1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 //--------------------------------sync_jvms_for_reexecute---------------------
  97 // Make sure our current jvms agrees with our parse state.  This version
  98 // uses the reexecute_sp for reexecuting bytecodes.
  99 JVMState* GraphKit::sync_jvms_for_reexecute() {
 100   JVMState* jvms = this->jvms();
 101   jvms->set_bci(bci());          // Record the new bci in the JVMState
 102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 103   return jvms;
 104 }
 105 
 106 #ifdef ASSERT
 107 bool GraphKit::jvms_in_sync() const {
 108   Parse* parse = is_Parse();
 109   if (parse == NULL) {
 110     if (bci() !=      jvms()->bci())          return false;
 111     if (sp()  != (int)jvms()->sp())           return false;
 112     return true;
 113   }
 114   if (jvms()->method() != parse->method())    return false;
 115   if (jvms()->bci()    != parse->bci())       return false;
 116   int jvms_sp = jvms()->sp();
 117   if (jvms_sp          != parse->sp())        return false;
 118   int jvms_depth = jvms()->depth();
 119   if (jvms_depth       != parse->depth())     return false;
 120   return true;
 121 }
 122 
 123 // Local helper checks for special internal merge points
 124 // used to accumulate and merge exception states.
 125 // They are marked by the region's in(0) edge being the map itself.
 126 // Such merge points must never "escape" into the parser at large,
 127 // until they have been handed to gvn.transform.
 128 static bool is_hidden_merge(Node* reg) {
 129   if (reg == NULL)  return false;
 130   if (reg->is_Phi()) {
 131     reg = reg->in(0);
 132     if (reg == NULL)  return false;
 133   }
 134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 135 }
 136 
 137 void GraphKit::verify_map() const {
 138   if (map() == NULL)  return;  // null map is OK
 139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 142 }
 143 
 144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 147 }
 148 #endif
 149 
 150 //---------------------------stop_and_kill_map---------------------------------
 151 // Set _map to NULL, signalling a stop to further bytecode execution.
 152 // First smash the current map's control to a constant, to mark it dead.
 153 void GraphKit::stop_and_kill_map() {
 154   SafePointNode* dead_map = stop();
 155   if (dead_map != NULL) {
 156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 157     assert(dead_map->is_killed(), "must be so marked");
 158   }
 159 }
 160 
 161 
 162 //--------------------------------stopped--------------------------------------
 163 // Tell if _map is NULL, or control is top.
 164 bool GraphKit::stopped() {
 165   if (map() == NULL)           return true;
 166   else if (control() == top()) return true;
 167   else                         return false;
 168 }
 169 
 170 
 171 //-----------------------------has_ex_handler----------------------------------
 172 // Tell if this method or any caller method has exception handlers.
 173 bool GraphKit::has_ex_handler() {
 174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 //------------------------------save_ex_oop------------------------------------
 183 // Save an exception without blowing stack contents or other JVM state.
 184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 186   ex_map->add_req(ex_oop);
 187   debug_only(verify_exception_state(ex_map));
 188 }
 189 
 190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 192   Node* ex_oop = ex_map->in(ex_map->req()-1);
 193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 194   return ex_oop;
 195 }
 196 
 197 //-----------------------------saved_ex_oop------------------------------------
 198 // Recover a saved exception from its map.
 199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 200   return common_saved_ex_oop(ex_map, false);
 201 }
 202 
 203 //--------------------------clear_saved_ex_oop---------------------------------
 204 // Erase a previously saved exception from its map.
 205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, true);
 207 }
 208 
 209 #ifdef ASSERT
 210 //---------------------------has_saved_ex_oop----------------------------------
 211 // Erase a previously saved exception from its map.
 212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 213   return ex_map->req() == ex_map->jvms()->endoff()+1;
 214 }
 215 #endif
 216 
 217 //-------------------------make_exception_state--------------------------------
 218 // Turn the current JVM state into an exception state, appending the ex_oop.
 219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 220   sync_jvms();
 221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 222   set_saved_ex_oop(ex_map, ex_oop);
 223   return ex_map;
 224 }
 225 
 226 
 227 //--------------------------add_exception_state--------------------------------
 228 // Add an exception to my list of exceptions.
 229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 230   if (ex_map == NULL || ex_map->control() == top()) {
 231     return;
 232   }
 233 #ifdef ASSERT
 234   verify_exception_state(ex_map);
 235   if (has_exceptions()) {
 236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 237   }
 238 #endif
 239 
 240   // If there is already an exception of exactly this type, merge with it.
 241   // In particular, null-checks and other low-level exceptions common up here.
 242   Node*       ex_oop  = saved_ex_oop(ex_map);
 243   const Type* ex_type = _gvn.type(ex_oop);
 244   if (ex_oop == top()) {
 245     // No action needed.
 246     return;
 247   }
 248   assert(ex_type->isa_instptr(), "exception must be an instance");
 249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 251     // We check sp also because call bytecodes can generate exceptions
 252     // both before and after arguments are popped!
 253     if (ex_type2 == ex_type
 254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 255       combine_exception_states(ex_map, e2);
 256       return;
 257     }
 258   }
 259 
 260   // No pre-existing exception of the same type.  Chain it on the list.
 261   push_exception_state(ex_map);
 262 }
 263 
 264 //-----------------------add_exception_states_from-----------------------------
 265 void GraphKit::add_exception_states_from(JVMState* jvms) {
 266   SafePointNode* ex_map = jvms->map()->next_exception();
 267   if (ex_map != NULL) {
 268     jvms->map()->set_next_exception(NULL);
 269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 270       next_map = ex_map->next_exception();
 271       ex_map->set_next_exception(NULL);
 272       add_exception_state(ex_map);
 273     }
 274   }
 275 }
 276 
 277 //-----------------------transfer_exceptions_into_jvms-------------------------
 278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 279   if (map() == NULL) {
 280     // We need a JVMS to carry the exceptions, but the map has gone away.
 281     // Create a scratch JVMS, cloned from any of the exception states...
 282     if (has_exceptions()) {
 283       _map = _exceptions;
 284       _map = clone_map();
 285       _map->set_next_exception(NULL);
 286       clear_saved_ex_oop(_map);
 287       debug_only(verify_map());
 288     } else {
 289       // ...or created from scratch
 290       JVMState* jvms = new (C) JVMState(_method, NULL);
 291       jvms->set_bci(_bci);
 292       jvms->set_sp(_sp);
 293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 294       set_jvms(jvms);
 295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 296       set_all_memory(top());
 297       while (map()->req() < jvms->endoff())  map()->add_req(top());
 298     }
 299     // (This is a kludge, in case you didn't notice.)
 300     set_control(top());
 301   }
 302   JVMState* jvms = sync_jvms();
 303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 304   jvms->map()->set_next_exception(_exceptions);
 305   _exceptions = NULL;   // done with this set of exceptions
 306   return jvms;
 307 }
 308 
 309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 310   assert(is_hidden_merge(dstphi), "must be a special merge node");
 311   assert(is_hidden_merge(srcphi), "must be a special merge node");
 312   uint limit = srcphi->req();
 313   for (uint i = PhiNode::Input; i < limit; i++) {
 314     dstphi->add_req(srcphi->in(i));
 315   }
 316 }
 317 static inline void add_one_req(Node* dstphi, Node* src) {
 318   assert(is_hidden_merge(dstphi), "must be a special merge node");
 319   assert(!is_hidden_merge(src), "must not be a special merge node");
 320   dstphi->add_req(src);
 321 }
 322 
 323 //-----------------------combine_exception_states------------------------------
 324 // This helper function combines exception states by building phis on a
 325 // specially marked state-merging region.  These regions and phis are
 326 // untransformed, and can build up gradually.  The region is marked by
 327 // having a control input of its exception map, rather than NULL.  Such
 328 // regions do not appear except in this function, and in use_exception_state.
 329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 330   if (failing())  return;  // dying anyway...
 331   JVMState* ex_jvms = ex_map->_jvms;
 332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 336   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 337   assert(ex_map->req() == phi_map->req(), "matching maps");
 338   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 339   Node*         hidden_merge_mark = root();
 340   Node*         region  = phi_map->control();
 341   MergeMemNode* phi_mem = phi_map->merged_memory();
 342   MergeMemNode* ex_mem  = ex_map->merged_memory();
 343   if (region->in(0) != hidden_merge_mark) {
 344     // The control input is not (yet) a specially-marked region in phi_map.
 345     // Make it so, and build some phis.
 346     region = new (C) RegionNode(2);
 347     _gvn.set_type(region, Type::CONTROL);
 348     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 349     region->init_req(1, phi_map->control());
 350     phi_map->set_control(region);
 351     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 352     record_for_igvn(io_phi);
 353     _gvn.set_type(io_phi, Type::ABIO);
 354     phi_map->set_i_o(io_phi);
 355     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 356       Node* m = mms.memory();
 357       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 358       record_for_igvn(m_phi);
 359       _gvn.set_type(m_phi, Type::MEMORY);
 360       mms.set_memory(m_phi);
 361     }
 362   }
 363 
 364   // Either or both of phi_map and ex_map might already be converted into phis.
 365   Node* ex_control = ex_map->control();
 366   // if there is special marking on ex_map also, we add multiple edges from src
 367   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 368   // how wide was the destination phi_map, originally?
 369   uint orig_width = region->req();
 370 
 371   if (add_multiple) {
 372     add_n_reqs(region, ex_control);
 373     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 374   } else {
 375     // ex_map has no merges, so we just add single edges everywhere
 376     add_one_req(region, ex_control);
 377     add_one_req(phi_map->i_o(), ex_map->i_o());
 378   }
 379   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 380     if (mms.is_empty()) {
 381       // get a copy of the base memory, and patch some inputs into it
 382       const TypePtr* adr_type = mms.adr_type(C);
 383       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 384       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 385       mms.set_memory(phi);
 386       // Prepare to append interesting stuff onto the newly sliced phi:
 387       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 388     }
 389     // Append stuff from ex_map:
 390     if (add_multiple) {
 391       add_n_reqs(mms.memory(), mms.memory2());
 392     } else {
 393       add_one_req(mms.memory(), mms.memory2());
 394     }
 395   }
 396   uint limit = ex_map->req();
 397   for (uint i = TypeFunc::Parms; i < limit; i++) {
 398     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 399     if (i == tos)  i = ex_jvms->monoff();
 400     Node* src = ex_map->in(i);
 401     Node* dst = phi_map->in(i);
 402     if (src != dst) {
 403       PhiNode* phi;
 404       if (dst->in(0) != region) {
 405         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 406         record_for_igvn(phi);
 407         _gvn.set_type(phi, phi->type());
 408         phi_map->set_req(i, dst);
 409         // Prepare to append interesting stuff onto the new phi:
 410         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 411       } else {
 412         assert(dst->is_Phi(), "nobody else uses a hidden region");
 413         phi = dst->as_Phi();
 414       }
 415       if (add_multiple && src->in(0) == ex_control) {
 416         // Both are phis.
 417         add_n_reqs(dst, src);
 418       } else {
 419         while (dst->req() < region->req())  add_one_req(dst, src);
 420       }
 421       const Type* srctype = _gvn.type(src);
 422       if (phi->type() != srctype) {
 423         const Type* dsttype = phi->type()->meet_speculative(srctype);
 424         if (phi->type() != dsttype) {
 425           phi->set_type(dsttype);
 426           _gvn.set_type(phi, dsttype);
 427         }
 428       }
 429     }
 430   }
 431   phi_map->merge_replaced_nodes_with(ex_map);
 432 }
 433 
 434 //--------------------------use_exception_state--------------------------------
 435 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 436   if (failing()) { stop(); return top(); }
 437   Node* region = phi_map->control();
 438   Node* hidden_merge_mark = root();
 439   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 440   Node* ex_oop = clear_saved_ex_oop(phi_map);
 441   if (region->in(0) == hidden_merge_mark) {
 442     // Special marking for internal ex-states.  Process the phis now.
 443     region->set_req(0, region);  // now it's an ordinary region
 444     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 445     // Note: Setting the jvms also sets the bci and sp.
 446     set_control(_gvn.transform(region));
 447     uint tos = jvms()->stkoff() + sp();
 448     for (uint i = 1; i < tos; i++) {
 449       Node* x = phi_map->in(i);
 450       if (x->in(0) == region) {
 451         assert(x->is_Phi(), "expected a special phi");
 452         phi_map->set_req(i, _gvn.transform(x));
 453       }
 454     }
 455     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 456       Node* x = mms.memory();
 457       if (x->in(0) == region) {
 458         assert(x->is_Phi(), "nobody else uses a hidden region");
 459         mms.set_memory(_gvn.transform(x));
 460       }
 461     }
 462     if (ex_oop->in(0) == region) {
 463       assert(ex_oop->is_Phi(), "expected a special phi");
 464       ex_oop = _gvn.transform(ex_oop);
 465     }
 466   } else {
 467     set_jvms(phi_map->jvms());
 468   }
 469 
 470   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 471   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 472   return ex_oop;
 473 }
 474 
 475 //---------------------------------java_bc-------------------------------------
 476 Bytecodes::Code GraphKit::java_bc() const {
 477   ciMethod* method = this->method();
 478   int       bci    = this->bci();
 479   if (method != NULL && bci != InvocationEntryBci)
 480     return method->java_code_at_bci(bci);
 481   else
 482     return Bytecodes::_illegal;
 483 }
 484 
 485 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 486                                                           bool must_throw) {
 487     // if the exception capability is set, then we will generate code
 488     // to check the JavaThread.should_post_on_exceptions flag to see
 489     // if we actually need to report exception events (for this
 490     // thread).  If we don't need to report exception events, we will
 491     // take the normal fast path provided by add_exception_events.  If
 492     // exception event reporting is enabled for this thread, we will
 493     // take the uncommon_trap in the BuildCutout below.
 494 
 495     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 496     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 497     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 498     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 499 
 500     // Test the should_post_on_exceptions_flag vs. 0
 501     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 502     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 503 
 504     // Branch to slow_path if should_post_on_exceptions_flag was true
 505     { BuildCutout unless(this, tst, PROB_MAX);
 506       // Do not try anything fancy if we're notifying the VM on every throw.
 507       // Cf. case Bytecodes::_athrow in parse2.cpp.
 508       uncommon_trap(reason, Deoptimization::Action_none,
 509                     (ciKlass*)NULL, (char*)NULL, must_throw);
 510     }
 511 
 512 }
 513 
 514 //------------------------------builtin_throw----------------------------------
 515 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 516   bool must_throw = true;
 517 
 518   if (env()->jvmti_can_post_on_exceptions()) {
 519     // check if we must post exception events, take uncommon trap if so
 520     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 521     // here if should_post_on_exceptions is false
 522     // continue on with the normal codegen
 523   }
 524 
 525   // If this particular condition has not yet happened at this
 526   // bytecode, then use the uncommon trap mechanism, and allow for
 527   // a future recompilation if several traps occur here.
 528   // If the throw is hot, try to use a more complicated inline mechanism
 529   // which keeps execution inside the compiled code.
 530   bool treat_throw_as_hot = false;
 531   ciMethodData* md = method()->method_data();
 532 
 533   if (ProfileTraps) {
 534     if (too_many_traps(reason)) {
 535       treat_throw_as_hot = true;
 536     }
 537     // (If there is no MDO at all, assume it is early in
 538     // execution, and that any deopts are part of the
 539     // startup transient, and don't need to be remembered.)
 540 
 541     // Also, if there is a local exception handler, treat all throws
 542     // as hot if there has been at least one in this method.
 543     if (C->trap_count(reason) != 0
 544         && method()->method_data()->trap_count(reason) != 0
 545         && has_ex_handler()) {
 546         treat_throw_as_hot = true;
 547     }
 548   }
 549 
 550   // If this throw happens frequently, an uncommon trap might cause
 551   // a performance pothole.  If there is a local exception handler,
 552   // and if this particular bytecode appears to be deoptimizing often,
 553   // let us handle the throw inline, with a preconstructed instance.
 554   // Note:   If the deopt count has blown up, the uncommon trap
 555   // runtime is going to flush this nmethod, not matter what.
 556   if (treat_throw_as_hot
 557       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 558     // If the throw is local, we use a pre-existing instance and
 559     // punt on the backtrace.  This would lead to a missing backtrace
 560     // (a repeat of 4292742) if the backtrace object is ever asked
 561     // for its backtrace.
 562     // Fixing this remaining case of 4292742 requires some flavor of
 563     // escape analysis.  Leave that for the future.
 564     ciInstance* ex_obj = NULL;
 565     switch (reason) {
 566     case Deoptimization::Reason_null_check:
 567       ex_obj = env()->NullPointerException_instance();
 568       break;
 569     case Deoptimization::Reason_div0_check:
 570       ex_obj = env()->ArithmeticException_instance();
 571       break;
 572     case Deoptimization::Reason_range_check:
 573       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 574       break;
 575     case Deoptimization::Reason_class_check:
 576       if (java_bc() == Bytecodes::_aastore) {
 577         ex_obj = env()->ArrayStoreException_instance();
 578       } else {
 579         ex_obj = env()->ClassCastException_instance();
 580       }
 581       break;
 582     }
 583     if (failing()) { stop(); return; }  // exception allocation might fail
 584     if (ex_obj != NULL) {
 585       // Cheat with a preallocated exception object.
 586       if (C->log() != NULL)
 587         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 588                        Deoptimization::trap_reason_name(reason));
 589       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 590       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 591 
 592       // Clear the detail message of the preallocated exception object.
 593       // Weblogic sometimes mutates the detail message of exceptions
 594       // using reflection.
 595       int offset = java_lang_Throwable::get_detailMessage_offset();
 596       const TypePtr* adr_typ = ex_con->add_offset(offset);
 597 
 598       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 599       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 600       // Conservatively release stores of object references.
 601       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 602 
 603       add_exception_state(make_exception_state(ex_node));
 604       return;
 605     }
 606   }
 607 
 608   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 609   // It won't be much cheaper than bailing to the interp., since we'll
 610   // have to pass up all the debug-info, and the runtime will have to
 611   // create the stack trace.
 612 
 613   // Usual case:  Bail to interpreter.
 614   // Reserve the right to recompile if we haven't seen anything yet.
 615 
 616   assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
 617   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 618   if (treat_throw_as_hot
 619       && (method()->method_data()->trap_recompiled_at(bci(), NULL)
 620           || C->too_many_traps(reason))) {
 621     // We cannot afford to take more traps here.  Suffer in the interpreter.
 622     if (C->log() != NULL)
 623       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 624                      Deoptimization::trap_reason_name(reason),
 625                      C->trap_count(reason));
 626     action = Deoptimization::Action_none;
 627   }
 628 
 629   // "must_throw" prunes the JVM state to include only the stack, if there
 630   // are no local exception handlers.  This should cut down on register
 631   // allocation time and code size, by drastically reducing the number
 632   // of in-edges on the call to the uncommon trap.
 633 
 634   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 635 }
 636 
 637 
 638 //----------------------------PreserveJVMState---------------------------------
 639 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 640   debug_only(kit->verify_map());
 641   _kit    = kit;
 642   _map    = kit->map();   // preserve the map
 643   _sp     = kit->sp();
 644   kit->set_map(clone_map ? kit->clone_map() : NULL);
 645 #ifdef ASSERT
 646   _bci    = kit->bci();
 647   Parse* parser = kit->is_Parse();
 648   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 649   _block  = block;
 650 #endif
 651 }
 652 PreserveJVMState::~PreserveJVMState() {
 653   GraphKit* kit = _kit;
 654 #ifdef ASSERT
 655   assert(kit->bci() == _bci, "bci must not shift");
 656   Parse* parser = kit->is_Parse();
 657   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 658   assert(block == _block,    "block must not shift");
 659 #endif
 660   kit->set_map(_map);
 661   kit->set_sp(_sp);
 662 }
 663 
 664 
 665 //-----------------------------BuildCutout-------------------------------------
 666 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 667   : PreserveJVMState(kit)
 668 {
 669   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 670   SafePointNode* outer_map = _map;   // preserved map is caller's
 671   SafePointNode* inner_map = kit->map();
 672   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 673   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 674   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 675 }
 676 BuildCutout::~BuildCutout() {
 677   GraphKit* kit = _kit;
 678   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 679 }
 680 
 681 //---------------------------PreserveReexecuteState----------------------------
 682 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 683   assert(!kit->stopped(), "must call stopped() before");
 684   _kit    =    kit;
 685   _sp     =    kit->sp();
 686   _reexecute = kit->jvms()->_reexecute;
 687 }
 688 PreserveReexecuteState::~PreserveReexecuteState() {
 689   if (_kit->stopped()) return;
 690   _kit->jvms()->_reexecute = _reexecute;
 691   _kit->set_sp(_sp);
 692 }
 693 
 694 //------------------------------clone_map--------------------------------------
 695 // Implementation of PreserveJVMState
 696 //
 697 // Only clone_map(...) here. If this function is only used in the
 698 // PreserveJVMState class we may want to get rid of this extra
 699 // function eventually and do it all there.
 700 
 701 SafePointNode* GraphKit::clone_map() {
 702   if (map() == NULL)  return NULL;
 703 
 704   // Clone the memory edge first
 705   Node* mem = MergeMemNode::make(C, map()->memory());
 706   gvn().set_type_bottom(mem);
 707 
 708   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 709   JVMState* jvms = this->jvms();
 710   JVMState* clonejvms = jvms->clone_shallow(C);
 711   clonemap->set_memory(mem);
 712   clonemap->set_jvms(clonejvms);
 713   clonejvms->set_map(clonemap);
 714   record_for_igvn(clonemap);
 715   gvn().set_type_bottom(clonemap);
 716   return clonemap;
 717 }
 718 
 719 
 720 //-----------------------------set_map_clone-----------------------------------
 721 void GraphKit::set_map_clone(SafePointNode* m) {
 722   _map = m;
 723   _map = clone_map();
 724   _map->set_next_exception(NULL);
 725   debug_only(verify_map());
 726 }
 727 
 728 
 729 //----------------------------kill_dead_locals---------------------------------
 730 // Detect any locals which are known to be dead, and force them to top.
 731 void GraphKit::kill_dead_locals() {
 732   // Consult the liveness information for the locals.  If any
 733   // of them are unused, then they can be replaced by top().  This
 734   // should help register allocation time and cut down on the size
 735   // of the deoptimization information.
 736 
 737   // This call is made from many of the bytecode handling
 738   // subroutines called from the Big Switch in do_one_bytecode.
 739   // Every bytecode which might include a slow path is responsible
 740   // for killing its dead locals.  The more consistent we
 741   // are about killing deads, the fewer useless phis will be
 742   // constructed for them at various merge points.
 743 
 744   // bci can be -1 (InvocationEntryBci).  We return the entry
 745   // liveness for the method.
 746 
 747   if (method() == NULL || method()->code_size() == 0) {
 748     // We are building a graph for a call to a native method.
 749     // All locals are live.
 750     return;
 751   }
 752 
 753   ResourceMark rm;
 754 
 755   // Consult the liveness information for the locals.  If any
 756   // of them are unused, then they can be replaced by top().  This
 757   // should help register allocation time and cut down on the size
 758   // of the deoptimization information.
 759   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 760 
 761   int len = (int)live_locals.size();
 762   assert(len <= jvms()->loc_size(), "too many live locals");
 763   for (int local = 0; local < len; local++) {
 764     if (!live_locals.at(local)) {
 765       set_local(local, top());
 766     }
 767   }
 768 }
 769 
 770 #ifdef ASSERT
 771 //-------------------------dead_locals_are_killed------------------------------
 772 // Return true if all dead locals are set to top in the map.
 773 // Used to assert "clean" debug info at various points.
 774 bool GraphKit::dead_locals_are_killed() {
 775   if (method() == NULL || method()->code_size() == 0) {
 776     // No locals need to be dead, so all is as it should be.
 777     return true;
 778   }
 779 
 780   // Make sure somebody called kill_dead_locals upstream.
 781   ResourceMark rm;
 782   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 783     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 784     SafePointNode* map = jvms->map();
 785     ciMethod* method = jvms->method();
 786     int       bci    = jvms->bci();
 787     if (jvms == this->jvms()) {
 788       bci = this->bci();  // it might not yet be synched
 789     }
 790     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 791     int len = (int)live_locals.size();
 792     if (!live_locals.is_valid() || len == 0)
 793       // This method is trivial, or is poisoned by a breakpoint.
 794       return true;
 795     assert(len == jvms->loc_size(), "live map consistent with locals map");
 796     for (int local = 0; local < len; local++) {
 797       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 798         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 799           tty->print_cr("Zombie local %d: ", local);
 800           jvms->dump();
 801         }
 802         return false;
 803       }
 804     }
 805   }
 806   return true;
 807 }
 808 
 809 #endif //ASSERT
 810 
 811 // Helper function for enforcing certain bytecodes to reexecute if
 812 // deoptimization happens
 813 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 814   ciMethod* cur_method = jvms->method();
 815   int       cur_bci   = jvms->bci();
 816   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 817     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 818     return Interpreter::bytecode_should_reexecute(code) ||
 819            is_anewarray && code == Bytecodes::_multianewarray;
 820     // Reexecute _multianewarray bytecode which was replaced with
 821     // sequence of [a]newarray. See Parse::do_multianewarray().
 822     //
 823     // Note: interpreter should not have it set since this optimization
 824     // is limited by dimensions and guarded by flag so in some cases
 825     // multianewarray() runtime calls will be generated and
 826     // the bytecode should not be reexecutes (stack will not be reset).
 827   } else
 828     return false;
 829 }
 830 
 831 // Helper function for adding JVMState and debug information to node
 832 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 833   // Add the safepoint edges to the call (or other safepoint).
 834 
 835   // Make sure dead locals are set to top.  This
 836   // should help register allocation time and cut down on the size
 837   // of the deoptimization information.
 838   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 839 
 840   // Walk the inline list to fill in the correct set of JVMState's
 841   // Also fill in the associated edges for each JVMState.
 842 
 843   // If the bytecode needs to be reexecuted we need to put
 844   // the arguments back on the stack.
 845   const bool should_reexecute = jvms()->should_reexecute();
 846   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 847 
 848   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 849   // undefined if the bci is different.  This is normal for Parse but it
 850   // should not happen for LibraryCallKit because only one bci is processed.
 851   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 852          "in LibraryCallKit the reexecute bit should not change");
 853 
 854   // If we are guaranteed to throw, we can prune everything but the
 855   // input to the current bytecode.
 856   bool can_prune_locals = false;
 857   uint stack_slots_not_pruned = 0;
 858   int inputs = 0, depth = 0;
 859   if (must_throw) {
 860     assert(method() == youngest_jvms->method(), "sanity");
 861     if (compute_stack_effects(inputs, depth)) {
 862       can_prune_locals = true;
 863       stack_slots_not_pruned = inputs;
 864     }
 865   }
 866 
 867   if (env()->jvmti_can_access_local_variables()) {
 868     // At any safepoint, this method can get breakpointed, which would
 869     // then require an immediate deoptimization.
 870     can_prune_locals = false;  // do not prune locals
 871     stack_slots_not_pruned = 0;
 872   }
 873 
 874   // do not scribble on the input jvms
 875   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 876   call->set_jvms(out_jvms); // Start jvms list for call node
 877 
 878   // For a known set of bytecodes, the interpreter should reexecute them if
 879   // deoptimization happens. We set the reexecute state for them here
 880   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 881       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 882     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 883   }
 884 
 885   // Presize the call:
 886   DEBUG_ONLY(uint non_debug_edges = call->req());
 887   call->add_req_batch(top(), youngest_jvms->debug_depth());
 888   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 889 
 890   // Set up edges so that the call looks like this:
 891   //  Call [state:] ctl io mem fptr retadr
 892   //       [parms:] parm0 ... parmN
 893   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 894   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 895   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 896   // Note that caller debug info precedes callee debug info.
 897 
 898   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 899   uint debug_ptr = call->req();
 900 
 901   // Loop over the map input edges associated with jvms, add them
 902   // to the call node, & reset all offsets to match call node array.
 903   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 904     uint debug_end   = debug_ptr;
 905     uint debug_start = debug_ptr - in_jvms->debug_size();
 906     debug_ptr = debug_start;  // back up the ptr
 907 
 908     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 909     uint j, k, l;
 910     SafePointNode* in_map = in_jvms->map();
 911     out_jvms->set_map(call);
 912 
 913     if (can_prune_locals) {
 914       assert(in_jvms->method() == out_jvms->method(), "sanity");
 915       // If the current throw can reach an exception handler in this JVMS,
 916       // then we must keep everything live that can reach that handler.
 917       // As a quick and dirty approximation, we look for any handlers at all.
 918       if (in_jvms->method()->has_exception_handlers()) {
 919         can_prune_locals = false;
 920       }
 921     }
 922 
 923     // Add the Locals
 924     k = in_jvms->locoff();
 925     l = in_jvms->loc_size();
 926     out_jvms->set_locoff(p);
 927     if (!can_prune_locals) {
 928       for (j = 0; j < l; j++)
 929         call->set_req(p++, in_map->in(k+j));
 930     } else {
 931       p += l;  // already set to top above by add_req_batch
 932     }
 933 
 934     // Add the Expression Stack
 935     k = in_jvms->stkoff();
 936     l = in_jvms->sp();
 937     out_jvms->set_stkoff(p);
 938     if (!can_prune_locals) {
 939       for (j = 0; j < l; j++)
 940         call->set_req(p++, in_map->in(k+j));
 941     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 942       // Divide stack into {S0,...,S1}, where S0 is set to top.
 943       uint s1 = stack_slots_not_pruned;
 944       stack_slots_not_pruned = 0;  // for next iteration
 945       if (s1 > l)  s1 = l;
 946       uint s0 = l - s1;
 947       p += s0;  // skip the tops preinstalled by add_req_batch
 948       for (j = s0; j < l; j++)
 949         call->set_req(p++, in_map->in(k+j));
 950     } else {
 951       p += l;  // already set to top above by add_req_batch
 952     }
 953 
 954     // Add the Monitors
 955     k = in_jvms->monoff();
 956     l = in_jvms->mon_size();
 957     out_jvms->set_monoff(p);
 958     for (j = 0; j < l; j++)
 959       call->set_req(p++, in_map->in(k+j));
 960 
 961     // Copy any scalar object fields.
 962     k = in_jvms->scloff();
 963     l = in_jvms->scl_size();
 964     out_jvms->set_scloff(p);
 965     for (j = 0; j < l; j++)
 966       call->set_req(p++, in_map->in(k+j));
 967 
 968     // Finish the new jvms.
 969     out_jvms->set_endoff(p);
 970 
 971     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 972     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 973     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 974     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 975     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 976     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 977 
 978     // Update the two tail pointers in parallel.
 979     out_jvms = out_jvms->caller();
 980     in_jvms  = in_jvms->caller();
 981   }
 982 
 983   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 984 
 985   // Test the correctness of JVMState::debug_xxx accessors:
 986   assert(call->jvms()->debug_start() == non_debug_edges, "");
 987   assert(call->jvms()->debug_end()   == call->req(), "");
 988   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 989 }
 990 
 991 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 992   Bytecodes::Code code = java_bc();
 993   if (code == Bytecodes::_wide) {
 994     code = method()->java_code_at_bci(bci() + 1);
 995   }
 996 
 997   BasicType rtype = T_ILLEGAL;
 998   int       rsize = 0;
 999 
1000   if (code != Bytecodes::_illegal) {
1001     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1002     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1003     if (rtype < T_CONFLICT)
1004       rsize = type2size[rtype];
1005   }
1006 
1007   switch (code) {
1008   case Bytecodes::_illegal:
1009     return false;
1010 
1011   case Bytecodes::_ldc:
1012   case Bytecodes::_ldc_w:
1013   case Bytecodes::_ldc2_w:
1014     inputs = 0;
1015     break;
1016 
1017   case Bytecodes::_dup:         inputs = 1;  break;
1018   case Bytecodes::_dup_x1:      inputs = 2;  break;
1019   case Bytecodes::_dup_x2:      inputs = 3;  break;
1020   case Bytecodes::_dup2:        inputs = 2;  break;
1021   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1022   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1023   case Bytecodes::_swap:        inputs = 2;  break;
1024   case Bytecodes::_arraylength: inputs = 1;  break;
1025 
1026   case Bytecodes::_getstatic:
1027   case Bytecodes::_putstatic:
1028   case Bytecodes::_getfield:
1029   case Bytecodes::_putfield:
1030     {
1031       bool ignored_will_link;
1032       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1033       int      size  = field->type()->size();
1034       bool is_get = (depth >= 0), is_static = (depth & 1);
1035       inputs = (is_static ? 0 : 1);
1036       if (is_get) {
1037         depth = size - inputs;
1038       } else {
1039         inputs += size;        // putxxx pops the value from the stack
1040         depth = - inputs;
1041       }
1042     }
1043     break;
1044 
1045   case Bytecodes::_invokevirtual:
1046   case Bytecodes::_invokespecial:
1047   case Bytecodes::_invokestatic:
1048   case Bytecodes::_invokedynamic:
1049   case Bytecodes::_invokeinterface:
1050     {
1051       bool ignored_will_link;
1052       ciSignature* declared_signature = NULL;
1053       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1054       assert(declared_signature != NULL, "cannot be null");
1055       inputs   = declared_signature->arg_size_for_bc(code);
1056       int size = declared_signature->return_type()->size();
1057       depth = size - inputs;
1058     }
1059     break;
1060 
1061   case Bytecodes::_multianewarray:
1062     {
1063       ciBytecodeStream iter(method());
1064       iter.reset_to_bci(bci());
1065       iter.next();
1066       inputs = iter.get_dimensions();
1067       assert(rsize == 1, "");
1068       depth = rsize - inputs;
1069     }
1070     break;
1071 
1072   case Bytecodes::_ireturn:
1073   case Bytecodes::_lreturn:
1074   case Bytecodes::_freturn:
1075   case Bytecodes::_dreturn:
1076   case Bytecodes::_areturn:
1077     assert(rsize = -depth, "");
1078     inputs = rsize;
1079     break;
1080 
1081   case Bytecodes::_jsr:
1082   case Bytecodes::_jsr_w:
1083     inputs = 0;
1084     depth  = 1;                  // S.B. depth=1, not zero
1085     break;
1086 
1087   default:
1088     // bytecode produces a typed result
1089     inputs = rsize - depth;
1090     assert(inputs >= 0, "");
1091     break;
1092   }
1093 
1094 #ifdef ASSERT
1095   // spot check
1096   int outputs = depth + inputs;
1097   assert(outputs >= 0, "sanity");
1098   switch (code) {
1099   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1100   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1101   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1102   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1103   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1104   }
1105 #endif //ASSERT
1106 
1107   return true;
1108 }
1109 
1110 
1111 
1112 //------------------------------basic_plus_adr---------------------------------
1113 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1114   // short-circuit a common case
1115   if (offset == intcon(0))  return ptr;
1116   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1117 }
1118 
1119 Node* GraphKit::ConvI2L(Node* offset) {
1120   // short-circuit a common case
1121   jint offset_con = find_int_con(offset, Type::OffsetBot);
1122   if (offset_con != Type::OffsetBot) {
1123     return longcon((jlong) offset_con);
1124   }
1125   return _gvn.transform( new (C) ConvI2LNode(offset));
1126 }
1127 
1128 Node* GraphKit::ConvI2UL(Node* offset) {
1129   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1130   if (offset_con != (juint) Type::OffsetBot) {
1131     return longcon((julong) offset_con);
1132   }
1133   Node* conv = _gvn.transform( new (C) ConvI2LNode(offset));
1134   Node* mask = _gvn.transform( ConLNode::make(C, (julong) max_juint) );
1135   return _gvn.transform( new (C) AndLNode(conv, mask) );
1136 }
1137 
1138 Node* GraphKit::ConvL2I(Node* offset) {
1139   // short-circuit a common case
1140   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1141   if (offset_con != (jlong)Type::OffsetBot) {
1142     return intcon((int) offset_con);
1143   }
1144   return _gvn.transform( new (C) ConvL2INode(offset));
1145 }
1146 
1147 //-------------------------load_object_klass-----------------------------------
1148 Node* GraphKit::load_object_klass(Node* obj) {
1149   // Special-case a fresh allocation to avoid building nodes:
1150   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1151   if (akls != NULL)  return akls;
1152   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1153   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1154 }
1155 
1156 //-------------------------load_array_length-----------------------------------
1157 Node* GraphKit::load_array_length(Node* array) {
1158   // Special-case a fresh allocation to avoid building nodes:
1159   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1160   Node *alen;
1161   if (alloc == NULL) {
1162     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1163     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1164   } else {
1165     alen = alloc->Ideal_length();
1166     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1167     if (ccast != alen) {
1168       alen = _gvn.transform(ccast);
1169     }
1170   }
1171   return alen;
1172 }
1173 
1174 //------------------------------do_null_check----------------------------------
1175 // Helper function to do a NULL pointer check.  Returned value is
1176 // the incoming address with NULL casted away.  You are allowed to use the
1177 // not-null value only if you are control dependent on the test.
1178 extern int explicit_null_checks_inserted,
1179            explicit_null_checks_elided;
1180 Node* GraphKit::null_check_common(Node* value, BasicType type,
1181                                   // optional arguments for variations:
1182                                   bool assert_null,
1183                                   Node* *null_control) {
1184   assert(!assert_null || null_control == NULL, "not both at once");
1185   if (stopped())  return top();
1186   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1187     // For some performance testing, we may wish to suppress null checking.
1188     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1189     return value;
1190   }
1191   explicit_null_checks_inserted++;
1192 
1193   // Construct NULL check
1194   Node *chk = NULL;
1195   switch(type) {
1196     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1197     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1198     case T_ARRAY  : // fall through
1199       type = T_OBJECT;  // simplify further tests
1200     case T_OBJECT : {
1201       const Type *t = _gvn.type( value );
1202 
1203       const TypeOopPtr* tp = t->isa_oopptr();
1204       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1205           // Only for do_null_check, not any of its siblings:
1206           && !assert_null && null_control == NULL) {
1207         // Usually, any field access or invocation on an unloaded oop type
1208         // will simply fail to link, since the statically linked class is
1209         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1210         // the static class is loaded but the sharper oop type is not.
1211         // Rather than checking for this obscure case in lots of places,
1212         // we simply observe that a null check on an unloaded class
1213         // will always be followed by a nonsense operation, so we
1214         // can just issue the uncommon trap here.
1215         // Our access to the unloaded class will only be correct
1216         // after it has been loaded and initialized, which requires
1217         // a trip through the interpreter.
1218 #ifndef PRODUCT
1219         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1220 #endif
1221         uncommon_trap(Deoptimization::Reason_unloaded,
1222                       Deoptimization::Action_reinterpret,
1223                       tp->klass(), "!loaded");
1224         return top();
1225       }
1226 
1227       if (assert_null) {
1228         // See if the type is contained in NULL_PTR.
1229         // If so, then the value is already null.
1230         if (t->higher_equal(TypePtr::NULL_PTR)) {
1231           explicit_null_checks_elided++;
1232           return value;           // Elided null assert quickly!
1233         }
1234       } else {
1235         // See if mixing in the NULL pointer changes type.
1236         // If so, then the NULL pointer was not allowed in the original
1237         // type.  In other words, "value" was not-null.
1238         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1239           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1240           explicit_null_checks_elided++;
1241           return value;           // Elided null check quickly!
1242         }
1243       }
1244       chk = new (C) CmpPNode( value, null() );
1245       break;
1246     }
1247 
1248     default:
1249       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1250   }
1251   assert(chk != NULL, "sanity check");
1252   chk = _gvn.transform(chk);
1253 
1254   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1255   BoolNode *btst = new (C) BoolNode( chk, btest);
1256   Node   *tst = _gvn.transform( btst );
1257 
1258   //-----------
1259   // if peephole optimizations occurred, a prior test existed.
1260   // If a prior test existed, maybe it dominates as we can avoid this test.
1261   if (tst != btst && type == T_OBJECT) {
1262     // At this point we want to scan up the CFG to see if we can
1263     // find an identical test (and so avoid this test altogether).
1264     Node *cfg = control();
1265     int depth = 0;
1266     while( depth < 16 ) {       // Limit search depth for speed
1267       if( cfg->Opcode() == Op_IfTrue &&
1268           cfg->in(0)->in(1) == tst ) {
1269         // Found prior test.  Use "cast_not_null" to construct an identical
1270         // CastPP (and hence hash to) as already exists for the prior test.
1271         // Return that casted value.
1272         if (assert_null) {
1273           replace_in_map(value, null());
1274           return null();  // do not issue the redundant test
1275         }
1276         Node *oldcontrol = control();
1277         set_control(cfg);
1278         Node *res = cast_not_null(value);
1279         set_control(oldcontrol);
1280         explicit_null_checks_elided++;
1281         return res;
1282       }
1283       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1284       if (cfg == NULL)  break;  // Quit at region nodes
1285       depth++;
1286     }
1287   }
1288 
1289   //-----------
1290   // Branch to failure if null
1291   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1292   Deoptimization::DeoptReason reason;
1293   if (assert_null)
1294     reason = Deoptimization::Reason_null_assert;
1295   else if (type == T_OBJECT)
1296     reason = Deoptimization::Reason_null_check;
1297   else
1298     reason = Deoptimization::Reason_div0_check;
1299 
1300   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1301   // ciMethodData::has_trap_at will return a conservative -1 if any
1302   // must-be-null assertion has failed.  This could cause performance
1303   // problems for a method after its first do_null_assert failure.
1304   // Consider using 'Reason_class_check' instead?
1305 
1306   // To cause an implicit null check, we set the not-null probability
1307   // to the maximum (PROB_MAX).  For an explicit check the probability
1308   // is set to a smaller value.
1309   if (null_control != NULL || too_many_traps(reason)) {
1310     // probability is less likely
1311     ok_prob =  PROB_LIKELY_MAG(3);
1312   } else if (!assert_null &&
1313              (ImplicitNullCheckThreshold > 0) &&
1314              method() != NULL &&
1315              (method()->method_data()->trap_count(reason)
1316               >= (uint)ImplicitNullCheckThreshold)) {
1317     ok_prob =  PROB_LIKELY_MAG(3);
1318   }
1319 
1320   if (null_control != NULL) {
1321     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1322     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1323     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1324     if (null_true == top())
1325       explicit_null_checks_elided++;
1326     (*null_control) = null_true;
1327   } else {
1328     BuildCutout unless(this, tst, ok_prob);
1329     // Check for optimizer eliding test at parse time
1330     if (stopped()) {
1331       // Failure not possible; do not bother making uncommon trap.
1332       explicit_null_checks_elided++;
1333     } else if (assert_null) {
1334       uncommon_trap(reason,
1335                     Deoptimization::Action_make_not_entrant,
1336                     NULL, "assert_null");
1337     } else {
1338       replace_in_map(value, zerocon(type));
1339       builtin_throw(reason);
1340     }
1341   }
1342 
1343   // Must throw exception, fall-thru not possible?
1344   if (stopped()) {
1345     return top();               // No result
1346   }
1347 
1348   if (assert_null) {
1349     // Cast obj to null on this path.
1350     replace_in_map(value, zerocon(type));
1351     return zerocon(type);
1352   }
1353 
1354   // Cast obj to not-null on this path, if there is no null_control.
1355   // (If there is a null_control, a non-null value may come back to haunt us.)
1356   if (type == T_OBJECT) {
1357     Node* cast = cast_not_null(value, false);
1358     if (null_control == NULL || (*null_control) == top())
1359       replace_in_map(value, cast);
1360     value = cast;
1361   }
1362 
1363   return value;
1364 }
1365 
1366 
1367 //------------------------------cast_not_null----------------------------------
1368 // Cast obj to not-null on this path
1369 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1370   const Type *t = _gvn.type(obj);
1371   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1372   // Object is already not-null?
1373   if( t == t_not_null ) return obj;
1374 
1375   Node *cast = new (C) CastPPNode(obj,t_not_null);
1376   cast->init_req(0, control());
1377   cast = _gvn.transform( cast );
1378 
1379   // Scan for instances of 'obj' in the current JVM mapping.
1380   // These instances are known to be not-null after the test.
1381   if (do_replace_in_map)
1382     replace_in_map(obj, cast);
1383 
1384   return cast;                  // Return casted value
1385 }
1386 
1387 
1388 //--------------------------replace_in_map-------------------------------------
1389 void GraphKit::replace_in_map(Node* old, Node* neww) {
1390   if (old == neww) {
1391     return;
1392   }
1393 
1394   map()->replace_edge(old, neww);
1395 
1396   // Note: This operation potentially replaces any edge
1397   // on the map.  This includes locals, stack, and monitors
1398   // of the current (innermost) JVM state.
1399 
1400   // don't let inconsistent types from profiling escape this
1401   // method
1402 
1403   const Type* told = _gvn.type(old);
1404   const Type* tnew = _gvn.type(neww);
1405 
1406   if (!tnew->higher_equal(told)) {
1407     return;
1408   }
1409 
1410   map()->record_replaced_node(old, neww);
1411 }
1412 
1413 
1414 //=============================================================================
1415 //--------------------------------memory---------------------------------------
1416 Node* GraphKit::memory(uint alias_idx) {
1417   MergeMemNode* mem = merged_memory();
1418   Node* p = mem->memory_at(alias_idx);
1419   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1420   return p;
1421 }
1422 
1423 //-----------------------------reset_memory------------------------------------
1424 Node* GraphKit::reset_memory() {
1425   Node* mem = map()->memory();
1426   // do not use this node for any more parsing!
1427   debug_only( map()->set_memory((Node*)NULL) );
1428   return _gvn.transform( mem );
1429 }
1430 
1431 //------------------------------set_all_memory---------------------------------
1432 void GraphKit::set_all_memory(Node* newmem) {
1433   Node* mergemem = MergeMemNode::make(C, newmem);
1434   gvn().set_type_bottom(mergemem);
1435   map()->set_memory(mergemem);
1436 }
1437 
1438 //------------------------------set_all_memory_call----------------------------
1439 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1440   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1441   set_all_memory(newmem);
1442 }
1443 
1444 //=============================================================================
1445 //
1446 // parser factory methods for MemNodes
1447 //
1448 // These are layered on top of the factory methods in LoadNode and StoreNode,
1449 // and integrate with the parser's memory state and _gvn engine.
1450 //
1451 
1452 // factory methods in "int adr_idx"
1453 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1454                           int adr_idx,
1455                           MemNode::MemOrd mo,
1456                           LoadNode::ControlDependency control_dependency,
1457                           bool require_atomic_access,
1458                           bool unaligned,
1459                           bool mismatched) {
1460   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1461   const TypePtr* adr_type = NULL; // debug-mode-only argument
1462   debug_only(adr_type = C->get_adr_type(adr_idx));
1463   Node* mem = memory(adr_idx);
1464   Node* ld;
1465   if (require_atomic_access && bt == T_LONG) {
1466     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo, control_dependency);
1467   } else if (require_atomic_access && bt == T_DOUBLE) {
1468     ld = LoadDNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo, control_dependency);
1469   } else {
1470     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency);
1471   }
1472   if (unaligned) {
1473     ld->as_Load()->set_unaligned_access();
1474   }
1475   if (mismatched) {
1476     ld->as_Load()->set_mismatched_access();
1477   }
1478   ld = _gvn.transform(ld);
1479   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1480     // Improve graph before escape analysis and boxing elimination.
1481     record_for_igvn(ld);
1482   }
1483   return ld;
1484 }
1485 
1486 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1487                                 int adr_idx,
1488                                 MemNode::MemOrd mo,
1489                                 bool require_atomic_access,
1490                                 bool unaligned,
1491                                 bool mismatched) {
1492   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1493   const TypePtr* adr_type = NULL;
1494   debug_only(adr_type = C->get_adr_type(adr_idx));
1495   Node *mem = memory(adr_idx);
1496   Node* st;
1497   if (require_atomic_access && bt == T_LONG) {
1498     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
1499   } else if (require_atomic_access && bt == T_DOUBLE) {
1500     st = StoreDNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
1501   } else {
1502     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1503   }
1504   if (unaligned) {
1505     st->as_Store()->set_unaligned_access();
1506   }
1507   if (mismatched) {
1508     st->as_Store()->set_mismatched_access();
1509   }
1510   st = _gvn.transform(st);
1511   set_memory(st, adr_idx);
1512   // Back-to-back stores can only remove intermediate store with DU info
1513   // so push on worklist for optimizer.
1514   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1515     record_for_igvn(st);
1516 
1517   return st;
1518 }
1519 
1520 
1521 void GraphKit::pre_barrier(bool do_load,
1522                            Node* ctl,
1523                            Node* obj,
1524                            Node* adr,
1525                            uint  adr_idx,
1526                            Node* val,
1527                            const TypeOopPtr* val_type,
1528                            Node* pre_val,
1529                            BasicType bt) {
1530 
1531   BarrierSet* bs = Universe::heap()->barrier_set();
1532   set_control(ctl);
1533   switch (bs->kind()) {
1534     case BarrierSet::G1SATBCT:
1535     case BarrierSet::G1SATBCTLogging:
1536       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1537       break;
1538 
1539     case BarrierSet::CardTableModRef:
1540     case BarrierSet::CardTableExtension:
1541     case BarrierSet::ModRef:
1542     case BarrierSet::Epsilon:
1543       break;
1544 
1545     case BarrierSet::Other:
1546     default      :
1547       ShouldNotReachHere();
1548 
1549   }
1550 }
1551 
1552 bool GraphKit::can_move_pre_barrier() const {
1553   BarrierSet* bs = Universe::heap()->barrier_set();
1554   switch (bs->kind()) {
1555     case BarrierSet::G1SATBCT:
1556     case BarrierSet::G1SATBCTLogging:
1557       return true; // Can move it if no safepoint
1558 
1559     case BarrierSet::CardTableModRef:
1560     case BarrierSet::CardTableExtension:
1561     case BarrierSet::ModRef:
1562     case BarrierSet::Epsilon:
1563       return true; // There is no pre-barrier
1564 
1565     case BarrierSet::Other:
1566     default      :
1567       ShouldNotReachHere();
1568   }
1569   return false;
1570 }
1571 
1572 void GraphKit::post_barrier(Node* ctl,
1573                             Node* store,
1574                             Node* obj,
1575                             Node* adr,
1576                             uint  adr_idx,
1577                             Node* val,
1578                             BasicType bt,
1579                             bool use_precise) {
1580   BarrierSet* bs = Universe::heap()->barrier_set();
1581   set_control(ctl);
1582   switch (bs->kind()) {
1583     case BarrierSet::G1SATBCT:
1584     case BarrierSet::G1SATBCTLogging:
1585       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1586       break;
1587 
1588     case BarrierSet::CardTableModRef:
1589     case BarrierSet::CardTableExtension:
1590       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1591       break;
1592 
1593     case BarrierSet::ModRef:
1594     case BarrierSet::Epsilon:
1595       break;
1596 
1597     case BarrierSet::Other:
1598     default      :
1599       ShouldNotReachHere();
1600 
1601   }
1602 }
1603 
1604 Node* GraphKit::store_oop(Node* ctl,
1605                           Node* obj,
1606                           Node* adr,
1607                           const TypePtr* adr_type,
1608                           Node* val,
1609                           const TypeOopPtr* val_type,
1610                           BasicType bt,
1611                           bool use_precise,
1612                           MemNode::MemOrd mo,
1613                           bool mismatched) {
1614   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1615   // could be delayed during Parse (for example, in adjust_map_after_if()).
1616   // Execute transformation here to avoid barrier generation in such case.
1617   if (_gvn.type(val) == TypePtr::NULL_PTR)
1618     val = _gvn.makecon(TypePtr::NULL_PTR);
1619 
1620   set_control(ctl);
1621   if (stopped()) return top(); // Dead path ?
1622 
1623   assert(bt == T_OBJECT, "sanity");
1624   assert(val != NULL, "not dead path");
1625   uint adr_idx = C->get_alias_index(adr_type);
1626   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1627 
1628   pre_barrier(true /* do_load */,
1629               control(), obj, adr, adr_idx, val, val_type,
1630               NULL /* pre_val */,
1631               bt);
1632 
1633   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1634   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1635   return store;
1636 }
1637 
1638 // Could be an array or object we don't know at compile time (unsafe ref.)
1639 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1640                              Node* obj,   // containing obj
1641                              Node* adr,  // actual adress to store val at
1642                              const TypePtr* adr_type,
1643                              Node* val,
1644                              BasicType bt,
1645                              MemNode::MemOrd mo,
1646                              bool mismatched) {
1647   Compile::AliasType* at = C->alias_type(adr_type);
1648   const TypeOopPtr* val_type = NULL;
1649   if (adr_type->isa_instptr()) {
1650     if (at->field() != NULL) {
1651       // known field.  This code is a copy of the do_put_xxx logic.
1652       ciField* field = at->field();
1653       if (!field->type()->is_loaded()) {
1654         val_type = TypeInstPtr::BOTTOM;
1655       } else {
1656         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1657       }
1658     }
1659   } else if (adr_type->isa_aryptr()) {
1660     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1661   }
1662   if (val_type == NULL) {
1663     val_type = TypeInstPtr::BOTTOM;
1664   }
1665   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1666 }
1667 
1668 
1669 //-------------------------array_element_address-------------------------
1670 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1671                                       const TypeInt* sizetype, Node* ctrl) {
1672   uint shift  = exact_log2(type2aelembytes(elembt));
1673   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1674 
1675   // short-circuit a common case (saves lots of confusing waste motion)
1676   jint idx_con = find_int_con(idx, -1);
1677   if (idx_con >= 0) {
1678     intptr_t offset = header + ((intptr_t)idx_con << shift);
1679     return basic_plus_adr(ary, offset);
1680   }
1681 
1682   // must be correct type for alignment purposes
1683   Node* base  = basic_plus_adr(ary, header);
1684 #ifdef _LP64
1685   // The scaled index operand to AddP must be a clean 64-bit value.
1686   // Java allows a 32-bit int to be incremented to a negative
1687   // value, which appears in a 64-bit register as a large
1688   // positive number.  Using that large positive number as an
1689   // operand in pointer arithmetic has bad consequences.
1690   // On the other hand, 32-bit overflow is rare, and the possibility
1691   // can often be excluded, if we annotate the ConvI2L node with
1692   // a type assertion that its value is known to be a small positive
1693   // number.  (The prior range check has ensured this.)
1694   // This assertion is used by ConvI2LNode::Ideal.
1695   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1696   if (sizetype != NULL) index_max = sizetype->_hi - 1;
1697   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
1698   idx = C->constrained_convI2L(&_gvn, idx, iidxtype, ctrl);
1699 #endif
1700   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1701   return basic_plus_adr(ary, base, scale);
1702 }
1703 
1704 //-------------------------load_array_element-------------------------
1705 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1706   const Type* elemtype = arytype->elem();
1707   BasicType elembt = elemtype->array_element_basic_type();
1708   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1709   if (elembt == T_NARROWOOP) {
1710     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1711   }
1712   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1713   return ld;
1714 }
1715 
1716 //-------------------------set_arguments_for_java_call-------------------------
1717 // Arguments (pre-popped from the stack) are taken from the JVMS.
1718 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1719   // Add the call arguments:
1720   uint nargs = call->method()->arg_size();
1721   for (uint i = 0; i < nargs; i++) {
1722     Node* arg = argument(i);
1723     call->init_req(i + TypeFunc::Parms, arg);
1724   }
1725 }
1726 
1727 //---------------------------set_edges_for_java_call---------------------------
1728 // Connect a newly created call into the current JVMS.
1729 // A return value node (if any) is returned from set_edges_for_java_call.
1730 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1731 
1732   // Add the predefined inputs:
1733   call->init_req( TypeFunc::Control, control() );
1734   call->init_req( TypeFunc::I_O    , i_o() );
1735   call->init_req( TypeFunc::Memory , reset_memory() );
1736   call->init_req( TypeFunc::FramePtr, frameptr() );
1737   call->init_req( TypeFunc::ReturnAdr, top() );
1738 
1739   add_safepoint_edges(call, must_throw);
1740 
1741   Node* xcall = _gvn.transform(call);
1742 
1743   if (xcall == top()) {
1744     set_control(top());
1745     return;
1746   }
1747   assert(xcall == call, "call identity is stable");
1748 
1749   // Re-use the current map to produce the result.
1750 
1751   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1752   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1753   set_all_memory_call(xcall, separate_io_proj);
1754 
1755   //return xcall;   // no need, caller already has it
1756 }
1757 
1758 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1759   if (stopped())  return top();  // maybe the call folded up?
1760 
1761   // Capture the return value, if any.
1762   Node* ret;
1763   if (call->method() == NULL ||
1764       call->method()->return_type()->basic_type() == T_VOID)
1765         ret = top();
1766   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1767 
1768   // Note:  Since any out-of-line call can produce an exception,
1769   // we always insert an I_O projection from the call into the result.
1770 
1771   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1772 
1773   if (separate_io_proj) {
1774     // The caller requested separate projections be used by the fall
1775     // through and exceptional paths, so replace the projections for
1776     // the fall through path.
1777     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1778     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1779   }
1780   return ret;
1781 }
1782 
1783 //--------------------set_predefined_input_for_runtime_call--------------------
1784 // Reading and setting the memory state is way conservative here.
1785 // The real problem is that I am not doing real Type analysis on memory,
1786 // so I cannot distinguish card mark stores from other stores.  Across a GC
1787 // point the Store Barrier and the card mark memory has to agree.  I cannot
1788 // have a card mark store and its barrier split across the GC point from
1789 // either above or below.  Here I get that to happen by reading ALL of memory.
1790 // A better answer would be to separate out card marks from other memory.
1791 // For now, return the input memory state, so that it can be reused
1792 // after the call, if this call has restricted memory effects.
1793 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1794   // Set fixed predefined input arguments
1795   Node* memory = reset_memory();
1796   call->init_req( TypeFunc::Control,   control()  );
1797   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1798   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1799   call->init_req( TypeFunc::FramePtr,  frameptr() );
1800   call->init_req( TypeFunc::ReturnAdr, top()      );
1801   return memory;
1802 }
1803 
1804 //-------------------set_predefined_output_for_runtime_call--------------------
1805 // Set control and memory (not i_o) from the call.
1806 // If keep_mem is not NULL, use it for the output state,
1807 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1808 // If hook_mem is NULL, this call produces no memory effects at all.
1809 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1810 // then only that memory slice is taken from the call.
1811 // In the last case, we must put an appropriate memory barrier before
1812 // the call, so as to create the correct anti-dependencies on loads
1813 // preceding the call.
1814 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1815                                                       Node* keep_mem,
1816                                                       const TypePtr* hook_mem) {
1817   // no i/o
1818   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1819   if (keep_mem) {
1820     // First clone the existing memory state
1821     set_all_memory(keep_mem);
1822     if (hook_mem != NULL) {
1823       // Make memory for the call
1824       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1825       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1826       // We also use hook_mem to extract specific effects from arraycopy stubs.
1827       set_memory(mem, hook_mem);
1828     }
1829     // ...else the call has NO memory effects.
1830 
1831     // Make sure the call advertises its memory effects precisely.
1832     // This lets us build accurate anti-dependences in gcm.cpp.
1833     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1834            "call node must be constructed correctly");
1835   } else {
1836     assert(hook_mem == NULL, "");
1837     // This is not a "slow path" call; all memory comes from the call.
1838     set_all_memory_call(call);
1839   }
1840 }
1841 
1842 
1843 // Replace the call with the current state of the kit.
1844 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1845   JVMState* ejvms = NULL;
1846   if (has_exceptions()) {
1847     ejvms = transfer_exceptions_into_jvms();
1848   }
1849 
1850   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1851   ReplacedNodes replaced_nodes_exception;
1852   Node* ex_ctl = top();
1853 
1854   SafePointNode* final_state = stop();
1855 
1856   // Find all the needed outputs of this call
1857   CallProjections callprojs;
1858   call->extract_projections(&callprojs, true);
1859 
1860   Node* init_mem = call->in(TypeFunc::Memory);
1861   Node* final_mem = final_state->in(TypeFunc::Memory);
1862   Node* final_ctl = final_state->in(TypeFunc::Control);
1863   Node* final_io = final_state->in(TypeFunc::I_O);
1864 
1865   // Replace all the old call edges with the edges from the inlining result
1866   if (callprojs.fallthrough_catchproj != NULL) {
1867     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1868   }
1869   if (callprojs.fallthrough_memproj != NULL) {
1870     if (final_mem->is_MergeMem()) {
1871       // Parser's exits MergeMem was not transformed but may be optimized
1872       final_mem = _gvn.transform(final_mem);
1873     }
1874     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1875   }
1876   if (callprojs.fallthrough_ioproj != NULL) {
1877     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1878   }
1879 
1880   // Replace the result with the new result if it exists and is used
1881   if (callprojs.resproj != NULL && result != NULL) {
1882     C->gvn_replace_by(callprojs.resproj, result);
1883   }
1884 
1885   if (ejvms == NULL) {
1886     // No exception edges to simply kill off those paths
1887     if (callprojs.catchall_catchproj != NULL) {
1888       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1889     }
1890     if (callprojs.catchall_memproj != NULL) {
1891       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1892     }
1893     if (callprojs.catchall_ioproj != NULL) {
1894       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1895     }
1896     // Replace the old exception object with top
1897     if (callprojs.exobj != NULL) {
1898       C->gvn_replace_by(callprojs.exobj, C->top());
1899     }
1900   } else {
1901     GraphKit ekit(ejvms);
1902 
1903     // Load my combined exception state into the kit, with all phis transformed:
1904     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1905     replaced_nodes_exception = ex_map->replaced_nodes();
1906 
1907     Node* ex_oop = ekit.use_exception_state(ex_map);
1908 
1909     if (callprojs.catchall_catchproj != NULL) {
1910       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1911       ex_ctl = ekit.control();
1912     }
1913     if (callprojs.catchall_memproj != NULL) {
1914       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1915     }
1916     if (callprojs.catchall_ioproj != NULL) {
1917       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1918     }
1919 
1920     // Replace the old exception object with the newly created one
1921     if (callprojs.exobj != NULL) {
1922       C->gvn_replace_by(callprojs.exobj, ex_oop);
1923     }
1924   }
1925 
1926   // Disconnect the call from the graph
1927   call->disconnect_inputs(NULL, C);
1928   C->gvn_replace_by(call, C->top());
1929 
1930   // Clean up any MergeMems that feed other MergeMems since the
1931   // optimizer doesn't like that.
1932   if (final_mem->is_MergeMem()) {
1933     Node_List wl;
1934     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1935       Node* m = i.get();
1936       if (m->is_MergeMem() && !wl.contains(m)) {
1937         wl.push(m);
1938       }
1939     }
1940     while (wl.size()  > 0) {
1941       _gvn.transform(wl.pop());
1942     }
1943   }
1944 
1945   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1946     replaced_nodes.apply(C, final_ctl);
1947   }
1948   if (!ex_ctl->is_top() && do_replaced_nodes) {
1949     replaced_nodes_exception.apply(C, ex_ctl);
1950   }
1951 }
1952 
1953 
1954 //------------------------------increment_counter------------------------------
1955 // for statistics: increment a VM counter by 1
1956 
1957 void GraphKit::increment_counter(address counter_addr) {
1958   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1959   increment_counter(adr1);
1960 }
1961 
1962 void GraphKit::increment_counter(Node* counter_addr) {
1963   int adr_type = Compile::AliasIdxRaw;
1964   Node* ctrl = control();
1965   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1966   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1967   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1968 }
1969 
1970 
1971 //------------------------------uncommon_trap----------------------------------
1972 // Bail out to the interpreter in mid-method.  Implemented by calling the
1973 // uncommon_trap blob.  This helper function inserts a runtime call with the
1974 // right debug info.
1975 void GraphKit::uncommon_trap(int trap_request,
1976                              ciKlass* klass, const char* comment,
1977                              bool must_throw,
1978                              bool keep_exact_action) {
1979   if (failing())  stop();
1980   if (stopped())  return; // trap reachable?
1981 
1982   // Note:  If ProfileTraps is true, and if a deopt. actually
1983   // occurs here, the runtime will make sure an MDO exists.  There is
1984   // no need to call method()->ensure_method_data() at this point.
1985 
1986   // Set the stack pointer to the right value for reexecution:
1987   set_sp(reexecute_sp());
1988 
1989 #ifdef ASSERT
1990   if (!must_throw) {
1991     // Make sure the stack has at least enough depth to execute
1992     // the current bytecode.
1993     int inputs, ignored_depth;
1994     if (compute_stack_effects(inputs, ignored_depth)) {
1995       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1996              Bytecodes::name(java_bc()), sp(), inputs));
1997     }
1998   }
1999 #endif
2000 
2001   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2002   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2003 
2004   switch (action) {
2005   case Deoptimization::Action_maybe_recompile:
2006   case Deoptimization::Action_reinterpret:
2007     // Temporary fix for 6529811 to allow virtual calls to be sure they
2008     // get the chance to go from mono->bi->mega
2009     if (!keep_exact_action &&
2010         Deoptimization::trap_request_index(trap_request) < 0 &&
2011         too_many_recompiles(reason)) {
2012       // This BCI is causing too many recompilations.
2013       if (C->log() != NULL) {
2014         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2015                 Deoptimization::trap_reason_name(reason),
2016                 Deoptimization::trap_action_name(action));
2017       }
2018       action = Deoptimization::Action_none;
2019       trap_request = Deoptimization::make_trap_request(reason, action);
2020     } else {
2021       C->set_trap_can_recompile(true);
2022     }
2023     break;
2024   case Deoptimization::Action_make_not_entrant:
2025     C->set_trap_can_recompile(true);
2026     break;
2027 #ifdef ASSERT
2028   case Deoptimization::Action_none:
2029   case Deoptimization::Action_make_not_compilable:
2030     break;
2031   default:
2032     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2033     break;
2034 #endif
2035   }
2036 
2037   if (TraceOptoParse) {
2038     char buf[100];
2039     tty->print_cr("Uncommon trap %s at bci:%d",
2040                   Deoptimization::format_trap_request(buf, sizeof(buf),
2041                                                       trap_request), bci());
2042   }
2043 
2044   CompileLog* log = C->log();
2045   if (log != NULL) {
2046     int kid = (klass == NULL)? -1: log->identify(klass);
2047     log->begin_elem("uncommon_trap bci='%d'", bci());
2048     char buf[100];
2049     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2050                                                           trap_request));
2051     if (kid >= 0)         log->print(" klass='%d'", kid);
2052     if (comment != NULL)  log->print(" comment='%s'", comment);
2053     log->end_elem();
2054   }
2055 
2056   // Make sure any guarding test views this path as very unlikely
2057   Node *i0 = control()->in(0);
2058   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2059     IfNode *iff = i0->as_If();
2060     float f = iff->_prob;   // Get prob
2061     if (control()->Opcode() == Op_IfTrue) {
2062       if (f > PROB_UNLIKELY_MAG(4))
2063         iff->_prob = PROB_MIN;
2064     } else {
2065       if (f < PROB_LIKELY_MAG(4))
2066         iff->_prob = PROB_MAX;
2067     }
2068   }
2069 
2070   // Clear out dead values from the debug info.
2071   kill_dead_locals();
2072 
2073   // Now insert the uncommon trap subroutine call
2074   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2075   const TypePtr* no_memory_effects = NULL;
2076   // Pass the index of the class to be loaded
2077   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2078                                  (must_throw ? RC_MUST_THROW : 0),
2079                                  OptoRuntime::uncommon_trap_Type(),
2080                                  call_addr, "uncommon_trap", no_memory_effects,
2081                                  intcon(trap_request));
2082   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2083          "must extract request correctly from the graph");
2084   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2085 
2086   call->set_req(TypeFunc::ReturnAdr, returnadr());
2087   // The debug info is the only real input to this call.
2088 
2089   // Halt-and-catch fire here.  The above call should never return!
2090   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2091   _gvn.set_type_bottom(halt);
2092   root()->add_req(halt);
2093 
2094   stop_and_kill_map();
2095 }
2096 
2097 
2098 //--------------------------just_allocated_object------------------------------
2099 // Report the object that was just allocated.
2100 // It must be the case that there are no intervening safepoints.
2101 // We use this to determine if an object is so "fresh" that
2102 // it does not require card marks.
2103 Node* GraphKit::just_allocated_object(Node* current_control) {
2104   if (C->recent_alloc_ctl() == current_control)
2105     return C->recent_alloc_obj();
2106   return NULL;
2107 }
2108 
2109 
2110 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2111   // (Note:  TypeFunc::make has a cache that makes this fast.)
2112   const TypeFunc* tf    = TypeFunc::make(dest_method);
2113   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2114   for (int j = 0; j < nargs; j++) {
2115     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2116     if( targ->basic_type() == T_DOUBLE ) {
2117       // If any parameters are doubles, they must be rounded before
2118       // the call, dstore_rounding does gvn.transform
2119       Node *arg = argument(j);
2120       arg = dstore_rounding(arg);
2121       set_argument(j, arg);
2122     }
2123   }
2124 }
2125 
2126 /**
2127  * Record profiling data exact_kls for Node n with the type system so
2128  * that it can propagate it (speculation)
2129  *
2130  * @param n          node that the type applies to
2131  * @param exact_kls  type from profiling
2132  *
2133  * @return           node with improved type
2134  */
2135 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
2136   const Type* current_type = _gvn.type(n);
2137   assert(UseTypeSpeculation, "type speculation must be on");
2138 
2139   const TypeOopPtr* speculative = current_type->speculative();
2140 
2141   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2142     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2143     const TypeOopPtr* xtype = tklass->as_instance_type();
2144     assert(xtype->klass_is_exact(), "Should be exact");
2145     // record the new speculative type's depth
2146     speculative = xtype->with_inline_depth(jvms()->depth());
2147   }
2148 
2149   if (speculative != current_type->speculative()) {
2150     // Build a type with a speculative type (what we think we know
2151     // about the type but will need a guard when we use it)
2152     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2153     // We're changing the type, we need a new CheckCast node to carry
2154     // the new type. The new type depends on the control: what
2155     // profiling tells us is only valid from here as far as we can
2156     // tell.
2157     Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2158     cast = _gvn.transform(cast);
2159     replace_in_map(n, cast);
2160     n = cast;
2161   }
2162 
2163   return n;
2164 }
2165 
2166 /**
2167  * Record profiling data from receiver profiling at an invoke with the
2168  * type system so that it can propagate it (speculation)
2169  *
2170  * @param n  receiver node
2171  *
2172  * @return   node with improved type
2173  */
2174 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2175   if (!UseTypeSpeculation) {
2176     return n;
2177   }
2178   ciKlass* exact_kls = profile_has_unique_klass();
2179   return record_profile_for_speculation(n, exact_kls);
2180 }
2181 
2182 /**
2183  * Record profiling data from argument profiling at an invoke with the
2184  * type system so that it can propagate it (speculation)
2185  *
2186  * @param dest_method  target method for the call
2187  * @param bc           what invoke bytecode is this?
2188  */
2189 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2190   if (!UseTypeSpeculation) {
2191     return;
2192   }
2193   const TypeFunc* tf    = TypeFunc::make(dest_method);
2194   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2195   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2196   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2197     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2198     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2199       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
2200       if (better_type != NULL) {
2201         record_profile_for_speculation(argument(j), better_type);
2202       }
2203       i++;
2204     }
2205   }
2206 }
2207 
2208 /**
2209  * Record profiling data from parameter profiling at an invoke with
2210  * the type system so that it can propagate it (speculation)
2211  */
2212 void GraphKit::record_profiled_parameters_for_speculation() {
2213   if (!UseTypeSpeculation) {
2214     return;
2215   }
2216   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2217     if (_gvn.type(local(i))->isa_oopptr()) {
2218       ciKlass* better_type = method()->parameter_profiled_type(j);
2219       if (better_type != NULL) {
2220         record_profile_for_speculation(local(i), better_type);
2221       }
2222       j++;
2223     }
2224   }
2225 }
2226 
2227 void GraphKit::round_double_result(ciMethod* dest_method) {
2228   // A non-strict method may return a double value which has an extended
2229   // exponent, but this must not be visible in a caller which is 'strict'
2230   // If a strict caller invokes a non-strict callee, round a double result
2231 
2232   BasicType result_type = dest_method->return_type()->basic_type();
2233   assert( method() != NULL, "must have caller context");
2234   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2235     // Destination method's return value is on top of stack
2236     // dstore_rounding() does gvn.transform
2237     Node *result = pop_pair();
2238     result = dstore_rounding(result);
2239     push_pair(result);
2240   }
2241 }
2242 
2243 // rounding for strict float precision conformance
2244 Node* GraphKit::precision_rounding(Node* n) {
2245   return UseStrictFP && _method->flags().is_strict()
2246     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2247     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2248     : n;
2249 }
2250 
2251 // rounding for strict double precision conformance
2252 Node* GraphKit::dprecision_rounding(Node *n) {
2253   return UseStrictFP && _method->flags().is_strict()
2254     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2255     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2256     : n;
2257 }
2258 
2259 // rounding for non-strict double stores
2260 Node* GraphKit::dstore_rounding(Node* n) {
2261   return Matcher::strict_fp_requires_explicit_rounding
2262     && UseSSE <= 1
2263     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2264     : n;
2265 }
2266 
2267 //=============================================================================
2268 // Generate a fast path/slow path idiom.  Graph looks like:
2269 // [foo] indicates that 'foo' is a parameter
2270 //
2271 //              [in]     NULL
2272 //                 \    /
2273 //                  CmpP
2274 //                  Bool ne
2275 //                   If
2276 //                  /  \
2277 //              True    False-<2>
2278 //              / |
2279 //             /  cast_not_null
2280 //           Load  |    |   ^
2281 //        [fast_test]   |   |
2282 // gvn to   opt_test    |   |
2283 //          /    \      |  <1>
2284 //      True     False  |
2285 //        |         \\  |
2286 //   [slow_call]     \[fast_result]
2287 //    Ctl   Val       \      \
2288 //     |               \      \
2289 //    Catch       <1>   \      \
2290 //   /    \        ^     \      \
2291 //  Ex    No_Ex    |      \      \
2292 //  |       \   \  |       \ <2>  \
2293 //  ...      \  [slow_res] |  |    \   [null_result]
2294 //            \         \--+--+---  |  |
2295 //             \           | /    \ | /
2296 //              --------Region     Phi
2297 //
2298 //=============================================================================
2299 // Code is structured as a series of driver functions all called 'do_XXX' that
2300 // call a set of helper functions.  Helper functions first, then drivers.
2301 
2302 //------------------------------null_check_oop---------------------------------
2303 // Null check oop.  Set null-path control into Region in slot 3.
2304 // Make a cast-not-nullness use the other not-null control.  Return cast.
2305 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2306                                bool never_see_null, bool safe_for_replace) {
2307   // Initial NULL check taken path
2308   (*null_control) = top();
2309   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2310 
2311   // Generate uncommon_trap:
2312   if (never_see_null && (*null_control) != top()) {
2313     // If we see an unexpected null at a check-cast we record it and force a
2314     // recompile; the offending check-cast will be compiled to handle NULLs.
2315     // If we see more than one offending BCI, then all checkcasts in the
2316     // method will be compiled to handle NULLs.
2317     PreserveJVMState pjvms(this);
2318     set_control(*null_control);
2319     replace_in_map(value, null());
2320     uncommon_trap(Deoptimization::Reason_null_check,
2321                   Deoptimization::Action_make_not_entrant);
2322     (*null_control) = top();    // NULL path is dead
2323   }
2324   if ((*null_control) == top() && safe_for_replace) {
2325     replace_in_map(value, cast);
2326   }
2327 
2328   // Cast away null-ness on the result
2329   return cast;
2330 }
2331 
2332 //------------------------------opt_iff----------------------------------------
2333 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2334 // Return slow-path control.
2335 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2336   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2337 
2338   // Fast path taken; set region slot 2
2339   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2340   region->init_req(2,fast_taken); // Capture fast-control
2341 
2342   // Fast path not-taken, i.e. slow path
2343   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2344   return slow_taken;
2345 }
2346 
2347 //-----------------------------make_runtime_call-------------------------------
2348 Node* GraphKit::make_runtime_call(int flags,
2349                                   const TypeFunc* call_type, address call_addr,
2350                                   const char* call_name,
2351                                   const TypePtr* adr_type,
2352                                   // The following parms are all optional.
2353                                   // The first NULL ends the list.
2354                                   Node* parm0, Node* parm1,
2355                                   Node* parm2, Node* parm3,
2356                                   Node* parm4, Node* parm5,
2357                                   Node* parm6, Node* parm7) {
2358   // Slow-path call
2359   bool is_leaf = !(flags & RC_NO_LEAF);
2360   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2361   if (call_name == NULL) {
2362     assert(!is_leaf, "must supply name for leaf");
2363     call_name = OptoRuntime::stub_name(call_addr);
2364   }
2365   CallNode* call;
2366   if (!is_leaf) {
2367     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2368                                            bci(), adr_type);
2369   } else if (flags & RC_NO_FP) {
2370     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2371   } else {
2372     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2373   }
2374 
2375   // The following is similar to set_edges_for_java_call,
2376   // except that the memory effects of the call are restricted to AliasIdxRaw.
2377 
2378   // Slow path call has no side-effects, uses few values
2379   bool wide_in  = !(flags & RC_NARROW_MEM);
2380   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2381 
2382   Node* prev_mem = NULL;
2383   if (wide_in) {
2384     prev_mem = set_predefined_input_for_runtime_call(call);
2385   } else {
2386     assert(!wide_out, "narrow in => narrow out");
2387     Node* narrow_mem = memory(adr_type);
2388     prev_mem = reset_memory();
2389     map()->set_memory(narrow_mem);
2390     set_predefined_input_for_runtime_call(call);
2391   }
2392 
2393   // Hook each parm in order.  Stop looking at the first NULL.
2394   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2395   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2396   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2397   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2398   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2399   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2400   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2401   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2402     /* close each nested if ===> */  } } } } } } } }
2403   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2404 
2405   if (!is_leaf) {
2406     // Non-leaves can block and take safepoints:
2407     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2408   }
2409   // Non-leaves can throw exceptions:
2410   if (has_io) {
2411     call->set_req(TypeFunc::I_O, i_o());
2412   }
2413 
2414   if (flags & RC_UNCOMMON) {
2415     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2416     // (An "if" probability corresponds roughly to an unconditional count.
2417     // Sort of.)
2418     call->set_cnt(PROB_UNLIKELY_MAG(4));
2419   }
2420 
2421   Node* c = _gvn.transform(call);
2422   assert(c == call, "cannot disappear");
2423 
2424   if (wide_out) {
2425     // Slow path call has full side-effects.
2426     set_predefined_output_for_runtime_call(call);
2427   } else {
2428     // Slow path call has few side-effects, and/or sets few values.
2429     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2430   }
2431 
2432   if (has_io) {
2433     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2434   }
2435   return call;
2436 
2437 }
2438 
2439 //------------------------------merge_memory-----------------------------------
2440 // Merge memory from one path into the current memory state.
2441 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2442   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2443     Node* old_slice = mms.force_memory();
2444     Node* new_slice = mms.memory2();
2445     if (old_slice != new_slice) {
2446       PhiNode* phi;
2447       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2448         if (mms.is_empty()) {
2449           // clone base memory Phi's inputs for this memory slice
2450           assert(old_slice == mms.base_memory(), "sanity");
2451           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2452           _gvn.set_type(phi, Type::MEMORY);
2453           for (uint i = 1; i < phi->req(); i++) {
2454             phi->init_req(i, old_slice->in(i));
2455           }
2456         } else {
2457           phi = old_slice->as_Phi(); // Phi was generated already
2458         }
2459       } else {
2460         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2461         _gvn.set_type(phi, Type::MEMORY);
2462       }
2463       phi->set_req(new_path, new_slice);
2464       mms.set_memory(phi);
2465     }
2466   }
2467 }
2468 
2469 //------------------------------make_slow_call_ex------------------------------
2470 // Make the exception handler hookups for the slow call
2471 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2472   if (stopped())  return;
2473 
2474   // Make a catch node with just two handlers:  fall-through and catch-all
2475   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2476   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2477   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2478   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2479 
2480   { PreserveJVMState pjvms(this);
2481     set_control(excp);
2482     set_i_o(i_o);
2483 
2484     if (excp != top()) {
2485       if (deoptimize) {
2486         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2487         uncommon_trap(Deoptimization::Reason_unhandled,
2488                       Deoptimization::Action_none);
2489       } else {
2490         // Create an exception state also.
2491         // Use an exact type if the caller has specified a specific exception.
2492         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2493         Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2494         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2495       }
2496     }
2497   }
2498 
2499   // Get the no-exception control from the CatchNode.
2500   set_control(norm);
2501 }
2502 
2503 
2504 //-------------------------------gen_subtype_check-----------------------------
2505 // Generate a subtyping check.  Takes as input the subtype and supertype.
2506 // Returns 2 values: sets the default control() to the true path and returns
2507 // the false path.  Only reads invariant memory; sets no (visible) memory.
2508 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2509 // but that's not exposed to the optimizer.  This call also doesn't take in an
2510 // Object; if you wish to check an Object you need to load the Object's class
2511 // prior to coming here.
2512 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2513   // Fast check for identical types, perhaps identical constants.
2514   // The types can even be identical non-constants, in cases
2515   // involving Array.newInstance, Object.clone, etc.
2516   if (subklass == superklass)
2517     return top();             // false path is dead; no test needed.
2518 
2519   if (_gvn.type(superklass)->singleton()) {
2520     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2521     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2522 
2523     // In the common case of an exact superklass, try to fold up the
2524     // test before generating code.  You may ask, why not just generate
2525     // the code and then let it fold up?  The answer is that the generated
2526     // code will necessarily include null checks, which do not always
2527     // completely fold away.  If they are also needless, then they turn
2528     // into a performance loss.  Example:
2529     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2530     // Here, the type of 'fa' is often exact, so the store check
2531     // of fa[1]=x will fold up, without testing the nullness of x.
2532     switch (static_subtype_check(superk, subk)) {
2533     case SSC_always_false:
2534       {
2535         Node* always_fail = control();
2536         set_control(top());
2537         return always_fail;
2538       }
2539     case SSC_always_true:
2540       return top();
2541     case SSC_easy_test:
2542       {
2543         // Just do a direct pointer compare and be done.
2544         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2545         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2546         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2547         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2548         return       _gvn.transform( new(C) IfFalseNode(iff) );
2549       }
2550     case SSC_full_test:
2551       break;
2552     default:
2553       ShouldNotReachHere();
2554     }
2555   }
2556 
2557   // %%% Possible further optimization:  Even if the superklass is not exact,
2558   // if the subklass is the unique subtype of the superklass, the check
2559   // will always succeed.  We could leave a dependency behind to ensure this.
2560 
2561   // First load the super-klass's check-offset
2562   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2563   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
2564                                                    TypeInt::INT, MemNode::unordered));
2565   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2566   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2567 
2568   // Load from the sub-klass's super-class display list, or a 1-word cache of
2569   // the secondary superclass list, or a failing value with a sentinel offset
2570   // if the super-klass is an interface or exceptionally deep in the Java
2571   // hierarchy and we have to scan the secondary superclass list the hard way.
2572   // Worst-case type is a little odd: NULL is allowed as a result (usually
2573   // klass loads can never produce a NULL).
2574   Node *chk_off_X = ConvI2X(chk_off);
2575   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2576   // For some types like interfaces the following loadKlass is from a 1-word
2577   // cache which is mutable so can't use immutable memory.  Other
2578   // types load from the super-class display table which is immutable.
2579   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2580   Node* nkls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2581 
2582   // Compile speed common case: ARE a subtype and we canNOT fail
2583   if( superklass == nkls )
2584     return top();             // false path is dead; no test needed.
2585 
2586   // See if we get an immediate positive hit.  Happens roughly 83% of the
2587   // time.  Test to see if the value loaded just previously from the subklass
2588   // is exactly the superklass.
2589   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2590   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2591   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2592   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2593   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2594 
2595   // Compile speed common case: Check for being deterministic right now.  If
2596   // chk_off is a constant and not equal to cacheoff then we are NOT a
2597   // subklass.  In this case we need exactly the 1 test above and we can
2598   // return those results immediately.
2599   if (!might_be_cache) {
2600     Node* not_subtype_ctrl = control();
2601     set_control(iftrue1); // We need exactly the 1 test above
2602     return not_subtype_ctrl;
2603   }
2604 
2605   // Gather the various success & failures here
2606   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2607   record_for_igvn(r_ok_subtype);
2608   RegionNode *r_not_subtype = new (C) RegionNode(3);
2609   record_for_igvn(r_not_subtype);
2610 
2611   r_ok_subtype->init_req(1, iftrue1);
2612 
2613   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2614   // is roughly 63% of the remaining cases).  Test to see if the loaded
2615   // check-offset points into the subklass display list or the 1-element
2616   // cache.  If it points to the display (and NOT the cache) and the display
2617   // missed then it's not a subtype.
2618   Node *cacheoff = _gvn.intcon(cacheoff_con);
2619   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2620   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2621   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2622   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2623   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2624 
2625   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2626   // No performance impact (too rare) but allows sharing of secondary arrays
2627   // which has some footprint reduction.
2628   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2629   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2630   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2631   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2632   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2633 
2634   // -- Roads not taken here: --
2635   // We could also have chosen to perform the self-check at the beginning
2636   // of this code sequence, as the assembler does.  This would not pay off
2637   // the same way, since the optimizer, unlike the assembler, can perform
2638   // static type analysis to fold away many successful self-checks.
2639   // Non-foldable self checks work better here in second position, because
2640   // the initial primary superclass check subsumes a self-check for most
2641   // types.  An exception would be a secondary type like array-of-interface,
2642   // which does not appear in its own primary supertype display.
2643   // Finally, we could have chosen to move the self-check into the
2644   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2645   // dependent manner.  But it is worthwhile to have the check here,
2646   // where it can be perhaps be optimized.  The cost in code space is
2647   // small (register compare, branch).
2648 
2649   // Now do a linear scan of the secondary super-klass array.  Again, no real
2650   // performance impact (too rare) but it's gotta be done.
2651   // Since the code is rarely used, there is no penalty for moving it
2652   // out of line, and it can only improve I-cache density.
2653   // The decision to inline or out-of-line this final check is platform
2654   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2655   Node* psc = _gvn.transform(
2656     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2657 
2658   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2659   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2660   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2661   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2662   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2663 
2664   // Return false path; set default control to true path.
2665   set_control( _gvn.transform(r_ok_subtype) );
2666   return _gvn.transform(r_not_subtype);
2667 }
2668 
2669 //----------------------------static_subtype_check-----------------------------
2670 // Shortcut important common cases when superklass is exact:
2671 // (0) superklass is java.lang.Object (can occur in reflective code)
2672 // (1) subklass is already limited to a subtype of superklass => always ok
2673 // (2) subklass does not overlap with superklass => always fail
2674 // (3) superklass has NO subtypes and we can check with a simple compare.
2675 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2676   if (StressReflectiveCode) {
2677     return SSC_full_test;       // Let caller generate the general case.
2678   }
2679 
2680   if (superk == env()->Object_klass()) {
2681     return SSC_always_true;     // (0) this test cannot fail
2682   }
2683 
2684   ciType* superelem = superk;
2685   if (superelem->is_array_klass())
2686     superelem = superelem->as_array_klass()->base_element_type();
2687 
2688   if (!subk->is_interface()) {  // cannot trust static interface types yet
2689     if (subk->is_subtype_of(superk)) {
2690       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2691     }
2692     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2693         !superk->is_subtype_of(subk)) {
2694       return SSC_always_false;
2695     }
2696   }
2697 
2698   // If casting to an instance klass, it must have no subtypes
2699   if (superk->is_interface()) {
2700     // Cannot trust interfaces yet.
2701     // %%% S.B. superk->nof_implementors() == 1
2702   } else if (superelem->is_instance_klass()) {
2703     ciInstanceKlass* ik = superelem->as_instance_klass();
2704     if (!ik->has_subklass() && !ik->is_interface()) {
2705       if (!ik->is_final()) {
2706         // Add a dependency if there is a chance of a later subclass.
2707         C->dependencies()->assert_leaf_type(ik);
2708       }
2709       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2710     }
2711   } else {
2712     // A primitive array type has no subtypes.
2713     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2714   }
2715 
2716   return SSC_full_test;
2717 }
2718 
2719 // Profile-driven exact type check:
2720 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2721                                     float prob,
2722                                     Node* *casted_receiver) {
2723   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2724   Node* recv_klass = load_object_klass(receiver);
2725   Node* want_klass = makecon(tklass);
2726   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2727   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2728   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2729   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2730   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2731 
2732   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2733   assert(recv_xtype->klass_is_exact(), "");
2734 
2735   // Subsume downstream occurrences of receiver with a cast to
2736   // recv_xtype, since now we know what the type will be.
2737   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2738   (*casted_receiver) = _gvn.transform(cast);
2739   // (User must make the replace_in_map call.)
2740 
2741   return fail;
2742 }
2743 
2744 
2745 //------------------------------seems_never_null-------------------------------
2746 // Use null_seen information if it is available from the profile.
2747 // If we see an unexpected null at a type check we record it and force a
2748 // recompile; the offending check will be recompiled to handle NULLs.
2749 // If we see several offending BCIs, then all checks in the
2750 // method will be recompiled.
2751 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2752   if (UncommonNullCast               // Cutout for this technique
2753       && obj != null()               // And not the -Xcomp stupid case?
2754       && !too_many_traps(Deoptimization::Reason_null_check)
2755       ) {
2756     if (data == NULL)
2757       // Edge case:  no mature data.  Be optimistic here.
2758       return true;
2759     // If the profile has not seen a null, assume it won't happen.
2760     assert(java_bc() == Bytecodes::_checkcast ||
2761            java_bc() == Bytecodes::_instanceof ||
2762            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2763     return !data->as_BitData()->null_seen();
2764   }
2765   return false;
2766 }
2767 
2768 //------------------------maybe_cast_profiled_receiver-------------------------
2769 // If the profile has seen exactly one type, narrow to exactly that type.
2770 // Subsequent type checks will always fold up.
2771 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2772                                              ciKlass* require_klass,
2773                                              ciKlass* spec_klass,
2774                                              bool safe_for_replace) {
2775   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2776 
2777   Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;
2778 
2779   // Make sure we haven't already deoptimized from this tactic.
2780   if (too_many_traps(reason) || too_many_recompiles(reason))
2781     return NULL;
2782 
2783   // (No, this isn't a call, but it's enough like a virtual call
2784   // to use the same ciMethod accessor to get the profile info...)
2785   // If we have a speculative type use it instead of profiling (which
2786   // may not help us)
2787   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2788   if (exact_kls != NULL) {// no cast failures here
2789     if (require_klass == NULL ||
2790         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2791       // If we narrow the type to match what the type profile sees or
2792       // the speculative type, we can then remove the rest of the
2793       // cast.
2794       // This is a win, even if the exact_kls is very specific,
2795       // because downstream operations, such as method calls,
2796       // will often benefit from the sharper type.
2797       Node* exact_obj = not_null_obj; // will get updated in place...
2798       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2799                                             &exact_obj);
2800       { PreserveJVMState pjvms(this);
2801         set_control(slow_ctl);
2802         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2803       }
2804       if (safe_for_replace) {
2805         replace_in_map(not_null_obj, exact_obj);
2806       }
2807       return exact_obj;
2808     }
2809     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2810   }
2811 
2812   return NULL;
2813 }
2814 
2815 /**
2816  * Cast obj to type and emit guard unless we had too many traps here
2817  * already
2818  *
2819  * @param obj       node being casted
2820  * @param type      type to cast the node to
2821  * @param not_null  true if we know node cannot be null
2822  */
2823 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2824                                         ciKlass* type,
2825                                         bool not_null) {
2826   // type == NULL if profiling tells us this object is always null
2827   if (type != NULL) {
2828     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2829     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
2830     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2831         !too_many_traps(class_reason) && !too_many_recompiles(class_reason)) {
2832       Node* not_null_obj = NULL;
2833       // not_null is true if we know the object is not null and
2834       // there's no need for a null check
2835       if (!not_null) {
2836         Node* null_ctl = top();
2837         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
2838         assert(null_ctl->is_top(), "no null control here");
2839       } else {
2840         not_null_obj = obj;
2841       }
2842 
2843       Node* exact_obj = not_null_obj;
2844       ciKlass* exact_kls = type;
2845       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2846                                             &exact_obj);
2847       {
2848         PreserveJVMState pjvms(this);
2849         set_control(slow_ctl);
2850         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2851       }
2852       replace_in_map(not_null_obj, exact_obj);
2853       obj = exact_obj;
2854     }
2855   } else {
2856     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2857         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2858       Node* exact_obj = null_assert(obj);
2859       replace_in_map(obj, exact_obj);
2860       obj = exact_obj;
2861     }
2862   }
2863   return obj;
2864 }
2865 
2866 //-------------------------------gen_instanceof--------------------------------
2867 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2868 // and the reflective instance-of call.
2869 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2870   kill_dead_locals();           // Benefit all the uncommon traps
2871   assert( !stopped(), "dead parse path should be checked in callers" );
2872   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2873          "must check for not-null not-dead klass in callers");
2874 
2875   // Make the merge point
2876   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2877   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2878   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2879   C->set_has_split_ifs(true); // Has chance for split-if optimization
2880 
2881   ciProfileData* data = NULL;
2882   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2883     data = method()->method_data()->bci_to_data(bci());
2884   }
2885   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2886                          && seems_never_null(obj, data));
2887 
2888   // Null check; get casted pointer; set region slot 3
2889   Node* null_ctl = top();
2890   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2891 
2892   // If not_null_obj is dead, only null-path is taken
2893   if (stopped()) {              // Doing instance-of on a NULL?
2894     set_control(null_ctl);
2895     return intcon(0);
2896   }
2897   region->init_req(_null_path, null_ctl);
2898   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2899   if (null_ctl == top()) {
2900     // Do this eagerly, so that pattern matches like is_diamond_phi
2901     // will work even during parsing.
2902     assert(_null_path == PATH_LIMIT-1, "delete last");
2903     region->del_req(_null_path);
2904     phi   ->del_req(_null_path);
2905   }
2906 
2907   // Do we know the type check always succeed?
2908   bool known_statically = false;
2909   if (_gvn.type(superklass)->singleton()) {
2910     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2911     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2912     if (subk != NULL && subk->is_loaded()) {
2913       int static_res = static_subtype_check(superk, subk);
2914       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2915     }
2916   }
2917 
2918   if (known_statically && UseTypeSpeculation) {
2919     // If we know the type check always succeeds then we don't use the
2920     // profiling data at this bytecode. Don't lose it, feed it to the
2921     // type system as a speculative type.
2922     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2923   } else {
2924     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2925     // We may not have profiling here or it may not help us. If we
2926     // have a speculative type use it to perform an exact cast.
2927     ciKlass* spec_obj_type = obj_type->speculative_type();
2928     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2929       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2930       if (stopped()) {            // Profile disagrees with this path.
2931         set_control(null_ctl);    // Null is the only remaining possibility.
2932         return intcon(0);
2933       }
2934       if (cast_obj != NULL) {
2935         not_null_obj = cast_obj;
2936       }
2937     }
2938   }
2939 
2940   // Load the object's klass
2941   Node* obj_klass = load_object_klass(not_null_obj);
2942 
2943   // Generate the subtype check
2944   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2945 
2946   // Plug in the success path to the general merge in slot 1.
2947   region->init_req(_obj_path, control());
2948   phi   ->init_req(_obj_path, intcon(1));
2949 
2950   // Plug in the failing path to the general merge in slot 2.
2951   region->init_req(_fail_path, not_subtype_ctrl);
2952   phi   ->init_req(_fail_path, intcon(0));
2953 
2954   // Return final merged results
2955   set_control( _gvn.transform(region) );
2956   record_for_igvn(region);
2957   return _gvn.transform(phi);
2958 }
2959 
2960 //-------------------------------gen_checkcast---------------------------------
2961 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2962 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2963 // uncommon-trap paths work.  Adjust stack after this call.
2964 // If failure_control is supplied and not null, it is filled in with
2965 // the control edge for the cast failure.  Otherwise, an appropriate
2966 // uncommon trap or exception is thrown.
2967 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2968                               Node* *failure_control) {
2969   kill_dead_locals();           // Benefit all the uncommon traps
2970   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2971   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2972 
2973   // Fast cutout:  Check the case that the cast is vacuously true.
2974   // This detects the common cases where the test will short-circuit
2975   // away completely.  We do this before we perform the null check,
2976   // because if the test is going to turn into zero code, we don't
2977   // want a residual null check left around.  (Causes a slowdown,
2978   // for example, in some objArray manipulations, such as a[i]=a[j].)
2979   if (tk->singleton()) {
2980     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2981     if (objtp != NULL && objtp->klass() != NULL) {
2982       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2983       case SSC_always_true:
2984         // If we know the type check always succeed then we don't use
2985         // the profiling data at this bytecode. Don't lose it, feed it
2986         // to the type system as a speculative type.
2987         return record_profiled_receiver_for_speculation(obj);
2988       case SSC_always_false:
2989         // It needs a null check because a null will *pass* the cast check.
2990         // A non-null value will always produce an exception.
2991         return null_assert(obj);
2992       }
2993     }
2994   }
2995 
2996   ciProfileData* data = NULL;
2997   bool safe_for_replace = false;
2998   if (failure_control == NULL) {        // use MDO in regular case only
2999     assert(java_bc() == Bytecodes::_aastore ||
3000            java_bc() == Bytecodes::_checkcast,
3001            "interpreter profiles type checks only for these BCs");
3002     data = method()->method_data()->bci_to_data(bci());
3003     safe_for_replace = true;
3004   }
3005 
3006   // Make the merge point
3007   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3008   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3009   Node*       phi    = new (C) PhiNode(region, toop);
3010   C->set_has_split_ifs(true); // Has chance for split-if optimization
3011 
3012   // Use null-cast information if it is available
3013   bool never_see_null = ((failure_control == NULL)  // regular case only
3014                          && seems_never_null(obj, data));
3015 
3016   // Null check; get casted pointer; set region slot 3
3017   Node* null_ctl = top();
3018   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
3019 
3020   // If not_null_obj is dead, only null-path is taken
3021   if (stopped()) {              // Doing instance-of on a NULL?
3022     set_control(null_ctl);
3023     return null();
3024   }
3025   region->init_req(_null_path, null_ctl);
3026   phi   ->init_req(_null_path, null());  // Set null path value
3027   if (null_ctl == top()) {
3028     // Do this eagerly, so that pattern matches like is_diamond_phi
3029     // will work even during parsing.
3030     assert(_null_path == PATH_LIMIT-1, "delete last");
3031     region->del_req(_null_path);
3032     phi   ->del_req(_null_path);
3033   }
3034 
3035   Node* cast_obj = NULL;
3036   if (tk->klass_is_exact()) {
3037     // The following optimization tries to statically cast the speculative type of the object
3038     // (for example obtained during profiling) to the type of the superklass and then do a
3039     // dynamic check that the type of the object is what we expect. To work correctly
3040     // for checkcast and aastore the type of superklass should be exact.
3041     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3042     // We may not have profiling here or it may not help us. If we have
3043     // a speculative type use it to perform an exact cast.
3044     ciKlass* spec_obj_type = obj_type->speculative_type();
3045     if (spec_obj_type != NULL ||
3046         (data != NULL &&
3047          // Counter has never been decremented (due to cast failure).
3048          // ...This is a reasonable thing to expect.  It is true of
3049          // all casts inserted by javac to implement generic types.
3050          data->as_CounterData()->count() >= 0)) {
3051       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3052       if (cast_obj != NULL) {
3053         if (failure_control != NULL) // failure is now impossible
3054           (*failure_control) = top();
3055         // adjust the type of the phi to the exact klass:
3056         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3057       }
3058     }
3059   }
3060 
3061   if (cast_obj == NULL) {
3062     // Load the object's klass
3063     Node* obj_klass = load_object_klass(not_null_obj);
3064 
3065     // Generate the subtype check
3066     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3067 
3068     // Plug in success path into the merge
3069     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3070                                                          not_null_obj, toop));
3071     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3072     if (failure_control == NULL) {
3073       if (not_subtype_ctrl != top()) { // If failure is possible
3074         PreserveJVMState pjvms(this);
3075         set_control(not_subtype_ctrl);
3076         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3077       }
3078     } else {
3079       (*failure_control) = not_subtype_ctrl;
3080     }
3081   }
3082 
3083   region->init_req(_obj_path, control());
3084   phi   ->init_req(_obj_path, cast_obj);
3085 
3086   // A merge of NULL or Casted-NotNull obj
3087   Node* res = _gvn.transform(phi);
3088 
3089   // Note I do NOT always 'replace_in_map(obj,result)' here.
3090   //  if( tk->klass()->can_be_primary_super()  )
3091     // This means that if I successfully store an Object into an array-of-String
3092     // I 'forget' that the Object is really now known to be a String.  I have to
3093     // do this because we don't have true union types for interfaces - if I store
3094     // a Baz into an array-of-Interface and then tell the optimizer it's an
3095     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3096     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3097   //  replace_in_map( obj, res );
3098 
3099   // Return final merged results
3100   set_control( _gvn.transform(region) );
3101   record_for_igvn(region);
3102   return res;
3103 }
3104 
3105 //------------------------------next_monitor-----------------------------------
3106 // What number should be given to the next monitor?
3107 int GraphKit::next_monitor() {
3108   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3109   int next = current + C->sync_stack_slots();
3110   // Keep the toplevel high water mark current:
3111   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3112   return current;
3113 }
3114 
3115 //------------------------------insert_mem_bar---------------------------------
3116 // Memory barrier to avoid floating things around
3117 // The membar serves as a pinch point between both control and all memory slices.
3118 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3119   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3120   mb->init_req(TypeFunc::Control, control());
3121   mb->init_req(TypeFunc::Memory,  reset_memory());
3122   Node* membar = _gvn.transform(mb);
3123   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3124   set_all_memory_call(membar);
3125   return membar;
3126 }
3127 
3128 //-------------------------insert_mem_bar_volatile----------------------------
3129 // Memory barrier to avoid floating things around
3130 // The membar serves as a pinch point between both control and memory(alias_idx).
3131 // If you want to make a pinch point on all memory slices, do not use this
3132 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3133 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3134   // When Parse::do_put_xxx updates a volatile field, it appends a series
3135   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3136   // The first membar is on the same memory slice as the field store opcode.
3137   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3138   // All the other membars (for other volatile slices, including AliasIdxBot,
3139   // which stands for all unknown volatile slices) are control-dependent
3140   // on the first membar.  This prevents later volatile loads or stores
3141   // from sliding up past the just-emitted store.
3142 
3143   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3144   mb->set_req(TypeFunc::Control,control());
3145   if (alias_idx == Compile::AliasIdxBot) {
3146     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3147   } else {
3148     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3149     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3150   }
3151   Node* membar = _gvn.transform(mb);
3152   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3153   if (alias_idx == Compile::AliasIdxBot) {
3154     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3155   } else {
3156     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3157   }
3158   return membar;
3159 }
3160 
3161 //------------------------------shared_lock------------------------------------
3162 // Emit locking code.
3163 FastLockNode* GraphKit::shared_lock(Node* obj) {
3164   // bci is either a monitorenter bc or InvocationEntryBci
3165   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3166   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3167 
3168   if( !GenerateSynchronizationCode )
3169     return NULL;                // Not locking things?
3170   if (stopped())                // Dead monitor?
3171     return NULL;
3172 
3173   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3174 
3175   // Box the stack location
3176   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3177   Node* mem = reset_memory();
3178 
3179   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3180   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3181     // Create the counters for this fast lock.
3182     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3183   }
3184 
3185   // Create the rtm counters for this fast lock if needed.
3186   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3187 
3188   // Add monitor to debug info for the slow path.  If we block inside the
3189   // slow path and de-opt, we need the monitor hanging around
3190   map()->push_monitor( flock );
3191 
3192   const TypeFunc *tf = LockNode::lock_type();
3193   LockNode *lock = new (C) LockNode(C, tf);
3194 
3195   lock->init_req( TypeFunc::Control, control() );
3196   lock->init_req( TypeFunc::Memory , mem );
3197   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3198   lock->init_req( TypeFunc::FramePtr, frameptr() );
3199   lock->init_req( TypeFunc::ReturnAdr, top() );
3200 
3201   lock->init_req(TypeFunc::Parms + 0, obj);
3202   lock->init_req(TypeFunc::Parms + 1, box);
3203   lock->init_req(TypeFunc::Parms + 2, flock);
3204   add_safepoint_edges(lock);
3205 
3206   lock = _gvn.transform( lock )->as_Lock();
3207 
3208   // lock has no side-effects, sets few values
3209   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3210 
3211   insert_mem_bar(Op_MemBarAcquireLock);
3212 
3213   // Add this to the worklist so that the lock can be eliminated
3214   record_for_igvn(lock);
3215 
3216 #ifndef PRODUCT
3217   if (PrintLockStatistics) {
3218     // Update the counter for this lock.  Don't bother using an atomic
3219     // operation since we don't require absolute accuracy.
3220     lock->create_lock_counter(map()->jvms());
3221     increment_counter(lock->counter()->addr());
3222   }
3223 #endif
3224 
3225   return flock;
3226 }
3227 
3228 
3229 //------------------------------shared_unlock----------------------------------
3230 // Emit unlocking code.
3231 void GraphKit::shared_unlock(Node* box, Node* obj) {
3232   // bci is either a monitorenter bc or InvocationEntryBci
3233   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3234   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3235 
3236   if( !GenerateSynchronizationCode )
3237     return;
3238   if (stopped()) {               // Dead monitor?
3239     map()->pop_monitor();        // Kill monitor from debug info
3240     return;
3241   }
3242 
3243   // Memory barrier to avoid floating things down past the locked region
3244   insert_mem_bar(Op_MemBarReleaseLock);
3245 
3246   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3247   UnlockNode *unlock = new (C) UnlockNode(C, tf);
3248 #ifdef ASSERT
3249   unlock->set_dbg_jvms(sync_jvms());
3250 #endif
3251   uint raw_idx = Compile::AliasIdxRaw;
3252   unlock->init_req( TypeFunc::Control, control() );
3253   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3254   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3255   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3256   unlock->init_req( TypeFunc::ReturnAdr, top() );
3257 
3258   unlock->init_req(TypeFunc::Parms + 0, obj);
3259   unlock->init_req(TypeFunc::Parms + 1, box);
3260   unlock = _gvn.transform(unlock)->as_Unlock();
3261 
3262   Node* mem = reset_memory();
3263 
3264   // unlock has no side-effects, sets few values
3265   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3266 
3267   // Kill monitor from debug info
3268   map()->pop_monitor( );
3269 }
3270 
3271 //-------------------------------get_layout_helper-----------------------------
3272 // If the given klass is a constant or known to be an array,
3273 // fetch the constant layout helper value into constant_value
3274 // and return (Node*)NULL.  Otherwise, load the non-constant
3275 // layout helper value, and return the node which represents it.
3276 // This two-faced routine is useful because allocation sites
3277 // almost always feature constant types.
3278 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3279   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3280   if (!StressReflectiveCode && inst_klass != NULL) {
3281     ciKlass* klass = inst_klass->klass();
3282     bool    xklass = inst_klass->klass_is_exact();
3283     if (xklass || klass->is_array_klass()) {
3284       jint lhelper = klass->layout_helper();
3285       if (lhelper != Klass::_lh_neutral_value) {
3286         constant_value = lhelper;
3287         return (Node*) NULL;
3288       }
3289     }
3290   }
3291   constant_value = Klass::_lh_neutral_value;  // put in a known value
3292   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3293   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3294 }
3295 
3296 // We just put in an allocate/initialize with a big raw-memory effect.
3297 // Hook selected additional alias categories on the initialization.
3298 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3299                                 MergeMemNode* init_in_merge,
3300                                 Node* init_out_raw) {
3301   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3302   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3303 
3304   Node* prevmem = kit.memory(alias_idx);
3305   init_in_merge->set_memory_at(alias_idx, prevmem);
3306   kit.set_memory(init_out_raw, alias_idx);
3307 }
3308 
3309 //---------------------------set_output_for_allocation-------------------------
3310 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3311                                           const TypeOopPtr* oop_type,
3312                                           bool deoptimize_on_exception) {
3313   int rawidx = Compile::AliasIdxRaw;
3314   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3315   add_safepoint_edges(alloc);
3316   Node* allocx = _gvn.transform(alloc);
3317   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3318   // create memory projection for i_o
3319   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3320   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3321 
3322   // create a memory projection as for the normal control path
3323   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3324   set_memory(malloc, rawidx);
3325 
3326   // a normal slow-call doesn't change i_o, but an allocation does
3327   // we create a separate i_o projection for the normal control path
3328   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3329   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3330 
3331   // put in an initialization barrier
3332   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3333                                                  rawoop)->as_Initialize();
3334   assert(alloc->initialization() == init,  "2-way macro link must work");
3335   assert(init ->allocation()     == alloc, "2-way macro link must work");
3336   {
3337     // Extract memory strands which may participate in the new object's
3338     // initialization, and source them from the new InitializeNode.
3339     // This will allow us to observe initializations when they occur,
3340     // and link them properly (as a group) to the InitializeNode.
3341     assert(init->in(InitializeNode::Memory) == malloc, "");
3342     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3343     init->set_req(InitializeNode::Memory, minit_in);
3344     record_for_igvn(minit_in); // fold it up later, if possible
3345     Node* minit_out = memory(rawidx);
3346     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3347     if (oop_type->isa_aryptr()) {
3348       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3349       int            elemidx  = C->get_alias_index(telemref);
3350       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3351     } else if (oop_type->isa_instptr()) {
3352       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3353       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3354         ciField* field = ik->nonstatic_field_at(i);
3355         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3356           continue;  // do not bother to track really large numbers of fields
3357         // Find (or create) the alias category for this field:
3358         int fieldidx = C->alias_type(field)->index();
3359         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3360       }
3361     }
3362   }
3363 
3364   // Cast raw oop to the real thing...
3365   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3366   javaoop = _gvn.transform(javaoop);
3367   C->set_recent_alloc(control(), javaoop);
3368   assert(just_allocated_object(control()) == javaoop, "just allocated");
3369 
3370 #ifdef ASSERT
3371   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3372     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3373            "Ideal_allocation works");
3374     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3375            "Ideal_allocation works");
3376     if (alloc->is_AllocateArray()) {
3377       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3378              "Ideal_allocation works");
3379       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3380              "Ideal_allocation works");
3381     } else {
3382       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3383     }
3384   }
3385 #endif //ASSERT
3386 
3387   return javaoop;
3388 }
3389 
3390 //---------------------------new_instance--------------------------------------
3391 // This routine takes a klass_node which may be constant (for a static type)
3392 // or may be non-constant (for reflective code).  It will work equally well
3393 // for either, and the graph will fold nicely if the optimizer later reduces
3394 // the type to a constant.
3395 // The optional arguments are for specialized use by intrinsics:
3396 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3397 //  - If 'return_size_val', report the the total object size to the caller.
3398 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3399 Node* GraphKit::new_instance(Node* klass_node,
3400                              Node* extra_slow_test,
3401                              Node* *return_size_val,
3402                              bool deoptimize_on_exception) {
3403   // Compute size in doublewords
3404   // The size is always an integral number of doublewords, represented
3405   // as a positive bytewise size stored in the klass's layout_helper.
3406   // The layout_helper also encodes (in a low bit) the need for a slow path.
3407   jint  layout_con = Klass::_lh_neutral_value;
3408   Node* layout_val = get_layout_helper(klass_node, layout_con);
3409   int   layout_is_con = (layout_val == NULL);
3410 
3411   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3412   // Generate the initial go-slow test.  It's either ALWAYS (return a
3413   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3414   // case) a computed value derived from the layout_helper.
3415   Node* initial_slow_test = NULL;
3416   if (layout_is_con) {
3417     assert(!StressReflectiveCode, "stress mode does not use these paths");
3418     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3419     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3420 
3421   } else {   // reflective case
3422     // This reflective path is used by Unsafe.allocateInstance.
3423     // (It may be stress-tested by specifying StressReflectiveCode.)
3424     // Basically, we want to get into the VM is there's an illegal argument.
3425     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3426     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3427     if (extra_slow_test != intcon(0)) {
3428       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3429     }
3430     // (Macro-expander will further convert this to a Bool, if necessary.)
3431   }
3432 
3433   // Find the size in bytes.  This is easy; it's the layout_helper.
3434   // The size value must be valid even if the slow path is taken.
3435   Node* size = NULL;
3436   if (layout_is_con) {
3437     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3438   } else {   // reflective case
3439     // This reflective path is used by clone and Unsafe.allocateInstance.
3440     size = ConvI2X(layout_val);
3441 
3442     // Clear the low bits to extract layout_helper_size_in_bytes:
3443     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3444     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3445     size = _gvn.transform( new (C) AndXNode(size, mask) );
3446   }
3447   if (return_size_val != NULL) {
3448     (*return_size_val) = size;
3449   }
3450 
3451   // This is a precise notnull oop of the klass.
3452   // (Actually, it need not be precise if this is a reflective allocation.)
3453   // It's what we cast the result to.
3454   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3455   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3456   const TypeOopPtr* oop_type = tklass->as_instance_type();
3457 
3458   // Now generate allocation code
3459 
3460   // The entire memory state is needed for slow path of the allocation
3461   // since GC and deoptimization can happened.
3462   Node *mem = reset_memory();
3463   set_all_memory(mem); // Create new memory state
3464 
3465   AllocateNode* alloc
3466     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3467                            control(), mem, i_o(),
3468                            size, klass_node,
3469                            initial_slow_test);
3470 
3471   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3472 }
3473 
3474 //-------------------------------new_array-------------------------------------
3475 // helper for both newarray and anewarray
3476 // The 'length' parameter is (obviously) the length of the array.
3477 // See comments on new_instance for the meaning of the other arguments.
3478 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3479                           Node* length,         // number of array elements
3480                           int   nargs,          // number of arguments to push back for uncommon trap
3481                           Node* *return_size_val,
3482                           bool deoptimize_on_exception) {
3483   jint  layout_con = Klass::_lh_neutral_value;
3484   Node* layout_val = get_layout_helper(klass_node, layout_con);
3485   int   layout_is_con = (layout_val == NULL);
3486 
3487   if (!layout_is_con && !StressReflectiveCode &&
3488       !too_many_traps(Deoptimization::Reason_class_check)) {
3489     // This is a reflective array creation site.
3490     // Optimistically assume that it is a subtype of Object[],
3491     // so that we can fold up all the address arithmetic.
3492     layout_con = Klass::array_layout_helper(T_OBJECT);
3493     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3494     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3495     { BuildCutout unless(this, bol_lh, PROB_MAX);
3496       inc_sp(nargs);
3497       uncommon_trap(Deoptimization::Reason_class_check,
3498                     Deoptimization::Action_maybe_recompile);
3499     }
3500     layout_val = NULL;
3501     layout_is_con = true;
3502   }
3503 
3504   // Generate the initial go-slow test.  Make sure we do not overflow
3505   // if length is huge (near 2Gig) or negative!  We do not need
3506   // exact double-words here, just a close approximation of needed
3507   // double-words.  We can't add any offset or rounding bits, lest we
3508   // take a size -1 of bytes and make it positive.  Use an unsigned
3509   // compare, so negative sizes look hugely positive.
3510   int fast_size_limit = FastAllocateSizeLimit;
3511   if (layout_is_con) {
3512     assert(!StressReflectiveCode, "stress mode does not use these paths");
3513     // Increase the size limit if we have exact knowledge of array type.
3514     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3515     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3516   }
3517 
3518   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3519   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3520 
3521   // --- Size Computation ---
3522   // array_size = round_to_heap(array_header + (length << elem_shift));
3523   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3524   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3525   // The rounding mask is strength-reduced, if possible.
3526   int round_mask = MinObjAlignmentInBytes - 1;
3527   Node* header_size = NULL;
3528   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3529   // (T_BYTE has the weakest alignment and size restrictions...)
3530   if (layout_is_con) {
3531     int       hsize  = Klass::layout_helper_header_size(layout_con);
3532     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3533     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3534     if ((round_mask & ~right_n_bits(eshift)) == 0)
3535       round_mask = 0;  // strength-reduce it if it goes away completely
3536     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3537     assert(header_size_min <= hsize, "generic minimum is smallest");
3538     header_size_min = hsize;
3539     header_size = intcon(hsize + round_mask);
3540   } else {
3541     Node* hss   = intcon(Klass::_lh_header_size_shift);
3542     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3543     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3544     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3545     Node* mask  = intcon(round_mask);
3546     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3547   }
3548 
3549   Node* elem_shift = NULL;
3550   if (layout_is_con) {
3551     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3552     if (eshift != 0)
3553       elem_shift = intcon(eshift);
3554   } else {
3555     // There is no need to mask or shift this value.
3556     // The semantics of LShiftINode include an implicit mask to 0x1F.
3557     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3558     elem_shift = layout_val;
3559   }
3560 
3561   // Transition to native address size for all offset calculations:
3562   Node* lengthx = ConvI2X(length);
3563   Node* headerx = ConvI2X(header_size);
3564 #ifdef _LP64
3565   { const TypeInt* tilen = _gvn.find_int_type(length);
3566     if (tilen != NULL && tilen->_lo < 0) {
3567       // Add a manual constraint to a positive range.  Cf. array_element_address.
3568       jlong size_max = fast_size_limit;
3569       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3570       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3571 
3572       // Only do a narrow I2L conversion if the range check passed.
3573       IfNode* iff = new (C) IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3574       _gvn.transform(iff);
3575       RegionNode* region = new (C) RegionNode(3);
3576       _gvn.set_type(region, Type::CONTROL);
3577       lengthx = new (C) PhiNode(region, TypeLong::LONG);
3578       _gvn.set_type(lengthx, TypeLong::LONG);
3579 
3580       // Range check passed. Use ConvI2L node with narrow type.
3581       Node* passed = IfFalse(iff);
3582       region->init_req(1, passed);
3583       // Make I2L conversion control dependent to prevent it from
3584       // floating above the range check during loop optimizations.
3585       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3586 
3587       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3588       region->init_req(2, IfTrue(iff));
3589       lengthx->init_req(2, ConvI2X(length));
3590 
3591       set_control(region);
3592       record_for_igvn(region);
3593       record_for_igvn(lengthx);
3594     }
3595   }
3596 #endif
3597 
3598   // Combine header size (plus rounding) and body size.  Then round down.
3599   // This computation cannot overflow, because it is used only in two
3600   // places, one where the length is sharply limited, and the other
3601   // after a successful allocation.
3602   Node* abody = lengthx;
3603   if (elem_shift != NULL)
3604     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3605   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3606   if (round_mask != 0) {
3607     Node* mask = MakeConX(~round_mask);
3608     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3609   }
3610   // else if round_mask == 0, the size computation is self-rounding
3611 
3612   if (return_size_val != NULL) {
3613     // This is the size
3614     (*return_size_val) = size;
3615   }
3616 
3617   // Now generate allocation code
3618 
3619   // The entire memory state is needed for slow path of the allocation
3620   // since GC and deoptimization can happened.
3621   Node *mem = reset_memory();
3622   set_all_memory(mem); // Create new memory state
3623 
3624   if (initial_slow_test->is_Bool()) {
3625     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3626     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3627   }
3628 
3629   // Create the AllocateArrayNode and its result projections
3630   AllocateArrayNode* alloc
3631     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3632                                 control(), mem, i_o(),
3633                                 size, klass_node,
3634                                 initial_slow_test,
3635                                 length);
3636 
3637   // Cast to correct type.  Note that the klass_node may be constant or not,
3638   // and in the latter case the actual array type will be inexact also.
3639   // (This happens via a non-constant argument to inline_native_newArray.)
3640   // In any case, the value of klass_node provides the desired array type.
3641   const TypeInt* length_type = _gvn.find_int_type(length);
3642   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3643   if (ary_type->isa_aryptr() && length_type != NULL) {
3644     // Try to get a better type than POS for the size
3645     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3646   }
3647 
3648   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3649 
3650   // Cast length on remaining path to be as narrow as possible
3651   if (map()->find_edge(length) >= 0) {
3652     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3653     if (ccast != length) {
3654       _gvn.set_type_bottom(ccast);
3655       record_for_igvn(ccast);
3656       replace_in_map(length, ccast);
3657     }
3658   }
3659 
3660   return javaoop;
3661 }
3662 
3663 // The following "Ideal_foo" functions are placed here because they recognize
3664 // the graph shapes created by the functions immediately above.
3665 
3666 //---------------------------Ideal_allocation----------------------------------
3667 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3668 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3669   if (ptr == NULL) {     // reduce dumb test in callers
3670     return NULL;
3671   }
3672   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3673     ptr = ptr->in(1);
3674     if (ptr == NULL) return NULL;
3675   }
3676   // Return NULL for allocations with several casts:
3677   //   j.l.reflect.Array.newInstance(jobject, jint)
3678   //   Object.clone()
3679   // to keep more precise type from last cast.
3680   if (ptr->is_Proj()) {
3681     Node* allo = ptr->in(0);
3682     if (allo != NULL && allo->is_Allocate()) {
3683       return allo->as_Allocate();
3684     }
3685   }
3686   // Report failure to match.
3687   return NULL;
3688 }
3689 
3690 // Fancy version which also strips off an offset (and reports it to caller).
3691 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3692                                              intptr_t& offset) {
3693   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3694   if (base == NULL)  return NULL;
3695   return Ideal_allocation(base, phase);
3696 }
3697 
3698 // Trace Initialize <- Proj[Parm] <- Allocate
3699 AllocateNode* InitializeNode::allocation() {
3700   Node* rawoop = in(InitializeNode::RawAddress);
3701   if (rawoop->is_Proj()) {
3702     Node* alloc = rawoop->in(0);
3703     if (alloc->is_Allocate()) {
3704       return alloc->as_Allocate();
3705     }
3706   }
3707   return NULL;
3708 }
3709 
3710 // Trace Allocate -> Proj[Parm] -> Initialize
3711 InitializeNode* AllocateNode::initialization() {
3712   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3713   if (rawoop == NULL)  return NULL;
3714   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3715     Node* init = rawoop->fast_out(i);
3716     if (init->is_Initialize()) {
3717       assert(init->as_Initialize()->allocation() == this, "2-way link");
3718       return init->as_Initialize();
3719     }
3720   }
3721   return NULL;
3722 }
3723 
3724 //----------------------------- loop predicates ---------------------------
3725 
3726 //------------------------------add_predicate_impl----------------------------
3727 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3728   // Too many traps seen?
3729   if (too_many_traps(reason)) {
3730 #ifdef ASSERT
3731     if (TraceLoopPredicate) {
3732       int tc = C->trap_count(reason);
3733       tty->print("too many traps=%s tcount=%d in ",
3734                     Deoptimization::trap_reason_name(reason), tc);
3735       method()->print(); // which method has too many predicate traps
3736       tty->cr();
3737     }
3738 #endif
3739     // We cannot afford to take more traps here,
3740     // do not generate predicate.
3741     return;
3742   }
3743 
3744   Node *cont    = _gvn.intcon(1);
3745   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3746   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3747   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3748   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3749   C->add_predicate_opaq(opq);
3750   {
3751     PreserveJVMState pjvms(this);
3752     set_control(iffalse);
3753     inc_sp(nargs);
3754     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3755   }
3756   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3757   set_control(iftrue);
3758 }
3759 
3760 //------------------------------add_predicate---------------------------------
3761 void GraphKit::add_predicate(int nargs) {
3762   if (UseLoopPredicate) {
3763     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3764   }
3765   // loop's limit check predicate should be near the loop.
3766   if (LoopLimitCheck) {
3767     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3768   }
3769 }
3770 
3771 //----------------------------- store barriers ----------------------------
3772 #define __ ideal.
3773 
3774 void GraphKit::sync_kit(IdealKit& ideal) {
3775   set_all_memory(__ merged_memory());
3776   set_i_o(__ i_o());
3777   set_control(__ ctrl());
3778 }
3779 
3780 void GraphKit::final_sync(IdealKit& ideal) {
3781   // Final sync IdealKit and graphKit.
3782   sync_kit(ideal);
3783 }
3784 
3785 // vanilla/CMS post barrier
3786 // Insert a write-barrier store.  This is to let generational GC work; we have
3787 // to flag all oop-stores before the next GC point.
3788 void GraphKit::write_barrier_post(Node* oop_store,
3789                                   Node* obj,
3790                                   Node* adr,
3791                                   uint  adr_idx,
3792                                   Node* val,
3793                                   bool use_precise) {
3794   // No store check needed if we're storing a NULL or an old object
3795   // (latter case is probably a string constant). The concurrent
3796   // mark sweep garbage collector, however, needs to have all nonNull
3797   // oop updates flagged via card-marks.
3798   if (val != NULL && val->is_Con()) {
3799     // must be either an oop or NULL
3800     const Type* t = val->bottom_type();
3801     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3802       // stores of null never (?) need barriers
3803       return;
3804   }
3805 
3806   if (use_ReduceInitialCardMarks()
3807       && obj == just_allocated_object(control())) {
3808     // We can skip marks on a freshly-allocated object in Eden.
3809     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3810     // That routine informs GC to take appropriate compensating steps,
3811     // upon a slow-path allocation, so as to make this card-mark
3812     // elision safe.
3813     return;
3814   }
3815 
3816   if (!use_precise) {
3817     // All card marks for a (non-array) instance are in one place:
3818     adr = obj;
3819   }
3820   // (Else it's an array (or unknown), and we want more precise card marks.)
3821   assert(adr != NULL, "");
3822 
3823   IdealKit ideal(this, true);
3824 
3825   // Convert the pointer to an int prior to doing math on it
3826   Node* cast = __ CastPX(__ ctrl(), adr);
3827 
3828   // Divide by card size
3829   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3830          "Only one we handle so far.");
3831   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3832 
3833   // Combine card table base and card offset
3834   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3835 
3836   // Get the alias_index for raw card-mark memory
3837   int adr_type = Compile::AliasIdxRaw;
3838   Node*   zero = __ ConI(0); // Dirty card value
3839   BasicType bt = T_BYTE;
3840 
3841   if (UseCondCardMark) {
3842     // The classic GC reference write barrier is typically implemented
3843     // as a store into the global card mark table.  Unfortunately
3844     // unconditional stores can result in false sharing and excessive
3845     // coherence traffic as well as false transactional aborts.
3846     // UseCondCardMark enables MP "polite" conditional card mark
3847     // stores.  In theory we could relax the load from ctrl() to
3848     // no_ctrl, but that doesn't buy much latitude.
3849     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3850     __ if_then(card_val, BoolTest::ne, zero);
3851   }
3852 
3853   // Smash zero into card
3854   if( !UseConcMarkSweepGC ) {
3855     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
3856   } else {
3857     // Specialized path for CM store barrier
3858     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3859   }
3860 
3861   if (UseCondCardMark) {
3862     __ end_if();
3863   }
3864 
3865   // Final sync IdealKit and GraphKit.
3866   final_sync(ideal);
3867 }
3868 
3869 // G1 pre/post barriers
3870 void GraphKit::g1_write_barrier_pre(bool do_load,
3871                                     Node* obj,
3872                                     Node* adr,
3873                                     uint alias_idx,
3874                                     Node* val,
3875                                     const TypeOopPtr* val_type,
3876                                     Node* pre_val,
3877                                     BasicType bt) {
3878 
3879   // Some sanity checks
3880   // Note: val is unused in this routine.
3881 
3882   if (do_load) {
3883     // We need to generate the load of the previous value
3884     assert(obj != NULL, "must have a base");
3885     assert(adr != NULL, "where are loading from?");
3886     assert(pre_val == NULL, "loaded already?");
3887     assert(val_type != NULL, "need a type");
3888   } else {
3889     // In this case both val_type and alias_idx are unused.
3890     assert(pre_val != NULL, "must be loaded already");
3891     // Nothing to be done if pre_val is null.
3892     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3893     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3894   }
3895   assert(bt == T_OBJECT, "or we shouldn't be here");
3896 
3897   IdealKit ideal(this, true);
3898 
3899   Node* tls = __ thread(); // ThreadLocalStorage
3900 
3901   Node* no_ctrl = NULL;
3902   Node* no_base = __ top();
3903   Node* zero  = __ ConI(0);
3904   Node* zeroX = __ ConX(0);
3905 
3906   float likely  = PROB_LIKELY(0.999);
3907   float unlikely  = PROB_UNLIKELY(0.999);
3908 
3909   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3910   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3911 
3912   // Offsets into the thread
3913   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3914                                           PtrQueue::byte_offset_of_active());
3915   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3916                                           PtrQueue::byte_offset_of_index());
3917   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3918                                           PtrQueue::byte_offset_of_buf());
3919 
3920   // Now the actual pointers into the thread
3921   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3922   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3923   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3924 
3925   // Now some of the values
3926   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3927 
3928   // if (!marking)
3929   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3930     BasicType index_bt = TypeX_X->basic_type();
3931     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3932     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3933 
3934     if (do_load) {
3935       // load original value
3936       // alias_idx correct??
3937       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3938     }
3939 
3940     // if (pre_val != NULL)
3941     __ if_then(pre_val, BoolTest::ne, null()); {
3942       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3943 
3944       // is the queue for this thread full?
3945       __ if_then(index, BoolTest::ne, zeroX, likely); {
3946 
3947         // decrement the index
3948         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3949 
3950         // Now get the buffer location we will log the previous value into and store it
3951         Node *log_addr = __ AddP(no_base, buffer, next_index);
3952         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
3953         // update the index
3954         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
3955 
3956       } __ else_(); {
3957 
3958         // logging buffer is full, call the runtime
3959         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3960         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3961       } __ end_if();  // (!index)
3962     } __ end_if();  // (pre_val != NULL)
3963   } __ end_if();  // (!marking)
3964 
3965   // Final sync IdealKit and GraphKit.
3966   final_sync(ideal);
3967 }
3968 
3969 //
3970 // Update the card table and add card address to the queue
3971 //
3972 void GraphKit::g1_mark_card(IdealKit& ideal,
3973                             Node* card_adr,
3974                             Node* oop_store,
3975                             uint oop_alias_idx,
3976                             Node* index,
3977                             Node* index_adr,
3978                             Node* buffer,
3979                             const TypeFunc* tf) {
3980 
3981   Node* zero  = __ ConI(0);
3982   Node* zeroX = __ ConX(0);
3983   Node* no_base = __ top();
3984   BasicType card_bt = T_BYTE;
3985   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3986   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3987 
3988   //  Now do the queue work
3989   __ if_then(index, BoolTest::ne, zeroX); {
3990 
3991     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3992     Node* log_addr = __ AddP(no_base, buffer, next_index);
3993 
3994     // Order, see storeCM.
3995     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
3996     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
3997 
3998   } __ else_(); {
3999     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4000   } __ end_if();
4001 
4002 }
4003 
4004 void GraphKit::g1_write_barrier_post(Node* oop_store,
4005                                      Node* obj,
4006                                      Node* adr,
4007                                      uint alias_idx,
4008                                      Node* val,
4009                                      BasicType bt,
4010                                      bool use_precise) {
4011   // If we are writing a NULL then we need no post barrier
4012 
4013   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4014     // Must be NULL
4015     const Type* t = val->bottom_type();
4016     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4017     // No post barrier if writing NULLx
4018     return;
4019   }
4020 
4021   if (!use_precise) {
4022     // All card marks for a (non-array) instance are in one place:
4023     adr = obj;
4024   }
4025   // (Else it's an array (or unknown), and we want more precise card marks.)
4026   assert(adr != NULL, "");
4027 
4028   IdealKit ideal(this, true);
4029 
4030   Node* tls = __ thread(); // ThreadLocalStorage
4031 
4032   Node* no_base = __ top();
4033   float likely  = PROB_LIKELY(0.999);
4034   float unlikely  = PROB_UNLIKELY(0.999);
4035   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4036   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4037   Node* zeroX = __ ConX(0);
4038 
4039   // Get the alias_index for raw card-mark memory
4040   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4041 
4042   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4043 
4044   // Offsets into the thread
4045   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4046                                      PtrQueue::byte_offset_of_index());
4047   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4048                                      PtrQueue::byte_offset_of_buf());
4049 
4050   // Pointers into the thread
4051 
4052   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4053   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4054 
4055   // Now some values
4056   // Use ctrl to avoid hoisting these values past a safepoint, which could
4057   // potentially reset these fields in the JavaThread.
4058   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4059   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4060 
4061   // Convert the store obj pointer to an int prior to doing math on it
4062   // Must use ctrl to prevent "integerized oop" existing across safepoint
4063   Node* cast =  __ CastPX(__ ctrl(), adr);
4064 
4065   // Divide pointer by card size
4066   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4067 
4068   // Combine card table base and card offset
4069   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4070 
4071   // If we know the value being stored does it cross regions?
4072 
4073   if (val != NULL) {
4074     // Does the store cause us to cross regions?
4075 
4076     // Should be able to do an unsigned compare of region_size instead of
4077     // and extra shift. Do we have an unsigned compare??
4078     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4079     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4080 
4081     // if (xor_res == 0) same region so skip
4082     __ if_then(xor_res, BoolTest::ne, zeroX); {
4083 
4084       // No barrier if we are storing a NULL
4085       __ if_then(val, BoolTest::ne, null(), unlikely); {
4086 
4087         // Ok must mark the card if not already dirty
4088 
4089         // load the original value of the card
4090         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4091 
4092         __ if_then(card_val, BoolTest::ne, young_card); {
4093           sync_kit(ideal);
4094           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4095           insert_mem_bar(Op_MemBarVolatile, oop_store);
4096           __ sync_kit(this);
4097 
4098           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4099           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4100             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4101           } __ end_if();
4102         } __ end_if();
4103       } __ end_if();
4104     } __ end_if();
4105   } else {
4106     // Object.clone() instrinsic uses this path.
4107     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4108   }
4109 
4110   // Final sync IdealKit and GraphKit.
4111   final_sync(ideal);
4112 }
4113 #undef __
4114 
4115 
4116 
4117 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4118   if (java_lang_String::has_offset_field()) {
4119     int offset_offset = java_lang_String::offset_offset_in_bytes();
4120     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4121                                                        false, NULL, 0);
4122     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4123     int offset_field_idx = C->get_alias_index(offset_field_type);
4124     return make_load(ctrl,
4125                      basic_plus_adr(str, str, offset_offset),
4126                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4127   } else {
4128     return intcon(0);
4129   }
4130 }
4131 
4132 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4133   if (java_lang_String::has_count_field()) {
4134     int count_offset = java_lang_String::count_offset_in_bytes();
4135     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4136                                                        false, NULL, 0);
4137     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4138     int count_field_idx = C->get_alias_index(count_field_type);
4139     return make_load(ctrl,
4140                      basic_plus_adr(str, str, count_offset),
4141                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4142   } else {
4143     return load_array_length(load_String_value(ctrl, str));
4144   }
4145 }
4146 
4147 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4148   int value_offset = java_lang_String::value_offset_in_bytes();
4149   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4150                                                      false, NULL, 0);
4151   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4152   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4153                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4154                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4155   int value_field_idx = C->get_alias_index(value_field_type);
4156   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4157                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4158   // String.value field is known to be @Stable.
4159   if (UseImplicitStableValues) {
4160     load = cast_array_to_stable(load, value_type);
4161   }
4162   return load;
4163 }
4164 
4165 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4166   int offset_offset = java_lang_String::offset_offset_in_bytes();
4167   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4168                                                      false, NULL, 0);
4169   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4170   int offset_field_idx = C->get_alias_index(offset_field_type);
4171   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4172                   value, T_INT, offset_field_idx, MemNode::unordered);
4173 }
4174 
4175 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4176   int value_offset = java_lang_String::value_offset_in_bytes();
4177   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4178                                                      false, NULL, 0);
4179   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4180 
4181   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4182       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4183 }
4184 
4185 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4186   int count_offset = java_lang_String::count_offset_in_bytes();
4187   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4188                                                      false, NULL, 0);
4189   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4190   int count_field_idx = C->get_alias_index(count_field_type);
4191   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4192                   value, T_INT, count_field_idx, MemNode::unordered);
4193 }
4194 
4195 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4196   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4197   // assumption of CCP analysis.
4198   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4199 }