pop_d();
 810   locals_index_wide(G3_scratch);
 811   __ store_local_double( G3_scratch, Ftos_d );
 812 }
 813 
 814 
 815 void TemplateTable::wide_astore() {
 816   transition(vtos, vtos);
 817   __ load_ptr(0, Otos_i);
 818   __ inc(Lesp, Interpreter::stackElementSize);
 819   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 820   locals_index_wide(G3_scratch);
 821   __ store_local_ptr(G3_scratch, Otos_i);
 822 }
 823 
 824 
 825 void TemplateTable::iastore() {
 826   transition(itos, vtos);
 827   __ pop_i(O2); // index
 828   // Otos_i: val
 829   // O3: array
 830   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 831   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 832 }
 833 
 834 
 835 void TemplateTable::lastore() {
 836   transition(ltos, vtos);
 837   __ pop_i(O2); // index
 838   // Otos_l: val
 839   // O3: array
 840   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 841   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 842 }
 843 
 844 
 845 void TemplateTable::fastore() {
 846   transition(ftos, vtos);
 847   __ pop_i(O2); // index
 848   // Ftos_f: val
 849   // O3: array
 850   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 851   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 852 }
 853 
 854 
 855 void TemplateTable::dastore() {
 856   transition(dtos, vtos);
 857   __ pop_i(O2); // index
 858   // Fos_d: val
 859   // O3: array
 860   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 861   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 862 }
 863 
 864 
 865 void TemplateTable::aastore() {
 866   Label store_ok, is_null, done;
 867   transition(vtos, vtos);
 868   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 869   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 870   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 871   // Otos_i: val
 872   // O2: index
 873   // O3: array
 874   __ verify_oop(Otos_i);
 875   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 876 
 877   // do array store check - check for NULL value first
 878   __ br_null_short( Otos_i, Assembler::pn, is_null );
 879 
 880   __ load_klass(O3, O4); // get array klass
 881   __ load_klass(Otos_i, O5); // get value klass
 882 
 883   // do fast instanceof cache test
 884 
 885   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 886 
 887   assert(Otos_i == O0, "just checking");
 888 
 889   // Otos_i:    value
 890   // O1:        addr - offset
 891   // O2:        index
 892   // O3:        array
 893   // O4:        array element klass
 894   // O5:        value klass
 895 
 896   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 897 
 898   // Generate a fast subtype check.  Branch to store_ok if no
 899   // failure.  Throw if failure.
 900   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 901 
 902   // Not a subtype; so must throw exception
 903   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 904 
 905   // Store is OK.
 906   __ bind(store_ok);
 907   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 908 
 909   __ ba(done);
 910   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 911 
 912   __ bind(is_null);
 913   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 914 
 915   __ profile_null_seen(G3_scratch);
 916   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 917   __ bind(done);
 918 }
 919 
 920 
 921 void TemplateTable::bastore() {
 922   transition(itos, vtos);
 923   __ pop_i(O2); // index
 924   // Otos_i: val
 925   // O2: index
 926   // O3: array
 927   __ index_check(O3, O2, 0, G3_scratch, O2);
 928   // Need to check whether array is boolean or byte
 929   // since both types share the bastore bytecode.
 930   __ load_klass(O3, G4_scratch);
 931   __ ld(G4_scratch, in_bytes(Klass::layout_helper_offset()), G4_scratch);
 932   __ set(Klass::layout_helper_boolean_diffbit(), G3_scratch);
 933   __ andcc(G3_scratch, G4_scratch, G0);
 934   Label L_skip;
 935   __ br(Assembler::zero, false, Assembler::pn, L_skip);
 936   __ delayed()->nop();
 937   __ and3(Otos_i, 1, Otos_i);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
 938   __ bind(L_skip);
 939   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 940 }
 941 
 942 
 943 void TemplateTable::castore() {
 944   transition(itos, vtos);
 945   __ pop_i(O2); // index
 946   // Otos_i: val
 947   // O3: array
 948   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 949   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 950 }
 951 
 952 
 953 void TemplateTable::sastore() {
 954   // %%%%% Factor across platform
 955   castore();
 956 }
 957 
 958 
 959 void TemplateTable::istore(int n) {
 960   transition(itos, vtos);
 961   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 962 }
 963 
 964 
 965 void TemplateTable::lstore(int n) {
 966   transition(ltos, vtos);
 967   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 968   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 969 
 970 }
 971 
 972 
 973 void TemplateTable::fstore(int n) {
 974   transition(ftos, vtos);
 975   assert(n < Argument::n_register_parameters, "only handle register cases");
 976   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 977 }
 978 
 979 
 980 void TemplateTable::dstore(int n) {
 981   transition(dtos, vtos);
 982   FloatRegister src = Ftos_d;
 983   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 984 }
 985 
 986 
 987 void TemplateTable::astore(int n) {
 988   transition(vtos, vtos);
 989   __ load_ptr(0, Otos_i);
 990   __ inc(Lesp, Interpreter::stackElementSize);
 991   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 992   __ store_local_ptr(n, Otos_i);
 993 }
 994 
 995 
 996 void TemplateTable::pop() {
 997   transition(vtos, vtos);
 998   __ inc(Lesp, Interpreter::stackElementSize);
 999 }
1000 
1001 
1002 void TemplateTable::pop2() {
1003   transition(vtos, vtos);
1004   __ inc(Lesp, 2 * Interpreter::stackElementSize);
1005 }
1006 
1007 
1008 void TemplateTable::dup() {
1009   transition(vtos, vtos);
1010   // stack: ..., a
1011   // load a and tag
1012   __ load_ptr(0, Otos_i);
1013   __ push_ptr(Otos_i);
1014   // stack: ..., a, a
1015 }
1016 
1017 
1018 void TemplateTable::dup_x1() {
1019   transition(vtos, vtos);
1020   // stack: ..., a, b
1021   __ load_ptr( 1, G3_scratch);  // get a
1022   __ load_ptr( 0, Otos_l1);     // get b
1023   __ store_ptr(1, Otos_l1);     // put b
1024   __ store_ptr(0, G3_scratch);  // put a - like swap
1025   __ push_ptr(Otos_l1);         // push b
1026   // stack: ..., b, a, b
1027 }
1028 
1029 
1030 void TemplateTable::dup_x2() {
1031   transition(vtos, vtos);
1032   // stack: ..., a, b, c
1033   // get c and push on stack, reuse registers
1034   __ load_ptr( 0, G3_scratch);  // get c
1035   __ push_ptr(G3_scratch);      // push c with tag
1036   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1037   // (stack offsets n+1 now)
1038   __ load_ptr( 3, Otos_l1);     // get a
1039   __ store_ptr(3, G3_scratch);  // put c at 3
1040   // stack: ..., c, b, c, c  (a in reg)
1041   __ load_ptr( 2, G3_scratch);  // get b
1042   __ store_ptr(2, Otos_l1);     // put a at 2
1043   // stack: ..., c, a, c, c  (b in reg)
1044   __ store_ptr(1, G3_scratch);  // put b at 1
1045   // stack: ..., c, a, b, c
1046 }
1047 
1048 
1049 void TemplateTable::dup2() {
1050   transition(vtos, vtos);
1051   __ load_ptr(1, G3_scratch);  // get a
1052   __ load_ptr(0, Otos_l1);     // get b
1053   __ push_ptr(G3_scratch);     // push a
1054   __ push_ptr(Otos_l1);        // push b
1055   // stack: ..., a, b, a, b
1056 }
1057 
1058 
1059 void TemplateTable::dup2_x1() {
1060   transition(vtos, vtos);
1061   // stack: ..., a, b, c
1062   __ load_ptr( 1, Lscratch);    // get b
1063   __ load_ptr( 2, Otos_l1);     // get a
1064   __ store_ptr(2, Lscratch);    // put b at a
1065   // stack: ..., b, b, c
1066   __ load_ptr( 0, G3_scratch);  // get c
1067   __ store_ptr(1, G3_scratch);  // put c at b
1068   // stack: ..., b, c, c
1069   __ store_ptr(0, Otos_l1);     // put a at c
1070   // stack: ..., b, c, a
1071   __ push_ptr(Lscratch);        // push b
1072   __ push_ptr(G3_scratch);      // push c
1073   // stack: ..., b, c, a, b, c
1074 }
1075 
1076 
1077 // The spec says that these types can be a mixture of category 1 (1 word)
1078 // types and/or category 2 types (long and doubles)
1079 void TemplateTable::dup2_x2() {
1080   transition(vtos, vtos);
1081   // stack: ..., a, b, c, d
1082   __ load_ptr( 1, Lscratch);    // get c
1083   __ load_ptr( 3, Otos_l1);     // get a
1084   __ store_ptr(3, Lscratch);    // put c at 3
1085   __ store_ptr(1, Otos_l1);     // put a at 1
1086   // stack: ..., c, b, a, d
1087   __ load_ptr( 2, G3_scratch);  // get b
1088   __ load_ptr( 0, Otos_l1);     // get d
1089   __ store_ptr(0, G3_scratch);  // put b at 0
1090   __ store_ptr(2, Otos_l1);     // put d at 2
1091   // stack: ..., c, d, a, b
1092   __ push_ptr(Lscratch);        // push c
1093   __ push_ptr(Otos_l1);         // push d
1094   // stack: ..., c, d, a, b, c, d
1095 }
1096 
1097 
1098 void TemplateTable::swap() {
1099   transition(vtos, vtos);
1100   // stack: ..., a, b
1101   __ load_ptr( 1, G3_scratch);  // get a
1102   __ load_ptr( 0, Otos_l1);     // get b
1103   __ store_ptr(0, G3_scratch);  // put b
1104   __ store_ptr(1, Otos_l1);     // put a
1105   // stack: ..., b, a
1106 }
1107 
1108 
1109 void TemplateTable::iop2(Operation op) {
1110   transition(itos, itos);
1111   __ pop_i(O1);
1112   switch (op) {
1113    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1114    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1115      // %%%%% Mul may not exist: better to call .mul?
1116    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1117    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1118    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1119    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1120    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1121    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1122    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1123    default: ShouldNotReachHere();
1124   }
1125 }
1126 
1127 
1128 void TemplateTable::lop2(Operation op) {
1129   transition(ltos, ltos);
1130   __ pop_l(O2);
1131   switch (op) {
1132 #ifdef _LP64
1133    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1134    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1135    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1136    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1137    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1138 #else
1139    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1140    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1141    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1142    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1143    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1144 #endif
1145    default: ShouldNotReachHere();
1146   }
1147 }
1148 
1149 
1150 void TemplateTable::idiv() {
1151   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1152   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1153 
1154   transition(itos, itos);
1155   __ pop_i(O1); // get 1st op
1156 
1157   // Y contains upper 32 bits of result, set it to 0 or all ones
1158   __ wry(G0);
1159   __ mov(~0, G3_scratch);
1160 
1161   __ tst(O1);
1162      Label neg;
1163   __ br(Assembler::negative, true, Assembler::pn, neg);
1164   __ delayed()->wry(G3_scratch);
1165   __ bind(neg);
1166 
1167      Label ok;
1168   __ tst(Otos_i);
1169   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1170 
1171   const int min_int = 0x80000000;
1172   Label regular;
1173   __ cmp(Otos_i, -1);
1174   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1175 #ifdef _LP64
1176   // Don't put set in delay slot
1177   // Set will turn into multiple instructions in 64 bit mode
1178   __ delayed()->nop();
1179   __ set(min_int, G4_scratch);
1180 #else
1181   __ delayed()->set(min_int, G4_scratch);
1182 #endif
1183   Label done;
1184   __ cmp(O1, G4_scratch);
1185   __ br(Assembler::equal, true, Assembler::pt, done);
1186   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1187 
1188   __ bind(regular);
1189   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1190   __ bind(done);
1191 }
1192 
1193 
1194 void TemplateTable::irem() {
1195   transition(itos, itos);
1196   __ mov(Otos_i, O2); // save divisor
1197   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1198   __ smul(Otos_i, O2, Otos_i);
1199   __ sub(O1, Otos_i, Otos_i);
1200 }
1201 
1202 
1203 void TemplateTable::lmul() {
1204   transition(ltos, ltos);
1205   __ pop_l(O2);
1206 #ifdef _LP64
1207   __ mulx(Otos_l, O2, Otos_l);
1208 #else
1209   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1210 #endif
1211 
1212 }
1213 
1214 
1215 void TemplateTable::ldiv() {
1216   transition(ltos, ltos);
1217 
1218   // check for zero
1219   __ pop_l(O2);
1220 #ifdef _LP64
1221   __ tst(Otos_l);
1222   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1223   __ sdivx(O2, Otos_l, Otos_l);
1224 #else
1225   __ orcc(Otos_l1, Otos_l2, G0);
1226   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1227   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1228 #endif
1229 }
1230 
1231 
1232 void TemplateTable::lrem() {
1233   transition(ltos, ltos);
1234 
1235   // check for zero
1236   __ pop_l(O2);
1237 #ifdef _LP64
1238   __ tst(Otos_l);
1239   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1240   __ sdivx(O2, Otos_l, Otos_l2);
1241   __ mulx (Otos_l2, Otos_l, Otos_l2);
1242   __ sub  (O2, Otos_l2, Otos_l);
1243 #else
1244   __ orcc(Otos_l1, Otos_l2, G0);
1245   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1246   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1247 #endif
1248 }
1249 
1250 
1251 void TemplateTable::lshl() {
1252   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1253 
1254   __ pop_l(O2);                          // shift value in O2, O3
1255 #ifdef _LP64
1256   __ sllx(O2, Otos_i, Otos_l);
1257 #else
1258   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1259 #endif
1260 }
1261 
1262 
1263 void TemplateTable::lshr() {
1264   transition(itos, ltos); // %%%% see lshl comment
1265 
1266   __ pop_l(O2);                          // shift value in O2, O3
1267 #ifdef _LP64
1268   __ srax(O2, Otos_i, Otos_l);
1269 #else
1270   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1271 #endif
1272 }
1273 
1274 
1275 
1276 void TemplateTable::lushr() {
1277   transition(itos, ltos); // %%%% see lshl comment
1278 
1279   __ pop_l(O2);                          // shift value in O2, O3
1280 #ifdef _LP64
1281   __ srlx(O2, Otos_i, Otos_l);
1282 #else
1283   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1284 #endif
1285 }
1286 
1287 
1288 void TemplateTable::fop2(Operation op) {
1289   transition(ftos, ftos);
1290   switch (op) {
1291    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1292    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1293    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1294    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1295    case  rem:
1296      assert(Ftos_f == F0, "just checking");
1297 #ifdef _LP64
1298      // LP64 calling conventions use F1, F3 for passing 2 floats
1299      __ pop_f(F1);
1300      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1301 #else
1302      __ pop_i(O0);
1303      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1304      __ ld( __ d_tmp, O1 );
1305 #endif
1306      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1307      assert( Ftos_f == F0, "fix this code" );
1308      break;
1309 
1310    default: ShouldNotReachHere();
1311   }
1312 }
1313 
1314 
1315 void TemplateTable::dop2(Operation op) {
1316   transition(dtos, dtos);
1317   switch (op) {
1318    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1319    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1320    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1321    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1322    case  rem:
1323 #ifdef _LP64
1324      // Pass arguments in D0, D2
1325      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1326      __ pop_d( F0 );
1327 #else
1328      // Pass arguments in O0O1, O2O3
1329      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1330      __ ldd( __ d_tmp, O2 );
1331      __ pop_d(Ftos_f);
1332      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1333      __ ldd( __ d_tmp, O0 );
1334 #endif
1335      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1336      assert( Ftos_d == F0, "fix this code" );
1337      break;
1338 
1339    default: ShouldNotReachHere();
1340   }
1341 }
1342 
1343 
1344 void TemplateTable::ineg() {
1345   transition(itos, itos);
1346   __ neg(Otos_i);
1347 }
1348 
1349 
1350 void TemplateTable::lneg() {
1351   transition(ltos, ltos);
1352 #ifdef _LP64
1353   __ sub(G0, Otos_l, Otos_l);
1354 #else
1355   __ lneg(Otos_l1, Otos_l2);
1356 #endif
1357 }
1358 
1359 
1360 void TemplateTable::fneg() {
1361   transition(ftos, ftos);
1362   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1363 }
1364 
1365 
1366 void TemplateTable::dneg() {
1367   transition(dtos, dtos);
1368   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1369 }
1370 
1371 
1372 void TemplateTable::iinc() {
1373   transition(vtos, vtos);
1374   locals_index(G3_scratch);
1375   __ ldsb(Lbcp, 2, O2);  // load constant
1376   __ access_local_int(G3_scratch, Otos_i);
1377   __ add(Otos_i, O2, Otos_i);
1378   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1379 }
1380 
1381 
1382 void TemplateTable::wide_iinc() {
1383   transition(vtos, vtos);
1384   locals_index_wide(G3_scratch);
1385   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1386   __ access_local_int(G3_scratch, Otos_i);
1387   __ add(Otos_i, O3, Otos_i);
1388   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1389 }
1390 
1391 
1392 void TemplateTable::convert() {
1393 // %%%%% Factor this first part accross platforms
1394   #ifdef ASSERT
1395     TosState tos_in  = ilgl;
1396     TosState tos_out = ilgl;
1397     switch (bytecode()) {
1398       case Bytecodes::_i2l: // fall through
1399       case Bytecodes::_i2f: // fall through
1400       case Bytecodes::_i2d: // fall through
1401       case Bytecodes::_i2b: // fall through
1402       case Bytecodes::_i2c: // fall through
1403       case Bytecodes::_i2s: tos_in = itos; break;
1404       case Bytecodes::_l2i: // fall through
1405       case Bytecodes::_l2f: // fall through
1406       case Bytecodes::_l2d: tos_in = ltos; break;
1407       case Bytecodes::_f2i: // fall through
1408       case Bytecodes::_f2l: // fall through
1409       case Bytecodes::_f2d: tos_in = ftos; break;
1410       case Bytecodes::_d2i: // fall through
1411       case Bytecodes::_d2l: // fall through
1412       case Bytecodes::_d2f: tos_in = dtos; break;
1413       default             : ShouldNotReachHere();
1414     }
1415     switch (bytecode()) {
1416       case Bytecodes::_l2i: // fall through
1417       case Bytecodes::_f2i: // fall through
1418       case Bytecodes::_d2i: // fall through
1419       case Bytecodes::_i2b: // fall through
1420       case Bytecodes::_i2c: // fall through
1421       case Bytecodes::_i2s: tos_out = itos; break;
1422       case Bytecodes::_i2l: // fall through
1423       case Bytecodes::_f2l: // fall through
1424       case Bytecodes::_d2l: tos_out = ltos; break;
1425       case Bytecodes::_i2f: // fall through
1426       case Bytecodes::_l2f: // fall through
1427       case Bytecodes::_d2f: tos_out = ftos; break;
1428       case Bytecodes::_i2d: // fall through
1429       case Bytecodes::_l2d: // fall through
1430       case Bytecodes::_f2d: tos_out = dtos; break;
1431       default             : ShouldNotReachHere();
1432     }
1433     transition(tos_in, tos_out);
1434   #endif
1435 
1436 
1437   // Conversion
1438   Label done;
1439   switch (bytecode()) {
1440    case Bytecodes::_i2l:
1441 #ifdef _LP64
1442     // Sign extend the 32 bits
1443     __ sra ( Otos_i, 0, Otos_l );
1444 #else
1445     __ addcc(Otos_i, 0, Otos_l2);
1446     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1447     __ delayed()->clr(Otos_l1);
1448     __ set(~0, Otos_l1);
1449 #endif
1450     break;
1451 
1452    case Bytecodes::_i2f:
1453     __ st(Otos_i, __ d_tmp );
1454     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1455     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1456     break;
1457 
1458    case Bytecodes::_i2d:
1459     __ st(Otos_i, __ d_tmp);
1460     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1461     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1462     break;
1463 
1464    case Bytecodes::_i2b:
1465     __ sll(Otos_i, 24, Otos_i);
1466     __ sra(Otos_i, 24, Otos_i);
1467     break;
1468 
1469    case Bytecodes::_i2c:
1470     __ sll(Otos_i, 16, Otos_i);
1471     __ srl(Otos_i, 16, Otos_i);
1472     break;
1473 
1474    case Bytecodes::_i2s:
1475     __ sll(Otos_i, 16, Otos_i);
1476     __ sra(Otos_i, 16, Otos_i);
1477     break;
1478 
1479    case Bytecodes::_l2i:
1480 #ifndef _LP64
1481     __ mov(Otos_l2, Otos_i);
1482 #else
1483     // Sign-extend into the high 32 bits
1484     __ sra(Otos_l, 0, Otos_i);
1485 #endif
1486     break;
1487 
1488    case Bytecodes::_l2f:
1489    case Bytecodes::_l2d:
1490     __ st_long(Otos_l, __ d_tmp);
1491     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1492 
1493     if (bytecode() == Bytecodes::_l2f) {
1494       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1495     } else {
1496       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1497     }
1498     break;
1499 
1500   case Bytecodes::_f2i:  {
1501       Label isNaN;
1502       // result must be 0 if value is NaN; test by comparing value to itself
1503       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1504       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1505       __ delayed()->clr(Otos_i);                                     // NaN
1506       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1507       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1508       __ ld(__ d_tmp, Otos_i);
1509       __ bind(isNaN);
1510     }
1511     break;
1512 
1513    case Bytecodes::_f2l:
1514     // must uncache tos
1515     __ push_f();
1516 #ifdef _LP64
1517     __ pop_f(F1);
1518 #else
1519     __ pop_i(O0);
1520 #endif
1521     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1522     break;
1523 
1524    case Bytecodes::_f2d:
1525     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1526     break;
1527 
1528    case Bytecodes::_d2i:
1529    case Bytecodes::_d2l:
1530     // must uncache tos
1531     __ push_d();
1532 #ifdef _LP64
1533     // LP64 calling conventions pass first double arg in D0
1534     __ pop_d( Ftos_d );
1535 #else
1536     __ pop_i( O0 );
1537     __ pop_i( O1 );
1538 #endif
1539     __ call_VM_leaf(Lscratch,
1540         bytecode() == Bytecodes::_d2i
1541           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1542           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1543     break;
1544 
1545     case Bytecodes::_d2f:
1546       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1547     break;
1548 
1549     default: ShouldNotReachHere();
1550   }
1551   __ bind(done);
1552 }
1553 
1554 
1555 void TemplateTable::lcmp() {
1556   transition(ltos, itos);
1557 
1558 #ifdef _LP64
1559   __ pop_l(O1); // pop off value 1, value 2 is in O0
1560   __ lcmp( O1, Otos_l, Otos_i );
1561 #else
1562   __ pop_l(O2); // cmp O2,3 to O0,1
1563   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1564 #endif
1565 }
1566 
1567 
1568 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1569 
1570   if (is_float) __ pop_f(F2);
1571   else          __ pop_d(F2);
1572 
1573   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1574 
1575   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1576 }
1577 
1578 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1579   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1580   __ verify_thread();
1581 
1582   const Register O2_bumped_count = O2;
1583   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1584 
1585   // get (wide) offset to O1_disp
1586   const Register O1_disp = O1;
1587   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1588   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1589 
1590   // Handle all the JSR stuff here, then exit.
1591   // It's much shorter and cleaner than intermingling with the
1592   // non-JSR normal-branch stuff occurring below.
1593   if( is_jsr ) {
1594     // compute return address as bci in Otos_i
1595     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1596     __ sub(Lbcp, G3_scratch, G3_scratch);
1597     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1598 
1599     // Bump Lbcp to target of JSR
1600     __ add(Lbcp, O1_disp, Lbcp);
1601     // Push returnAddress for "ret" on stack
1602     __ push_ptr(Otos_i);
1603     // And away we go!
1604     __ dispatch_next(vtos);
1605     return;
1606   }
1607 
1608   // Normal (non-jsr) branch handling
1609 
1610   // Save the current Lbcp
1611   const Register l_cur_bcp = Lscratch;
1612   __ mov( Lbcp, l_cur_bcp );
1613 
1614   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1615   if ( increment_invocation_counter_for_backward_branches ) {
1616     Label Lforward;
1617     // check branch direction
1618     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1619     // Bump bytecode pointer by displacement (take the branch)
1620     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1621 
1622     const Register Rcounters = G3_scratch;
1623     __ get_method_counters(Lmethod, Rcounters, Lforward);
1624 
1625     if (TieredCompilation) {
1626       Label Lno_mdo, Loverflow;
1627       int increment = InvocationCounter::count_increment;
1628       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1629       if (ProfileInterpreter) {
1630         // If no method data exists, go to profile_continue.
1631         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1632         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1633 
1634         // Increment backedge counter in the MDO
1635         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1636                                                  in_bytes(InvocationCounter::counter_offset()));
1637         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1638                                    Assembler::notZero, &Lforward);
1639         __ ba_short(Loverflow);
1640       }
1641 
1642       // If there's no MDO, increment counter in MethodCounters*
1643       __ bind(Lno_mdo);
1644       Address backedge_counter(Rcounters,
1645               in_bytes(MethodCounters::backedge_counter_offset()) +
1646               in_bytes(InvocationCounter::counter_offset()));
1647       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1648                                  Assembler::notZero, &Lforward);
1649       __ bind(Loverflow);
1650 
1651       // notify point for loop, pass branch bytecode
1652       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1653 
1654       // Was an OSR adapter generated?
1655       // O0 = osr nmethod
1656       __ br_null_short(O0, Assembler::pn, Lforward);
1657 
1658       // Has the nmethod been invalidated already?
1659       __ ld(O0, nmethod::entry_bci_offset(), O2);
1660       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
1661 
1662       // migrate the interpreter frame off of the stack
1663 
1664       __ mov(G2_thread, L7);
1665       // save nmethod
1666       __ mov(O0, L6);
1667       __ set_last_Java_frame(SP, noreg);
1668       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1669       __ reset_last_Java_frame();
1670       __ mov(L7, G2_thread);
1671 
1672       // move OSR nmethod to I1
1673       __ mov(L6, I1);
1674 
1675       // OSR buffer to I0
1676       __ mov(O0, I0);
1677 
1678       // remove the interpreter frame
1679       __ restore(I5_savedSP, 0, SP);
1680 
1681       // Jump to the osr code.
1682       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1683       __ jmp(O2, G0);
1684       __ delayed()->nop();
1685 
1686     } else {
1687       // Update Backedge branch separately from invocations
1688       const Register G4_invoke_ctr = G4;
1689       __ increment_backedge_counter(Rcounters, G4_invoke_ctr, G1_scratch);
1690       if (ProfileInterpreter) {
1691         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
1692         if (UseOnStackReplacement) {
1693           __ test_backedge_count_for_osr(O2_bumped_count, l_cur_bcp, G3_scratch);
1694         }
1695       } else {
1696         if (UseOnStackReplacement) {
1697           __ test_backedge_count_for_osr(G4_invoke_ctr, l_cur_bcp, G3_scratch);
1698         }
1699       }
1700     }
1701 
1702     __ bind(Lforward);
1703   } else
1704     // Bump bytecode pointer by displacement (take the branch)
1705     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1706 
1707   // continue with bytecode @ target
1708   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1709   // %%%%% and changing dispatch_next to dispatch_only
1710   __ dispatch_next(vtos);
1711 }
1712 
1713 
1714 // Note Condition in argument is TemplateTable::Condition
1715 // arg scope is within class scope
1716 
1717 void TemplateTable::if_0cmp(Condition cc) {
1718   // no pointers, integer only!
1719   transition(itos, vtos);
1720   // assume branch is more often taken than not (loops use backward branches)
1721   __ cmp( Otos_i, 0);
1722   __ if_cmp(ccNot(cc), false);
1723 }
1724 
1725 
1726 void TemplateTable::if_icmp(Condition cc) {
1727   transition(itos, vtos);
1728   __ pop_i(O1);
1729   __ cmp(O1, Otos_i);
1730   __ if_cmp(ccNot(cc), false);
1731 }
1732 
1733 
1734 void TemplateTable::if_nullcmp(Condition cc) {
1735   transition(atos, vtos);
1736   __ tst(Otos_i);
1737   __ if_cmp(ccNot(cc), true);
1738 }
1739 
1740 
1741 void TemplateTable::if_acmp(Condition cc) {
1742   transition(atos, vtos);
1743   __ pop_ptr(O1);
1744   __ verify_oop(O1);
1745   __ verify_oop(Otos_i);
1746   __ cmp(O1, Otos_i);
1747   __ if_cmp(ccNot(cc), true);
1748 }
1749 
1750 
1751 
1752 void TemplateTable::ret() {
1753   transition(vtos, vtos);
1754   locals_index(G3_scratch);
1755   __ access_local_returnAddress(G3_scratch, Otos_i);
1756   // Otos_i contains the bci, compute the bcp from that
1757 
1758 #ifdef _LP64
1759 #ifdef ASSERT
1760   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1761   // the result.  The return address (really a BCI) was stored with an
1762   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1763   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1764   // loaded value.
1765   { Label zzz ;
1766      __ set (65536, G3_scratch) ;
1767      __ cmp (Otos_i, G3_scratch) ;
1768      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1769      __ delayed()->nop();
1770      __ stop("BCI is in the wrong register half?");
1771      __ bind (zzz) ;
1772   }
1773 #endif
1774 #endif
1775 
1776   __ profile_ret(vtos, Otos_i, G4_scratch);
1777 
1778   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1779   __ add(G3_scratch, Otos_i, G3_scratch);
1780   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1781   __ dispatch_next(vtos);
1782 }
1783 
1784 
1785 void TemplateTable::wide_ret() {
1786   transition(vtos, vtos);
1787   locals_index_wide(G3_scratch);
1788   __ access_local_returnAddress(G3_scratch, Otos_i);
1789   // Otos_i contains the bci, compute the bcp from that
1790 
1791   __ profile_ret(vtos, Otos_i, G4_scratch);
1792 
1793   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1794   __ add(G3_scratch, Otos_i, G3_scratch);
1795   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1796   __ dispatch_next(vtos);
1797 }
1798 
1799 
1800 void TemplateTable::tableswitch() {
1801   transition(itos, vtos);
1802   Label default_case, continue_execution;
1803 
1804   // align bcp
1805   __ add(Lbcp, BytesPerInt, O1);
1806   __ and3(O1, -BytesPerInt, O1);
1807   // load lo, hi
1808   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1809   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1810 #ifdef _LP64
1811   // Sign extend the 32 bits
1812   __ sra ( Otos_i, 0, Otos_i );
1813 #endif /* _LP64 */
1814 
1815   // check against lo & hi
1816   __ cmp( Otos_i, O2);
1817   __ br( Assembler::less, false, Assembler::pn, default_case);
1818   __ delayed()->cmp( Otos_i, O3 );
1819   __ br( Assembler::greater, false, Assembler::pn, default_case);
1820   // lookup dispatch offset
1821   __ delayed()->sub(Otos_i, O2, O2);
1822   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1823   __ sll(O2, LogBytesPerInt, O2);
1824   __ add(O2, 3 * BytesPerInt, O2);
1825   __ ba(continue_execution);
1826   __ delayed()->ld(O1, O2, O2);
1827   // handle default
1828   __ bind(default_case);
1829   __ profile_switch_default(O3);
1830   __ ld(O1, 0, O2); // get default offset
1831   // continue execution
1832   __ bind(continue_execution);
1833   __ add(Lbcp, O2, Lbcp);
1834   __ dispatch_next(vtos);
1835 }
1836 
1837 
1838 void TemplateTable::lookupswitch() {
1839   transition(itos, itos);
1840   __ stop("lookupswitch bytecode should have been rewritten");
1841 }
1842 
1843 void TemplateTable::fast_linearswitch() {
1844   transition(itos, vtos);
1845     Label loop_entry, loop, found, continue_execution;
1846   // align bcp
1847   __ add(Lbcp, BytesPerInt, O1);
1848   __ and3(O1, -BytesPerInt, O1);
1849  // set counter
1850   __ ld(O1, BytesPerInt, O2);
1851   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1852   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1853   __ ba(loop_entry);
1854   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1855 
1856   // table search
1857   __ bind(loop);
1858   __ cmp(O4, Otos_i);
1859   __ br(Assembler::equal, true, Assembler::pn, found);
1860   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1861   __ inc(O3, 2 * BytesPerInt);
1862 
1863   __ bind(loop_entry);
1864   __ cmp(O2, O3);
1865   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1866   __ delayed()->ld(O3, 0, O4);
1867 
1868   // default case
1869   __ ld(O1, 0, O4); // get default offset
1870   if (ProfileInterpreter) {
1871     __ profile_switch_default(O3);
1872     __ ba_short(continue_execution);
1873   }
1874 
1875   // entry found -> get offset
1876   __ bind(found);
1877   if (ProfileInterpreter) {
1878     __ sub(O3, O1, O3);
1879     __ sub(O3, 2*BytesPerInt, O3);
1880     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1881     __ profile_switch_case(O3, O1, O2, G3_scratch);
1882 
1883     __ bind(continue_execution);
1884   }
1885   __ add(Lbcp, O4, Lbcp);
1886   __ dispatch_next(vtos);
1887 }
1888 
1889 
1890 void TemplateTable::fast_binaryswitch() {
1891   transition(itos, vtos);
1892   // Implementation using the following core algorithm: (copied from Intel)
1893   //
1894   // int binary_search(int key, LookupswitchPair* array, int n) {
1895   //   // Binary search according to "Methodik des Programmierens" by
1896   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1897   //   int i = 0;
1898   //   int j = n;
1899   //   while (i+1 < j) {
1900   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1901   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1902   //     // where a stands for the array and assuming that the (inexisting)
1903   //     // element a[n] is infinitely big.
1904   //     int h = (i + j) >> 1;
1905   //     // i < h < j
1906   //     if (key < array[h].fast_match()) {
1907   //       j = h;
1908   //     } else {
1909   //       i = h;
1910   //     }
1911   //   }
1912   //   // R: a[i] <= key < a[i+1] or Q
1913   //   // (i.e., if key is within array, i is the correct index)
1914   //   return i;
1915   // }
1916 
1917   // register allocation
1918   assert(Otos_i == O0, "alias checking");
1919   const Register Rkey     = Otos_i;                    // already set (tosca)
1920   const Register Rarray   = O1;
1921   const Register Ri       = O2;
1922   const Register Rj       = O3;
1923   const Register Rh       = O4;
1924   const Register Rscratch = O5;
1925 
1926   const int log_entry_size = 3;
1927   const int entry_size = 1 << log_entry_size;
1928 
1929   Label found;
1930   // Find Array start
1931   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1932   __ and3(Rarray, -BytesPerInt, Rarray);
1933   // initialize i & j (in delay slot)
1934   __ clr( Ri );
1935 
1936   // and start
1937   Label entry;
1938   __ ba(entry);
1939   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1940   // (Rj is already in the native byte-ordering.)
1941 
1942   // binary search loop
1943   { Label loop;
1944     __ bind( loop );
1945     // int h = (i + j) >> 1;
1946     __ sra( Rh, 1, Rh );
1947     // if (key < array[h].fast_match()) {
1948     //   j = h;
1949     // } else {
1950     //   i = h;
1951     // }
1952     __ sll( Rh, log_entry_size, Rscratch );
1953     __ ld( Rarray, Rscratch, Rscratch );
1954     // (Rscratch is already in the native byte-ordering.)
1955     __ cmp( Rkey, Rscratch );
1956     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1957     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1958 
1959     // while (i+1 < j)
1960     __ bind( entry );
1961     __ add( Ri, 1, Rscratch );
1962     __ cmp(Rscratch, Rj);
1963     __ br( Assembler::less, true, Assembler::pt, loop );
1964     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1965   }
1966 
1967   // end of binary search, result index is i (must check again!)
1968   Label default_case;
1969   Label continue_execution;
1970   if (ProfileInterpreter) {
1971     __ mov( Ri, Rh );              // Save index in i for profiling
1972   }
1973   __ sll( Ri, log_entry_size, Ri );
1974   __ ld( Rarray, Ri, Rscratch );
1975   // (Rscratch is already in the native byte-ordering.)
1976   __ cmp( Rkey, Rscratch );
1977   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1978   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1979 
1980   // entry found -> j = offset
1981   __ inc( Ri, BytesPerInt );
1982   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1983   __ ld( Rarray, Ri, Rj );
1984   // (Rj is already in the native byte-ordering.)
1985 
1986   if (ProfileInterpreter) {
1987     __ ba_short(continue_execution);
1988   }
1989 
1990   __ bind(default_case); // fall through (if not profiling)
1991   __ profile_switch_default(Ri);
1992 
1993   __ bind(continue_execution);
1994   __ add( Lbcp, Rj, Lbcp );
1995   __ dispatch_next( vtos );
1996 }
1997 
1998 
1999 void TemplateTable::_return(TosState state) {
2000   transition(state, state);
2001   assert(_desc->calls_vm(), "inconsistent calls_vm information");
2002 
2003   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2004     assert(state == vtos, "only valid state");
2005     __ mov(G0, G3_scratch);
2006     __ access_local_ptr(G3_scratch, Otos_i);
2007     __ load_klass(Otos_i, O2);
2008     __ set(JVM_ACC_HAS_FINALIZER, G3);
2009     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
2010     __ andcc(G3, O2, G0);
2011     Label skip_register_finalizer;
2012     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
2013     __ delayed()->nop();
2014 
2015     // Call out to do finalizer registration
2016     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
2017 
2018     __ bind(skip_register_finalizer);
2019   }
2020 
2021   // Narrow result if state is itos but result type is smaller.
2022   // Need to narrow in the return bytecode rather than in generate_return_entry
2023   // since compiled code callers expect the result to already be narrowed.
2024   if (state == itos) {
2025     __ narrow(Otos_i);
2026   }
2027   __ remove_activation(state, /* throw_monitor_exception */ true);
2028 
2029   // The caller's SP was adjusted upon method entry to accomodate
2030   // the callee's non-argument locals. Undo that adjustment.
2031   __ ret();                             // return to caller
2032   __ delayed()->restore(I5_savedSP, G0, SP);
2033 }
2034 
2035 
2036 // ----------------------------------------------------------------------------
2037 // Volatile variables demand their effects be made known to all CPU's in
2038 // order.  Store buffers on most chips allow reads & writes to reorder; the
2039 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2040 // memory barrier (i.e., it's not sufficient that the interpreter does not
2041 // reorder volatile references, the hardware also must not reorder them).
2042 //
2043 // According to the new Java Memory Model (JMM):
2044 // (1) All volatiles are serialized wrt to each other.
2045 // ALSO reads & writes act as aquire & release, so:
2046 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2047 // the read float up to before the read.  It's OK for non-volatile memory refs
2048 // that happen before the volatile read to float down below it.
2049 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2050 // that happen BEFORE the write float down to after the write.  It's OK for
2051 // non-volatile memory refs that happen after the volatile write to float up
2052 // before it.
2053 //
2054 // We only put in barriers around volatile refs (they are expensive), not
2055 // _between_ memory refs (that would require us to track the flavor of the
2056 // previous memory refs).  Requirements (2) and (3) require some barriers
2057 // before volatile stores and after volatile loads.  These nearly cover
2058 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2059 // case is placed after volatile-stores although it could just as well go
2060 // before volatile-loads.
2061 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2062   // Helper function to insert a is-volatile test and memory barrier
2063   // All current sparc implementations run in TSO, needing only StoreLoad
2064   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2065   __ membar( order_constraint );
2066 }
2067 
2068 // ----------------------------------------------------------------------------
2069 void TemplateTable::resolve_cache_and_index(int byte_no,
2070                                             Register Rcache,
2071                                             Register index,
2072                                             size_t index_size) {
2073   // Depends on cpCacheOop layout!
2074   Label resolved;
2075 
2076     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2077     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2078     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
2079     __ br(Assembler::equal, false, Assembler::pt, resolved);
2080     __ delayed()->set((int)bytecode(), O1);
2081 
2082   address entry;
2083   switch (bytecode()) {
2084     case Bytecodes::_getstatic      : // fall through
2085     case Bytecodes::_putstatic      : // fall through
2086     case Bytecodes::_getfield       : // fall through
2087     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2088     case Bytecodes::_invokevirtual  : // fall through
2089     case Bytecodes::_invokespecial  : // fall through
2090     case Bytecodes::_invokestatic   : // fall through
2091     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2092     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
2093     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2094     default:
2095       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2096       break;
2097   }
2098   // first time invocation - must resolve first
2099   __ call_VM(noreg, entry, O1);
2100   // Update registers with resolved info
2101   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2102   __ bind(resolved);
2103 }
2104 
2105 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2106                                                Register method,
2107                                                Register itable_index,
2108                                                Register flags,
2109                                                bool is_invokevirtual,
2110                                                bool is_invokevfinal,
2111                                                bool is_invokedynamic) {
2112   // Uses both G3_scratch and G4_scratch
2113   Register cache = G3_scratch;
2114   Register index = G4_scratch;
2115   assert_different_registers(cache, method, itable_index);
2116 
2117   // determine constant pool cache field offsets
2118   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2119   const int method_offset = in_bytes(
2120       ConstantPoolCache::base_offset() +
2121       ((byte_no == f2_byte)
2122        ? ConstantPoolCacheEntry::f2_offset()
2123        : ConstantPoolCacheEntry::f1_offset()
2124       )
2125     );
2126   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2127                                     ConstantPoolCacheEntry::flags_offset());
2128   // access constant pool cache fields
2129   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2130                                     ConstantPoolCacheEntry::f2_offset());
2131 
2132   if (is_invokevfinal) {
2133     __ get_cache_and_index_at_bcp(cache, index, 1);
2134     __ ld_ptr(Address(cache, method_offset), method);
2135   } else {
2136     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2137     resolve_cache_and_index(byte_no, cache, index, index_size);
2138     __ ld_ptr(Address(cache, method_offset), method);
2139   }
2140 
2141   if (itable_index != noreg) {
2142     // pick up itable or appendix index from f2 also:
2143     __ ld_ptr(Address(cache, index_offset), itable_index);
2144   }
2145   __ ld_ptr(Address(cache, flags_offset), flags);
2146 }
2147 
2148 // The Rcache register must be set before call
2149 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2150                                               Register Rcache,
2151                                               Register index,
2152                                               Register Roffset,
2153                                               Register Rflags,
2154                                               bool is_static) {
2155   assert_different_registers(Rcache, Rflags, Roffset);
2156 
2157   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2158 
2159   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2160   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2161   if (is_static) {
2162     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2163     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2164     __ ld_ptr( Robj, mirror_offset, Robj);
2165   }
2166 }
2167 
2168 // The registers Rcache and index expected to be set before call.
2169 // Correct values of the Rcache and index registers are preserved.
2170 void TemplateTable::jvmti_post_field_access(Register Rcache,
2171                                             Register index,
2172                                             bool is_static,
2173                                             bool has_tos) {
2174   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2175 
2176   if (JvmtiExport::can_post_field_access()) {
2177     // Check to see if a field access watch has been set before we take
2178     // the time to call into the VM.
2179     Label Label1;
2180     assert_different_registers(Rcache, index, G1_scratch);
2181     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2182     __ load_contents(get_field_access_count_addr, G1_scratch);
2183     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2184 
2185     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2186 
2187     if (is_static) {
2188       __ clr(Otos_i);
2189     } else {
2190       if (has_tos) {
2191       // save object pointer before call_VM() clobbers it
2192         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2193       } else {
2194         // Load top of stack (do not pop the value off the stack);
2195         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2196       }
2197       __ verify_oop(Otos_i);
2198     }
2199     // Otos_i: object pointer or NULL if static
2200     // Rcache: cache entry pointer
2201     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2202                Otos_i, Rcache);
2203     if (!is_static && has_tos) {
2204       __ pop_ptr(Otos_i);  // restore object pointer
2205       __ verify_oop(Otos_i);
2206     }
2207     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2208     __ bind(Label1);
2209   }
2210 }
2211 
2212 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2213   transition(vtos, vtos);
2214 
2215   Register Rcache = G3_scratch;
2216   Register index  = G4_scratch;
2217   Register Rclass = Rcache;
2218   Register Roffset= G4_scratch;
2219   Register Rflags = G1_scratch;
2220   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2221 
2222   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2223   jvmti_post_field_access(Rcache, index, is_static, false);
2224   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2225 
2226   if (!is_static) {
2227     pop_and_check_object(Rclass);
2228   } else {
2229     __ verify_oop(Rclass);
2230   }
2231 
2232   Label exit;
2233 
2234   Assembler::Membar_mask_bits membar_bits =
2235     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2236 
2237   if (__ membar_has_effect(membar_bits)) {
2238     // Get volatile flag
2239     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2240     __ and3(Rflags, Lscratch, Lscratch);
2241   }
2242 
2243   Label checkVolatile;
2244 
2245   // compute field type
2246   Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2247   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2248   // Make sure we don't need to mask Rflags after the above shift
2249   ConstantPoolCacheEntry::verify_tos_state_shift();
2250 
2251   // Check atos before itos for getstatic, more likely (in Queens at least)
2252   __ cmp(Rflags, atos);
2253   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2254   __ delayed() ->cmp(Rflags, itos);
2255 
2256   // atos
2257   __ load_heap_oop(Rclass, Roffset, Otos_i);
2258   __ verify_oop(Otos_i);
2259   __ push(atos);
2260   if (!is_static) {
2261     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2262   }
2263   __ ba(checkVolatile);
2264   __ delayed()->tst(Lscratch);
2265 
2266   __ bind(notObj);
2267 
2268   // cmp(Rflags, itos);
2269   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2270   __ delayed() ->cmp(Rflags, ltos);
2271 
2272   // itos
2273   __ ld(Rclass, Roffset, Otos_i);
2274   __ push(itos);
2275   if (!is_static) {
2276     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2277   }
2278   __ ba(checkVolatile);
2279   __ delayed()->tst(Lscratch);
2280 
2281   __ bind(notInt);
2282 
2283   // cmp(Rflags, ltos);
2284   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2285   __ delayed() ->cmp(Rflags, btos);
2286 
2287   // ltos
2288   // load must be atomic
2289   __ ld_long(Rclass, Roffset, Otos_l);
2290   __ push(ltos);
2291   if (!is_static) {
2292     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2293   }
2294   __ ba(checkVolatile);
2295   __ delayed()->tst(Lscratch);
2296 
2297   __ bind(notLong);
2298 
2299   // cmp(Rflags, btos);
2300   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2301   __ delayed() ->cmp(Rflags, ztos);
2302 
2303   // btos
2304   __ ldsb(Rclass, Roffset, Otos_i);
2305   __ push(itos);
2306   if (!is_static) {
2307     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2308   }
2309   __ ba(checkVolatile);
2310   __ delayed()->tst(Lscratch);
2311 
2312   __ bind(notByte);
2313 
2314   // cmp(Rflags, ztos);
2315   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2316   __ delayed() ->cmp(Rflags, ctos);
2317 
2318   // ztos
2319   __ ldsb(Rclass, Roffset, Otos_i);
2320   __ push(itos);
2321   if (!is_static) {
2322     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2323     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2324   }
2325   __ ba(checkVolatile);
2326   __ delayed()->tst(Lscratch);
2327 
2328   __ bind(notBool);
2329 
2330   // cmp(Rflags, ctos);
2331   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2332   __ delayed() ->cmp(Rflags, stos);
2333 
2334   // ctos
2335   __ lduh(Rclass, Roffset, Otos_i);
2336   __ push(itos);
2337   if (!is_static) {
2338     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2339   }
2340   __ ba(checkVolatile);
2341   __ delayed()->tst(Lscratch);
2342 
2343   __ bind(notChar);
2344 
2345   // cmp(Rflags, stos);
2346   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2347   __ delayed() ->cmp(Rflags, ftos);
2348 
2349   // stos
2350   __ ldsh(Rclass, Roffset, Otos_i);
2351   __ push(itos);
2352   if (!is_static) {
2353     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2354   }
2355   __ ba(checkVolatile);
2356   __ delayed()->tst(Lscratch);
2357 
2358   __ bind(notShort);
2359 
2360 
2361   // cmp(Rflags, ftos);
2362   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2363   __ delayed() ->tst(Lscratch);
2364 
2365   // ftos
2366   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2367   __ push(ftos);
2368   if (!is_static) {
2369     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2370   }
2371   __ ba(checkVolatile);
2372   __ delayed()->tst(Lscratch);
2373 
2374   __ bind(notFloat);
2375 
2376 
2377   // dtos
2378   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2379   __ push(dtos);
2380   if (!is_static) {
2381     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2382   }
2383 
2384   __ bind(checkVolatile);
2385   if (__ membar_has_effect(membar_bits)) {
2386     // __ tst(Lscratch); executed in delay slot
2387     __ br(Assembler::zero, false, Assembler::pt, exit);
2388     __ delayed()->nop();
2389     volatile_barrier(membar_bits);
2390   }
2391 
2392   __ bind(exit);
2393 }
2394 
2395 
2396 void TemplateTable::getfield(int byte_no) {
2397   getfield_or_static(byte_no, false);
2398 }
2399 
2400 void TemplateTable::getstatic(int byte_no) {
2401   getfield_or_static(byte_no, true);
2402 }
2403 
2404 
2405 void TemplateTable::fast_accessfield(TosState state) {
2406   transition(atos, state);
2407   Register Rcache  = G3_scratch;
2408   Register index   = G4_scratch;
2409   Register Roffset = G4_scratch;
2410   Register Rflags  = Rcache;
2411   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2412 
2413   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2414   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2415 
2416   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2417 
2418   __ null_check(Otos_i);
2419   __ verify_oop(Otos_i);
2420 
2421   Label exit;
2422 
2423   Assembler::Membar_mask_bits membar_bits =
2424     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2425   if (__ membar_has_effect(membar_bits)) {
2426     // Get volatile flag
2427     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2428     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2429   }
2430 
2431   switch (bytecode()) {
2432     case Bytecodes::_fast_bgetfield:
2433       __ ldsb(Otos_i, Roffset, Otos_i);
2434       break;
2435     case Bytecodes::_fast_cgetfield:
2436       __ lduh(Otos_i, Roffset, Otos_i);
2437       break;
2438     case Bytecodes::_fast_sgetfield:
2439       __ ldsh(Otos_i, Roffset, Otos_i);
2440       break;
2441     case Bytecodes::_fast_igetfield:
2442       __ ld(Otos_i, Roffset, Otos_i);
2443       break;
2444     case Bytecodes::_fast_lgetfield:
2445       __ ld_long(Otos_i, Roffset, Otos_l);
2446       break;
2447     case Bytecodes::_fast_fgetfield:
2448       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2449       break;
2450     case Bytecodes::_fast_dgetfield:
2451       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2452       break;
2453     case Bytecodes::_fast_agetfield:
2454       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2455       break;
2456     default:
2457       ShouldNotReachHere();
2458   }
2459 
2460   if (__ membar_has_effect(membar_bits)) {
2461     __ btst(Lscratch, Rflags);
2462     __ br(Assembler::zero, false, Assembler::pt, exit);
2463     __ delayed()->nop();
2464     volatile_barrier(membar_bits);
2465     __ bind(exit);
2466   }
2467 
2468   if (state == atos) {
2469     __ verify_oop(Otos_i);    // does not blow flags!
2470   }
2471 }
2472 
2473 void TemplateTable::jvmti_post_fast_field_mod() {
2474   if (JvmtiExport::can_post_field_modification()) {
2475     // Check to see if a field modification watch has been set before we take
2476     // the time to call into the VM.
2477     Label done;
2478     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2479     __ load_contents(get_field_modification_count_addr, G4_scratch);
2480     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2481     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2482     __ verify_oop(G4_scratch);
2483     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2484     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2485     // Save tos values before call_VM() clobbers them. Since we have
2486     // to do it for every data type, we use the saved values as the
2487     // jvalue object.
2488     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2489     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2490     case Bytecodes::_fast_bputfield: // fall through
2491     case Bytecodes::_fast_zputfield: // fall through
2492     case Bytecodes::_fast_sputfield: // fall through
2493     case Bytecodes::_fast_cputfield: // fall through
2494     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2495     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2496     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2497     // get words in right order for use as jvalue object
2498     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2499     }
2500     // setup pointer to jvalue object
2501     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2502     // G4_scratch:  object pointer
2503     // G1_scratch: cache entry pointer
2504     // G3_scratch: jvalue object on the stack
2505     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2506     switch (bytecode()) {             // restore tos values
2507     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2508     case Bytecodes::_fast_bputfield: // fall through
2509     case Bytecodes::_fast_zputfield: // fall through
2510     case Bytecodes::_fast_sputfield: // fall through
2511     case Bytecodes::_fast_cputfield: // fall through
2512     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2513     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2514     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2515     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2516     }
2517     __ bind(done);
2518   }
2519 }
2520 
2521 // The registers Rcache and index expected to be set before call.
2522 // The function may destroy various registers, just not the Rcache and index registers.
2523 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2524   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2525 
2526   if (JvmtiExport::can_post_field_modification()) {
2527     // Check to see if a field modification watch has been set before we take
2528     // the time to call into the VM.
2529     Label Label1;
2530     assert_different_registers(Rcache, index, G1_scratch);
2531     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2532     __ load_contents(get_field_modification_count_addr, G1_scratch);
2533     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2534 
2535     // The Rcache and index registers have been already set.
2536     // This allows to eliminate this call but the Rcache and index
2537     // registers must be correspondingly used after this line.
2538     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2539 
2540     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2541     if (is_static) {
2542       // Life is simple.  Null out the object pointer.
2543       __ clr(G4_scratch);
2544     } else {
2545       Register Rflags = G1_scratch;
2546       // Life is harder. The stack holds the value on top, followed by the
2547       // object.  We don't know the size of the value, though; it could be
2548       // one or two words depending on its type. As a result, we must find
2549       // the type to determine where the object is.
2550 
2551       Label two_word, valsizeknown;
2552       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2553       __ mov(Lesp, G4_scratch);
2554       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2555       // Make sure we don't need to mask Rflags after the above shift
2556       ConstantPoolCacheEntry::verify_tos_state_shift();
2557       __ cmp(Rflags, ltos);
2558       __ br(Assembler::equal, false, Assembler::pt, two_word);
2559       __ delayed()->cmp(Rflags, dtos);
2560       __ br(Assembler::equal, false, Assembler::pt, two_word);
2561       __ delayed()->nop();
2562       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2563       __ ba_short(valsizeknown);
2564       __ bind(two_word);
2565 
2566       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2567 
2568       __ bind(valsizeknown);
2569       // setup object pointer
2570       __ ld_ptr(G4_scratch, 0, G4_scratch);
2571       __ verify_oop(G4_scratch);
2572     }
2573     // setup pointer to jvalue object
2574     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2575     // G4_scratch:  object pointer or NULL if static
2576     // G3_scratch: cache entry pointer
2577     // G1_scratch: jvalue object on the stack
2578     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2579                G4_scratch, G3_scratch, G1_scratch);
2580     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2581     __ bind(Label1);
2582   }
2583 }
2584 
2585 void TemplateTable::pop_and_check_object(Register r) {
2586   __ pop_ptr(r);
2587   __ null_check(r);  // for field access must check obj.
2588   __ verify_oop(r);
2589 }
2590 
2591 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2592   transition(vtos, vtos);
2593   Register Rcache = G3_scratch;
2594   Register index  = G4_scratch;
2595   Register Rclass = Rcache;
2596   Register Roffset= G4_scratch;
2597   Register Rflags = G1_scratch;
2598   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2599 
2600   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2601   jvmti_post_field_mod(Rcache, index, is_static);
2602   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2603 
2604   Assembler::Membar_mask_bits read_bits =
2605     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2606   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2607 
2608   Label notVolatile, checkVolatile, exit;
2609   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2610     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2611     __ and3(Rflags, Lscratch, Lscratch);
2612 
2613     if (__ membar_has_effect(read_bits)) {
2614       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2615       volatile_barrier(read_bits);
2616       __ bind(notVolatile);
2617     }
2618   }
2619 
2620   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2621   // Make sure we don't need to mask Rflags after the above shift
2622   ConstantPoolCacheEntry::verify_tos_state_shift();
2623 
2624   // compute field type
2625   Label notInt, notShort, notChar, notObj, notByte, notBool, notLong, notFloat;
2626 
2627   if (is_static) {
2628     // putstatic with object type most likely, check that first
2629     __ cmp(Rflags, atos);
2630     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2631     __ delayed()->cmp(Rflags, itos);
2632 
2633     // atos
2634     {
2635       __ pop_ptr();
2636       __ verify_oop(Otos_i);
2637       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2638       __ ba(checkVolatile);
2639       __ delayed()->tst(Lscratch);
2640     }
2641 
2642     __ bind(notObj);
2643     // cmp(Rflags, itos);
2644     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2645     __ delayed()->cmp(Rflags, btos);
2646 
2647     // itos
2648     {
2649       __ pop_i();
2650       __ st(Otos_i, Rclass, Roffset);
2651       __ ba(checkVolatile);
2652       __ delayed()->tst(Lscratch);
2653     }
2654 
2655     __ bind(notInt);
2656   } else {
2657     // putfield with int type most likely, check that first
2658     __ cmp(Rflags, itos);
2659     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2660     __ delayed()->cmp(Rflags, atos);
2661 
2662     // itos
2663     {
2664       __ pop_i();
2665       pop_and_check_object(Rclass);
2666       __ st(Otos_i, Rclass, Roffset);
2667       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2668       __ ba(checkVolatile);
2669       __ delayed()->tst(Lscratch);
2670     }
2671 
2672     __ bind(notInt);
2673     // cmp(Rflags, atos);
2674     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2675     __ delayed()->cmp(Rflags, btos);
2676 
2677     // atos
2678     {
2679       __ pop_ptr();
2680       pop_and_check_object(Rclass);
2681       __ verify_oop(Otos_i);
2682       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2683       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2684       __ ba(checkVolatile);
2685       __ delayed()->tst(Lscratch);
2686     }
2687 
2688     __ bind(notObj);
2689   }
2690 
2691   // cmp(Rflags, btos);
2692   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2693   __ delayed()->cmp(Rflags, ztos);
2694 
2695   // btos
2696   {
2697     __ pop_i();
2698     if (!is_static) pop_and_check_object(Rclass);
2699     __ stb(Otos_i, Rclass, Roffset);
2700     if (!is_static) {
2701       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2702     }
2703     __ ba(checkVolatile);
2704     __ delayed()->tst(Lscratch);
2705   }
2706 
2707   __ bind(notByte);
2708 
2709   // cmp(Rflags, btos);
2710   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2711   __ delayed()->cmp(Rflags, ltos);
2712 
2713   // ztos
2714   {
2715     __ pop_i();
2716     if (!is_static) pop_and_check_object(Rclass);
2717     __ and3(Otos_i, 1, Otos_i);
2718     __ stb(Otos_i, Rclass, Roffset);
2719     if (!is_static) {
2720       patch_bytecode(Bytecodes::_fast_zputfield, G3_scratch, G4_scratch, true, byte_no);
2721     }
2722     __ ba(checkVolatile);
2723     __ delayed()->tst(Lscratch);
2724   }
2725 
2726   __ bind(notBool);
2727   // cmp(Rflags, ltos);
2728   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2729   __ delayed()->cmp(Rflags, ctos);
2730 
2731   // ltos
2732   {
2733     __ pop_l();
2734     if (!is_static) pop_and_check_object(Rclass);
2735     __ st_long(Otos_l, Rclass, Roffset);
2736     if (!is_static) {
2737       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2738     }
2739     __ ba(checkVolatile);
2740     __ delayed()->tst(Lscratch);
2741   }
2742 
2743   __ bind(notLong);
2744   // cmp(Rflags, ctos);
2745   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2746   __ delayed()->cmp(Rflags, stos);
2747 
2748   // ctos (char)
2749   {
2750     __ pop_i();
2751     if (!is_static) pop_and_check_object(Rclass);
2752     __ sth(Otos_i, Rclass, Roffset);
2753     if (!is_static) {
2754       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2755     }
2756     __ ba(checkVolatile);
2757     __ delayed()->tst(Lscratch);
2758   }
2759 
2760   __ bind(notChar);
2761   // cmp(Rflags, stos);
2762   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2763   __ delayed()->cmp(Rflags, ftos);
2764 
2765   // stos (short)
2766   {
2767     __ pop_i();
2768     if (!is_static) pop_and_check_object(Rclass);
2769     __ sth(Otos_i, Rclass, Roffset);
2770     if (!is_static) {
2771       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2772     }
2773     __ ba(checkVolatile);
2774     __ delayed()->tst(Lscratch);
2775   }
2776 
2777   __ bind(notShort);
2778   // cmp(Rflags, ftos);
2779   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2780   __ delayed()->nop();
2781 
2782   // ftos
2783   {
2784     __ pop_f();
2785     if (!is_static) pop_and_check_object(Rclass);
2786     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2787     if (!is_static) {
2788       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2789     }
2790     __ ba(checkVolatile);
2791     __ delayed()->tst(Lscratch);
2792   }
2793 
2794   __ bind(notFloat);
2795 
2796   // dtos
2797   {
2798     __ pop_d();
2799     if (!is_static) pop_and_check_object(Rclass);
2800     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2801     if (!is_static) {
2802       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2803     }
2804   }
2805 
2806   __ bind(checkVolatile);
2807   __ tst(Lscratch);
2808 
2809   if (__ membar_has_effect(write_bits)) {
2810     // __ tst(Lscratch); in delay slot
2811     __ br(Assembler::zero, false, Assembler::pt, exit);
2812     __ delayed()->nop();
2813     volatile_barrier(Assembler::StoreLoad);
2814     __ bind(exit);
2815   }
2816 }
2817 
2818 void TemplateTable::fast_storefield(TosState state) {
2819   transition(state, vtos);
2820   Register Rcache = G3_scratch;
2821   Register Rclass = Rcache;
2822   Register Roffset= G4_scratch;
2823   Register Rflags = G1_scratch;
2824   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2825 
2826   jvmti_post_fast_field_mod();
2827 
2828   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2829 
2830   Assembler::Membar_mask_bits read_bits =
2831     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2832   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2833 
2834   Label notVolatile, checkVolatile, exit;
2835   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2836     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2837     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2838     __ and3(Rflags, Lscratch, Lscratch);
2839     if (__ membar_has_effect(read_bits)) {
2840       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2841       volatile_barrier(read_bits);
2842       __ bind(notVolatile);
2843     }
2844   }
2845 
2846   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2847   pop_and_check_object(Rclass);
2848 
2849   switch (bytecode()) {
2850     case Bytecodes::_fast_zputfield: __ and3(Otos_i, 1, Otos_i);  // fall through to bputfield
2851     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2852     case Bytecodes::_fast_cputfield: /* fall through */
2853     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2854     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2855     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2856     case Bytecodes::_fast_fputfield:
2857       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2858       break;
2859     case Bytecodes::_fast_dputfield:
2860       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2861       break;
2862     case Bytecodes::_fast_aputfield:
2863       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2864       break;
2865     default:
2866       ShouldNotReachHere();
2867   }
2868 
2869   if (__ membar_has_effect(write_bits)) {
2870     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2871     volatile_barrier(Assembler::StoreLoad);
2872     __ bind(exit);
2873   }
2874 }
2875 
2876 
2877 void TemplateTable::putfield(int byte_no) {
2878   putfield_or_static(byte_no, false);
2879 }
2880 
2881 void TemplateTable::putstatic(int byte_no) {
2882   putfield_or_static(byte_no, true);
2883 }
2884 
2885 
2886 void TemplateTable::fast_xaccess(TosState state) {
2887   transition(vtos, state);
2888   Register Rcache = G3_scratch;
2889   Register Roffset = G4_scratch;
2890   Register Rflags  = G4_scratch;
2891   Register Rreceiver = Lscratch;
2892 
2893   __ ld_ptr(Llocals, 0, Rreceiver);
2894 
2895   // access constant pool cache  (is resolved)
2896   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2897   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2898   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2899 
2900   __ verify_oop(Rreceiver);
2901   __ null_check(Rreceiver);
2902   if (state == atos) {
2903     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2904   } else if (state == itos) {
2905     __ ld (Rreceiver, Roffset, Otos_i) ;
2906   } else if (state == ftos) {
2907     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2908   } else {
2909     ShouldNotReachHere();
2910   }
2911 
2912   Assembler::Membar_mask_bits membar_bits =
2913     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2914   if (__ membar_has_effect(membar_bits)) {
2915 
2916     // Get is_volatile value in Rflags and check if membar is needed
2917     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2918 
2919     // Test volatile
2920     Label notVolatile;
2921     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2922     __ btst(Rflags, Lscratch);
2923     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2924     __ delayed()->nop();
2925     volatile_barrier(membar_bits);
2926     __ bind(notVolatile);
2927   }
2928 
2929   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2930   __ sub(Lbcp, 1, Lbcp);
2931 }
2932 
2933 //----------------------------------------------------------------------------------------------------
2934 // Calls
2935 
2936 void TemplateTable::count_calls(Register method, Register temp) {
2937   // implemented elsewhere
2938   ShouldNotReachHere();
2939 }
2940 
2941 void TemplateTable::prepare_invoke(int byte_no,
2942                                    Register method,  // linked method (or i-klass)
2943                                    Register ra,      // return address
2944                                    Register index,   // itable index, MethodType, etc.
2945                                    Register recv,    // if caller wants to see it
2946                                    Register flags    // if caller wants to test it
2947                                    ) {
2948   // determine flags
2949   const Bytecodes::Code code = bytecode();
2950   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2951   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2952   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2953   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2954   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2955   const bool load_receiver       = (recv != noreg);
2956   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2957   assert(recv  == noreg || recv  == O0, "");
2958   assert(flags == noreg || flags == O1, "");
2959 
2960   // setup registers & access constant pool cache
2961   if (recv  == noreg)  recv  = O0;
2962   if (flags == noreg)  flags = O1;
2963   const Register temp = O2;
2964   assert_different_registers(method, ra, index, recv, flags, temp);
2965 
2966   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2967 
2968   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2969 
2970   // maybe push appendix to arguments
2971   if (is_invokedynamic || is_invokehandle) {
2972     Label L_no_push;
2973     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2974     __ btst(flags, temp);
2975     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2976     __ delayed()->nop();
2977     // Push the appendix as a trailing parameter.
2978     // This must be done before we get the receiver,
2979     // since the parameter_size includes it.
2980     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2981     __ load_resolved_reference_at_index(temp, index);
2982     __ verify_oop(temp);
2983     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2984     __ bind(L_no_push);
2985   }
2986 
2987   // load receiver if needed (after appendix is pushed so parameter size is correct)
2988   if (load_receiver) {
2989     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2990     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2991     __ verify_oop(recv);
2992   }
2993 
2994   // compute return type
2995   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2996   // Make sure we don't need to mask flags after the above shift
2997   ConstantPoolCacheEntry::verify_tos_state_shift();
2998   // load return address
2999   {
3000     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3001     AddressLiteral table(table_addr);
3002     __ set(table, temp);
3003     __ sll(ra, LogBytesPerWord, ra);
3004     __ ld_ptr(Address(temp, ra), ra);
3005   }
3006 }
3007 
3008 
3009 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
3010   Register Rcall = Rindex;
3011   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3012 
3013   // get target Method* & entry point
3014   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
3015   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3016   __ call_from_interpreter(Rcall, Gargs, Rret);
3017 }
3018 
3019 void TemplateTable::invokevirtual(int byte_no) {
3020   transition(vtos, vtos);
3021   assert(byte_no == f2_byte, "use this argument");
3022 
3023   Register Rscratch = G3_scratch;
3024   Register Rtemp    = G4_scratch;
3025   Register Rret     = Lscratch;
3026   Register O0_recv  = O0;
3027   Label notFinal;
3028 
3029   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
3030   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3031 
3032   // Check for vfinal
3033   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
3034   __ btst(Rret, G4_scratch);
3035   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3036   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
3037 
3038   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
3039 
3040   invokevfinal_helper(Rscratch, Rret);
3041 
3042   __ bind(notFinal);
3043 
3044   __ mov(G5_method, Rscratch);  // better scratch register
3045   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
3046   // receiver is in O0_recv
3047   __ verify_oop(O0_recv);
3048 
3049   // get return address
3050   AddressLiteral table(Interpreter::invoke_return_entry_table());
3051   __ set(table, Rtemp);
3052   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3053   // Make sure we don't need to mask Rret after the above shift
3054   ConstantPoolCacheEntry::verify_tos_state_shift();
3055   __ sll(Rret,  LogBytesPerWord, Rret);
3056   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3057 
3058   // get receiver klass
3059   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3060   __ load_klass(O0_recv, O0_recv);
3061   __ verify_klass_ptr(O0_recv);
3062 
3063   __ profile_virtual_call(O0_recv, O4);
3064 
3065   generate_vtable_call(O0_recv, Rscratch, Rret);
3066 }
3067 
3068 void TemplateTable::fast_invokevfinal(int byte_no) {
3069   transition(vtos, vtos);
3070   assert(byte_no == f2_byte, "use this argument");
3071 
3072   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3073                              /*is_invokevfinal*/true, false);
3074   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3075   invokevfinal_helper(G3_scratch, Lscratch);
3076 }
3077 
3078 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3079   Register Rtemp = G4_scratch;
3080 
3081   // Load receiver from stack slot
3082   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3083   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3084   __ load_receiver(G4_scratch, O0);
3085 
3086   // receiver NULL check
3087   __ null_check(O0);
3088 
3089   __ profile_final_call(O4);
3090   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3091 
3092   // get return address
3093   AddressLiteral table(Interpreter::invoke_return_entry_table());
3094   __ set(table, Rtemp);
3095   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3096   // Make sure we don't need to mask Rret after the above shift
3097   ConstantPoolCacheEntry::verify_tos_state_shift();
3098   __ sll(Rret,  LogBytesPerWord, Rret);
3099   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3100 
3101 
3102   // do the call
3103   __ call_from_interpreter(Rscratch, Gargs, Rret);
3104 }
3105 
3106 
3107 void TemplateTable::invokespecial(int byte_no) {
3108   transition(vtos, vtos);
3109   assert(byte_no == f1_byte, "use this argument");
3110 
3111   const Register Rret     = Lscratch;
3112   const Register O0_recv  = O0;
3113   const Register Rscratch = G3_scratch;
3114 
3115   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3116   __ null_check(O0_recv);
3117 
3118   // do the call
3119   __ profile_call(O4);
3120   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3121   __ call_from_interpreter(Rscratch, Gargs, Rret);
3122 }
3123 
3124 
3125 void TemplateTable::invokestatic(int byte_no) {
3126   transition(vtos, vtos);
3127   assert(byte_no == f1_byte, "use this argument");
3128 
3129   const Register Rret     = Lscratch;
3130   const Register Rscratch = G3_scratch;
3131 
3132   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3133 
3134   // do the call
3135   __ profile_call(O4);
3136   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3137   __ call_from_interpreter(Rscratch, Gargs, Rret);
3138 }
3139 
3140 void TemplateTable::invokeinterface_object_method(Register RKlass,
3141                                                   Register Rcall,
3142                                                   Register Rret,
3143                                                   Register Rflags) {
3144   Register Rscratch = G4_scratch;
3145   Register Rindex = Lscratch;
3146 
3147   assert_different_registers(Rscratch, Rindex, Rret);
3148 
3149   Label notFinal;
3150 
3151   // Check for vfinal
3152   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3153   __ btst(Rflags, Rscratch);
3154   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3155   __ delayed()->nop();
3156 
3157   __ profile_final_call(O4);
3158 
3159   // do the call - the index (f2) contains the Method*
3160   assert_different_registers(G5_method, Gargs, Rcall);
3161   __ mov(Rindex, G5_method);
3162   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3163   __ call_from_interpreter(Rcall, Gargs, Rret);
3164   __ bind(notFinal);
3165 
3166   __ profile_virtual_call(RKlass, O4);
3167   generate_vtable_call(RKlass, Rindex, Rret);
3168 }
3169 
3170 
3171 void TemplateTable::invokeinterface(int byte_no) {
3172   transition(vtos, vtos);
3173   assert(byte_no == f1_byte, "use this argument");
3174 
3175   const Register Rinterface  = G1_scratch;
3176   const Register Rret        = G3_scratch;
3177   const Register Rindex      = Lscratch;
3178   const Register O0_recv     = O0;
3179   const Register O1_flags    = O1;
3180   const Register O2_Klass    = O2;
3181   const Register Rscratch    = G4_scratch;
3182   assert_different_registers(Rscratch, G5_method);
3183 
3184   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3185 
3186   // get receiver klass
3187   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3188   __ load_klass(O0_recv, O2_Klass);
3189 
3190   // Special case of invokeinterface called for virtual method of
3191   // java.lang.Object.  See cpCacheOop.cpp for details.
3192   // This code isn't produced by javac, but could be produced by
3193   // another compliant java compiler.
3194   Label notMethod;
3195   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3196   __ btst(O1_flags, Rscratch);
3197   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3198   __ delayed()->nop();
3199 
3200   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3201 
3202   __ bind(notMethod);
3203 
3204   __ profile_virtual_call(O2_Klass, O4);
3205 
3206   //
3207   // find entry point to call
3208   //
3209 
3210   // compute start of first itableOffsetEntry (which is at end of vtable)
3211   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3212   Label search;
3213   Register Rtemp = O1_flags;
3214 
3215   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
3216   if (align_object_offset(1) > 1) {
3217     __ round_to(Rtemp, align_object_offset(1));
3218   }
3219   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3220   if (Assembler::is_simm13(base)) {
3221     __ add(Rtemp, base, Rtemp);
3222   } else {
3223     __ set(base, Rscratch);
3224     __ add(Rscratch, Rtemp, Rtemp);
3225   }
3226   __ add(O2_Klass, Rtemp, Rscratch);
3227 
3228   __ bind(search);
3229 
3230   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3231   {
3232     Label ok;
3233 
3234     // Check that entry is non-null.  Null entries are probably a bytecode
3235     // problem.  If the interface isn't implemented by the receiver class,
3236     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3237     // this too but that's only if the entry isn't already resolved, so we
3238     // need to check again.
3239     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3240     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3241     __ should_not_reach_here();
3242     __ bind(ok);
3243   }
3244 
3245   __ cmp(Rinterface, Rtemp);
3246   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3247   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3248 
3249   // entry found and Rscratch points to it
3250   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3251 
3252   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3253   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3254   __ add(Rscratch, Rindex, Rscratch);
3255   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3256 
3257   // Check for abstract method error.
3258   {
3259     Label ok;
3260     __ br_notnull_short(G5_method, Assembler::pt, ok);
3261     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3262     __ should_not_reach_here();
3263     __ bind(ok);
3264   }
3265 
3266   Register Rcall = Rinterface;
3267   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3268 
3269   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3270   __ call_from_interpreter(Rcall, Gargs, Rret);
3271 }
3272 
3273 void TemplateTable::invokehandle(int byte_no) {
3274   transition(vtos, vtos);
3275   assert(byte_no == f1_byte, "use this argument");
3276 
3277   if (!EnableInvokeDynamic) {
3278     // rewriter does not generate this bytecode
3279     __ should_not_reach_here();
3280     return;
3281   }
3282 
3283   const Register Rret       = Lscratch;
3284   const Register G4_mtype   = G4_scratch;
3285   const Register O0_recv    = O0;
3286   const Register Rscratch   = G3_scratch;
3287 
3288   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3289   __ null_check(O0_recv);
3290 
3291   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3292   // G5: MH.invokeExact_MT method (from f2)
3293 
3294   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3295 
3296   // do the call
3297   __ verify_oop(G4_mtype);
3298   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3299   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3300   __ call_from_interpreter(Rscratch, Gargs, Rret);
3301 }
3302 
3303 
3304 void TemplateTable::invokedynamic(int byte_no) {
3305   transition(vtos, vtos);
3306   assert(byte_no == f1_byte, "use this argument");
3307 
3308   if (!EnableInvokeDynamic) {
3309     // We should not encounter this bytecode if !EnableInvokeDynamic.
3310     // The verifier will stop it.  However, if we get past the verifier,
3311     // this will stop the thread in a reasonable way, without crashing the JVM.
3312     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3313                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3314     // the call_VM checks for exception, so we should never return here.
3315     __ should_not_reach_here();
3316     return;
3317   }
3318 
3319   const Register Rret        = Lscratch;
3320   const Register G4_callsite = G4_scratch;
3321   const Register Rscratch    = G3_scratch;
3322 
3323   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3324 
3325   // G4: CallSite object (from cpool->resolved_references[f1])
3326   // G5: MH.linkToCallSite method (from f2)
3327 
3328   // Note:  G4_callsite is already pushed by prepare_invoke
3329 
3330   // %%% should make a type profile for any invokedynamic that takes a ref argument
3331   // profile this call
3332   __ profile_call(O4);
3333 
3334   // do the call
3335   __ verify_oop(G4_callsite);
3336   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3337   __ call_from_interpreter(Rscratch, Gargs, Rret);
3338 }
3339 
3340 
3341 //----------------------------------------------------------------------------------------------------
3342 // Allocation
3343 
3344 void TemplateTable::_new() {
3345   transition(vtos, atos);
3346 
3347   Label slow_case;
3348   Label done;
3349   Label initialize_header;
3350   Label initialize_object;  // including clearing the fields
3351 
3352   Register RallocatedObject = Otos_i;
3353   Register RinstanceKlass = O1;
3354   Register Roffset = O3;
3355   Register Rscratch = O4;
3356 
3357   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3358   __ get_cpool_and_tags(Rscratch, G3_scratch);
3359   // make sure the class we're about to instantiate has been resolved
3360   // This is done before loading InstanceKlass to be consistent with the order
3361   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3362   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3363   __ ldub(G3_scratch, Roffset, G3_scratch);
3364   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3365   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3366   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3367   // get InstanceKlass
3368   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3369   __ add(Roffset, sizeof(ConstantPool), Roffset);
3370   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3371 
3372   // make sure klass is fully initialized:
3373   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3374   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3375   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3376   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3377 
3378   // get instance_size in InstanceKlass (already aligned)
3379   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3380 
3381   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3382   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3383   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3384   __ delayed()->nop();
3385 
3386   // allocate the instance
3387   // 1) Try to allocate in the TLAB
3388   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3389   // 3) if the above fails (or is not applicable), go to a slow case
3390   // (creates a new TLAB, etc.)
3391 
3392   const bool allow_shared_alloc =
3393     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3394 
3395   if(UseTLAB) {
3396     Register RoldTopValue = RallocatedObject;
3397     Register RtlabWasteLimitValue = G3_scratch;
3398     Register RnewTopValue = G1_scratch;
3399     Register RendValue = Rscratch;
3400     Register RfreeValue = RnewTopValue;
3401 
3402     // check if we can allocate in the TLAB
3403     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3404     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3405     __ add(RoldTopValue, Roffset, RnewTopValue);
3406 
3407     // if there is enough space, we do not CAS and do not clear
3408     __ cmp(RnewTopValue, RendValue);
3409     if(ZeroTLAB) {
3410       // the fields have already been cleared
3411       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3412     } else {
3413       // initialize both the header and fields
3414       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3415     }
3416     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3417 
3418     if (allow_shared_alloc) {
3419       // Check if tlab should be discarded (refill_waste_limit >= free)
3420       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3421       __ sub(RendValue, RoldTopValue, RfreeValue);
3422 #ifdef _LP64
3423       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3424 #else
3425       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3426 #endif
3427       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3428 
3429       // increment waste limit to prevent getting stuck on this slow path
3430       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3431       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3432     } else {
3433       // No allocation in the shared eden.
3434       __ ba_short(slow_case);
3435     }
3436   }
3437 
3438   // Allocation in the shared Eden
3439   if (allow_shared_alloc) {
3440     Register RoldTopValue = G1_scratch;
3441     Register RtopAddr = G3_scratch;
3442     Register RnewTopValue = RallocatedObject;
3443     Register RendValue = Rscratch;
3444 
3445     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3446 
3447     Label retry;
3448     __ bind(retry);
3449     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3450     __ ld_ptr(RendValue, 0, RendValue);
3451     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3452     __ add(RoldTopValue, Roffset, RnewTopValue);
3453 
3454     // RnewTopValue contains the top address after the new object
3455     // has been allocated.
3456     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3457 
3458     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3459 
3460     // if someone beat us on the allocation, try again, otherwise continue
3461     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3462 
3463     // bump total bytes allocated by this thread
3464     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3465     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3466   }
3467 
3468   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3469     // clear object fields
3470     __ bind(initialize_object);
3471     __ deccc(Roffset, sizeof(oopDesc));
3472     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3473     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3474 
3475     // initialize remaining object fields
3476     if (UseBlockZeroing) {
3477       // Use BIS for zeroing
3478       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3479     } else {
3480       Label loop;
3481       __ subcc(Roffset, wordSize, Roffset);
3482       __ bind(loop);
3483       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3484       __ st_ptr(G0, G3_scratch, Roffset);
3485       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3486       __ delayed()->subcc(Roffset, wordSize, Roffset);
3487     }
3488     __ ba_short(initialize_header);
3489   }
3490 
3491   // slow case
3492   __ bind(slow_case);
3493   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3494   __ get_constant_pool(O1);
3495 
3496   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3497 
3498   __ ba_short(done);
3499 
3500   // Initialize the header: mark, klass
3501   __ bind(initialize_header);
3502 
3503   if (UseBiasedLocking) {
3504     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3505   } else {
3506     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3507   }
3508   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3509   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3510   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3511 
3512   {
3513     SkipIfEqual skip_if(
3514       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3515     // Trigger dtrace event
3516     __ push(atos);
3517     __ call_VM_leaf(noreg,
3518        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3519     __ pop(atos);
3520   }
3521 
3522   // continue
3523   __ bind(done);
3524 }
3525 
3526 
3527 
3528 void TemplateTable::newarray() {
3529   transition(itos, atos);
3530   __ ldub(Lbcp, 1, O1);
3531      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3532 }
3533 
3534 
3535 void TemplateTable::anewarray() {
3536   transition(itos, atos);
3537   __ get_constant_pool(O1);
3538   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3539      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3540 }
3541 
3542 
3543 void TemplateTable::arraylength() {
3544   transition(atos, itos);
3545   Label ok;
3546   __ verify_oop(Otos_i);
3547   __ tst(Otos_i);
3548   __ throw_if_not_1_x( Assembler::notZero, ok );
3549   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3550   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3551 }
3552 
3553 
3554 void TemplateTable::checkcast() {
3555   transition(atos, atos);
3556   Label done, is_null, quicked, cast_ok, resolved;
3557   Register Roffset = G1_scratch;
3558   Register RobjKlass = O5;
3559   Register RspecifiedKlass = O4;
3560 
3561   // Check for casting a NULL
3562   __ br_null_short(Otos_i, Assembler::pn, is_null);
3563 
3564   // Get value klass in RobjKlass
3565   __ load_klass(Otos_i, RobjKlass); // get value klass
3566 
3567   // Get constant pool tag
3568   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3569 
3570   // See if the checkcast has been quickened
3571   __ get_cpool_and_tags(Lscratch, G3_scratch);
3572   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3573   __ ldub(G3_scratch, Roffset, G3_scratch);
3574   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3575   __ br(Assembler::equal, true, Assembler::pt, quicked);
3576   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3577 
3578   __ push_ptr(); // save receiver for result, and for GC
3579   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3580   __ get_vm_result_2(RspecifiedKlass);
3581   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3582 
3583   __ ba_short(resolved);
3584 
3585   // Extract target class from constant pool
3586   __ bind(quicked);
3587   __ add(Roffset, sizeof(ConstantPool), Roffset);
3588   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3589   __ bind(resolved);
3590   __ load_klass(Otos_i, RobjKlass); // get value klass
3591 
3592   // Generate a fast subtype check.  Branch to cast_ok if no
3593   // failure.  Throw exception if failure.
3594   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3595 
3596   // Not a subtype; so must throw exception
3597   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3598 
3599   __ bind(cast_ok);
3600 
3601   if (ProfileInterpreter) {
3602     __ ba_short(done);
3603   }
3604   __ bind(is_null);
3605   __ profile_null_seen(G3_scratch);
3606   __ bind(done);
3607 }
3608 
3609 
3610 void TemplateTable::instanceof() {
3611   Label done, is_null, quicked, resolved;
3612   transition(atos, itos);
3613   Register Roffset = G1_scratch;
3614   Register RobjKlass = O5;
3615   Register RspecifiedKlass = O4;
3616 
3617   // Check for casting a NULL
3618   __ br_null_short(Otos_i, Assembler::pt, is_null);
3619 
3620   // Get value klass in RobjKlass
3621   __ load_klass(Otos_i, RobjKlass); // get value klass
3622 
3623   // Get constant pool tag
3624   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3625 
3626   // See if the checkcast has been quickened
3627   __ get_cpool_and_tags(Lscratch, G3_scratch);
3628   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3629   __ ldub(G3_scratch, Roffset, G3_scratch);
3630   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3631   __ br(Assembler::equal, true, Assembler::pt, quicked);
3632   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3633 
3634   __ push_ptr(); // save receiver for result, and for GC
3635   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3636   __ get_vm_result_2(RspecifiedKlass);
3637   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3638 
3639   __ ba_short(resolved);
3640 
3641   // Extract target class from constant pool
3642   __ bind(quicked);
3643   __ add(Roffset, sizeof(ConstantPool), Roffset);
3644   __ get_constant_pool(Lscratch);
3645   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3646   __ bind(resolved);
3647   __ load_klass(Otos_i, RobjKlass); // get value klass
3648 
3649   // Generate a fast subtype check.  Branch to cast_ok if no
3650   // failure.  Return 0 if failure.
3651   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3652   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3653   // Not a subtype; return 0;
3654   __ clr( Otos_i );
3655 
3656   if (ProfileInterpreter) {
3657     __ ba_short(done);
3658   }
3659   __ bind(is_null);
3660   __ profile_null_seen(G3_scratch);
3661   __ bind(done);
3662 }
3663 
3664 void TemplateTable::_breakpoint() {
3665 
3666    // Note: We get here even if we are single stepping..
3667    // jbug inists on setting breakpoints at every bytecode
3668    // even if we are in single step mode.
3669 
3670    transition(vtos, vtos);
3671    // get the unpatched byte code
3672    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3673    __ mov(O0, Lbyte_code);
3674 
3675    // post the breakpoint event
3676    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3677 
3678    // complete the execution of original bytecode
3679    __ dispatch_normal(vtos);
3680 }
3681 
3682 
3683 //----------------------------------------------------------------------------------------------------
3684 // Exceptions
3685 
3686 void TemplateTable::athrow() {
3687   transition(atos, vtos);
3688 
3689   // This works because exception is cached in Otos_i which is same as O0,
3690   // which is same as what throw_exception_entry_expects
3691   assert(Otos_i == Oexception, "see explanation above");
3692 
3693   __ verify_oop(Otos_i);
3694   __ null_check(Otos_i);
3695   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3696 }
3697 
3698 
3699 //----------------------------------------------------------------------------------------------------
3700 // Synchronization
3701 
3702 
3703 // See frame_sparc.hpp for monitor block layout.
3704 // Monitor elements are dynamically allocated by growing stack as needed.
3705 
3706 void TemplateTable::monitorenter() {
3707   transition(atos, vtos);
3708   __ verify_oop(Otos_i);
3709   // Try to acquire a lock on the object
3710   // Repeat until succeeded (i.e., until
3711   // monitorenter returns true).
3712 
3713   {   Label ok;
3714     __ tst(Otos_i);
3715     __ throw_if_not_1_x( Assembler::notZero,  ok);
3716     __ delayed()->mov(Otos_i, Lscratch); // save obj
3717     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3718   }
3719 
3720   assert(O0 == Otos_i, "Be sure where the object to lock is");
3721 
3722   // find a free slot in the monitor block
3723 
3724 
3725   // initialize entry pointer
3726   __ clr(O1); // points to free slot or NULL
3727 
3728   {
3729     Label entry, loop, exit;
3730     __ add( __ top_most_monitor(), O2 ); // last one to check
3731     __ ba( entry );
3732     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3733 
3734 
3735     __ bind( loop );
3736 
3737     __ verify_oop(O4);          // verify each monitor's oop
3738     __ tst(O4); // is this entry unused?
3739     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3740 
3741     __ cmp(O4, O0); // check if current entry is for same object
3742     __ brx( Assembler::equal, false, Assembler::pn, exit );
3743     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3744 
3745     __ bind( entry );
3746 
3747     __ cmp( O3, O2 );
3748     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3749     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3750 
3751     __ bind( exit );
3752   }
3753 
3754   { Label allocated;
3755 
3756     // found free slot?
3757     __ br_notnull_short(O1, Assembler::pn, allocated);
3758 
3759     __ add_monitor_to_stack( false, O2, O3 );
3760     __ mov(Lmonitors, O1);
3761 
3762     __ bind(allocated);
3763   }
3764 
3765   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3766   // The object has already been poped from the stack, so the expression stack looks correct.
3767   __ inc(Lbcp);
3768 
3769   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3770   __ lock_object(O1, O0);
3771 
3772   // check if there's enough space on the stack for the monitors after locking
3773   __ generate_stack_overflow_check(0);
3774 
3775   // The bcp has already been incremented. Just need to dispatch to next instruction.
3776   __ dispatch_next(vtos);
3777 }
3778 
3779 
3780 void TemplateTable::monitorexit() {
3781   transition(atos, vtos);
3782   __ verify_oop(Otos_i);
3783   __ tst(Otos_i);
3784   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3785 
3786   assert(O0 == Otos_i, "just checking");
3787 
3788   { Label entry, loop, found;
3789     __ add( __ top_most_monitor(), O2 ); // last one to check
3790     __ ba(entry);
3791     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3792     // By using a local it survives the call to the C routine.
3793     __ delayed()->mov( Lmonitors, Lscratch );
3794 
3795     __ bind( loop );
3796 
3797     __ verify_oop(O4);          // verify each monitor's oop
3798     __ cmp(O4, O0); // check if current entry is for desired object
3799     __ brx( Assembler::equal, true, Assembler::pt, found );
3800     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3801 
3802     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3803 
3804     __ bind( entry );
3805 
3806     __ cmp( Lscratch, O2 );
3807     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3808     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3809 
3810     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3811     __ should_not_reach_here();
3812 
3813     __ bind(found);
3814   }
3815   __ unlock_object(O1);
3816 }
3817 
3818 
3819 //----------------------------------------------------------------------------------------------------
3820 // Wide instructions
3821 
3822 void TemplateTable::wide() {
3823   transition(vtos, vtos);
3824   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3825   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3826   AddressLiteral ep(Interpreter::_wentry_point);
3827   __ set(ep, G4_scratch);
3828   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3829   __ jmp(G3_scratch, G0);
3830   __ delayed()->nop();
3831   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3832 }
3833 
3834 
3835 //----------------------------------------------------------------------------------------------------
3836 // Multi arrays
3837 
3838 void TemplateTable::multianewarray() {
3839   transition(vtos, atos);
3840      // put ndims * wordSize into Lscratch
3841   __ ldub( Lbcp,     3,               Lscratch);
3842   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3843      // Lesp points past last_dim, so set to O1 to first_dim address
3844   __ add(  Lesp,     Lscratch,        O1);
3845      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3846   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3847 }
3848 #endif /* !CC_INTERP */